WorldWideScience

Sample records for continuous flow system

  1. The assembly and use of continuous flow systems for chemical synthesis.

    Science.gov (United States)

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  2. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  3. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  4. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an......, and reacted further with an alkylating agent....

  5. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  6. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  7. Probabilistic Power Flow Method Considering Continuous and Discrete Variables

    Directory of Open Access Journals (Sweden)

    Xuexia Zhang

    2017-04-01

    Full Text Available This paper proposes a probabilistic power flow (PPF method considering continuous and discrete variables (continuous and discrete power flow, CDPF for power systems. The proposed method—based on the cumulant method (CM and multiple deterministic power flow (MDPF calculations—can deal with continuous variables such as wind power generation (WPG and loads, and discrete variables such as fuel cell generation (FCG. In this paper, continuous variables follow a normal distribution (loads or a non-normal distribution (WPG, and discrete variables follow a binomial distribution (FCG. Through testing on IEEE 14-bus and IEEE 118-bus power systems, the proposed method (CDPF has better accuracy compared with the CM, and higher efficiency compared with the Monte Carlo simulation method (MCSM.

  8. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  9. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  10. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system

    NARCIS (Netherlands)

    Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M.

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase

  11. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system

    International Nuclear Information System (INIS)

    Han, B.X.; Reden, K.F. von; Roberts, M.L.; Schneider, R.J.; Hayes, J.M.; Jenkins, W.J.

    2007-01-01

    A continuous-flow 14 C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO 2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45 o electrostatic spherical analyzer (ESA) and a 90 o double-focusing magnet has been designed. The 45 o ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90 o double focusing magnet and 90 o ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit

  12. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  13. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    Science.gov (United States)

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of acid-base properties of unstable drugs using a continuous-flow system with UV-vis spectrophotometric detection.

    Science.gov (United States)

    Argemí, Anna; Saurina, Javier

    2007-08-15

    In this paper, we propose a continuous-flow system for the study of the acid-base characteristics of unstable drugs. 5-Azacytidine has been selected as a first model of unstable compound, which progressively decomposes in aqueous solutions. Besides, other compounds undergoing hydrolysis and oxidation side reactions have been also analyzed to explore the performance of the method. In comparison with conventional batch titrations, the drug decomposition can be minimized by the continuous renewal of the analyte solution. The composition of the buffer mixture is varied on-line during the process from successive changes in the flow rates of acid and basic stock solutions. As a result, the pH value of the test solution is varied in a controlled manner in the range of 1-13. Multivariate curve resolution based on alternating least squares has been used to extract relevant information concerning the acid-base properties of analytes. Results from the continuous-flow system have been compared with those obtained, using batch spectrophotometric titrations, and in the case of fast degradations, the performance of the proposed procedure has been superior.

  15. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system

    Directory of Open Access Journals (Sweden)

    José F. Ovalles

    2014-04-01

    Full Text Available The quantitative estimation of amikacin (AMK in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded without any sample pretreatment. A good linear calibration (r>0.999, %RSD<2.0 in the range of 7.7–77.0 mg/mL was found. The results showed a good correlation with the manufacturer's and overall they all fell within acceptable limits of most pharmacopoeial monographs on AMK sulfate. Keywords: Amikacin, FTIR derivative spectrometry, Continuous flow system, Pharmaceutical preparation, Injection, Sulfate

  16. Design and construction of a vertical hydroponic system with semi-continuous and continuous nutrient cycling

    Science.gov (United States)

    Siswanto, Dian; Widoretno, Wahyu

    2017-11-01

    Problems due to the increase in agricultural land use change can be solved by hydroponic system applications. Many hydroponic studies have been conducted in several countries while their applications in Indonesia requires modification and adjustment. This research was conducted to design and construct a hydroponic system with semi-continuous and continuous nutrition systems. The hydroponic system which was used adapts the ebb and flow system, and the nutrient film technique (NFT). This hydroponic system was made from polyvinyl chloride (PVC) pipes with a length of 197 cm, a diameter of 16 cm, and a slope of 4°. It was constructed from four PVC pipes. In semi-continuous irrigation treatment, nutrients flow four to six times for each of ten minutes depending on plant development and the estimated evapotranspiration occurring, while in a continuous nutrient system the nutrients are streamed for twenty-four hours without stopping at a maximum flow rate of 13.7 L per second.

  17. Multistep Continuous-Flow Synthesis in Medicinal Chemistry

    DEFF Research Database (Denmark)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia Cwarzko

    2013-01-01

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained i...... studies in medicinal chemistry....

  18. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  19. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study

    Science.gov (United States)

    Song, Zhiming; Gu, Kaiyun; Gao, Bin; Wan, Feng; Chang, Yu; Zeng, Yi

    2014-01-01

    Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function. PMID:24793178

  20. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  1. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  2. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  3. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  4. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  5. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  6. Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.; Hoogendoorn, S.P.; van Arem, Bart

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  7. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  8. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    Science.gov (United States)

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    Science.gov (United States)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  10. Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya

    International Nuclear Information System (INIS)

    Gill, L.W.; Price, C.

    2010-01-01

    This project involves the design and installation of a continuous flow reactor which uses solar radiation, an abundant resource in most sub-Saharan countries, to disinfect water supplies. The system was installed at a rural village in Kenya to disinfect surface water collected at a recently constructed micro-dam. The solar reactor uses CPC reflectors which reflect both direct and diffuse solar radiation onto clear pipes through which the requisite water supply flows. The reaction kinetics for the full-scale design had been determined on a variety of pathogenic micro-organisms under both artificial and real sunlight in controlled conditions. The community fully participated in the planning, installation and subsequent operation of the system. The preliminary water quality results indicate that the system is providing a safe source of water for the community. The installation, commissioning and initial use of the system highlights the critical need for community involvement and approval if such interventions are going to be successful in rural areas, alongside the requirements for strategic and technical support.

  11. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  12. Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB)

    International Nuclear Information System (INIS)

    Bhakat, P.B.; Gupta, A.K.; Ayoob, S.

    2007-01-01

    This study examine the feasibility of As(III) removal from aqueous environment by an adsorbent, modified calcined bauxite (MCB) in a continuous flow fixed bed system. MCB exhibited excellent adsorption capacity of 520.2 mg/L (0.39 mg/g) with an adsorption rate constant 0.7658 L/mg h for an influent As(III) concentration of 1 mg/L. In a 2 cm diameter continuous flow fixed MCB bed, a depth of only 1.765 cm was found necessary to produce effluent As(III) concentration of 0.01 mg/L, from an influent of 1 mg/L at a flow rate of 8 mL/min. Also, bed heights of 10, 20, and 30 cm could treat 427.85, 473.88 and 489.17 bed volumes of water, respectively, to breakthrough. A reduction in adsorption capacity of MCB was observed with increase in flow rates. The theoretical service times evaluated from bed depth service time (BDST) approach for different flow rates and influent As(III) concentrations had shown good correlation with the corresponding experimental values. The theoretical breakthrough curve developed from constantly mixed batch reactor (CMBR) isotherm data also correlated well with experimental breakthrough curve

  13. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    Science.gov (United States)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  14. Hybrid Continuous-Flow Total Artificial Heart.

    Science.gov (United States)

    Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy

    2018-05-01

    Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Continuous traffic flow modeling of driver support systems in multiclass traffic with inter-vehicle communication and drivers in the loop

    NARCIS (Netherlands)

    Tampere, C.M.J.; Hoogendoorn, S.P.; Arem, B. van

    2009-01-01

    This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of

  16. Development of a continuous flow model system for studies of biofilm formation on polymers and its application on PVC-C and PVC-P

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    could be harvested from three different combinations of flow velocity and residence time. Biofilm formation was followed by ATP analysis on test material (chlorinated polyvinylchloride, PVC-C), negative control (stainless steel) and positive control (plasticized polyvinylchloride, PVC-P) incubated......-C, while most of the very deviating values for PVC-P were between 2-13,000 pg ATP/cm2. During 43 weeks of operation of the continuous flow model systems the biofilm formation increased on all three materials, with biofilm formation on PVC-C at the same level as on the negative steel control (values of 75...... system. In this study, a continuous flow model system was developed, for investigating biofilm formation on polymers, simulating conditions in the distribution system. Commercially available pipes were used for exchangeable test pieces, which allowed for testing over prolonged time periods. Test pieces...

  17. Applying lean principles to achieve continuous flow in 3PLs’ outbound processes

    NARCIS (Netherlands)

    Overboom, M.A.; Small, J.S.; Naus, A.J.A.M.; de Haan, J.A.C.

    2013-01-01

    The article offers information on the application of lean principles to achieve continuous flow in third party logistics providers (3PLs). It mentions that lean management principles and practices have been traditionally applied to manufacturing systems and try to make products flow through the

  18. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  19. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    Science.gov (United States)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  20. Voltage stability analysis using a modified continuation load flow ...

    African Journals Online (AJOL)

    This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...

  1. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    Science.gov (United States)

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  3. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  4. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  5. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    The objective of this thesis is to report the development of a new, alternative process for the flexible production of nitrile compounds in continuous flow. Nitriles are an important class of compounds that find applications as solvents, chemical intermediates and pharmaceutical compounds......, alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  6. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  7. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow

    Directory of Open Access Journals (Sweden)

    Christophe Len

    2017-05-01

    Full Text Available Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts.

  8. The synthesis of active pharmaceutical ingredients (APIs using continuous flow chemistry

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2015-07-01

    Full Text Available The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  9. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.

    Science.gov (United States)

    Baumann, Marcus; Baxendale, Ian R

    2015-01-01

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  10. Evaluation of a continuous-positive pressure generating system

    Directory of Open Access Journals (Sweden)

    Herrera N

    2016-03-01

    Full Text Available Nestor Herrera,1,2 Roberto Regnícoli,1,2 Mariel Murad1,2 1Neonatology Unit, Italian Hospital Garibaldi, Rosario, Argentina; 2Experimental Medicine and Surgery Unit, Italian University Institute of Rosario, Argentina Abstract: The use of systems that apply continuous-positive airway pressure by means of noninvasive methods is widespread in the neonatal care practice and has been associated with a decrease in the use of invasive mechanical ventilation, less administration of exogenous surfactant, and bronchopulmonary dysplasia. Few experimental studies on the functioning of the neonatology systems that generate continuous-positive airway pressure have been reported. A flow resistor system associated with an underwater seal resistor in a lung test model was described, and it was compared with an underwater seal threshold resistor system. Important differences in the pressures generated in the different systems studied were verified. The generation of pressure was associated with the immersion depth and the diameter of the bubble tubing. The flow resistor associated with an underwater seal, with small bubble tubing, showed no important differences in the evaluated pressures, exerting a stabilizing effect on the generated pressures. The importance of measuring the pressure generated by the different systems studied was verified, due to the differences between the working pressures set and the pressures measured. Keywords: continuous-positive pressure, flow and threshold resistor, BCPAP

  11. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  12. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  14. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  15. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  16. Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing

    KAUST Repository

    Hatzell, Marta C.

    2014-12-09

    Efficient conversion of “mixing energy” to electricity through capacitive mixing (CapMix) has been limited by low energy recoveries, low power densities, and noncontinuous energy production resulting from intermittent charging and discharging cycles. We show here that a CapMix system based on a four-reactor process with flow electrodes can generate constant and continuous energy, providing a more flexible platform for harvesting mixing energy. The power densities were dependent on the flow-electrode carbon loading, with 5.8 ± 0.2 mW m–2 continuously produced in the charging reactor and 3.3 ± 0.4 mW m–2 produced in the discharging reactor (9.2 ± 0.6 mW m–2 for the whole system) when the flow-electrode carbon loading was 15%. Additionally, when the flow-electrode electrolyte ion concentration increased from 10 to 20 g L–1, the total power density of the whole system (charging and discharging) increased to 50.9 ± 2.5 mW m–2.

  17. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  18. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    Science.gov (United States)

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sequential continuous flow processes for the oxidation of amines and azides by using HOF·MeCN.

    Science.gov (United States)

    McPake, Christopher B; Murray, Christopher B; Sandford, Graham

    2012-02-13

    The generation and use of the highly potent oxidising agent HOF·MeCN in a controlled single continuous flow process is described. Oxidations of amines and azides to corresponding nitrated systems by using fluorine gas, water and acetonitrile by sequential gas-liquid/liquid-liquid continuous flow procedures are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pin-count reduction for continuous flow microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander; Pop, Paul; Madsen, Jan

    2017-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers integrating the necessary functions on-chip. We are interested in flow-based biochips, where a continuous flow of liquid is manipulated using integrated microvalves, controlled from external pressure sources via off...

  2. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  4. Enhancing chemical synthesis using catalytic reactions under continuous flow conditions

    OpenAIRE

    Asadi, Mousa

    2017-01-01

    Many advantages have been demonstrated for continuous flow chemistry in comparison with batch chemistry; such as easy automation, high level of reproducibility, improved safety, and process reliability. Indeed, with continuous flow processes constant reaction parameters such as temperature, time, amount of reagents, catalyst, solvents, efficient mixing etc. can easily be assured. The research detailed in this PhD thesis takes advantages of flow chemistry applying it to the Fukuyama ...

  5. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    International Nuclear Information System (INIS)

    Lee, D.D.; Collins, J.L.

    2000-01-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required

  6. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  7. Renormalization group flows and continual Lie algebras

    International Nuclear Information System (INIS)

    Bakas, Ioannis

    2003-01-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  8. A hazard of the Intraflo continuous flush system.

    Science.gov (United States)

    Schwartz, A J; Stoner, B B; Jobes, D R

    1977-01-01

    Patency of pressure sensing systems can be provided by the Intraflow Continuous Flush System (Sorenson Research Company, Salt Lake City, UT 84115). This device allows continuous flow of flush solution through a regulatory valve while preventing transmission of the high pressure of the flush solution. The case presented describes the recognition of a false elevation of a monitored pressure secondary to the malfunction of the Intraflo regulatory valve. Elimination of the flush solution high pressure during monitoring prevents inappropriate data collection.

  9. "Batch" kinetics in flow: online IR analysis and continuous control.

    Science.gov (United States)

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  12. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  13. Controlled synthesis of poly(3-hexylthiophene in continuous flow

    Directory of Open Access Journals (Sweden)

    Helga Seyler

    2013-07-01

    Full Text Available There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene, P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  14. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    Science.gov (United States)

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  15. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  16. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  17. Simulation of transient fluid flow in mold region during steel continuous casting

    International Nuclear Information System (INIS)

    Liu, R; Thomas, B G; Sengupta, J

    2012-01-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  18. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  19. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    DEFF Research Database (Denmark)

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu

    2015-01-01

    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology...

  20. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  1. Electrohydrodynamics and other hydrodynamic phenomena in continuous-flow electrophoresis

    International Nuclear Information System (INIS)

    Saville, D.A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow. 10 references

  2. State of the art of aerobic granulation in continuous flow bioreactors.

    Science.gov (United States)

    Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu

    In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of

  3. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  5. Beyond organometallic flow chemistry : the principles behind the use of continuous-flow reactors for synthesis

    NARCIS (Netherlands)

    Noel, T.; Su, Y.; Hessel, V.; Noël, T.

    2015-01-01

    Flow chemistry is typically used to enable challenging reactions which are difficult to carry out in conventional batch equipment. Consequently, the use of continuous-flow reactors for applications in organometallic and organic chemistry has witnessed a spectacular increase in interest from the

  6. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  7. Review - On-chip diamagnetic repulsion in continuous flow

    Directory of Open Access Journals (Sweden)

    Mark D Tarn, Noriyuki Hirota, Alexander Iles and Nicole Pamme

    2009-01-01

    Full Text Available We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm were examined in two concentrations of MnCl2 (6 and 10%. The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  8. Software development for continuous-gas-flow AMS

    International Nuclear Information System (INIS)

    Reden, K.F. von; Roberts, M.L.; Jenkins, W.J.; Rosenheim, B.E.; McNichol, A.P.; Schneider, R.J.

    2008-01-01

    The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution is presently completing installation of a novel continuous-flow AMS system. A multi-year development of an AMS microwave gas ion source in collaboration with Atomic Energy Canada Limited (AECL), Chalk River, has preceded this final step of an implementation that is expected to add a new dimension to 14 C AMS. National Instruments, NIM, and CAMAC modules have been programmed with LabVIEW on a Windows XP platform to form the basis for data acquisition. In this paper we discuss possible applications and include simulations of expected data acquisition scenarios like real-time AMS analysis of chromatograms. Particular attention will have to be given to issues of synchronization between rapidly changing input amplitudes and signal processing cycles in hardware and software

  9. The Generation of Diazo Compounds in Continuous-Flow.

    Science.gov (United States)

    Hock, Katharina J; Koenigs, Rene M

    2018-03-25

    Toxic, cancerogenic and explosive - these attributes are typically associated with diazo compounds. Nonetheless, diazo compounds are nowadays a highly demanded class of reagents for organic synthesis, yet the concerns with regards to safe and scalable transformations of these compounds are still exceptionally high. Lately, the research area of the continuous-flow synthesis of diazo compounds attracted significant interest and a whole variety of protocols for their "on-demand" preparation have been realized to date. This concept article focuses on the recent developments using continuous-flow technologies to access diazo compounds; thus minimizing risks and hazards when working with this particular class of compounds. In this article we discuss these concepts and highlight different pre-requisites to access and to perform downstream functionalization reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    Science.gov (United States)

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  11. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  12. Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-01-01

    Full Text Available To prepare the gold nanoparticles (AuNPs with uniform sizes, fine morphology, and good monodispersity, a pulsed mixing microfluidic system based on PZT actuation was presented. The system includes PZT micropump and Y type micromixer. By adjusting voltage (entrance flow rate, pulsed frequency, phase, and other parameters, a variety of mixing modes can be achieved, so as to realize the controllable synthesis of nanoparticles in a certain range. By numerical simulation and analysis, the channel section size, entrance angle, and pulse frequency were optimized. Based on the optimized structure and working parameters, the test prototype has been manufactured in lab, and the related synthesis tests of AuNPs were carried out. The test results indicate that AuNPs with uniform morphology and good monodispersity can be synthesized using the system with the section size (0.4 mm × 0.4 mm, the entrance channel angle (60° under condition of the pulsed frequency (300 Hz, and the entrance flow rate (4 mL/min. The average diameter and its standard deviation of AuNPs synthesized were 21.6 nm, 4.83 nm, respectively. The research work above can be applied to the fields such as the controlled synthesis of noble metal nanoparticles, biomedicine, and microchemical system.

  13. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  14. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  15. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  16. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  17. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  18. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  19. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J

    1984-01-01

    A method is presented which allows for continuous registration of forefoot blood flow over 24 h. Blood flow was estimated by the radioactive Xenon washout method and a portable CdTe detector system was used to measure the tracer disappearance rate. Since the semiconductor detector is placed very ...

  20. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy.

    Science.gov (United States)

    Alam, Md Anik; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2017-06-30

    In-line monitoring of continuous powder flow is an integral part of the continuous manufacturing process of solid oral dosage forms in the pharmaceutical industry. Specifically, monitoring downstream from loss-in-weight (LIW) feeders and/or continuous mixers provides important data about the state of the process. Such measurements support control of the process and thereby enhance product quality. Near Infrared Spectroscopy (NIRS) is a potential PAT tool to monitor the homogeneity of a continuous powder flow stream in pharmaceutical manufacturing. However, the association of analytical results from NIR sampling of the powder stream and the homogeneity (content uniformity) of the resulting tablets provides several challenges; appropriate sampling strategies, adequately robust modeling techniques and poor sensitivities (for low dose APIs) are amongst them. Information from reflectance-based NIRS sampling is limited. The region of the powder bed that is interrogated is confined to the surface where the measurement is made. This potential bias in sampling may, in turn, limit the ability to predict the homogeneity of the finished dosage form. Further, changes to the processing parameters (e.g., rate of powder flow) often have a significant effect on the resulting data. Sample representation, interdependence between process parameters and their effects on powder flow behavior are critical factors for NIRS monitoring of continuous powder flow system. A transmission NIR method was developed as an alternative technique to monitor continuous powder flow and quantify API in the powder stream. Transmission NIRS was used to determine the thickness of the powder stream flowing from a loss-in-weight feeder. The thickness measurement of the powder stream provided an in-depth understanding about the effects of process parameters such as tube angles and powder flow rates on powder flow behaviors. This knowledge based approach helped to define an analytical design space that was

  1. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  2. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  3. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Product differentiation during continuous-flow thermal gradient PCR.

    Science.gov (United States)

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  5. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  6. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  7. Performance evaluation of continuous blood sampling system for PET study. Comparison of three detector-systems

    CERN Document Server

    Matsumoto, K; Sakamoto, S; Senda, M; Yamamoto, S; Tarutani, K; Minato, K

    2002-01-01

    To measure cerebral blood flow with sup 1 sup 5 O PET, it is necessary to measure the time course of arterial blood radioactivity. We examined the performance of three different types of continuous blood sampling system. Three kinds of continuous blood sampling system were used: a plastic scintillator-based beta detector (conventional beta detector (BETA)), a bismuth germinate (BGO)-based coincidence gamma detector (Pico-count flow-through detector (COINC)) and a Phoswich detector (PD) composed by a combination of plastic scintillator and BGO scintillator. Performance of these systems was evaluated for absolute sensitivity, count rate characteristic, sensitivity to background gamnra photons, and reproducibility for nylon tube geometry. The absolute sensitivity of the PD was 0.21 cps/Bq for sup 6 sup 8 Ga positrons at the center of the detector. This was approximately three times higher than BETA, two times higher than COINC. The value measured with BETA was stable, even when background radioactivity was incre...

  8. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  9. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    Directory of Open Access Journals (Sweden)

    Christian H. Hornung

    2017-01-01

    Full Text Available This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.

  10. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    International Nuclear Information System (INIS)

    Jaminet, J.F.; Kendall, J.S.

    1976-01-01

    Accomplishment of the UF 6 critical cavity experiments, currently in progress, and planned confined flowing UF 6 initial experiments requires development of reliable techniques for handling heated UF 6 throughout extended ranges of temperature, pressure, and flow rate. The development of three laboratory-scale flow systems for handling gaseous UF 6 at temperatures up to 500 K, pressures up to approximately 40 atm, and continuous flow rates up to approximately 50 g/s is presented. A UF 6 handling system fabricated for static critical tests currently being conducted at Los Alamos Scientific Laboratory (LASL) is described. The system was designed to supply UF 6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressures up to 4 atm. A second UF 6 handling system designed to provide a circulating flow of up to 50 g/s of gaseous UF 6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described

  11. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-01-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  12. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-05-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  13. Catalyst retention in continuous flow with supercritical carbon dioxide

    NARCIS (Netherlands)

    Stouten, S.C.; Noel, T.; Wang, Q.; Hessel, V.

    2014-01-01

    This review discusses the retention of organometallic catalysts in continuous flow processes utilizing supercritical carbon dioxide. Due to its innovative properties, supercritical carbon dioxide offers interesting possibilities for process intensification. As a result of safety and cost

  14. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  15. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  16. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  17. Dose-on-demand production of diverse 18F-radiotracers for preclinical applications using a continuous flow microfluidic system.

    Science.gov (United States)

    Matesic, Lidia; Kallinen, Annukka; Greguric, Ivan; Pascali, Giancarlo

    2017-09-01

    The production of 18 F-radiotracers using continuous flow microfluidics is under-utilized due to perceived equipment limitations. We describe the dose-on-demand principle, whereby the back-to-back production of multiple, diverse 18 F-radiotracers can be prepared on the same day, on the same microfluidic system using the same batch of [ 18 F]fluoride, the same microreactor, the same HPLC column and SPE cartridge to obtain a useful production yield. [ 18 F]MEL050, [ 18 F]Fallypride and [ 18 F]PBR111 were radiolabeled with [ 18 F]fluoride using the Advion NanoTek Microfluidic Synthesis System. The outlet of the microreactor was connected to an automated HPLC injector and following the collection of the product, SPE reformulation produced the 18 F-radiotracer in productions for [ 18 F]MEL050 and [ 18 F]Fallypride were performed at total flow rates of 20μL/min, resulting in 40±13% and 25±13% RCY respectively. [ 18 F]PBR111 was performed at 200μL/min to obtain 27±8% RCY. Molar activities for each 18 F-radiotracer were >100GBq/μmol and radiochemical purities were >97%, implying that the cleaning procedure was effective. Using the same initial solution of [ 18 F]fluoride, microreactor, HPLC column and SPE cartridge, three diverse 18 F-radiotracers could be produced in yields sufficient for preclinical studies in a back-to-back fashion using a microfluidic system with no detectable cross-contamination. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  19. Design and testing of a unique randomized gravity, continuous flow bioreactor

    Science.gov (United States)

    Lassiter, Carroll B.

    1993-01-01

    high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.

  20. COST-EFFECTIVENESS OF CONTINUOUS-FLOW LEFT VENTRICULAR ASSIST DEVICES

    NARCIS (Netherlands)

    Neyt, Mattias; Van den Bruel, Ann; Smit, Yolba; De Jonge, Nicolaas; Erasmus, Michiel; Van Dijk, Diederik; Vlayen, Joan

    Objectives: Mechanical circulatory support through left ventricular assist devices (LVADs) improves survival and quality of life for patients with end-stage heart failure who are ineligible for cardiac transplantation. Our aim was to calculate the cost-effectiveness of continuous-flow LVADs.

  1. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  2. Continuous infusion thermodilution for assessment of coronary flow: Theoretical background and in vitro validation

    NARCIS (Netherlands)

    Veer, van 't M.; Geven, M.C.F.; Rutten, M.C.M.; Horst, van der A.; Aarnoudse, W.H.; Pijls, N.H.J.; Vosse, van de F.N.

    2009-01-01

    Direct volumetric assessment of coronary flow during cardiac catheterization has not been available so far. In the current study continuous infusion thermodilution, a method based on continuous infusion of saline into a selective coronary artery is evaluated. Theoretically, volumetric flow can be

  3. Simulation and optimization of continuous extractive fermentation with recycle system

    Science.gov (United States)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  4. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  5. Prevalidation of in vitro continuous flow exposure systems as alternatives to in vivo inhalation safety evaluation experimentations: outcome from MAAPHRI-PCRD5 research program.

    Science.gov (United States)

    Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric

    2008-06-01

    Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.

  6. Continuous manufacturing of active pharmaceutical ingredients via flow technology

    NARCIS (Netherlands)

    Borukhova, S.; Hessel, V.; Kleinbudde, P.; Khinast, J.; Rantanen, J.

    2017-01-01

    The main drivers to implement continuous manufacturing are aspects related to logistics, quality of the final product, chemistry to be implemented, process and safety concerns. Flow technology offers a platform to realize those drivers. This chapter introduces the reader to a relatively new

  7. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Science.gov (United States)

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  8. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  9. On-chip determination of C-reactive protein using magnetic particles in continuous flow.

    Science.gov (United States)

    Phurimsak, Chayakom; Tarn, Mark D; Peyman, Sally A; Greenman, John; Pamme, Nicole

    2014-11-04

    We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the inflammatory biomarker, C-reactive protein (CRP). The two-step sandwich immunoassay was accomplished in less than 60 s, a vast improvement on the 80-300 min time frame required for enzyme-linked immunosorbent assays (ELISA) and the 50 min necessary for off-chip magnetic particle-based assays. The combination of continuous flow and a stationary magnet enables a degree of autonomy in the system, while a detection limit of 0.87 μg mL(-1) makes it suitable for the determination of CRP concentrations in clinical diagnostics. Its applicability was further proven by assaying real human serum samples and comparing those results to values obtained using standard ELISA tests.

  10. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.; Fabry, D.C.; Heddrich, S.; Sugiono, E.; Liauw, M.A.; Rueping, Magnus

    2018-01-01

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  11. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.

    2018-04-07

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  12. Semi-continuous protein fractionating using affinity cross-flow filtration

    NARCIS (Netherlands)

    Borneman, Zandrie; Zhang, W.; van den Boomgaard, Anthonie; Smolders, C.A.

    2002-01-01

    Protein purification by means of downstream processing is increasingly important. At the University of Twente a semi-continuous process is developed for the isolation of BSA out of crude protein mixtures. For this purpose an automated Affinity Cross-Flow Filtration, ACFF, process is developed. This

  13. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    Science.gov (United States)

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  14. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    Science.gov (United States)

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  15. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Geoffrey K.; Logan, Bruce E. [Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m{sup 2}/m{sup 3}). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m{sup 2}, cathode surface area; 74 A/m{sup 3}) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of {eta}{sub E} = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H{sub 2} gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. (author)

  16. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.; Logan, Bruce E.

    2010-01-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  17. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.

    2010-09-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  18. Performance of a liquid-junction interface for capillary electrophoresis mass spectrometry using continuous-flow fast-atom bombardment

    NARCIS (Netherlands)

    Reinhoud, N.J.; Niessen, W.M.A.; Tjaden, U.R.; Gramberg, L.G.; Verheij, E.R.; Greef, J. van der

    1989-01-01

    The on-line coupling of capillary electrophoresis and mass spectrometry using a continuous-flow fast-atom bombardment system in combination with a liquid-junction interface is described. The influence of the liquid-junction coupling on the efficiency and the resolution is investigated. Qualitative

  19. Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow.

    Science.gov (United States)

    Uysal, Y

    2013-12-15

    The aim of this study was to determine the ability of Lemna minor to remove Cr (VI) ions from wastewater in a continuous flow pond system. This system was used to simulate a wastewater treatment pond and a natural wetland as habitat of plants. In order to find optimal conditions for chromium removal, ponds were operated with aqueous solutions having different pH (4.0-7.0) and chromium concentration of 0.25 mgCr(+6)/L, then plants were exposed to different chromium concentrations (0.25-5.0 mgCr(+6)/L) at pH 4.0. Chromium concentrations, both in biomass and wastewater, were measured and removal efficiency was determined throughout water flow. Growth factors such as growth rates, chlorophyll contents and dry/fresh weight ratios of plants were also determined to measure toxic effects of chromium. The percentages of chromium uptake (PMU) and bioconcentration factors (BCF) were calculated for each run. The highest accumulated chromium concentration (4.423 mgCr/g) was found in plants grown in the first chamber of pond operated at pH 4.0 and 5.0 mgCr/L, while the minimum accumulated chromium concentration (0.122 mgCr/g) was in plants grown in the last chamber of pond operated at pH 4.0 and 0.25 mgCr(+6)/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  1. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  2. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  3. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  4. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  5. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  6. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    Science.gov (United States)

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  7. A miniature CSTR cascade for continuous flow of reactions containing solids

    OpenAIRE

    Mo, Yiming; Jensen, Klavs F

    2016-01-01

    Continuous handling of solids creates challenges for realizing continuous production of pharmaceuticals and fine chemicals. We present a new miniature continuous stirred-tank reactor (CSTR) cascade to handle solid-forming reactions in flow. Single-phase residence time distribution (RTD) measurements of the CSTR cascade reveal nearly ideal CSTR mixing behavior of the individual units. Consistency of experimental and predicted conversions of a Diels–Alder reaction further confirms the CSTR perf...

  8. Bi-Criteria System Optimum Traffic Assignment in Networks With Continuous Value of Time

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2013-04-01

    Full Text Available For an elastic demand transportation network with continuously distributed value of time, the system disutility can be measured either in time units or in cost units. The user equilibrium model and the system optimization model are each formulated in two different criteria. The conditions required for making the system optimum link flow pattern equivalent to the user equilibrium link flow pattern are derived. Furthermore, a bi-objective model has been developed which minimizes simultaneously the system travel time and the system travel cost. The existence of a pricing scheme with anonymous link tolls which can decentralize a Pareto system optimum into the user equilibrium has been investigated.

  9. Hardware solution for continuous time-resolved burst detection of single molecules in flow

    Science.gov (United States)

    Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen

    1998-04-01

    Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.

  10. Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

    Science.gov (United States)

    Wang, Ming-Wen; Jeng, Kuo-Shyang; Yu, Ming-Che; Su, Jui-Chih

    2012-03-01

    To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v = 0.02-0.1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

  11. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds.

    Science.gov (United States)

    Bana, Péter; Örkényi, Róbert; Lövei, Klára; Lakó, Ágnes; Túrós, György István; Éles, János; Faigl, Ferenc; Greiner, István

    2017-12-01

    Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  13. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William; Cordes, Stephen Michael

    2017-10-10

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a difference between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.

  14. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    International Nuclear Information System (INIS)

    Kang, Tae Goo; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu; Yoon, Yong-Jin

    2014-01-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min −1 for an input blood flow rate of 12.5 µl min −1 . The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min −1 . Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems. (technical note)

  15. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    International Nuclear Information System (INIS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-01-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  17. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  18. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    Science.gov (United States)

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  19. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours for postopera......Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...... than 0.03) in the other five patients as the level of sensory analgesia regressed postoperatively. These data suggest that changes in epidural blood flow during continuous epidural infusion of bupivacaine, and thus changes in rates of vascular absorption of bupivacaine from the epidural space, may...

  20. Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF

    DEFF Research Database (Denmark)

    Petersen, Trine P; Larsen, Anders Foller; Ritzén, Andreas

    2013-01-01

    A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported.......A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported....

  1. Continuous flow bioassay method to evaluate the effects of outboard motor exhausts and selected aromatic toxicants on fish. [Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Brenniman, G. (Univ. of Illinois, Chicago); Hartung, R.; Weber, W.J. Jr.

    1976-01-01

    A continuous flow bioassay system was designed to measure the effects of outboard motor exhaust (OME) emissions and selected volatile and evaporative aromatic toxicants on goldfish (Carassius auratus). Continuous flow bioassays were run for 24, 48, 72, 96, and 720 h to determine lethal concentrations for 50 percent of individuals (LC 50's) for leaded OME, non-leaded OME, toluene, xylene, and 1,3,5 trimethylbenzene, the three individual compounds having been identified as significant aromatic components of OME. The 96 h LC-50's for these substances were found to be 171, 168, 23, 17, and 13 ppm, respectively. The values of 171 and 168 ppm for the two OME's are given in terms of gallons of fuel burned per million gallons of water. The continuous flow bioassay method was demonstrated to be a more reliable indicator of the effects of OME pollutants on aquatic organisms than is the static bioassay method.

  2. Explosives Removal from Groundwater of the Iowa Army Ammunition Plant in Continuous-Flow Laboratory Systems Planted with Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    A 49-day, continuous-flow, laboratory study was performed to evaluate the ability of two submersed and one emergent plant species to phytoremediate explosives-contaminated groundwater from the Iowa...

  3. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Continuous-Flow Photocatalytic Degradation of Organics Using Modified TiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-01-01

    Full Text Available In this study, TiO2 nanotubes (TNTs were fabricated on a Ti sheet following the anodic oxidation method and were decorated with reduced graphene oxide (RGO, graphene oxide (GO, and bismuth (Bi via electrodeposition. The surface morphologies, crystal structures, and compositions of the catalyst were characterized by field emission scanning electron microscopy, Auger electron spectroscopy, X-ray diffraction, photoluminance spectra, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The TNTs loaded with RGO, GO, and Bi were used in a continuous-flow system as photocatalysts for the degradation of methylene blue (MB dye. It was found that the TNTs are efficient photocatalysts for the removal of color from water; upon UV irradiation on TNTs, the MB removal ratio was ~89%. Moreover, the photocatalytic activities of the decorated TNTs were higher than that of pristine TNTs in visible light. In comparison with TNTs, the rate of MB removal in visible light was increased by a factor of 3.4, 3.2, and 2.9 using RGO-TNTs, Bi-TNTs, and GO-TNTs, respectively. The reusability of the catalysts were investigated, and their quantum efficiencies were also calculated. The cylindrical anodized TNTs were excellent photocatalysts for the degradation of organic pollutants. Thus, it was concluded that the continuous-flow photocatalytic reactor comprising TNTs and modified TNTs is suitable for treating wastewater in textile industries.

  5. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  6. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  7. Continuous blood pressure recordings simultaneously with functional brain imaging: studies of the glymphatic system

    Science.gov (United States)

    Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa

    2017-03-01

    The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).

  8. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  9. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    Science.gov (United States)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  10. Diazo compounds in continuous-flow technology.

    Science.gov (United States)

    Müller, Simon T R; Wirth, Thomas

    2015-01-01

    Diazo compounds are very versatile reagents in organic chemistry and meet the challenge of selective assembly of structurally complex molecules. Their leaving group is dinitrogen; therefore, they are very clean and atom-efficient reagents. However, diazo compounds are potentially explosive and extremely difficult to handle on an industrial scale. In this review, it is discussed how continuous flow technology can help to make these powerful reagents accessible on large scale. Microstructured devices can improve heat transfer greatly and help with the handling of dangerous reagents safely. The in situ formation and subsequent consumption of diazo compounds are discussed along with advances in handling diazomethane and ethyl diazoacetate. The potential large-scale applications of a given methodology is emphasized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanoengineering of Ruthenium and Platinum-based Nanocatalysts by Continuous-Flow Chemistry for Renewable Energy Applications

    KAUST Repository

    AlYami, Noktan Mohammed

    2017-04-15

    This thesis presents an integrated study of nanocatalysts for heterogenous catalytic and electrochemical processes using pure ruthenium (Ru) with mixed-phase and platinum-based nanomaterials synthesized by continuous-flow chemistry. There are three major challenges to the application of nanomaterials in heterogenous catalytic reactions and electrocatalytic processes in acidic solution. These challenges are the following: (i) controlling the size, shape and crystallography of nanoparticles to give the best catalytic properties, (ii) scaling these nanoparticles up to a commercial quantity (kg per day) and (iii) making stable nanoparticles that can be used catalytically without degrading in acidic electrolytes. Some crucial limitations of these nanostructured materials in energy conversion and storage applications were overcome by continuous-flow chemistry. By using a continuous-flow reactor, the creation of scalable nanoparticle systems was achieved and their functionality was modified to control the nanoparticles’ physical and chemical characteristics. The nanoparticles were also tested for long-term stability, to make sure these nanoparticles were feasible under realistic working conditions. These nanoparticles are (1) shape- and crystallography-controlled ruthenium (Ru) nanoparticles, (2) size-controlled platinum-metal (Pt-M= nickel (Ni) & copper (Cu)) nanooctahedra (while maintaining morphology) and (3) core-shell platinum@ruthenium (Pt@Ru) nanoparticles where an ultrathin ruthenium shell was templated onto the platinum core. Thus, a complete experimental validation of the formation of a scalable amount of these nanoparticles and their catalytic activity and stability towards the oxygen evolution reaction (OER) in acid medium, hydrolysis of ammonia borane (AB) along with plausible explanations were provided.

  12. Continuous venovenous haemodialysis

    DEFF Research Database (Denmark)

    Jensen, Dorte Møller; Bistrup, C; Pedersen, R S

    1996-01-01

    A simple three-pump-based system for the performance of continuous venovenous haemodialysis is described. The method employs access to the circulation via a double-lumen catheter, and by means of a standard extracorporeal peristaltic pump the blood is circulated through a haemofiltration filter....... Standard solutions for peritoneal dialysis are administered in a single-pass manner countercurrent to the blood flow. To control the dialysate flow through the filter, two separate pumps designed for intravenous infusion are used. Anticoagulation is achieved by means of continuous heparin infusion....... This three-pump system is effective in controlling the fluid balance and the level of azotemia. Furthermore, this system makes haemodialysis possible in spite of severe haemodynamic instability. The system is easy to use and inexpensive. 3 patients participated in the study....

  13. Study of the Mo(VI) catalytic response in the oxidation of iodide by hydrogen peroxide using a monosegmented continuous-flow system

    International Nuclear Information System (INIS)

    Andrade, J.C. de; Eiras, S.P.; Bruns, R.E.

    1991-01-01

    Fractional factorial, modified simplex and response surface studies of the Mo(VI)-catalysed and non-catalysed oxidation of iodide by hydrogen peroxide in acidic medium were executed using a monosegmented continuous-flow system (MCFS). As this reaction is commonly used for the spectrophotometric catalytic determination of Mo(VI), the behaviour of the analytically useful response, ΔA, the difference of the average absorbance values of the Mo(VI)-catalysed and non-catalysed reactions, was studied over a large range of experimental conditions. The effects of simultaneous changes in the sample flow-rate, the H 2 SO 4 , KI and H 2 O 2 concentrations and the reaction time on the signals were measured. The optimum concentrations found using MCFS are 0.0665, 0.1528 and 0.0041 M for H 2 SO 4 , KI and H 2 O 2 , respectively. Rigorous control of the acid concentration is essential to maintain the sensitivity of the analytical signal for operating conditions close to the optimum values recommended here. On the other hand, the ΔA values are much less sensitive to variations in the H 2 O 2 concentration. Increasing KI concentrations can improve the sensitivity but can also cause baseline instability. The response surface is convenient for visualizing the overall behaviour of the system for the experimental control values investigated. (author). 24 refs.; 3 figs.; 1 tab

  14. Carotid Artery Stenting in a Patient With a Continuous-Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Piazza, Michele; Squizzato, Francesco; Grego, Franco; Bottio, Tommaso; Gerosa, Gino; Antonello, Michele

    2016-08-01

    To demonstrate the safety and feasibility of carotid artery stenting (CAS) in a patient with a continuous-flow left ventricular assist device (LVAD). A 54-year-old woman with a LVAD was referred for a 90% stenosis of the right internal carotid artery (ICA). The patient was offered CAS, and oral anticoagulant was not discontinued in the periprocedural period. Because of absent arterial pulses, percutaneous transfemoral access was obtained under ultrasound guidance. Particular attention was paid to cannulation of the innominate artery; a 7-F guiding catheter was advanced from the descending aorta into the innominate artery under road-mapping, avoiding maneuvers in the ascending aorta where the outflow Dacron graft of the LVAD was anastomosed. To avoid cerebral flow modifications, the Angioguard RX was used as the cerebral protection device rather than other devices such as the flow reversal or flow-clamping systems. At this point, CAS was performed in a standard fashion using the 7×30-mm Precise ProRX stent. The computed tomography angiogram at 6 months showed patency of the stented right ICA. With adequate planning, CAS appears feasible in patients with a LVAD. © The Author(s) 2016.

  15. Similarity solutions for unsteady free-convection flow from a continuous moving vertical surface

    Science.gov (United States)

    Abd-El-Malek, Mina B.; Kassem, Magda M.; Mekky, Mohammad L.

    2004-03-01

    The transformation group theoretic approach is applied to present an analysis of the problem of unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid by a constant heated bounding plate. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved analytically for the temperature and numerically for the velocity using the shooting method. Effect of Prandtl number on the thermal boundary-layer and velocity boundary-layer are studied and plotted in curves.

  16. Investigations on the effect of forage source, grinding, and urea supplementation on ruminal fermentation and microbial protein flow in a semi-continuous rumen simulation system.

    Science.gov (United States)

    Hildebrand, Bastian; Boguhn, Jeannette; Rodehutscord, Markus

    2011-10-01

    The objective of the present study was to compare the effect of maize silage and grass silage on microbial fermentation and protein flow in a semi-continuous rumen simulation system (Rusitec) when milling screen size (MSS) during grinding was varied. Oven-dried silages were milled through screens of 1, 4 or 9 mm pore size and incubated for 48 h in a Rusitec system. Furthermore, the effect of N supplementation to maize silage (MSS: 4 mm) was investigated and single dose vs. continuous infusion of urea-N were compared. Degradation of organic matter (OM), crude protein (CP), fibre fractions and non-structural carbohydrates (NSC) as well as short-chain fatty acid production differed significantly between forage sources. Urea-N supplementation improved the degradation of NSC, but not that of fibre fractions in maize silage. The way of urea supply had only marginal effects on fermentation characteristics. An increase in MSS, and consequently in mean feed particle size, led to an improvement in the degradation of OM, CP and NSC, but efficiency of microbial net protein synthesis (EMPS; mg microbial N flow/g degraded OM) and the microbial amino acid profile were less affected. EMPS was higher in grass silage than in maize silage and was improved by urea-N supplementation in maize silage. This study indicates that fermentation of NSC as well as EMPS during incubation of maize silage was limited by availability of NH3-N. Furthermore, an increase in MSS above 1 mm seems to improve fermentation of silages in the Rusitec system.

  17. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    Science.gov (United States)

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Photochemical transformations accelerated in continuous-flow reactors : basic concepts and applications

    NARCIS (Netherlands)

    Su, Y.; Straathof, N.J.W.; Hessel, V.; Noel, T.

    2014-01-01

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable

  19. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    Science.gov (United States)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  20. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  1. Continuous Flow of Upper Labrador Sea Water around Cape Hatteras.

    Science.gov (United States)

    Andres, Magdalena; Muglia, Mike; Bahr, Frank; Bane, John

    2018-03-14

    Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that time as it approached the separation point and flowed into deeper waters. Downstream increases were observed not only in the poleward transport across the sections but also in the current's maximum speed.

  2. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Science.gov (United States)

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  3. Quality comparison of continuous steam sterilization segmented-flow aseptic processing versus conventional canning of whole and sliced mushrooms.

    Science.gov (United States)

    Anderson, N M; Walker, P N

    2011-08-01

    This study was carried out to investigate segmented-flow aseptic processing of particle foods. A pilot-scale continuous steam sterilization unit capable of producing shelf stable aseptically processed whole and sliced mushrooms was developed. The system utilized pressurized steam as the heating medium to achieve high temperature-short time processing conditions with high and uniform heat transfer that will enable static temperature penetration studies for process development. Segmented-flow technology produced a narrower residence time distribution than pipe-flow aseptic processing; thus, whole and sliced mushrooms were processed only as long as needed to achieve the target F₀  = 7.0 min and were not overcooked. Continuous steam sterilization segmented-flow aseptic processing produced shelf stable aseptically processed mushrooms of superior quality to conventionally canned mushrooms. When compared to conventionally canned mushrooms, aseptically processed yield (weight basis) increased 6.1% (SD = 2.9%) and 6.6% (SD = 2.2%), whiteness (L) improved 3.1% (SD = 1.9%) and 4.7% (SD = 0.7%), color difference (ΔE) improved 6.0% (SD = 1.3%) and 8.5% (SD = 1.5%), and texture improved 3.9% (SD = 1.7%) and 4.6% (SD = 4.2%), for whole and sliced mushrooms, respectively. Segmented-flow aseptic processing eliminated a separate blanching step, eliminated the unnecessary packaging of water and promoted the use of bag-in-box and other versatile aseptic packaging methods. Segmented-flow aseptic processing is capable of producing shelf stable aseptically processed particle foods of superior quality to a conventionally canned product. This unique continuous steam sterilization process eliminates the need for a separate blanching step, reduces or eliminates the need for a liquid carrier, and promotes the use of bag-in-box and other versatile aseptic packaging methods. © 2011 Institute of Food Technologists®

  4. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  5. PDBD with continuous liquids flows in a discharge reactor

    International Nuclear Information System (INIS)

    Rodríguez-Méndez, B G; Gutiérrez-León, D G; López-Callejas, R; Valencia-Alvarado, R; Muñoz-Castro, A E; Mercado-Cabrera, A; Peña-Eguiluz, R; Belman-Flores, J M; De la Piedad-Beneitez, A

    2015-01-01

    This paper presents the design, construction and testing of a cylindrical pulsed dielectric barrier discharge (PDBD) reactor aimed to microbiological elimination of Escherichia coli ATCC 8739 bacteria. In the reactor, water flowed continuously and to countercurrent an oxygen gas was injected. The water pumping was carried out with a peristaltic pump type, stainless steel and aluminum constructed, and water was recirculated through norprene tubing. The considered parameters in order to promote energetic efficiency were: the residence time of the water contaminated with bacteria, flow rate of the liquid, shape and material used to build electrodes and dielectric, pressure, and gas injection flow rate. The pulsed power supply parameters are featured by 25-30 kV high voltage, 500 Hz frequency and 30 μs width. The outcome elimination of E. coli bacteria at 10 3 , 10 4 and 10 6 CFU/mL concentrations reached an efficiency over 0.5 log-order in absence of oxygen; while >2 log-orders when oxygen gas was injected during the process. (paper)

  6. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  7. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J

    1984-01-01

    A method is presented which allows for continuous registration of forefoot blood flow over 24 h. Blood flow was estimated by the radioactive Xenon washout method and a portable CdTe detector system was used to measure the tracer disappearance rate. Since the semiconductor detector is placed very...... close to the tracer depot the washout rates registered are a mixture of rate constants due to tracer removal by blood flow and diffusion of the tracer depot away from the detector. Rate constants only due to diffusion were obtained over 24 h from amputated feet and similarly from normal feet...... with circulatory arrest in several 20 min periods during 24 h. The rate constants due to blood flow could thus be calculated by subtraction of the appropriate diffusion rate constants from the recorded rate constants. Blood flow in the forefoot during 24 h was measured in 10 experimental subjects with normal...

  8. INFORMATION FLOW ASSURED BY ITC CONTINUITY PLANNING

    Directory of Open Access Journals (Sweden)

    Gabriel Cozgarea

    2009-05-01

    Full Text Available Forwarding the frequent usage of complex processes and the big volume of information, it is imperative to manage the automatic circuit of the document flow in a company activity. The main advantage of such a system consist in document waiting to be proces

  9. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    Science.gov (United States)

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Release of hydrogen sulfide in a sewer system under intermittent flow conditions

    DEFF Research Database (Denmark)

    Matias, Natércia; Matos, Rita Ventura; Ferreira, Filipa

    2017-01-01

    The presence and fate of hydrogen sulfide in wastewater systems were studied in two stretches of an intercepting sewer system located in a coastal village, in Portugal. A range of hydraulic parameters were obtained and liquid and gas phase measurements were carried out, both continuously and thro......The presence and fate of hydrogen sulfide in wastewater systems were studied in two stretches of an intercepting sewer system located in a coastal village, in Portugal. A range of hydraulic parameters were obtained and liquid and gas phase measurements were carried out, both continuously...... authors’ publications addressing relatively small pipes and moderate water flows....

  11. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  12. Methods for Automated and Continuous Commissioning of Building Systems

    Energy Technology Data Exchange (ETDEWEB)

    Larry Luskay; Michael Brambley; Srinivas Katipamula

    2003-04-30

    Avoidance of poorly installed HVAC systems is best accomplished at the close of construction by having a building and its systems put ''through their paces'' with a well conducted commissioning process. This research project focused on developing key components to enable the development of tools that will automatically detect and correct equipment operating problems, thus providing continuous and automatic commissioning of the HVAC systems throughout the life of a facility. A study of pervasive operating problems reveled the following would most benefit from an automated and continuous commissioning process: (1) faulty economizer operation; (2) malfunctioning sensors; (3) malfunctioning valves and dampers, and (4) access to project design data. Methodologies for detecting system operation faults in these areas were developed and validated in ''bare-bones'' forms within standard software such as spreadsheets, databases, statistical or mathematical packages. Demonstrations included flow diagrams and simplified mock-up applications. Techniques to manage data were demonstrated by illustrating how test forms could be populated with original design information and the recommended sequence of operation for equipment systems. Proposed tools would use measured data, design data, and equipment operating parameters to diagnosis system problems. Steps for future research are suggested to help more toward practical application of automated commissioning and its high potential to improve equipment availability, increase occupant comfort, and extend the life of system equipment.

  13. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    International Nuclear Information System (INIS)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: ► Effective bioremoval of Cr(III) using bacterial biofilms. ► Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. ► Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 °C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 × 10 7 , 4.5 × 10 7 and 3.5 × 10 5 CFU/cm 2 ), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  14. A Novel Pressure Indicator for Continuous Flow PCR Chip Using Micro Molded PDMS Pillar Arrays

    National Research Council Canada - National Science Library

    Zhao, Yi; Zhang, Xin

    2005-01-01

    .... Continuous flow PCR chip releases biologists from their laborious exercises. The use of such chip is, however, hindered by costly expense of the syringe pump, which is used to maintain a constant flow rate...

  15. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    Science.gov (United States)

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system - Performance and diastereoselectivity studies

    NARCIS (Netherlands)

    Čech, J.; Hessel, V.; Přibyl, M.

    2017-01-01

    We study synthesis of . L-phenylserine catalyzed by the enzyme . L-threonine aldolase in a slug-flow microfluidic system. Slug-flow arrangement allows for the continuous refilling of sparingly soluble substrate (benzaldehyde) into an aqueous reaction mixture. We identified suitable composition of an

  17. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  18. Continuous-flow chemiluminometric determination of some tetracyclines

    International Nuclear Information System (INIS)

    Syropoulos, A.B.; Calokerinos, A.C.

    1991-01-01

    Chemiluminescence is found to be generated by action of lucigenin or hexacyanoferrate(III) on tetracyclines. The reaction with lucigenin exhibits chemiluminescence after alkaline degradation of tetracyclines to the corresponding iso derivatives. The reaction with hexacyanoferrate (III) occurs after acidic degradation of tetracyclines to corresponding anhydro derivatives. The chemiluminescence reaction takes place in alkaline medium, and allows the development of a continuous-flow method for the determination of 1.00-10.0 μgml -1 oxytetracycline and doxycycline. When applied to commercial formulations, the procedure was relatively free from interferences from common excipients. The results obtained for the assay of dosage forms compared well with those obtained by the official methods and demonstrated good accuracy and precision. (author). 32 refs.; 5 figs.; 6 tabs

  19. Continuous-flow chemiluminometric determination of some tetracyclines

    Energy Technology Data Exchange (ETDEWEB)

    Syropoulos, A B; Calokerinos, A C [University of Athens (greece). Laboratory of Analytical Chemistry

    1991-12-24

    Chemiluminescence is found to be generated by action of lucigenin or hexacyanoferrate(III) on tetracyclines. The reaction with lucigenin exhibits chemiluminescence after alkaline degradation of tetracyclines to the corresponding iso derivatives. The reaction with hexacyanoferrate (III) occurs after acidic degradation of tetracyclines to corresponding anhydro derivatives. The chemiluminescence reaction takes place in alkaline medium, and allows the development of a continuous-flow method for the determination of 1.00-10.0 {mu}gml{sup -1} oxytetracycline and doxycycline. When applied to commercial formulations, the procedure was relatively free from interferences from common excipients. The results obtained for the assay of dosage forms compared well with those obtained by the official methods and demonstrated good accuracy and precision. (author). 32 refs.; 5 figs.; 6 tabs.

  20. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    Science.gov (United States)

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO 2 -CPC system (0.60 mg cm -2 TiO 2 ), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO 2 -CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L -1 ) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO 2 -CPC system were improved with the addition of 150 mg L -1 of H 2 O 2 , which generated approximately 2000-2300 nmol L -1 of HO ● radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  2. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  3. Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine.

    Science.gov (United States)

    Bédard, Anne-Catherine; Longstreet, Ashley R; Britton, Joshua; Wang, Yuran; Moriguchi, Hideki; Hicklin, Robert W; Green, William H; Jamison, Timothy F

    2017-12-01

    Minimizing the waste stream associated with the synthesis of active pharmaceutical ingredients (APIs) and commodity chemicals is of high interest within the chemical industry from an economic and environmental perspective. In exploring solutions to this area, we herein report a highly optimized and environmentally conscious continuous-flow synthesis of two APIs identified as essential medicines by the World Health Organization, namely diazepam and atropine. Notably, these approaches significantly reduced the E-factor of previously published routes through the combination of continuous-flow chemistry techniques, computational calculations and solvent minimization. The E-factor associated with the synthesis of atropine was reduced by 94-fold (about two orders of magnitude), from 2245 to 24, while the E-factor for the synthesis of diazepam was reduced by 4-fold, from 36 to 9. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  5. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    Science.gov (United States)

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  6. A critical comparison of constant and pulsed flow systems exploiting gas diffusion.

    Science.gov (United States)

    Silva, Claudineia Rodrigues; Henriquez, Camelia; Frizzarin, Rejane Mara; Zagatto, Elias Ayres Guidetti; Cerda, Victor

    2016-02-01

    Considering the beneficial aspects arising from the implementation of pulsed flows in flow analysis, and the relevance of in-line gas diffusion as an analyte separation/concentration step, influence of flow pattern in flow systems with in-line gas diffusion was critically investigated. To this end, constant or pulsed flows delivered by syringe or solenoid pumps were exploited. For each flow pattern, two variants involving different interaction times of the donor with the acceptor streams were studied. In the first one, both the acceptor and donor streams were continuously flowing, whereas in the second one, the acceptor was stopped during the gas diffusion step. Four different volatile species (ammonia, ethanol, carbon dioxide and hydrogen sulfide) were selected as models. For the flow patterns and variants studied, the efficiencies of mass transport in the gas diffusion process were compared, and sensitivity, repeatability, sampling frequency and recorded peak shape were evaluated. Analysis of the results revealed that sensitivity is strongly dependent on the implemented variant, and that flow pattern is an important feature in flow systems with in-line gas diffusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    Science.gov (United States)

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  8. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India); Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Effective bioremoval of Cr(III) using bacterial biofilms. Black-Right-Pointing-Pointer Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. Black-Right-Pointing-Pointer Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 Degree-Sign C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 Multiplication-Sign 10{sup 7}, 4.5 Multiplication-Sign 10{sup 7} and 3.5 Multiplication-Sign 10{sup 5} CFU/cm{sup 2}), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  9. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    Science.gov (United States)

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  11. A Comparison of Flow-Through Versus Non-Flow-Through Proton Exchange Membrane Fuel Cell Systems for NASA's Exploration Missions

    Science.gov (United States)

    Hoberecht, Mark A.

    2010-01-01

    As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper

  12. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  13. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  14. Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

    Directory of Open Access Journals (Sweden)

    Quentin Lefebvre

    2013-09-01

    Full Text Available A continuous flow oxidative photocyclization of stilbene derivatives has been developed which allows the scalable synthesis of backbone functionalized phenanthrenes and helicenes of various sizes in good yields.

  15. Method and apparatus for improved melt flow during continuous strip casting

    Science.gov (United States)

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  16. Continuous flow electrophoretic separation of proteins and cells from mammalian tissues

    Science.gov (United States)

    Hymer, W. C.; Barlow, Grant H.; Blaisdell, Steven J.; Cleveland, Carolyn; Farrington, Mary Ann; Feldmeier, Mary; Hatfield, J. Michael; Lanham, J. Wayne; Grindeland, Richard; Snyder, Robert S.

    1987-01-01

    This paper describes an apparatus for continuous flow electrophoresis (CFE), designed to separate macromolecules and cells at conditions of microgravity. In this CFE, buffer flows upward in a 120-cm long flow chamber, which is 16-cm wide x 3.0-mm thick in the microgravity version (and 6-cm wide x 1.5-mm thick in the unit-gravity laboratory version). Ovalbumin and rat serum albumin were separated in space (flight STS-4) with the same resolution of the two proteins achieved at 25 percent total w/v concentration that was obtained in the laboratory at 0.2 percent w/v concentration. Rat anterior pituitary cells, cultured human embryonic kidney cells, and canine Langerhans cells were separated into subpopulations (flight STS-8) more effectively than in unit gravity, with comparable resolution having been achieved at 100 times the concentration possible on earth.

  17. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    Science.gov (United States)

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Continuous bulk unloader versus grab unloader: a comparison of ship unloading systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepling, M

    1985-02-01

    Most of the major bulk cargoes (coal, ores, phosphate, limestone, etc.) have poor flow characteristics and are, generally speaking, difficult to handle and unload. Grab- type cranes (either portal or gantry) have hitherto been the traditional means of unloading these cargoes because of their excellent digging/grabbing performance. However they do possess a number of serious disadvantages, such as low efficiency, which limit their economic viability for some operations. Increasing interest has developed, therefore, in alternative continuous unloading methods. The KONE Corporation, Finland, has developed its own bucket wheel continuous unloader, and installed both a grab unloader and a continuous unloader at the Enstedvaerket coal transshipment centre near Aabenraa in Denmark; both systems are described and the operational benefits of each are compared and contrasted.

  19. Taming hazardous chemistry in flow: The continuous processing of diazo and diazonium compounds

    OpenAIRE

    Deadman, Benjamin J.; Collins, Stuart G.; Maguire, Anita R.

    2014-01-01

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed.

  20. Comparison of the intracoronary continuous infusion method using a microcatheter and the intravenous continuous adenosine infusion method for inducing maximal hyperemia for fractional flow reserve measurement.

    Science.gov (United States)

    Yoon, Myeong-Ho; Tahk, Seung-Jea; Yang, Hyoung-Mo; Park, Jin-Sun; Zheng, Mingri; Lim, Hong-Seok; Choi, Byoung-Joo; Choi, So-Yeon; Choi, Un-Jung; Hwang, Joung-Won; Kang, Soo-Jin; Hwang, Gyo-Seung; Shin, Joon-Han

    2009-06-01

    Inducing stable maximal coronary hyperemia is essential for measurement of fractional flow reserve (FFR). We evaluated the efficacy of the intracoronary (IC) continuous adenosine infusion method via a microcatheter for inducing maximal coronary hyperemia. In 43 patients with 44 intermediate coronary lesions, FFR was measured consecutively by IC bolus adenosine injection (48-80 microg in left coronary artery, 36-60 microg in the right coronary artery) and a standard intravenous (IV) adenosine infusion (140 microg x min(-1) x kg(-1)). After completion of the IV infusion method, the tip of an IC microcatheter (Progreat Microcatheter System, Terumo, Japan) was positioned at the coronary ostium, and FFR was measured with increasing IC continuous adenosine infusion rates from 60 to 360 microg/min via the microcatheter. Fractional flow reserve decreased with increasing IC adenosine infusion rates, and no further decrease was observed after 300 microg/min. All patients were well tolerated during the procedures. Fractional flow reserves measured by IC adenosine infusion with 180, 240, 300, and 360 microg/min were significantly lower than those by IV infusion (P < .05). Intracoronary infusion at 180, 240, 300, and 360 microg/min was able to shorten the times to induction of optimal and steady-stable hyperemia compared to IV infusion (P < .05). Functional significances were changed in 5 lesions by IC infusion at 240 to 360 microg/min but not by IV infusion. The results of this study suggest that an IC adenosine continuous infusion method via a microcatheter is safe and effective in inducing steady-state hyperemia and more potent and quicker in inducing optimal hyperemia than the standard IV infusion method.

  1. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  2. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    Science.gov (United States)

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... for postoperative pain relief. The epidural blood flow was measured by a local 133Xe clearance technique in which 15-35 MBq 133Xe diluted in 1 ml saline was injected through the epidural catheter on the day before surgery (no bupivacaine), 30 minutes after the initial dose of bupivacaine on the morning before...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...

  4. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    Science.gov (United States)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  5. Continuous flow isotope ratio mass spectrometer (CF-IRMS) and its applications in hydrocarbon research and exploration

    International Nuclear Information System (INIS)

    Kalpana, G.; Patil, D.J.; Kumar, B.

    2004-01-01

    Stable isotope ratio mass spectrometers have been widely used to determine the isotopic ratios of light elements such as hydrogen, carbon, nitrogen, oxygen and sulphur. Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) provides reliable data on nanomole amount of sample gas without the need for cryogenic trapping using cold fingers as in dual inlet isotope ratio mass spectrometer. High sample throughput is achieved as the system is configured with automated sample preparation devices and auto samplers. This paper presents a brief description of CFIRMS exploration

  6. Monitoring the data flow of LHCb’s data acquisition system

    CERN Document Server

    Svantesson, David; Rainer, S

    2010-01-01

    The data acquisition system of the Large Hadron Collider beauty (LHCb) experiment need to read out huge amount of data. Monitoring is done for each subsystem but there exist no system to monitor the overall data flow. The aim of this work has been to design a system where the data rates can be vied continuously and making it possible to do an exact consistency check after the run to ensure no data are lost. This involves collecting and processing all necessary data from each subsystem and integrate it into the experiment control system for displaying it to the operators. The challenges are to communicate and collect data from all stages of the data acquisitions system which uses different techniques and data formats. The size of the system also makes it a challenge to gather all statistics in real time. The system must also be able to support partitioning. The result was to build a data flow monitoring system, that acquire statistics from all stages of the data acquisition, process it and display it in the ex...

  7. [Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops].

    Science.gov (United States)

    Zhang, Hui Ling; Ding, Ya Li; Chen, Hong Song; Wang, Ke Lin; Nie, Yun Peng

    2018-04-01

    This study focused on bedrock outcrops, a very common habitat in karst region of southwest China. To reveal the responses of plant transpiration to natural rainfall and continuous drought, two tree species typical to this habitat, Radermachera sinica and Triadica rotundifolia, were selected as test materials. A rainout shelter was used to simulate continuous drought. The sap flow dynamics were monitored using the method of Granier's thermal dissipation probe (TDP). Our results showed that sap flow density increased to different degrees after rain in different stages of the growing season. Sap flow density of the deciduous species T. rotundifolia was always higher than that of the semi-deciduous species R. sinica. After two months without rainfall input, both species exhibited no obvious decrease in sap flow density, indicating that rainfall was not the dominant source for their water uptake, at least in the short-term. Based on the regression relationships between sap flow density and meteorological factors before and after rainfall, as well as at different stages of continuous drought, we found that the dynamics of meteorological factors contributed little to plant transpiration. The basic transpiration characteristics of both species were not changed in the circumstance of natural rainfall and short-term continuous drought, which would be closely related to the special water storage environments of bedrock outcrops and the reliance on deep water sources by tree species.

  8. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater

    KAUST Repository

    Nam, Joo-Youn; Yates, Matthew D.; Zaybak, Zehra; Logan, Bruce E.

    2014-01-01

    © 2014 Elsevier Ltd. Cellulose fermentation wastewaters (FWWs) contain short chain volatile fatty acids and alcohols, but they also have high concentrations of proteins. Hydrogen gas production from FWW was examined using continuous flow microbial

  9. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Open Thermodynamic System Concept for Fluviokarst Underground Temperature and Discharge Flow Assessments

    Science.gov (United States)

    Machetel, P.; Yuen, D. A.

    2012-12-01

    In this work, we propose to use Open Thermodynamic System (OTS) frameworks to assess temperatures and discharges of underground flows in fluviokarstic systems. The theoretical formulation is built on the first and second laws of thermodynamics. However, such assumptions would require steady states in the Control Volume to cancel the heat exchanges between underground water and embedding rocks. This situation is obviously never perfectly reached in Nature where flow discharges and temperatures vary with rainfalls, recessions and seasonal or diurnal fluctuations. First, we will shortly show that the results of a pumping test campaign on the Cent-Font (Hérault, France) fluviokarst during summer 2005 are consistent with this theoretical approach. Second, we will present the theoretical formalism of the OTS framework that leads to equation systems involving the temperatures and/or the discharges of the underground and surface flows.Third, this approach will be applied to the white (2003) conceptual model of fluviokarst, and we will present the numerical model built to assess the applicability of these assumptions. The first order of the field hydrologic properties observed at the Cent-Fonts resurgence are well described by the calculations based on this OTS framework. If this agreement is necessary, it is not sufficient to validate the method. In order to test its applicability, the mixing process has been modelized as a cooling reaction in a Continuous Stirred Tank Reactor (CSTR) for which matrix and intrusive flows are introduced continuously while effluent water is recovered at the output. The enthalpy of the various flows is conserved except for the part that exchanges heat with the embedding rocks. However the numerical model shows that in the water saturated part of the CS, the matrix flow swepts heat by convective-advective processes while temporal heat fluctuations from intrusive flows cross the CV walls. The numerical model shows that the convective flow from

  11. Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.W.

    1978-09-18

    Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

  12. Retrieval-travel-time model for free-fall-flow-rack automated storage and retrieval system

    Science.gov (United States)

    Metahri, Dhiyaeddine; Hachemi, Khalid

    2018-03-01

    Automated storage and retrieval systems (AS/RSs) are material handling systems that are frequently used in manufacturing and distribution centers. The modelling of the retrieval-travel time of an AS/RS (expected product delivery time) is practically important, because it allows us to evaluate and improve the system throughput. The free-fall-flow-rack AS/RS has emerged as a new technology for drug distribution. This system is a new variation of flow-rack AS/RS that uses an operator or a single machine for storage operations, and uses a combination between the free-fall movement and a transport conveyor for retrieval operations. The main contribution of this paper is to develop an analytical model of the expected retrieval-travel time for the free-fall flow-rack under a dedicated storage assignment policy. The proposed model, which is based on a continuous approach, is compared for accuracy, via simulation, with discrete model. The obtained results show that the maximum deviation between the continuous model and the simulation is less than 5%, which shows the accuracy of our model to estimate the retrieval time. The analytical model is useful to optimise the dimensions of the rack, assess the system throughput, and evaluate different storage policies.

  13. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment

    NARCIS (Netherlands)

    Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T.

    2016-01-01

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous

  14. Multistep continuous-flow synthesis in medicinal chemistry: discovery and preliminary structure-activity relationships of CCR8 ligands.

    Science.gov (United States)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia C; Thiele, Stefanie; Rosenkilde, Mette M; Ritzén, Andreas; Ulven, Trond

    2013-07-08

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49-94%. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure-activity-relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single-digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  16. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds.

    Science.gov (United States)

    Deadman, Benjamin J; Collins, Stuart G; Maguire, Anita R

    2015-02-02

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Predicting bulk powder flow dynamics in a continuous mixer operating in transitory regimes

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2012-01-01

    International audience; Over recent years there has been increasing interest in continuous powder mixing processes, due mainly to the development of on-line measurement techniques. However, our understanding of these processes remains limited, particularly with regard to their flow and mixing dynamics. In the present work, we study the behaviour of a pilot-scale continuous mixer during transitory regimes, in terms of hold-up weight and outflow changes. We present and discuss experimental resu...

  18. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples

    DEFF Research Database (Denmark)

    Buanuam, Janya; Tiptanasup, Kasipa; Shiowatana, Juwadee

    2006-01-01

    A continuous-flow system comprising a novel, custom-built extraction module and hyphenated with inductively coupled plasma-mass spectrometric (ICP-MS) detection is proposed for assessing metal mobilities and geochemical associations in soil compartments as based on using the three step BCR (now...... the Measurements and Testing Programme of the European Commission) sequential extraction scheme. Employing a peristaltic pump as liquid driver, alternate directional flows of the extractants are used to overcome compression of the solid particles within the extraction unit to ensure a steady partitioning flow rate...... and thus to maintain constant operationally defined extraction conditions. The proposed flow set-up is proven to allow for trouble-free handling of soil samples up to 1 g and flow rates ≤ 10 mL min–1. The miniaturized extraction system was coupled to ICP-MS through a flow injection interface in order...

  19. Modelling of hot air chamber designs of a continuous flow grain dryer

    DEFF Research Database (Denmark)

    Kjær, Lotte Strange; Poulsen, Mathias; Sørensen, Kim

    2018-01-01

    The pressure loss, flow distribution and temperature distribution of a number of designs of the hot air chamber in a continuous flow grain dryer, were investigated using CFD. The flow in the dryer was considered as steady state, compressible and turbulent. It is essential that the grain...... is uniformly dried as uneven drying can result in damage to the end-product during storage. The original commercial design was modified with new guide vanes at the inlets to reduce the pressure loss and to ensure a uniform flow to the line burner in the hot air chamber. The new guide vane design resulted...... in a 10% reduction in pressure loss and a γ-value of 0.804. Various design changes of the hot air chamber were analysed in terms of pressure loss and temperature distribution with the aim of a temperature variation of 5 K at the outlet ducts. An obstruction design was analysed, which improved mixing...

  20. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  1. Effect Of Steel Flow Control Devices On Flow And Temperature Field In The Tundish Of Continuous Casting Machine

    Directory of Open Access Journals (Sweden)

    Sowa L.

    2015-06-01

    Full Text Available The mathematical model and numerical simulations of the liquid steel flow in a tundish are presented in this paper. The problem was treated as a complex and solved by the finite element method. One takes into consideration in the mathematical model the changes of thermophysical parameters depending on the temperature. The single-strand tundish is used to casting slabs. The internal work space of the tundish was modified by flow control devices. The first device was a pour pad situated in the pouring tundish zone. The second device was a dam. The third device was a baffle with three holes. The dam and baffle were placed in the tundish at different positions depending on the variant. The main purpose of using these was to put barriers in the steel flow path as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulations. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influences of the tundish modifications on the velocity fields in liquid phase of the steel were estimated, because these have essential an influence on high-quality of a continuous steel cast slab.

  2. Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS

    International Nuclear Information System (INIS)

    López -Lorente, Ángela I.; Valcárcel, Miguel; Mizaikoff, Boris

    2014-01-01

    We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes. (author)

  3. System for measurement and automatic regulation of gas flow within an oil aging test device

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar

    2014-01-01

    Full Text Available This paper describes a system within an oil aging test device that serves for measurement and automatic regulation of gas flow. Following an already realized system that continuously monitors, logs, and regulates transformer oil temperature during the aging process and maintains temperature consistency within strict limits, a model of a flow meter and regulator of air or oxygen through transformer oil samples is developed. A special feature of the implemented system is the measurement of very small gas flows. A short technical description of the realized system is given with a functional block diagram. The basic technical characteristics of the system are specified, and the operating principles and application of the system are described. The paper also gives performance test results in a real exploitation environment.

  4. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control.

    Science.gov (United States)

    McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris

    2017-01-01

    In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1  d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

  5. Phase-synchronisation in continuous flow models of production networks

    Science.gov (United States)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  6. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl

    2015-09-01

    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  7. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    Science.gov (United States)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  8. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  9. Continuous-flow solar UVB disinfection reactor for drinking water.

    Science.gov (United States)

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  10. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  11. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  12. The effect of polycrystalline rod insertion in a low Prandtl number melt for continuous Czochralski system

    Science.gov (United States)

    Nam, Phil-Ouk; Son, Seung-Suk; Yi, Kyung-Woo

    2010-04-01

    The increased wafer size results in greater instabilities and complexities within the silicon melt, and melt flow control through the application of magnetic fields is not adequate to stabilize the melt. Therefore, continuous Czochralski systems are being studied as a solution to these issues, with higher productivity and no change in size. The purpose of this study is to observe the effects of polycrystalline rod insertion on the melt for a continuous Czochralski system. In order to observe flow patterns within the melt both broadly and specifically, we employ experimentation on a model system in tandem with numerical simulation. The rod insertion do not significantly affect near the crystal edge. In the melt height from 0.14 to 0.09 m, an asymmetric temperature distributions arise when the crystal rotation is counterclockwise direction (-15 rpm) and the crucible rotation is clockwise direction (3 rpm). The axis-symmetrical temperature distribution is formed at lower melt heights (0.08 and 0.07 m). When the melt height is 0.07 m, the axis-symmetric temperature distribution is maintained even after the rod insertion.

  13. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    Science.gov (United States)

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  15. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  16. Continuous-flow leaching studies of crushed and cored SYNROC

    International Nuclear Information System (INIS)

    Coles, D.G.; Bazan, F.

    1980-01-01

    Both crushed (150 to 300 μm) and cored 1.8 mm diameter) samples of SYNROC have been leached with the single-pass continuous-flow leaching equipment. Crushed samples of Cs-hollandite were also leached in a similar experiment. Temperatures used were 25 0 C and 75 0 C and leachates were 0.03 N NaHCO 3 and distilled water. Leaching rates from SYNROC C were ranked Cs > Sr greater than or equal to Ca > Ba > Zr. A comparison of leaching rates is made between crushed SYNROC, cored SYNROC, and PNL 76-68 glass beads. Problems encountered when comparing the leaching rates of different waste forms are discussed

  17. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  18. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  19. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

    Science.gov (United States)

    Kise, Drew P; Magana, Donny; Reddish, Michael J; Dyer, R Brian

    2014-02-07

    We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

  20. Isotope investigation of the fluid flow in a continuous peritoneal dialysis in a rabbit

    International Nuclear Information System (INIS)

    Dziuk, E.; Siekierzynski, M.; Jedrzejczak, W.

    1975-01-01

    The peritoneal dialysis has become more and more popular in treating some diseases of the kidneys. In the standard technique, the dialization fluid is fed intermittently through a single catheter introduced into the peritoneal cavity. The efficiency of the procedure can be increased by using a continuous fluid flow. In 17 rabbits a continuous mode of peritoneal dialyses was employed by using two catheters introduced by a single injection. The studies were made on two groups of animals using a different distance between the catheter ends. The dialization fluid contained 131 I labelled albumin. By determining the amount of the isotope in the outflowing fluid the degree of the fluid intermixing in the peritoneal cavity was evaluated. An open one-compartamental model was found to be useful in the estimation of the dynamics of the fluid flow during the continuous peritoneal dialysis. When the distance between both catheter ends was larger the fluid was better intermixed in the peritoneal cavity. This made it possible to obtain a high gradient of the concentrations of various substances between the blood and the dialization fluid. (author)

  1. Aortopulmonary collateral flow quantification by MR at rest and during continuous submaximal exercise in patients with total cavopulmonary connection.

    Science.gov (United States)

    Mkrtchyan, Naira; Frank, Yvonne; Steinlechner, Eva; Calavrezos, Lenika; Meierhofer, Christian; Hager, Alfred; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-11-06

    Aortopulmonary collateral flow is considered to have significant impact on the outcome of patients with single ventricle circulation and total cavopulmonary connection (TCPC). There is little information on collateral flow during exercise. To quantify aortopulmonary collateral flow at rest and during continuous submaximal exercise in clinical patients doing well with TCPC. Prospective, case controlled. Thirteen patients with TCPC (17 (11-37) years) and 13 age and sex-matched healthy controls (18 (11-38) years). 1.5T; free breathing; phase sensitive gradient echo sequence. Blood flow in the ascending and descending aorta and superior vena cava were measured at rest and during continuous submaximal physical exercise in patients and controls. Systemic blood flow (Q s ) was assumed to be represented by the sum of flow in the superior caval vein (Q svc ) and the descending aorta (Q AoD ) at the diaphragm level. Aortopulmonary collateral flow (Q coll ) was calculated by subtracting Q s from flow in the ascending aorta (Q AoA ). Mann-Whitney U-test and Wilcoxon test for comparison between groups and between rest and exercise. Absolute collateral flow in TCPC patients at rest was 0.4 l/min/m 2 (-0.1-1.2), corresponding to 14% (-2-42) of Q s . Collateral flow did not change during exercise (difference -0.01 (-0.7-1.0) l/min/m 2 , P = 0.97). TCPC patients had significantly lower Q s at rest (2.5 (1.6-4.1) vs. 3.5 (2.6-4.8) l/min/m 2 , P = 0.001) and during submaximal exercise (3.2 (2.0-6.0) vs. 4.8 (3.3-6.9) l/min/m 2 , P = 0.001), compared to healthy controls. The increase in Q s with exercise was also significantly lower in patients than in healthy controls (median 0.6 vs. 1.2 l/min/m 2 , P collateral flow at rest (14% of Q s ) compared to healthy controls, which does not change during submaximal exercise. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation.

    Science.gov (United States)

    Ganiek, Maximilian A; Becker, Matthias R; Berionni, Guillaume; Zipse, Hendrik; Knochel, Paul

    2017-08-01

    An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    Science.gov (United States)

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    Science.gov (United States)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Science.gov (United States)

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  6. Early in vivo experience with the pediatric continuous-flow total artificial heart.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka

    2018-03-30

    Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials

    OpenAIRE

    Ma, CY; Liu, JJ; Zhang, Y; Wang, XZ

    2015-01-01

    Reactor performance of confined jet mixers for continuous hydrothermal flow synthesis of nanomaterials is investigated for the purpose of scale-up from laboratory scale to pilot-plant scale. Computational fluid dynamics (CFD) models were applied to simulate hydrothermal fluid flow, mixing and heat transfer behaviours in the reactors at different volumetric scale-up ratios (up to 26 times). The distributions of flow and heat transfer variables were obtained using ANSYS Fluent with the tracer c...

  8. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    Science.gov (United States)

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  9. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Jason, L., E-mail: ludovic.jason@cea.fr [Atomic Energy Commission (CEA), DEN, DANS, DM2S, SEMT, Mechanics and System Simulation Laboratory (LM2S), F-91191 Gif sur Yvette (France); LaMSID, UMR CNRS-EDF-CEA 8193, F-92141 Clamart (France); Masson, B. [Electricité de France (EDF), SEPTEN, F-69628 Villeurbanne (France)

    2014-10-01

    Highlights: • The contribution focuses on the gas transfer through reinforced concrete structures. • A continuous approach with a damage–permeability law is investigated. • It is significant, for this case, only when the damage variable crosses the section. • In this case, two localized approaches are compared. • It helps at evaluating a “reference” crack opening for engineering laws. - Abstract: In this contribution, different techniques are compared to evaluate the gas flow rate through a representative section of a reinforced and prestressed concrete containment structure. A continuous approach is first applied which is based on the evaluation of the gas permeability as a function of the damage variable. The calculations show that the flow rate becomes significant only when the damage variable crosses the section. But in this situation, the continuous approach is no longer fully valid. That is why localized approaches, based on a fine description of the crack openings, are then investigated. A comparison between classical simplified laws (Poiseuille flow) and a more refined model which takes into account the evolution of the crack opening in the depth of the section enables to define the validity domain of the simplified laws and especially the definition of the associated “reference opening”.

  10. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  11. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  12. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices

    NARCIS (Netherlands)

    Martina, Jerson R.; Westerhof, Berend E.; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F. M.; de Mol, Bas A. J. M.; Lahpor, Jaap R.

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support.

  13. Bioleaching of spent Ni-Cd batteries by continuous flow system: Effect of hydraulic retention time and process load

    International Nuclear Information System (INIS)

    Zhao Ling; Yang Dong; Zhu Nanwen

    2008-01-01

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni 0 ) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1 L d -1 and HRT was 3 days

  14. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.

    Science.gov (United States)

    Zhao, Ling; Yang, Dong; Zhu, Nan-Wen

    2008-12-30

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni0) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1Ld(-1) and HRT was 3 days.

  15. Bioleaching of spent Ni-Cd batteries by continuous flow system: Effect of hydraulic retention time and process load

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ling; Yang Dong [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Nanwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: nwzhu@sina.com

    2008-12-30

    Spent Ni-Cd batteries bring a severe environmental problem that needs to be solved urgently. A novel continuous flow two-step leaching system based on bioleaching was introduced to dissolve heavy metals in batteries. It consists of an acidifying reactor which was used to culture indigenous thiobacilli and a leaching reactor which was used to leach metals from spent batteries. The indigenous acidophilic thiobacilli in sewage sludge was used as the microorganisms and the sludge itself as culture medium. Bioleaching tests at different hydraulic retention time (HRT) and process load in the leaching reactor were performed. The results showed that the longer the HRT (1, 3, 6, 9 and 15 days) was, the more time required to achieve the complete leaching of Ni, Cd and Co. The maximum dissolution of cadmium and cobalt was achieved at higher pH values (3.0-4.5) while the leaching of nickel hydroxide and nickel in metallic form (Ni{sup 0}) were obtained separately in different acidity (pH 2.5-3.5). It cost about 25, 30 and more than 40 days to remove all of the three heavy metals with the process load of two, four and eight Ni-Cd batteries under the conditions that the ingoing bio-sulphuric acid was 1 L d{sup -1} and HRT was 3 days.

  16. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  17. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  18. Treatment of fungal bioaerosols by a high-temperature, short-time process in a continuous-flow system.

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun; Lee, Chang Ho; Kim, Sang Soo; Lee, Byung Uk

    2009-05-01

    Airborne fungi, termed fungal bioaerosols, have received attention due to the association with public health problems and the effects on living organisms in nature. There are growing concerns that fungal bioaerosols are relevant to the occurrence of allergies, opportunistic diseases in hospitals, and outbreaks of plant diseases. The search for ways of preventing and curing the harmful effects of fungal bioaerosols has created a high demand for the study and development of an efficient method of controlling bioaerosols. However, almost all modern microbiological studies and theories have focused on microorganisms in liquid and solid phases. We investigated the thermal heating effects on fungal bioaerosols in a continuous-flow environment. Although the thermal heating process has long been a traditional method of controlling microorganisms, the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties. Our experimental results show that the geometric mean diameter of the tested fungal bioaerosols decreased when they were exposed to increases in the surrounding temperature. The HTST process produced a significant decline in the (1-->3)-beta-d-glucan concentration of fungal bioaerosols. More than 99% of the Aspergillus versicolor and Cladosporium cladosporioides bioaerosols lost their culturability in about 0.2 s when the surrounding temperature exceeded 350 degrees C and 400 degrees C, respectively. The instantaneous exposure to high temperature significantly changed the surface morphology of the fungal bioaerosols.

  19. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    Science.gov (United States)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  20. Large-Scale, Continuous-Flow Production of Stressed Biomass (Desulfovibrio vulgaris Hildenborough)

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Jil T.; Borglin, Sharon E.; Fortney, Julian L.; Lam, Bonita R.; Hazen, Terry C.; Biggin, Mark D.

    2010-05-01

    The Protein Complex Analysis Project (PCAP, http://pcap.lbl.gov/), focuses on high-throughput analysis of microbial protein complexes in the anaerobic, sulfate-reducing organism, DesulfovibriovulgarisHildenborough(DvH).Interest in DvHas a model organism for bioremediation of contaminated groundwater sites arises from its ability to reduce heavy metals. D. vulgarishas been isolated from contaminated groundwater of sites in the DOE complex. To understand the effect of environmental changes on the organism, midlog-phase cultures are exposed to nitrate and salt stresses (at the minimum inhibitory concentration, which reduces growth rates by 50percent), and compared to controls of cultures at midlogand stationary phases. Large volumes of culture of consistent quality (up to 100 liters) are needed because of the relatively low cell density of DvHcultures (one order of magnitude lower than E. coli, for example) and PCAP's challenge to characterize low-abundance membrane proteins. Cultures are grown in continuous flow stirred tank reactors (CFSTRs) to produce consistent cell densities. Stressor is added to the outflow from the CFSTR, and the mixture is pumped through a plug flow reactor (PFR), to provide a stress exposure time of 2 hours. Effluent is chilled and held in large carboys until it is centrifuged. A variety of analyses -- including metabolites, total proteins, cell density and phospholipidfatty-acids -- track culture consistency within a production run, and differences due to stress exposure and growth phase for the different conditions used. With our system we are able to produce the requisite 100 L of culture for a given condition within a week.

  1. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    Directory of Open Access Journals (Sweden)

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  2. Simulation-Based Planning and Control of Transport Flows in Port Logistic Systems

    Directory of Open Access Journals (Sweden)

    Antonio Diogo Passos Lima

    2015-01-01

    Full Text Available In highly dynamic and uncertain transport conditions, transport transit time has to be continuously monitored so that the service level is ensured at a proper cost. The aim of this research is to propose and to test a procedure which allows an agile planning and control of transport flows in port logistic systems. The procedure couples an agent-based simulation and a queueing theory model. In this paper, the transport scheduling performed by an agent at the intermodal terminal was taken into consideration. The decision-making agent takes into account data which is acquired in remote points of the system. The obtained results indicate the relevance of continuously considering, for the transport planning and control, the expected transit time and further waiting times along port logistic systems.

  3. Hydrothermal optimal power flow using continuation method

    International Nuclear Information System (INIS)

    Raoofat, M.; Seifi, H.

    2001-01-01

    The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed

  4. Studies on continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K

    1958-01-01

    Continuous fermentation of molasses with a combined system of agitated vessel and flow pipe is studied. A new apparatus was designed. The rate of the fermentation was faster with this apparatus than with the former apparatus which was composed of two vessels.

  5. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  6. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  7. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari

    2017-12-01

    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  8. Nanoengineering of Ruthenium and Platinum-based Nanocatalysts by Continuous-Flow Chemistry for Renewable Energy Applications

    KAUST Repository

    AlYami, Noktan Mohammed

    2017-01-01

    This thesis presents an integrated study of nanocatalysts for heterogenous catalytic and electrochemical processes using pure ruthenium (Ru) with mixed-phase and platinum-based nanomaterials synthesized by continuous-flow chemistry. There are three

  9. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  10. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  11. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  12. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    International Nuclear Information System (INIS)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-01-01

    Highlights: ► A continuous electrocoagulation/flotation reactor was designed built and operated. ► Highest NOM removal according to UV 254 was 77% relative to raw groundwater. ► Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. ► Highest As removal archived was 85% (6.2 μg/l), relative to raw groundwater. ► Specific reactor energy and electrode consumption was 1.7 kWh/m 3 and 66 g Al/m 3 . - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm 2 , A/V ratio = 0.248 cm −1 . The NOM removal according to UV 254 absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m 3 . According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  13. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    Science.gov (United States)

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A randomised controlled trial of flow driver and bubble continuous positive airway pressure in preterm infants in a resource-limited setting.

    Science.gov (United States)

    Mazmanyan, P; Mellor, K; Doré, C J; Modi, N

    2016-01-01

    The variable-flow flow driver (FD; EME) and continuous-flow bubble (Fisher-Paykel) continuous positive airway pressure (CPAP) systems are widely used. As these differ in cost and technical requirements, determining comparative efficacy is important particularly where resources are limited. We performed a randomised, controlled, equivalence trial of CPAP systems. We specified the margin of equivalence as 2 days. We analysed binary variables by logistical regression adjusted for gestation, and log transformed continuous variables by multiple linear regression adjusted for gestation, sex and antenatal steroids. A neonatal unit with no blood gas analyser or surfactant availability and limited X-ray and laboratory facilities Neonates CPAP at delivery followed by randomisation to FD or bubble (B). Primary outcome included total days receiving CPAP; secondary outcomes included days receiving CPAP, supplemental oxygen, ventilation, death, pneumothorax and nasal excoriation. We randomised 125 infants (B 66, FD 59). Differences in infant outcomes on B and FD were not statistically significant. The median (range) for CPAP days for survivors was B 0.8 (0.04 to 17.5), FD 0.5 (0.04 to 5.3). B:FD (95% CI) ratios were CPAP days 1.3 (0.9 to 2.1), CPAP plus supplementary oxygen days 1.2 (0.7 to 1.9). B:FD (95% CI) ORs were death 2.3 (0.2 to 28), ventilation 2.1 (0.5 to 9), nasal excoriation 1.2 (0.2 to 8) and pneumothorax 2.4 (0.2 to 26). In a resource-limited setting we found B CPAP equivalent to FD CPAP in the total number of days receiving CPAP within a margin of 2 days. ISRCTN22578364. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  16. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2012-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD

  17. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  18. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  19. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry.

    Science.gov (United States)

    LaGrow, Alec P; Besong, Tabot M D; AlYami, Noktan M; Katsiev, Khabiboulakh; Anjum, Dalaver H; Abdelkader, Ahmed; Costa, Pedro M F J; Burlakov, Victor M; Goriely, Alain; Bakr, Osman M

    2017-02-21

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  20. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.; Besong, Tabot M.D.; AlYami, Noktan; Katsiev, Khabiboulakh; Anjum, Dalaver H.; Abdelkader, Ahmed; Da Costa, Pedro M. F. J.; Burlakov, Victor M.; Goriely, Alain; Bakr, Osman

    2017-01-01

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  1. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.

    2017-02-06

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  2. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem, E-mail: qasem.alramadan@epfl.ch [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore); Christophe, Lay; Teo, William; ShuJun, Li; Hua, Feng Han [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore)

    2010-07-12

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  3. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR.

    Science.gov (United States)

    Tabatabaei Anaraki, Maryam; Dutta Majumdar, Rudraksha; Wagner, Nicole; Soong, Ronald; Kovacevic, Vera; Reiner, Eric J; Bhavsar, Satyendra P; Ortiz Almirall, Xavier; Lane, Daniel; Simpson, Myrna J; Heumann, Hermann; Schmidt, Sebastian; Simpson, André J

    2018-06-18

    In vivo nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful technique, since it allows samples to be analyzed in their natural, unaltered state, criteria paramount for living organisms. In this study, a novel continuous low-volume flow system, suitable for in vivo NMR metabolomics studies, is demonstrated. The system allows improved locking, shimming, and water suppression, as well as allowing the use of trace amounts of expensive toxic contaminants or low volumes of precious natural environmental samples as stressors. The use of a double pump design with a sump slurry pump return allows algal food suspensions to be continually supplied without the need for filters, eliminating the possibility of clogging and leaks. Using the flow system, the living organism can be kept alive without stress indefinitely. To evaluate the feasibility and applicability of the flow system, changes in the metabolite profile of 13 C enriched Daphnia magna over a 24-h period are compared when feeding laboratory food vs exposing them to a natural algal bloom sample. Clear metabolic changes are observed over a range of metabolites including carbohydrates, lipids, amino acids, and a nucleotide demonstrating in vivo NMR as a powerful tool to monitor environmental stress. The particular bloom used here was low in microcystins, and the metabolic stress impacts are consistent with the bloom being a poor food source forcing the Daphnia to utilize their own energy reserves.

  5. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    Science.gov (United States)

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    Science.gov (United States)

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  7. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...

  8. Disinfection of an advanced primary effluent with peracetic acid and ultraviolet combined treatment: a continuous-flow pilot plant study.

    Science.gov (United States)

    González, Abelardo; Gehr, Ronald; Vaca, Mabel; López, Raymundo

    2012-03-01

    Disinfection of an advanced primary effluent using a continuous-flow combined peracetic acid/ultraviolet (PAA/UV) radiation system was evaluated. The purpose was to determine whether the maximum microbial content, established under Mexican standards for treated wastewaters meant for reuse--less than 240 most probable number fecal coliforms (FC)/100 mL--could be feasibly accomplished using either disinfectant individually, or the combined PAA/UV system. This meant achieving reduction of up to 5 logs, considering initial concentrations of 6.4 x 10(+6) to 5.8 x 10(+7) colony forming units/100 mL. During the tests performed under these experiments, total coliforms (TC) were counted because FC, at the most, will be equal to TC. Peracetic acid disinfection achieved less than 1.5 logs TC reduction when the C(t) x t product was less than 2.26 mg x minimum (min)/L; 3.8 logs for C(t) x t 4.40 mg x min/L; and 5.9 logs for C(t) x t 24.2 mg x min/L. In continuous-flow UV irradiation tests, at a low-operating flow (21 L/min; conditions which produced an average UV fluence of 13.0 mJ/cm2), the highest TC reduction was close to 2.5 logs. The only condition that produced a disinfection efficiency of approximately 5 logs, when both disinfection agents were used together, was the combined process dosing 30 mg PAA/L at a pilot plant flow of 21 L/min and contact time of 10 minutes to attain an average C(t) x t product of 24.2 mg x min/L and an average UV fluence of 13 mJ/cm2. There was no conclusive evidence of a synergistic effect when both disinfectants were employed in combination as compared to the individual effects achieved when used separately, but this does not take into account the nonlinearity (tailing-off) of the dose-response curve.

  9. Continuous Hydrothermal Flow Synthesis of LaCrO3 in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Xu, Yu; Pirou, Stéven; Zielke, Philipp

    2018-01-01

    The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation of this p......The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation...

  10. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    Science.gov (United States)

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  11. White paper on continuous bioprocessing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Konstantinov, Konstantin B; Cooney, Charles L

    2015-03-01

    There is a growing interest in realizing the benefits of continuous processing in biologics manufacturing, which is reflected by the significant number of industrial and academic researchers who are actively involved in the development of continuous bioprocessing systems. These efforts are further encouraged by guidance expressed in recent US FDA conference presentations. The advantages of continuous manufacturing include sustained operation with consistent product quality, reduced equipment size, high-volumetric productivity, streamlined process flow, low-process cycle times, and reduced capital and operating cost. This technology, however, poses challenges, which need to be addressed before routine implementation is considered. This paper, which is based on the available literature and input from a large number of reviewers, is intended to provide a consensus of the opportunities, technical needs, and strategic directions for continuous bioprocessing. The discussion is supported by several examples illustrating various architectures of continuous bioprocessing systems. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Modeling of Chromium (III) Removal from Heavy Metals Mixture Solutions in Continuous Flow Systems: A Comparative Study between BDST and Yoon -Nelson Models

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    2011-01-01

    The aim of this work is to study modeling of chromium (III) removal from aqueous solution using activated carbon as adsorbent. Studies have been conducted in a continuous fixed bed packed column under different operating conditions such as bed height, flow rate, fluid velocity and fixed adsorbent particle size. The Yoon Nelson model was applied to experimental data to predict the breakthrough curves by calculating the rate constant k and 50 % breakthrough time, θ. The Bed Depth Service Time (BDST) was applied to determine BDST constant K and the capacity of adsorbent, No. Results obtained from both models are compared with the experimental breakthrough curves and a satisfactory agreement was noticed. Therefore, the Yoon - Nelson and BDST models were found suitable for determining the parameters of the column design. The Y 000 - Nelson model was found more accurate in representing the system in comparison with the BDST model although it is less complicated than other models

  13. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  14. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S-Pregabalin Precursor and (S-Warfarin

    Directory of Open Access Journals (Sweden)

    Riccardo Porta

    2015-08-01

    Full Text Available Continuous flow processes have recently emerged as a powerful technology for performing chemical transformations since they ensure some advantages over traditional batch procedures. In this work, the use of commercially available and affordable PEEK (Polyetheretherketone and PTFE (Polytetrafluoroethylene HPLC (High Performance Liquid Chromatography tubing as microreactors was exploited to perform organic reactions under continuous flow conditions, as an alternative to the commercial traditional glass microreactors. The wide availability of tubing with different sizes allowed quickly running small-scale preliminary screenings, in order to optimize the reaction parameters, and then to realize under the best experimental conditions a reaction scale up for preparative purposes. The gram production of some Active Pharmaceutical Ingredients (APIs such as (S-Pregabalin and (S-Warfarin was accomplished in short reaction time with high enantioselectivity, in an experimentally very simple procedure.

  15. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  16. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    Science.gov (United States)

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  17. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s.

    Science.gov (United States)

    Hafner, Andreas; Meisenbach, Mark; Sedelmeier, Joerg

    2016-08-05

    The benefits and limitations of a simple continuous flow setup for handling and performing of organolithium chemistry on the multigram scale is described. The developed metalation platform embodies a valuable complement to existing methodologies, as it combines the benefits of Flash Chemistry (chemical synthesis on a time scale of <1 s) with remarkable throughput (g/min) while mitigating the risk of blockages.

  18. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Abhishek [Haldia Institute of Technology, Production Engineering Department, Haldia (India); Ganguly, Ranjan; Datta, Amitava [Jadavpur University, Power Engineering Department (India); Modak, Nipu, E-mail: nmechju@gmail.com [Jadavpur University, Mechanical Engineering Department (India)

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index. - Highlights: • Immunomagnetic separation in a hybrid microchannel design is investigated numerically. • Influence of salient geometric parameters on the device performance is analysed. • Optimum device dimension for best separation parameters are identified. • Optimized design of hybrid separator performs better than FFF or SPLITT devices.

  19. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  20. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    Science.gov (United States)

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  2. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  3. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  4. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  5. 76 FR 9984 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-02-23

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  6. Construction and simulation of a novel continuous traffic flow model

    International Nuclear Information System (INIS)

    Hwang, Yao-Hsin; Yu, Jui-Ling

    2017-01-01

    In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: 1.Preserve the equilibrium state in the smooth region. 2.Yield an anisotropic propagation of traffic flow information. 3.Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results. - Highlights: • The traffic model expressed with the momentum conservation law. • Traffic flow information propagate anisotropically and preserve the equilibrium state in the smooth region. • Computational particles of two families are invented to mimic forward-running and backward-running characteristics. • Formation of shocks will be naturally detected by the intersection of computational particles of same family. • A newly developed characteristic particle method is used to simulate traffic flow model equations.

  7. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu agriculturally used soil soil solution root system of

  8. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu <-> agriculturally used soil <-> soil solution <-> root

  9. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  10. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    International Nuclear Information System (INIS)

    Kumar, N. Sanjeev; Goel, Sudha

    2010-01-01

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  11. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  12. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  13. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  14. Simulation of dilated heart failure with continuous flow circulatory support.

    Directory of Open Access Journals (Sweden)

    Yajuan Wang

    Full Text Available Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/without pulmonary hypertension in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery.

  15. Bupivacaine constant continuous surgical wound infusion versus continuous epidural infusion for post cesarean section pain, randomized placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Hossam A. ELShamaa

    2016-10-01

    Conclusion: The current study demonstrated that bupivacaine administered by continuous epidural infusion provided a significantly lower pain scores with mobilization, and hence better analgesia for post cesarean section pain in the first postoperative day compared to continuous bupivacaine wound infusion through fenestrated catheter using the constant flow PainFusor system.

  16. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  17. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  18. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes

    Science.gov (United States)

    Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.

    2017-12-01

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).

  20. Synergistic Manganese(I) C-H Activation Catalysis in Continuous Flow: Chemoselective Hydroarylation.

    Science.gov (United States)

    Wang, Hui; Pesciaioli, Fabio; Oliveira, João C A; Warratz, Svenja; Ackermann, Lutz

    2017-11-20

    Chemoselective hydroarylations were accomplished by a novel synergistic Brønsted acid/manganese(I)-catalyzed C-H activation manifold. Thus, alkynes bearing O-leaving groups could, for the first time, be employed for C-H alkenylations without concurrent β-O elimination, thereby setting the stage for versatile late-stage diversifications. Also described is the first manganese-catalyzed C-H activation in continuous flow, thus enabling efficient hydroarylations within only 20 minutes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  2. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  3. Use of Continuous Magnetic Extraction for removal of feedstock contaminants in flow-through mode

    DEFF Research Database (Denmark)

    Paulus, Anja; Fischer, Ingo; Hobley, Timothy John

    2014-01-01

    for binding large amounts of product. It can also be especially interesting if obtaining a high product yield is secondary to other considerations. For example if an excess of a low value waste stream is available, it may be acceptable that some target is lost to the adsorbent during contaminant binding......During downstream processing, it may sometimes be more favorable to use adsorbents to bind the contaminants rather than the product. This so-called flow-through mode is especially useful for feed streams where contaminants are in low concentrations, because less adsorbent is required than......-Birk protease inhibitor which has an anti-carcinogenic effect. It was found that using anion exchange magnetic particles as the impurity adsorbing agent, Continuous Magnetic Extraction of contaminants led to a BBI preparation with purity approaching 97% and with yield of 55% in a 15L pilot scale system....

  4. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    Energy Technology Data Exchange (ETDEWEB)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.; Kumar, Challa; Sabliov, Cristina M.

    2017-01-01

    Abstract

    With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent of the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.

  5. Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.

    Science.gov (United States)

    McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G

    2017-04-07

    Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.

  6. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  7. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  8. Analysis and computer simulation for transient flow in complex system of liquid piping

    International Nuclear Information System (INIS)

    Mitry, A.M.

    1985-01-01

    This paper is concerned with unsteady state analysis and development of a digital computer program, FLUTRAN, that performs a simulation of transient flow behavior in a complex system of liquid piping. The program calculates pressure and flow transients in the liquid filled piping system. The analytical model is based on the method of characteristics solution to the fluid hammer continuity and momentum equations. The equations are subject to wide variety of boundary conditions to take into account the effect of hydraulic devices. Water column separation is treated as a boundary condition with known head. Experimental tests are presented that exhibit transients induced by pump failure and valve closure in the McGuire Nuclear Station Low Level Intake Cooling Water System. Numerical simulation is conducted to compare theory with test data. Analytical and test data are shown to be in good agreement and provide validation of the model

  9. Salt removal using multiple microbial desalination cells under continuous flow conditions

    KAUST Repository

    Qu, Youpeng

    2013-05-01

    Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..

  10. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  11. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  12. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    Science.gov (United States)

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  14. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress

    NARCIS (Netherlands)

    Harms, M.P.M.; Wesseling, K.H.; Pott, F.; Jenstrup, M.; Goudoever, J. van; Secher, N.H.; Lieshout, J.J. van

    1999-01-01

    The relationship between aortic flow and pressure is described by a three-element model of the arterial input impedance, including continuous correction for variations in the diameter and the compliance of the aorta (Modelflow). We computed the aortic flow from arterial pressure by this model, and

  15. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  16. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  17. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals

    International Nuclear Information System (INIS)

    Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C.

    2011-01-01

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L −1 (0.018 mg TRP L −1 ) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km −2 to 4.6 km −2 and 13.8 km −2 to 17.2 km −2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

  18. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.

    Science.gov (United States)

    Kim, Myungjoon; Lee, Chiwon; Hong, Nhayoung; Kim, Yoon Jae; Kim, Sungwan

    2017-06-24

    Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. The iNMIs operated for 317 min and moved in accordance with the surgeon's desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm 3 , which exceeds the reference workspace of 549.5 cm 3 . The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system's overall

  19. Contactless Inductive Flow Tomography: Brief History and Recent Developments in Its Application to Continuous Casting

    Directory of Open Access Journals (Sweden)

    Matthias Ratajczak

    2014-01-01

    Full Text Available The contactless inductive flow tomography (CIFT aims at reconstructing the velocity field of electrically conducting fluids, with special focus on applications in metallurgy and crystal growth technologies. The method relies on the induction of secondary magnetic fields if the moving fluid is exposed to a primary magnetic field. The theoretical foundation of the method is delineated, and some early experiments on the reconstruction of the three-dimensional flow in a cylinder are sketched. Then, the recent efforts to apply CIFT to various model problems in connection with the continuous casting of steel are summarized.

  20. Biochemical Contributions to Corrosion of Carbon Steel and Alloy 22 in a Continual Flow System

    International Nuclear Information System (INIS)

    Horn, J.; Martin, S.; Masterson, B.; Lian, T.

    1998-01-01

    Microbiologically influenced corrosion (MIC) may decrease the functional lifetime of nuclear waste packaging materials in the potential geologic repository at Yucca Mountain (YM), Nevada. Biochemical contributions to corrosion of package materials are being determined in reactors containing crushed repository-site rock with the endogenous microbial community, and candidate waste package materials. These systems are being continually supplied with simulated ground water. Periodically, bulk chemistries are analyzed on the system outflow, and surfacial chemistries are assessed on withdrawn material coupons. Both Fe and Mn dissolved from C1020 coupons under conditions that included the presence of YM microorganisms. Insoluble corrosion products remained in a reduced state at the coupon surface, indicating at least a localized anoxic condition; soluble reduced Mn and Fe were also detected in solution, while precipitated and spalled products were oxidized. Alloy 22 surfaces showed a layer of chrome oxide, almost certainly in the Cr(III) oxidation state, on microcosm-exposed coupons, while no soluble chrome was detected in solution. The results of these studies will be compared to identical testing on systems containing sterilized rock to generate, and ultimately predict, microbial contributions to waste package corrosion chemistries

  1. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  2. Numerical and Physical Parametric Analysis of a SEN with Flow Conditioners in Slab Continuous Casting Mold

    Directory of Open Access Journals (Sweden)

    Gonzalez-Trejo J.

    2017-06-01

    Full Text Available Some of the most recent technologies that improves the performance in continuous casting process has installed infrastructure outside the mold to modify the natural fluid flow pattern to obtain a quasi-steady condition and promote a uniform solidified shell of steel. The submerged entry nozzle distributes the liquid steel in the mold and can be used to obtain the flow symmetry condition with external geometry improvements. The fluid flow conditioners were located near the outlet ports of the nozzle. The aim of the modifiers is to impose a pseudo symmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. This work evaluates the effect of the thickness and length of the fluid-flow modifiers on the overall performance of the submerged nozzle. These properties of the fluid-flow modifiers were normalized based on two of the geometric dimensions of the standard equipment. Numerical and physical simulations suggest that the flow modifier should be as thin as possible.

  3. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  4. Faster Blood Flow Rate Does Not Improve Circuit Life in Continuous Renal Replacement Therapy: A Randomized Controlled Trial.

    Science.gov (United States)

    Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian

    2017-10-01

    To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.

  5. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  6. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels.......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels...... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  7. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  8. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  9. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  10. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  11. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  12. The flow equation approach to many-particle systems

    CERN Document Server

    Kehrein, Stefan; Fujimori, A; Varma, C; Steiner, F

    2006-01-01

    This self-contained monograph addresses the flow equation approach to many-particle systems. The flow equation approach consists of a sequence of infinitesimal unitary transformations and is conceptually similar to renormalization and scaling methods. Flow equations provide a framework for analyzing Hamiltonian systems where these conventional many-body techniques fail. The text first discusses the general ideas and concepts of the flow equation method. In a second part these concepts are illustrated with various applications in condensed matter theory including strong-coupling problems and non-equilibrium systems. The monograph is accessible to readers familiar with graduate- level solid-state theory.

  13. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    Science.gov (United States)

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A Randomized Trial of Low-Flow Oxygen versus Nasal Continuous Positive Airway Pressure in Preterm Infants

    DEFF Research Database (Denmark)

    Heiring, Christian; Steensberg, Jesper; Bjerager, Mia

    2015-01-01

    BACKGROUND: Nasal continuous positive airway pressure (nCPAP) stabilizes the residual volume and may decrease the risk of 'atelectotrauma', potentially promoting lung development in neonates. OBJECTIVES: To assess whether replacing nCPAP by low-flow O2 by nasal cannula affects lung function...... the a/A pO2 ratio or weight gain negatively. Thus, prolonged nCPAP seems not to have a positive effect on lung function at 28 days of life and replacement by low-flow O2 could reduce the cost of equipment and increase the ease of nursing....

  15. Control of District Heating System with Flow-dependent Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Ledesma, Jorge Val; Kallesøe, Carsten Skovmose

    2017-01-01

    All flow systems are subject to transport delays, which are governed by the flow rates in the system. When the flow rates themselves are control inputs, the system becomes subject to input-dependent state delays, which poses significant theoretical problems. In an earlier paper, we proposed...

  16. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  17. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  18. Nanoparticle-based assays in automated flow systems: A review

    International Nuclear Information System (INIS)

    Passos, Marieta L.C.; Pinto, Paula C.A.G.; Santos, João L.M.; Saraiva, M. Lúcia M.F.S.; Araujo, André R.T.S.

    2015-01-01

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section

  19. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated.

    Science.gov (United States)

    Sánchez-Sánchez, R; Ahuatzi-Chacón, D; Galíndez-Mayer, J; Ruiz-Ordaz, N; Salmerón-Alcocer, A

    2013-10-15

    The impact of pesticide movement via overland flow or tile drainage water on the quality of receiving water bodies has been a serious concern in the last decades; thus, for remediation of water contaminated with herbicides, bioreaction systems designed to retain biomass have been proposed. In this context, the aim of this study was to evaluate the atrazine and terbutryn biodegradation capacity of a microbial consortium, immobilized in a biofilm reactor (PBR), packed with fragments of porous volcanic stone. The microbial consortium, constituted by four predominant bacterial strains, was used to degrade a commercial formulation of atrazine and terbutryn in the biofilm reactor, intermittently or continuously operated at volumetric loading rates ranging from 44 to 306 mg L(-1) d(-1). The complete removal of both herbicides was achieved in both systems; however, higher volumetric removal rates were obtained in the continuous system. It was demonstrated that the adjuvants of the commercial formulation of the herbicide significantly enhanced the removal of atrazine and terbutryn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  1. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold

    Directory of Open Access Journals (Sweden)

    Xu-bin Zhang

    2017-11-01

    Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.

  2. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    Science.gov (United States)

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  4. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    OpenAIRE

    Elliott, DC; Biller, P; Ross, AB; Schmidt, AJ; Jones, SB

    2015-01-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their pr...

  5. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    Science.gov (United States)

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  6. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  7. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    International Nuclear Information System (INIS)

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  8. An analog simulation technique for distributed flow systems

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Kümmel, Mogens

    1973-01-01

    earlier[3]. This is an important extension since flow systems are frequently controlled through manipulation of the flow rate. Previously the tech­nique has been applied with constant flows [4, 5]. Results demonstrating the new hardware are presented from simula­tion of a transportation lag and a double......Simulation of distributed flow systems in chemical engine­ering has been applied more and more during the last decade as computer techniques have developed [l]. The applications have served the purpose of identification of process dynamics and parameter estimation as well as improving process...... and process control design. Although the conventional analog computer has been expanded with hybrid techniques and digital simulation languages have appeared, none of these has demonstrated superiority in simulating distributed flow systems in general [l]. Conventional analog techniques are expensive...

  9. Build Your Own Inventory System. Annual Cost: $100.00 (Approximate). Fixed Assets, Materials and Supplies. The Practical Elements for a Computerized, Continuing Inventory System in Schools and Use in Determining a Measure for Instructional Cost.

    Science.gov (United States)

    Payne, Arnold, Comp.

    This publication presents performance flow charts and other accompanying forms that are elements of an economical computerized continuing inventory system. The system described here is intended to serve school systems as an adequate fixed asset system and to provide a computerized inventory model that offers support for costs of future educational…

  10. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Science.gov (United States)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  11. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    Directory of Open Access Journals (Sweden)

    S. Garimella

    2017-09-01

    Full Text Available This study investigates the measurement of ice nucleating particle (INP concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs. CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN, and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC. Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  12. Experimental and Numerical Modeling of Fluid Flow Processes in Continuous Casting: Results from the LIMMCAST-Project

    Science.gov (United States)

    Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.

    2017-07-01

    The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.

  13. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    Science.gov (United States)

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  14. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    Science.gov (United States)

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  15. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    Science.gov (United States)

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes.

    Science.gov (United States)

    Pascanu, Vlad; Hansen, Peter R; Bermejo Gómez, Antonio; Ayats, Carles; Platero-Prats, Ana E; Johansson, Magnus J; Pericàs, Miquel À; Martín-Matute, Belén

    2015-01-01

    A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch

    Science.gov (United States)

    Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark

    2017-10-01

    In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  18. Continuous Improvement and Employee Engagement, Part 2: Design, Implementation, and Outcomes of a Daily Management System.

    Science.gov (United States)

    Maurer, Marsha; Browall, Pamela; Phelan, Cynthia; Sanchez, Sandra; Sulmonte, Kimberlyann; Wandel, Jane; Wang, Allison

    2018-04-01

    A daily management system (DMS) can be used to implement continuous quality improvement and advance employee engagement. It can empower staff to identify problems in the care environment that impact quality or work flow and to address them on a daily basis. Through a DMS, improvement becomes the work of everyone, every day. The authors of this 2-part series describe their work to develop a DMS. Part 2 describes the implementation and outcomes of the program.

  19. Semi-automatic determination of tin in marine materials by continuous flow hydride generation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Feng Yonglai; Narasaki, Hisataki; Chen Hongyuan; Tian Liching

    1997-01-01

    A semi-automated continuous flow hydride generation system with inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of tin in marine materials. The effects of acids (H 2 SO 4 and HCl) were studied. The analytical parameters were thoroughly investigated. Under optimized conditions, the detection limit is 0.4 ng/ml. Interferences from transition elements were investigated and seven masking reagents were tested. L-cysteine hydrochloride monohydrate (1%) was used to mask the interferences from foreign ions. Finally, the accuracy, checked with a marine standard reference material obtained from the National Research Council (NRC), was within the certified value. (orig.). With 6 figs., 4 tabs

  20. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  1. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  2. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  3. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  4. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  5. Hypotensive effects of resistance exercise with continuous and intermittent blood flow restriction

    Directory of Open Access Journals (Sweden)

    Gabriel Rodrigues Neto

    Full Text Available Abstract The aim of this study was to compare the acute effects of low-intensity (LI resistance exercise (RE with continuous blood flow restriction (CBFR and intermittent blood flow restriction (IBFR on systolic blood pressure (SBP, diastolic blood pressure (DBP, and mean arterial pressure (MAP. After a one-repetition maximum test, 10 normotensive recreationally trained men performed three experimental protocols. In the three RE protocols, increases in SBP, DBP, and MAP were observed immediately after exercise, but the effect sizes (ESs were greater for the LI + CBFR and high-intensity protocols. There were hypotensive effects on SBP, DBP, and MAP in all three protocols; however, the effects on MAP lasted longer for the LI + IBFR and LI + CBFR protocols. These long-lasting hypotensive effects on DBP and MAP occurred in all three protocols. Thus, we conclude that the post exercise hypotensive effects on SBP, DBP, and MAP appear to occur in all three RE protocols, with the effect on SBP being longer in the LI + IBFR and LI + CBFR protocols.

  6. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  7. Operation of a real-time warning system for debris flows in the San Francisco bay area, California

    Science.gov (United States)

    Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,

    1993-01-01

    The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.

  8. From Traffic Flow to Economic System

    Science.gov (United States)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  9. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  10. Document flow segmentation for business applications

    Science.gov (United States)

    Daher, Hani; Belaïd, Abdel

    2013-12-01

    The aim of this paper is to propose a document flow supervised segmentation approach applied to real world heterogeneous documents. Our algorithm treats the flow of documents as couples of consecutive pages and studies the relationship that exists between them. At first, sets of features are extracted from the pages where we propose an approach to model the couple of pages into a single feature vector representation. This representation will be provided to a binary classifier which classifies the relationship as either segmentation or continuity. In case of segmentation, we consider that we have a complete document and the analysis of the flow continues by starting a new document. In case of continuity, the couple of pages are assimilated to the same document and the analysis continues on the flow. If there is an uncertainty on whether the relationship between the couple of pages should be classified as a continuity or segmentation, a rejection is decided and the pages analyzed until this point are considered as a "fragment". The first classification already provides good results approaching 90% on certain documents, which is high at this level of the system.

  11. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    Science.gov (United States)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  12. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  13. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.

    Science.gov (United States)

    Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs

    2006-05-01

    Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.

  14. Continuous-flow leaching studies of crushed and cored SYNROC

    International Nuclear Information System (INIS)

    Coles, D.G.; Bazan, F.

    1982-01-01

    Both crushed (150- to 300- μm) and cored (1,8- mm-diam) samples of SYNROC have been leached with single-pass continuous-flow leaching equipment. Crushed samples of cesium-hollandite were also leached in a similar experiment. Temperatures used were 25 0 and 75 0 C and leachates were 0.03 N NaHCO 3 and distilled water. Leaching rates from SYNROC-C were ranked cesium > strontium greater than or equal to calcium > barium > zirconium. A comparison of leaching rates is made between crushed SYNROC, cored SYNROC, and Pacific Northwest Laboratory 76-68 glass beads. This comparison depends on how the surface areas are determined for each sample. Based on geometric surface areas for SYNROC cores and glass beads, cesium leach rates from SYNROC compare well with both sodium and neptunium leached from the glass. The other elements leached from SYNROC are lower than sodium and neptunium leached from glass. They also vary for each element, while glass shows nearly the same leach rate for both sodium and neptunium

  15. Continuous-flow leaching studies of crushed and cored SYNROC

    International Nuclear Information System (INIS)

    Coles, D.G.; Bazan, F.

    1981-01-01

    Both crushed (150 to 300 μm) and cored (1.8 mm diameter) samples of SYNROC have been leached with the single-pass continuous-flow leaching equipment. Crushed samples of Cs-hollandite were also leached in a similar experiment. Temperatures used were 25 and 75 0 C and leachates were 0.03 N NaHCO 3 and distilled water. Leaching rates from SYNROC C were ranked Cs > Sr greater than or equal to Ca > Ba > Zr. A comparison of leaching rates is made between crushed SYNROC, cored SYNROC, and PNL 76-68 glass beads. This comparison depends on how the surface areas are determined for each sample. Based on geometric surface areas for SYNROC cores and glass beads Cs leach rates from SYNROC compare well with both Na and Np leached from the glass. The other elements leached from SYNROC are lower than Na and Np leached from glass. They also vary for each element while glass shows nearly the same leach rate for both Na and Np

  16. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    Science.gov (United States)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  17. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  18. The NOFLO trial: low-flow nasal prongs therapy in weaning nasal continuous positive airway pressure in preterm infants.

    LENUS (Irish Health Repository)

    O'Donnell, Sinéad M

    2013-07-01

    To determine if low-flow nasal prongs therapy with room air, compared with no treatment, facilitates weaning from nasal continuous positive airway pressure (NCPAP) in very low birth weight (VLBW, birth weight <1500 g) infants.

  19. Cardiac transplantation after bridged therapy with continuous flow left ventricular assist devices.

    Science.gov (United States)

    Deo, Salil V; Sung, Kiick; Daly, Richard C; Shah, Ishan K; Altarabsheh, Salah E; Stulak, John M; Joyce, Lyle D; Boilson, Barry A; Kushwaha, Sudhir S; Park, Soon J

    2014-03-01

    Cardiac transplantation is an effective surgical therapy for end-stage heart failure. Patients (pts) may need to be bridged with a continuous flow left ventricular assist device (CF-LVAD) while on the transplant list as logistic factors like organ availability are unknown. Cardiac transplantation post-LVAD can be a surgically challenging procedure and outcome in these pts is perceived to be poorer based on experience with earlier generation pulsatile flow pumps. Data from a single institution comparing these pts with those undergoing direct transplantation in the present era of continuous flow device therapy are limited. Evaluate results of cardiac transplantation in pts bridged with a CF-LVAD (BTx) and compare outcomes with pts undergoing direct transplantation (Tx) in a single institution. From June 2007 till January 2012, 106 pts underwent cardiac transplantation. Among these, 37 (35%) pts (51±11 years; 85% male) were bridged with a CF-LVAD (BTx), while 70 (65%) comprised the Tx group (53±12 years; 72% males). The median duration of LVAD support was 227 (153,327) days. During the period of LVAD support, 10/37 (27%) pts were upgraded to status 1A and all were successfully transplanted. Median hospital stay in the BTx (14 days) was slightly longer than the Tx group (12 days) but not statistically significant (p=0.21). In-hospital mortality in the BTx (5%) and Tx (1%) were comparable (p=0.25). Estimated late survival in the BTx cohort was 94±7, 90±10 and 83±16% at the end of one, two and three years, respectively which was comparable to 97±4%, 93±6% and 89±9% for the Tx group (p=0.50). Cardiac transplantation after LVAD implant can be performed with excellent results. Patients can be supported on the left ventricular assist device even for periods close to a year with good outcome after cardiac transplantation. Copyright © 2013 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand

  20. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  1. Plasma flow in toroidal systems with a separatrix

    International Nuclear Information System (INIS)

    Gribkov, V.M.; Morozov, D.Kh.; Pogutse, O.P.

    1984-01-01

    A hydrodynamic plasma flow in toroidal systems is considered. Rlasma flow lines for various magnetic configurations are calculated. A particular attention is given to studying plasma flow in configurations with two magnetic a axes and a separatrix. The flow picture i the toroidal case is shown to qualita ity to penetrate through the separatrix - the latter becomes ''perforated''. Th he pictkre of these flows is calculated. The plasma diffusion coefficient with account for the separatrix is calculated and is shown not to turn into the infin nity in the toroidal case as well. The plasma flow is analytically considered in the model with distributed current as well as in the model with current conce entrated at the oroidal system axis. In the first case the existence of ''stagnant'' regions near the magnetic axis is established from which the plasma a does not flow out

  2. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam.

    Science.gov (United States)

    Graceffa, Rita; Nobrega, R Paul; Barrea, Raul A; Kathuria, Sagar V; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C

    2013-11-01

    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  3. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  4. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  5. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    International Nuclear Information System (INIS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-01-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN 2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  6. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    Science.gov (United States)

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p air in the AC contributes to better visualization and an efficient surgery.

  7. RAPVOID, H2O Flow and Steam Flow in Pipe System with Phase Equilibrium

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1980-01-01

    1 - Description of problem or function: This code evaluates the flow through a complex system of pipes from a water-steam reservoir. It evaluates the complete characteristics of the flow allowing for slip and in the case of long pipes assuming equilibrium between phases. It discovers choke points wherever they may occur including several choke points in series and evaluates the flow parameters both upstream and downstream of the choke point. It also evaluates the depressurization of the reservoir. 2 - Method of solution: The basic assumption in RAPVOID is that the emission can be treated as pseudo-steady state with the total discharge rate conserved. Inertial effects can be allowed for by calculating the additional pressure differential required to accelerate the entire pipework contents. The flow in the pipes allows for friction and if no heat passes through the pipe walls, the flow in the pipework is adiabatic but not isentropic. Allowance can also be made for heat transfer through the walls. At geometric discontinuities losses are allowed for by putting a frictional multiplier into the pipework to give an additional length of pipe equivalent to the estimated number of velocity heads lost. First the total pressure is estimated at the outlet, then the discharge rate is derived by finding the static pressure at outlet, which gives the highest isentropic discharge rate. It is then possible to calculate the static and total pressures increment by increment up the pipework and to compare the total pressure at the entry to the pipework with the total pressure in the discharge vessel. The iteration on the discharge total pressure is then continued until a match is obtained between the inlet total pressure and the total pressure within the vessel. If there are choke points within the pipework upstream of the final outlet, the code examines this possibility by comparing the mass flow at each change of section with the choked mass flow for the relevant total pressure and

  8. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  9. Continuous and simultaneous measurement of the tank-treading motion of red blood cells and the surrounding flow using translational confocal micro-particle image velocimetry (micro-PIV) with sub-micron resolution

    International Nuclear Information System (INIS)

    Oishi, M; Utsubo, K; Kinoshita, H; Fujii, T; Oshima, M

    2012-01-01

    In this study, a translational confocal micro-particle image velocimetry (PIV) system is introduced to measure the microscopic interaction between red blood cells (RBCs) and the surrounding flow. Since the macroscopic behavior of RBCs, such as the tank-treading motion, is closely related to the axial migration and other flow characteristics in arterioles, the measurement method must answer the conflicting demands of sub-micron resolution, continuous measurement and applicability for high-speed flow. In order to avoid loss of the measurement target, i.e. RBCs, from the narrow field of view during high-magnification measurement, the translation stage with the flow device moves in the direction opposite the direction of flow. The proposed system achieves the measurement of higher absolute velocities compared with a conventional confocal micro-PIV system without the drawbacks derived from stage vibration. In addition, we have applied a multicolor separation unit, which can measure different phases simultaneously using different fluorescent particles, in order to clarify the interaction between RBCs and the surrounding flow. Based on our measurements, the tank-treading motion of RBCs depends on the shear stress gradient of the surrounding flow. Although, the relationship between the tank-treading frequency and the shear rate of the surrounding flow is of the same order as in the previous uniform shear rate experiments, our results reveal the remarkable behavior of the non-uniform membrane velocities and lateral velocity component of flow around the RBCs. (paper)

  10. Lymphatic System Flows

    Science.gov (United States)

    Moore, James E., Jr.; Bertram, Christopher D.

    2018-01-01

    The supply of oxygen and nutrients to tissues is performed by the blood system and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviors that indicate that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphedema.

  11. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction

    International Nuclear Information System (INIS)

    Wang, Ai-Jie; Cui, Dan; Cheng, Hao-Yi; Guo, Yu-Qi; Kong, Fan-Ying; Ren, Nan-Qi; Wu, Wei-Min

    2012-01-01

    Highlights: ► A novel membrane-free up-flow biocatalyzed electrolysis reactor (UBER) was developed. ► Nitrobenzene as the mode of nitroaromatics was efficiently converted to aniline. ► The impact of phosphate buffer and acetate concentrations and power supplied were investigated. ► The prospects of UBER for the recalcitrant compound removal were discussed. - Abstract: A new bioelectrochemical system (BES), a membrane-free, continuous feeding up-flow biocatalyzed electrolysis reactor (UBER) was developed to reduce oxidative toxic chemicals to less- or non-toxic reduced form in cathode zone with oxidation of electron donor in anode zone. Influent was fed from the bottom of UBER and passed through cathode zone and then anode zone. External power source (0.5 V) was provided between anode and cathode to enhance electrochemical reactions. Granular graphite and carbon brush were used as cathode and anode, respectively. This system was tested for the reduction of nitrobenzene (NB) using acetate as electron donor and carbon source. The influent contained NB (50–200 mg L −1 ) and acetate (1000 mg L −1 ). NB was removed by up to 98% mainly in cathode zone. The anode potential maintained under −480 mV. The maximum NB removal rate was up to 3.5 mol m −3 TV d −1 (TV = total empty volume) and the maximum aniline (AN) formation rate was 3.06 mol m −3 TV d −1 . Additional energy required was less than 0.075 kWh mol −1 NB. The molar ratio of NB removed vs acetate consumed varied from 4.3 ± 0.4 to 2.3 ± 0.1 mol mol −1 . Higher influent phosphate or acetate concentration helped NB removal rate. NB could be efficiently reduced to AN as the power supplied of 0.3 V.

  12. Cash flow in the context of economic equation of continuity

    Directory of Open Access Journals (Sweden)

    Fernando Gómez Villarraga

    2006-07-01

    Full Text Available The mathematic scheme, known as economic equation of continuity, is established for the balance of economic resources. In order to apply this equation it is necessary to determine an economic volume of control. The patrimonial equation is also proposed as a speed equationfor this volurne. The integral equation of economic continuity is applied to the «cash» system along with the integral patrimonial equation and so it gets expressions that correspond to model to elaborate cashflow statement with the particularities of the direct and indirect method. This model generales a useful definition for the calculation of this basic financial statement classified by operating, investing and financing activities.

  13. Batch and Continuous Flow Preparation of Hantzsch 1,4-Dihydropyridines under Microwave Heating and Simultaneous Real-time Monitoring by Raman Spectroscopy. An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Sylvain Christiaens

    2014-07-01

    Full Text Available Dialkyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates have been prepared in a batch mode under conventional heating as well as under continuous flow conditions in the Miniflow 200SS, Sairem’s microwave-assisted batch and continuous flow equipment. Real-time monitoring of the reactions by Raman spectroscopy enabled to compare both heating modes and to determine (optimized reaction times.

  14. Post-explant visualization of thrombi in outflow grafts and their junction to a continuous-flow total artificial heart using a high-definition miniaturized camera.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David; Sunagawa, Gengo; Byram, Nicole; Moazami, Nader; Golding, Leonard A R; Fukamachi, Kiyotaka

    2015-12-01

    Post-explant evaluation of the continuous-flow total artificial heart in preclinical studies can be extremely challenging because of the device's unique architecture. Determining the exact location of tissue regeneration, neointima formation, and thrombus is particularly important. In this report, we describe our first successful experience with visualizing the Cleveland Clinic continuous-flow total artificial heart using a custom-made high-definition miniature camera.

  15. Air-segmented continuous-flow analysis for molybdenum in various geochemical samples

    International Nuclear Information System (INIS)

    Harita, Y.; Sugiyama, M.; Hori, T.

    2003-01-01

    An air-segmented continuous-flow method has been developed for the determination of molybdenum at ultra trace levels using the catalytic effect of molybdate during the oxidation of L-ascorbic acid by hydrogen peroxide. Incorporation of an on-line ion exchange column improved the tolerance limit for various ions. The detection limits with and without the column were 64 pmol L m1 and 17 pmol L m1 , and the reproducibilities at 10 nmol L m1 were 2.1 % and 0.2 %, respectively. The proposed method was applied to the determination of molybdenum in seawater and lake water as well as in rock and sediment samples. This method has the highest sensitivity among the available literature to our knowledge, and is also convenient for routine analysis of molybdenum in various natural samples. (author)

  16. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...... description of free liquid surfaces proved to be incorrect in the numerical model. Modelled pressure fields served to explain how specific parts of the gating systems cause instability and are a good tool to describe the quality of a gating system. The results shows clearly that sharp changes in the geometry...

  17. The new FTU continuous monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Podda, S [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Vitale, V [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2005-11-15

    The Frascati Tokamak Upgrade (FTU) continuous (slow) data acquisition system has been redesigned to allow easy monitoring of the status of the plant. In the new system 'Opto22(TM)' modules, which use Ethernet as fieldbus, substitute the old 'programmable logic controller (PLC)' devices allowing easy access to and display of many continuous measurements. Data collected by 'Opto22' modules are stored in a 'MySQL' database via a driver written in C++ language. A 'CORBA' server, running on the same machine hosting the 'MySQL' server, allows the database access from any remote client regardless of the local platform. A remarkable aspect looks out for the use of totally free software packages. This new architecture overcomes the limitations of the previous monitoring system:*an interface based on internet browser allows to easily configure Opto22 modules and MySQL database; a graphical interface, developed in Java, allows data management and visualization; the above operations are completely platform independent. In addition the CORBA server introduces the advantages of:hardware independence, thus allowing maximum flexibility in the choice of platforms and system components; both network and programming languages being completely transparent. This paper will present the new system architecture, last results and future developments.

  18. The new FTU continuous monitoring system

    International Nuclear Information System (INIS)

    Bertocchi, A.; Podda, S.; Vitale, V.

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) continuous (slow) data acquisition system has been redesigned to allow easy monitoring of the status of the plant. In the new system 'Opto22(TM)' modules, which use Ethernet as fieldbus, substitute the old 'programmable logic controller (PLC)' devices allowing easy access to and display of many continuous measurements. Data collected by 'Opto22' modules are stored in a 'MySQL' database via a driver written in C++ language. A 'CORBA' server, running on the same machine hosting the 'MySQL' server, allows the database access from any remote client regardless of the local platform. A remarkable aspect looks out for the use of totally free software packages. This new architecture overcomes the limitations of the previous monitoring system:*an interface based on internet browser allows to easily configure Opto22 modules and MySQL database; a graphical interface, developed in Java, allows data management and visualization; the above operations are completely platform independent. In addition the CORBA server introduces the advantages of:hardware independence, thus allowing maximum flexibility in the choice of platforms and system components; both network and programming languages being completely transparent. This paper will present the new system architecture, last results and future developments

  19. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    Science.gov (United States)

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  20. Removing Copper from Contaminated Water Using Activated Carbon Sorbent by Continuous Flow

    Directory of Open Access Journals (Sweden)

    M.H. Salmani

    2012-07-01

    Full Text Available Introduction: A major concern of human being is accumulation and toxicity of heavy metals in their body. Copper is a heavy metal ion that in concentration of 2 mg/l can cause numerous complications. Different treatment methods have been proposed for removing metals from contaminated water by researchers. Among these methods, sorption seems a better method with high removal efficiency. In this study, conditions for removal of copper ions by activated carbon sorbent were studied with continuous flow. Materials & Methods: This was a laboratory – experimental study. A 20mg/l solution of copper ions was prepared and passed through a 5 × 10 cm column with average output rate of 1.85 ml/min. Output of column was sampled every 30 minutes and the remaining amount of copper ion in each sample was measured by flame atomic absorption. Results: The empty bed volume (EBV was equal to 138 ml. The highest removal efficiency was 99.7 percent at 127 minutes. From equilibrium time, the removal efficiency was constant with time. The adsorption capacity of activated carbon was 0.25mg.g-1. The isotherm study indicated that the sorption data can be obeyed by both Langmuir and Freundlich isotherms (R2>0.95 but Langmuir model had higher agreement with this experimental data (R2= 0.988. Conclusion: The binding of ions to the sorbent in the adsorption process is extremely important. For this column 62.5 minutes after filling was appropriate, so the highest removal efficiency was obtained. Equilibrium time was dependent on the speed of influent through the column in the continuous flow. For selected column, the rate of 1.85 ml/min is a good performance.

  1. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  2. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    Science.gov (United States)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  3. Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology

    NARCIS (Netherlands)

    Flegler, A.; Schneider, M.; Prieschl, J.; Stevens, R.; Vinnay, T.; Mandel, K.

    2016-01-01

    Here, we report a continuous flow synthesis of nano LDH, comprising a continuous precipitation process using static mixers and followed by an immediate cleaning process via a semi-continuous centrifuge to obtain the final product in one-go. Via this synthesis setup, it is possible to independently

  4. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    Nacelle-mounted lidar is becoming widely recognized as a tool with potential for assessing power curves, understanding wind flow characteristics, and controlling turbines. As rotor diameters continue to increase, and the deployment of turbines in complex terrain becomes more widespread, knowledge...... mounted on the nacelle of a 550 kW turbine at the Risø campus of the Technical University of Denmark (DTU). Lidar measurements of wind speed and turbulence were compared against those made by anemometers on a high-quality traditional mast. Analysis showed excellent correlation between mast and Zeph...... that this is the first time that a commercially available nacelle-mounted lidar has been used to evaluate such rotor-equivalent power curves....

  5. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  6. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  7. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  8. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  9. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Science.gov (United States)

    2010-04-01

    ... volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that measures directly or indirectly the volume or flow of urine from a patient, either during the course of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine flow or volume measuring system. 876.1800...

  10. Low-flow characteristics of Virginia streams

    Science.gov (United States)

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly

  11. Online identification of continuous bimodal and trimodal piecewise affine systems

    NARCIS (Netherlands)

    Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and

  12. Ethoxyresorufin-O-deethylase activity and fixed wavelength fluorescence detection of PAHs metabolites in bile in turbot (Scophthalmus maximus L.) exposed to a dispersed topped crude oil in a continuous flow system

    International Nuclear Information System (INIS)

    Camus, L.; Aas, E.; Borseth, J.F.

    1998-01-01

    Long term effects of sublethal concentrations of oil on the marine environment have become of general concern. Cytochrome P4501A activity (EROD) in liver and fixed wavelength fluorescence detection of PAHs metabolites (FF) have in this study been used as biomarkers for dispersed oil exposure on a long term period of juvenile turbot (Scophthalmus maximus L.). A Continuous Flow System was used to carry out the study. The fish were continuously exposed to 0.125, 0.5 or 2.0 mg litre -1 dispersed topped crude oil for 6, 15, 24h 4 and 21 days followed by a 9 day recovery period in clean seawater. No induction of the cytochrome P4501A was measured. A maximum level in bile metabolites (4- to 5-fold) was recorded after 24h of exposure revealing thereby a detoxification process, but a decline occurred from day 4 to day 21. This study demonstrated that FF detection of PAHs metabolites in bile could be a more sensitive biomarker than EROD activity in a long term exposure to sublethal concentration of oil. (author)

  13. Industrial variographic analysis for continuous sampling system validation

    DEFF Research Database (Denmark)

    Engström, Karin; Esbensen, Kim Harry

    2017-01-01

    Karin Engström, LKAB mining, Kiruna, Sweden, continues to present illuminative cases from process industry. Here she reveals more from her ongoing PhD project showing application of variographic characterisation for on-line continuous control of process sampling systems, including the one...

  14. Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems

    International Nuclear Information System (INIS)

    Hsu, C.T.; Keshock, E.G.; McGill, R.N.

    1983-01-01

    A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations

  15. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  16. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  17. Sticky continuous processes have consistent price systems

    DEFF Research Database (Denmark)

    Bender, Christian; Pakkanen, Mikko; Sayit, Hasanjan

    Under proportional transaction costs, a price process is said to have a consistent price system, if there is a semimartingale with an equivalent martingale measure that evolves within the bid-ask spread. We show that a continuous, multi-asset price process has a consistent price system, under...

  18. Nonextensive formalism and continuous Hamiltonian systems

    International Nuclear Information System (INIS)

    Boon, Jean Pierre; Lutsko, James F.

    2011-01-01

    A recurring question in nonequilibrium statistical mechanics is what deviation from standard statistical mechanics gives rise to non-Boltzmann behavior and to nonlinear response, which amounts to identifying the emergence of 'statistics from dynamics' in systems out of equilibrium. Among several possible analytical developments which have been proposed, the idea of nonextensive statistics introduced by Tsallis about 20 years ago was to develop a statistical mechanical theory for systems out of equilibrium where the Boltzmann distribution no longer holds, and to generalize the Boltzmann entropy by a more general function S q while maintaining the formalism of thermodynamics. From a phenomenological viewpoint, nonextensive statistics appeared to be of interest because maximization of the generalized entropy S q yields the q-exponential distribution which has been successfully used to describe distributions observed in a large class of phenomena, in particular power law distributions for q>1. Here we re-examine the validity of the nonextensive formalism for continuous Hamiltonian systems. In particular we consider the q-ideal gas, a model system of quasi-particles where the effect of the interactions are included in the particle properties. On the basis of exact results for the q-ideal gas, we find that the theory is restricted to the range q<1, which raises the question of its formal validity range for continuous Hamiltonian systems.

  19. Pesin’s entropy formula for stochastic flows of diffeomorphisms

    Institute of Scientific and Technical Information of China (English)

    刘培东

    1996-01-01

    Pesin’s entropy formula relating entropy and Lyapunov exponents within the context of random dynamical systems generated by (discrete or continuous) stochastic flows of diffeomorphisms (including solution flows of stochastic differential equations on manifolds) is proved.

  20. Microbial adhesion in flow displacement systems

    NARCIS (Netherlands)

    Busscher, HJ; van der Mei, HC

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  1. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  2. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  3. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  4. Isolation of monocytes from whole blood-derived buffy coats by continuous counter-flow elutriation.

    Science.gov (United States)

    Schwanke, Uwe; Nabereit, Anja; Moog, Rainer

    2006-10-01

    Monocytes (MOs) are the most commonly used precursors for the generation of dendritic cells (DCs) in vitro. Continuous counter-flow elutriation represents a promising tool to isolate MOs from white blood cell (WBC) products. Thirty whole blood-derived, AB0-identical buffy coats (BCs) were pooled using sterile technique (n = 5 experiments). For red blood cell (RBC) and polymorphonuclear cell (PMN) depletion, the BC pools were processed in a Cobe Spectra device (Gambro BCT) using the bone marrow program. Subsequently, continuous counter-flow elutriation in an Elutra device (Gambro BCT) was performed to enrich and purify MOs. BC pool volume averaged 1,260 +/- 14 ml containing 7.7 +/- 1.1 x 10(9) MOs. During 107 +/- 7 min, Cobe Spectra operation, the BC pools were processed for several times, and approximately 9,749 +/- 605 ml volume passed the device. Product volume and MO yield averaged 160 +/- 16 ml, and 4.3 +/- 1.3 x 10(9) cells, respectively. Elutra operation was performed within 59 +/- 0 min and yielded 2.5 +/- 0.9 x 10(9) MOs with a purity of 60 +/- 12%. Compared with the Cobe Spectra product cell count, MO recovery by Elutra averaged 59 +/- 10%. Elutriation of MOs from pooled BCs using Elutra exhibited comparatively low recovery and purity rates. This shortcoming may be due to the nature of the source material. Optimization of the elutriation procedure is necessary to improve MO enrichment from BCs.

  5. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  6. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  7. Calorimetric and reactor coolant system flow uncertainty

    International Nuclear Information System (INIS)

    Bates, L.; McLean, T.

    1991-01-01

    This paper describes a methodology for the quantification of errors associated with the determination of a feedwater flow, secondary power, and Reactor Coolant System (RCS) flow used at the Trojan Nuclear Plant to ensure compliance with regulatory requirements. The sources of error in Plant indications and process measurement are identified and tracked, using examples, through the mathematical processes necessary to calculate the uncertainty in the RCS flow measurement. An error of approximately 1.4 percent is calculated for secondary power. This error results, along with the consideration of other errors, in an uncertainty of approximately 3 percent in the RCS flow determination

  8. The flow measurement plan for the primary system of SMART

    International Nuclear Information System (INIS)

    Lee, Jun; Seo, J. K.; Park, C. T.; Yoon, J. H.; Cho, B. H.; Lee, D. J.

    2001-08-01

    It is the common features of the integrated reactor that the main components of the primary system are installed within the reactor vessel, and so there are no any flow pipes connecting the reactor coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the primary system of the integrated reactor, and it also makes impossible measure the primary coolant flow rate. SMART is also a integrated reactor type, and have a problem as same as the above case. The objective of the study is to draw up the flow measurement plan for the primary system of SMART. In this study, firstly we reviewed the flow measurement methods at the primary system for the existing commercial nuclear power reactors. As a result of the review, we selected preliminarily the 3 methods which is a good possibility of application to SMART. The 3 methods are as follows. Flow measurement method by MCP rotation speed, flow measurement method by HBM, flow measurement method by pump motor power. For the above methods, we have evaluated whether they actually can be applied to SMART, and also have set up the concrete methodology. Finally we have made a selection of the above methods as the flow measurement plan for the primary system of SMART. Peculiarly, we did not found out a precedent which the direct pump motor power-flow rate curve is used as the flow measurement method in the existing commercial nuclear power reactors. Therefore, to use this method for SMART, it is needed to bear the follow-up measures in mind. The follow-up measures is included in this report

  9. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.

    2017-06-01

    Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.

  10. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas...... of the data for high-resolution studies such as annual layer counting. The presented method uses deconvolution techniques and is robust to the presence of noise in the measurements. If integrated into the data processing, it requires no additional data collection. The method is applied to selected ice core...

  11. Design of launch systems using continuous improvement process

    Science.gov (United States)

    Brown, Richard W.

    1995-01-01

    The purpose of this paper is to identify a systematic process for improving ground operations for future launch systems. This approach is based on the Total Quality Management (TQM) continuous improvement process. While the continuous improvement process is normally identified with making incremental changes to an existing system, it can be used on new systems if they use past experience as a knowledge base. In the case of the Reusable Launch Vehicle (RLV), the Space Shuttle operations provide many lessons. The TQM methodology used for this paper will be borrowed from the United States Air Force 'Quality Air Force' Program. There is a general overview of the continuous improvement process, with concentration on the formulation phase. During this phase critical analyses are conducted to determine the strategy and goals for the remaining development process. These analyses include analyzing the mission from the customers point of view, developing an operations concept for the future, assessing current capabilities and determining the gap to be closed between current capabilities and future needs and requirements. A brief analyses of the RLV, relative to the Space Shuttle, will be used to illustrate the concept. Using the continuous improvement design concept has many advantages. These include a customer oriented process which will develop a more marketable product and a better integration of operations and systems during the design phase. But, the use of TQM techniques will require changes, including more discipline in the design process and more emphasis on data gathering for operational systems. The benefits will far outweigh the additional effort.

  12. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  13. AERODYNAMIC CHARACTERISTICS OF “FAN-IN-FIN” SYSTEM IN CONDITION OF FLOWING UNDER ZERO ATTACK ANGLE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Fan-in-fin system can be used as single-rotor helicopter fenestrons propulsion system of low-speed airplanes and dirigibles as well as vehicles with remote control.The article suggests way to continue the author’s research in the field of fan-in-fin system aerodynamics.It also offers a method of aerodynamic characteristics of “fan-in-fin” (fenestron system with cylindrical diffuser of limited length in flow regime under zero angle of attack calculation. The article gives some formula to calculate the flow velocity through the disk area which decrease with the increase of the defusser and air speed.Correlation between fan thrust power and ring thrust on these regimes and momentum drag are found. Momentum drag is high enough, this fact leads to back deviation of total aerodynamic force system. This angle increases with increase of the diffuser length and at medium speed it can reach 30°.Certainty of suggested algorithms is proved by comparison with experiments for helicopter fenestron and un- manned air vehicle by tests in wind tunnel of MAI.

  14. Continuation of Sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki

    Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....

  15. Active pharmaceutical ingredient (API) production involving continuous processes – A process system engineering (PSE)-assisted design framework

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Skovby, Tommy; Kiil, Søren

    2012-01-01

    and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process...... kg of product – was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical industry featuring different characteristic reaction times, as well as L–L separation and distillation-based solvent exchange...

  16. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C

    2017-01-01

    of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...

  17. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...... in Sorö Denmark. Detailed monitoring and modelling of the system in the DTU lab is done to be able to generalize the results, to other climates and loads and to make design optimizations. The advantage with drain back, low flow systems, is that the system can be made more simple with less components...... and that the performance can be enhanced. A combination of the drain back- and system expansion vessel was tested successfully. Small initial problems with installation and proposals for design improvements to avoid these in practice are described in the paper. Installer education and training is an important step to have...

  18. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  19. Mechanistic insights into the oxidative dehydrogenation of amines to nitriles in continuous flow

    DEFF Research Database (Denmark)

    Corker, Emily C.; Ruiz-Martínez, Javier; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of various aliphatic amines to their corresponding nitrile compounds using RuO2/Al2O3 catalysts in air was successfully applied to a continuous flow reaction. Conversions of amines (up to >99%) and yields of nitriles (up to 77%) varied depending on reaction conditions...... and the amine utilised. The presence of water was found to be important for the activity and stability of the RuO2/Al2O3 catalyst. The Hammett relationship and in situ infrared spectroscopy were applied to divulge details about the catalytic mechanism of the oxidative dehydrogenation of amines over RuO2/Al2O3...

  20. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  1. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  2. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  3. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  4. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  5. VLT Data Flow System Begins Operation

    Science.gov (United States)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  6. Single-pass continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results

    International Nuclear Information System (INIS)

    Coles, D.G.

    1981-01-01

    A single-pass continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for 237 Np and 239 Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperatures, at all three flow rates, and with all three leachant compositions varied over only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results aPPh 3 also reacted with Mn 2 (CO) 10 and Cp 2 Mo 2 (CO) 6 to give a variety of products at room temperature. A radical mechanism was suggested

  7. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  8. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  9. Effects of mixing technologies on continuous methyl ester production: Comparison of using plug flow, static mixer, and ultrasound clamp

    International Nuclear Information System (INIS)

    Somnuk, Krit; Prasit, Tanongsak; Prateepchaikul, Gumpon

    2017-01-01

    Highlights: • Four types of continuous reactors were compared with methyl ester conversion. • Plug flow, static mixer, ultrasound clamp, SM with ultrasound reactors were tested. • The 16 × 400 W ultrasound clamps were operated at 20 kHz frequency for US reactor. • The US reactor was clearly superior over the other types of continuous reactor. • The US reactor was the most effective alternative with short reactor length. - Abstract: Four types of continuous reactors, namely plug flow reactor (PF), static mixer reactor (SM), ultrasound clamp on tubular reactor (US), and static mixer combined with ultrasound (SM/US) were compared for their purities of methyl ester in biodiesel production from refined palm oil (RPO). The reactor conditions were: KOH 4, 6, 8, 10, and 12 g L −1 , methanol content 20 vol.%, and under 20 L h −1 RPO flow rate at 60 °C temperature. The highest purity of methyl esters: 81.99 wt.% for PF, 95.70 wt.% for SM, 98.98 wt.% for US, and 97.67 wt.% for SM/US, were achieved with 900 mm, 900 mm, 700 mm, and 900 mm reactor lengths respectively, and 12 g L −1 of KOH was used in all cases. The 16 × 400 W ultrasound clamp was operated at 20 kHz frequency, and among short length reactors the US case was more effective than PF, SM, or SM/US. Moreover, ester purity from the US reactor was slightly decreased by the lowest 4 g L −1 KOH. The US reactor was clearly superior over the other types of continuous reactor, and had the potential to reduce KOH consumption by sonochemical effects on the base-catalyzed transesterification reaction.

  10. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  11. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  12. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  14. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  15. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  16. Integration of Bromine and Cyanogen Bromide Generators for the Continuous-Flow Synthesis of Cyclic Guanidines.

    Science.gov (United States)

    Glotz, Gabriel; Lebl, René; Dallinger, Doris; Kappe, C Oliver

    2017-10-23

    A continuous-flow process for the in situ on-demand generation of cyanogen bromide (BrCN) from bromine and potassium cyanide that makes use of membrane-separation technology is described. In order to circumvent the handling, storage, and transportation of elemental bromine, a continuous bromine generator using bromate-bromide synproportionation can optionally be attached upstream. Monitoring and quantification of BrCN generation was enabled through the implementation of in-line FTIR technology. With the Br 2 and BrCN generators connected in series, 0.2 mmol BrCN per minute was produced, which corresponds to a 0.8 m solution of BrCN in dichloromethane. The modular Br 2 /BrCN generator was employed for the synthesis of a diverse set of biologically relevant five- and six-membered cyclic amidines and guanidines. The set-up can either be operated in a fully integrated continuous format or, where reactive crystallization is beneficial, in semi-batch mode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    International Nuclear Information System (INIS)

    Graceffa, Rita; Nobrega, R. Paul; Barrea, Raul A.; Kathuria, Sagar V.; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C.

    2013-01-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

  18. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, Rita, E-mail: rita.graceffa@gmail.com [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Nobrega, R. Paul [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Barrea, Raul A. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Kathuria, Sagar V. [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Chakravarthy, Srinivas [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Bilsel, Osman [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Irving, Thomas C. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States)

    2013-11-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  19. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    Science.gov (United States)

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  20. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis.

    Science.gov (United States)

    Sachse, Alexander; Ameloot, Rob; Coq, Bernard; Fajula, François; Coasne, Benoît; De Vos, Dirk; Galarneau, Anne

    2012-05-16

    The metal-organic framework Cu-BTC has been successfully synthesized as nanoparticles inside the mesopores of silica monoliths featuring a homogeneous macropore network enabling the use of Cu-BTC for continuous flow applications in liquid phase with low pressure drop. High productivity was reached with this catalyst for the Friedländer reaction. This journal is © The Royal Society of Chemistry 2012