WorldWideScience

Sample records for continuous flow microwave

  1. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  2. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  3. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  5. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    International Nuclear Information System (INIS)

    Wills, J.; Schneider, R.J.; Reden, K.F. von; Hayes, J.M.; Roberts, M.L.; Benthien, A.

    2005-01-01

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 μA from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source for use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design

  6. Continuous microwave regeneration apparatus for absorption media

    Science.gov (United States)

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  7. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  8. System to continuously produce carbon fiber via microwave assisted plasma processing

    Science.gov (United States)

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  9. Batch and Continuous Flow Preparation of Hantzsch 1,4-Dihydropyridines under Microwave Heating and Simultaneous Real-time Monitoring by Raman Spectroscopy. An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Sylvain Christiaens

    2014-07-01

    Full Text Available Dialkyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates have been prepared in a batch mode under conventional heating as well as under continuous flow conditions in the Miniflow 200SS, Sairem’s microwave-assisted batch and continuous flow equipment. Real-time monitoring of the reactions by Raman spectroscopy enabled to compare both heating modes and to determine (optimized reaction times.

  10. Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS

    Directory of Open Access Journals (Sweden)

    Gjergji Shore

    2009-07-01

    Full Text Available Methodology has been developed for laying down a thin gold-on-silver film on the inner surface of glass capillaries for the purpose of catalysing benzannulation reactions. The cycloaddition precursors are flowed through these capillaries while the metal film is being heated to high temperatures using microwave irradiation. The transformation can be optimized rapidly, tolerates a wide number of functional groups, is highly regioselective, and proceeds in good to excellent conversion.

  11. Continuous vulcanization of extruded profile by microwave process

    International Nuclear Information System (INIS)

    Lim Hun Soo

    1994-01-01

    Continuous vulcanization is being increasingly used today in the manufacture of extrusion profiles. This is particularly so with the microwave/hot air continuous vulcanization process. Although this process is now quite widely used in Europe and to a lesser extent in USA, it is still not used in Malaysia. To improve the technological capability of the rubber-based industry in extrusion product, the RRIM has acquired a microwave/hot air tunnel continuous vulcanization equipment to enable development work in this area to be carried out with the aim of upgrading the rubber industry towards this more automated manufacturing process. This is particularly pertinent in view of the anticipated labour shortage, and, increasing labour and energy cost. This paper outlines the basic principles of operation of the microwave/hot air tunnel continuous vulcanization process and describes some aspects of compounding involving natural and synthetic rubbers for use in the process. As temperature increase is one of the major factors influencing the vulcanization of profile in this process, study was therefore concentrated on the heat generation aspect in the microwave tunnel

  12. Continuous denitration device by microwave heating

    International Nuclear Information System (INIS)

    Matsumaru, Ken-ichi; Sato, Hajime.

    1982-01-01

    Purpose: To continuously obtain powder of uranium dioxide, plutonium dioxide or a mixture of them respectively from the solution of uranyl nitrate, plutonium nitrate or a mixture of them effectively while maintaining a constant quality. Constitution: Plutonium nitrate or uranium nitrate solution is deposited on a rotational drum having a heater and dried into powderous products. The powderous products are scraped off by a blade, transferred to a belt conveyor, entered into a microwave heating furnace and heated by microwaves while stirring to obtain the powder of plutonium dioxide or uranium dioxide. The powderous products are scraped off by a scraper and collected in a receiving tank for denitration products, whereby the feeding solution can be denitrated continuously. (Horiuchi, T.)

  13. Continuous denitration device using a microwave furnace

    International Nuclear Information System (INIS)

    Sato, Hajime

    1982-04-01

    A continuous denitration device is described that enables to obtain dried U or Pu dioxide or a mixture of these from a solution of uranyl or plutonium nitrate or a mixed solution of these by irradiation with microwaves. This device allows uranyl or plutonium nitrate to crystallize and the resulting crystals to be separated from the solution. A belt conveyer carries the crystals to a microwave heating furnace for denitration. Approximately 2.4 kg dried cake of U dioxide per hour is obtained [fr

  14. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-01-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  15. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-05-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  16. [Pulse flows of populations of cortical neurons under low-intensity pulsed microwave: interspike intervals].

    Science.gov (United States)

    Chizhenkova, R A

    2014-01-01

    Pulse flows of populations of cortical neurons were investigated on unanesthetized nonimmobilized rabbits prior, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.5-1.0 mW/cm2) in continuous and pulse-modulated modes with a frequency of 5, 20 and 100 Hz. The changes in the characteristics of interspike intervals resulted from these exposures. The peculiarity of rearrangements of pulse flows and their dynamics was determined by modes of irradiation.

  17. Pyrolysis of methane in flowing microwave plasma. Pt. 1, 2

    International Nuclear Information System (INIS)

    Carmi, U.; Inor, A.A.; Avni, R.; Nickel, H.

    1978-04-01

    The flowing microwave (2.45 G Hz) plasmas of methane and methane-argon mixtures were analyzed by the electrical double floating probe system (DFPS), along the flow stream. The measured electric variables of the microwave plasma were: current, current density, electric field strength, electron temperature, positive ion and electron concentrations. They indicate an irreversible process, of the polymerization of CH 4 and CH 4 +Ar mixtures, taking place in the plasma. The polymerization process reaches its maximum 'down stream'. after the position of the microwave cavity. The polymerization was correlated to the concentration of ions and electrons in the plasma. (orig.) [de

  18. Continuity of Climate Data Records derived from Microwave Observations

    Science.gov (United States)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate

  19. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    Science.gov (United States)

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Josephson flux-flow oscillators in nonuniform microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    2000-01-01

    We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...

  1. Efficiency of Artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery.

    Science.gov (United States)

    Balasubramanian, Sundar; Ortego, Jeffrey; Rusch, Kelly A; Boldor, Dorin

    2008-12-15

    A continuous microwave system to treat ballast water inoculated with Artemia salina cysts as a model invasive spore was tested for its efficacy in inactivating the cysts present. The system was tested at two different flow rates (1 and 2 L x min(-1)) and two different power levels (2.5 and 4.5 kW). Temperature profiles indicate that the system could deliver heating loads in excess of 100 degrees C in a uniform and near-instantaneous manner when using a heat recovery system. Except for a power and flow rate combination of 2.5 kW and 2 L x min(-1), complete inactivation of the cysts was observed at all combinations at holding times below 100 s. The microwave treatment was better or equal to the control treatment in inactivating the cysts. Use of heat exchangers increased the power conversion efficiency and the overall efficiency of the treatment system. Cost economics analysis indicates that in the present form of development microwave treatment costs are higher than the existing ballast water treatment methods. Overall, tests results indicated that microwave treatment of ballast water is a promising method that can be used in conjunction with other methods to form an efficient treatment system that can prevent introduction of potentially invasive spore forming species in non-native waters.

  2. Compact continuous HF microwave-discharge mixing laser

    International Nuclear Information System (INIS)

    Gagne, J.M.; Bertrand, L.; Conturie, Y.; Mah, S.Q.; Monchalin, J.P.

    1975-01-01

    The performance of a continuous chemical laser is discussed. Fluorine atoms are produced in a SF 6 + He mixture by means of a microwave-discharge apparatus that operates in a continuous mode. A maximum output power of 4 W is obtained for a 5 cm length of amplifying medium; this power output is primarily due to P transitions from the 1-0 and 2-1 bands. Weak transitions in the 3-2 band are also observed. The maximum value of measured gain is 0.11 cm -1 ; good agreement is obtained between theoretical and experimental values of gain. (auth)

  3. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    Science.gov (United States)

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  4. Software development for continuous-gas-flow AMS

    International Nuclear Information System (INIS)

    Reden, K.F. von; Roberts, M.L.; Jenkins, W.J.; Rosenheim, B.E.; McNichol, A.P.; Schneider, R.J.

    2008-01-01

    The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution is presently completing installation of a novel continuous-flow AMS system. A multi-year development of an AMS microwave gas ion source in collaboration with Atomic Energy Canada Limited (AECL), Chalk River, has preceded this final step of an implementation that is expected to add a new dimension to 14 C AMS. National Instruments, NIM, and CAMAC modules have been programmed with LabVIEW on a Windows XP platform to form the basis for data acquisition. In this paper we discuss possible applications and include simulations of expected data acquisition scenarios like real-time AMS analysis of chromatograms. Particular attention will have to be given to issues of synchronization between rapidly changing input amplitudes and signal processing cycles in hardware and software

  5. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    Science.gov (United States)

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  6. Continuous-flow hydration–condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2011-12-01

    Full Text Available A simple, practical and efficient continuous-flow hydration–condensation protocol was developed for the synthesis of α,β-unsaturated ketones starting from alkynes and aldehydes by employing a heterogeneous catalyst in a flow microwave. The procedure presents a straightforward and convenient access to valuable differently substituted chalcones and can be applied on multigram scale.

  7. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram

    2017-03-31

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.

  8. Continuous microwave pasteurization of a vegetable smoothie improves its physical quality and hinders detrimental enzyme activity.

    Science.gov (United States)

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-01-01

    The effect of a pasteurization treatment at 90 ± 2 ℃ for 35 s provided by continuous microwave under different doses (low power/long time and high power/short time) or conventional pasteurization on the quality of orange-colored smoothies and their changes throughout 45 days of storage at 5 ℃ was investigated. A better color retention of the microwave pasteurization- treated smoothie using high power/short time than in conventionally processed sample was evidenced by the stability of the hue angle. The continuous microwave heating increased the viscosity of the smoothie more than the conventional pasteurization in comparison with non-treated samples. Lower residual enzyme activities from peroxidase, pectin methylesterase and polygalacturonase were obtained under microwave heating, specifically due to the use of higher power/shorter time. For this kind of smoothie, polygalacturonase was the more thermo-resistant enzyme and could be used as an indicator of pasteurization efficiency. The use of a continuous semi-industrial microwave using higher power and shorter time, such as 1600 W/206 s and 3600 W/93 s, resulted in better quality smoothies and greater enzyme reduction than conventional thermal treatment. © The Author(s) 2016.

  9. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  10. Microwave Photocatalysis II: Novel Continuous-Flow Microwave Photocatalytic Experimental Set-up with Titania-Coated Mercury Electrodeless Discharge Lamps

    Czech Academy of Sciences Publication Activity Database

    Žabová, Hana; Církva, Vladimír; Hájek, Milan

    2009-01-01

    Roč. 84, č. 8 (2009), s. 1125-1129 ISSN 0268-2575 R&D Projects: GA ČR GA104/06/0992; GA ČR GA104/07/1212; GA ČR(CZ) GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave * photocatalysis * thin film Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.045, year: 2009

  11. Scale-up of microwave assisted flow synthesis by transient processing through monomode cavities in series

    NARCIS (Netherlands)

    Patil, N.G.; Benaskar, F.; Rebrov, E.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.

    2014-01-01

    A new scale-up concept for microwave assisted flow processing is presented where modular scale-up is achieved by implementing microwave cavities in series. The scale-up concept is demonstrated for case studies of a packed-bed reactor and a wall-coated tubular reactor. With known kinetics and

  12. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  13. Scale-up of microwave-assisted polymerizations in continuous-flow mode : cationic ring-opening polymerization of 2-ethyl-2-oxazoline

    NARCIS (Netherlands)

    Paulus, R.M.; Erdmenger, T.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2007-01-01

    Microwave-assisted polymerizations is a growing field of interest because the use of microwave irradiation instead of thermal heating was demonstrated to result in faster, cleaner, and higher yielding reactions. To overcome the one-at-a-time nature of preparing polymerizations in single microwave

  14. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system

    International Nuclear Information System (INIS)

    Han, B.X.; Reden, K.F. von; Roberts, M.L.; Schneider, R.J.; Hayes, J.M.; Jenkins, W.J.

    2007-01-01

    A continuous-flow 14 C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO 2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45 o electrostatic spherical analyzer (ESA) and a 90 o double-focusing magnet has been designed. The 45 o ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90 o double focusing magnet and 90 o ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit

  15. Quality evaluation of packaged acidified vegetables subjected to continuous microwave pasteurization

    Science.gov (United States)

    The study evaluated the use of 915 MHz continuous microwave processing with a rotation apparatus for pasteurization of acidified vegetable packages. Broccoli florets, and 1.2 cm cubes of broccoli stems, red bell pepper, and sweetpotato were pre-equilibrated to 1 g/100 g NaCl and 0.38 g/100 mL citric...

  16. Microwave-assisted flow processing in heterogeneously copper nano-catalyzed reactions

    NARCIS (Netherlands)

    Benaskar, F.

    2012-01-01

    In the last decades, micro-processing and microwave technology have been established as mature technologies, however, mainly instigated by academia. Many advances in micro-process technology have led to novel routes and/or process windows to replace batch operations by more efficient continuous

  17. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    Science.gov (United States)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  18. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    Science.gov (United States)

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2015-12-01

    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®

  20. Microwave bale moisture sensing: Field trial continued

    Science.gov (United States)

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  1. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  2. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    Science.gov (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  4. Electrophysiological changes in rats after modulated microwave irradiation

    International Nuclear Information System (INIS)

    Szabo, L.D.; Thuroczy, G.; Kubinyi, G.; Bakos, J.

    1992-01-01

    The effects of modulated microwave irradiation on the electrophysiological changes in rats were studied. The response of the central nervous system (CNS) was observed simultaneously to the cardiovascular system by using quantitative polygraphic measuring system. In acute experiments on rat the electroencephalogram (EEG), rheoencephalogram (REG) as an index of cerebral blood flow (CBF), brain tissue DC impedance and temperature, ECG were recorded in parallel before, during and after exposure of the brain localized amplitude (AM) modulated (16 Hz) and continuous wave (CW) microwave exposure. The average specific absorption rates (SAR) in the brain were 8.4 mW/g, 16.8 mW/g and 42 mW/g (CW) respectively. At thermal level CW exposure the delta band of EEG increased. In case of low intensities modulated exposure the beta band of EEG spectrum increased. No changes were observed during athermal CW irradiation on the EEG. Moderate modulation depended changes were measured in cerebral metabolism, cerebral blood flow and cardiorespiratoric system during microwave irradiation. (author)

  5. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  6. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  7. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure.

    Science.gov (United States)

    Wang, Hui; Tan, Shengzhi; Xu, Xinping; Zhao, Li; Zhang, Jing; Yao, Binwei; Gao, Yabing; Zhou, Hongmei; Peng, Ruiyun

    2017-11-01

    The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm 2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. Results found that the rats in the 10mW/cm 2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm 2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    Science.gov (United States)

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  9. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    Directory of Open Access Journals (Sweden)

    Gábor Géczi

    Full Text Available Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other

  10. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  11. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  12. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  13. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  14. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  15. Survival of Listeria monocytogenes, E.coli 0157:H7 and Salmonella spp. on catfish fillets exposed to microwave heating in a continuous mode

    Science.gov (United States)

    Microwave (MW) heating using continuous power output with feedback control and a modified ingredient formulation, may provide better and consistent cooking of foods. Currently, household units with build-in inverter power supply units are available. These new generation microwave ovens provide con...

  16. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  17. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    Science.gov (United States)

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  18. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  19. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    The objective of this thesis is to report the development of a new, alternative process for the flexible production of nitrile compounds in continuous flow. Nitriles are an important class of compounds that find applications as solvents, chemical intermediates and pharmaceutical compounds......, alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  20. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow

    Directory of Open Access Journals (Sweden)

    Christophe Len

    2017-05-01

    Full Text Available Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts.

  1. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  2. Thermoactivation of viruses by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mahnel, H.; von Brodorotti, H.S.

    1981-01-01

    Eight different viruses, suspended in drinking water, were examined for their ability to be inactivated by microwaves from a microwave oven. Up to a virus content of 10/sup 5/ TCID/sub 50//ml inactivation was successful within a few minutes of microwave treatment and occurred in parallel to the heat stability of the viruses. Evidence for direct effects of microwaves on viruses could not be detected. 7 of the viruses studied were inactivated rapidly when temperatures of 50 to 65/sup 0/C under microwave treatment were reached in the flowing water, while a bovine parvovirus was only inactivated by temperatures above 90/sup 0/C. The advantages of a thermal virus-decontamination of fluids and material by microwaves are discussed.

  3. The assembly and use of continuous flow systems for chemical synthesis.

    Science.gov (United States)

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  4. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    Science.gov (United States)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  5. Probabilistic Power Flow Method Considering Continuous and Discrete Variables

    Directory of Open Access Journals (Sweden)

    Xuexia Zhang

    2017-04-01

    Full Text Available This paper proposes a probabilistic power flow (PPF method considering continuous and discrete variables (continuous and discrete power flow, CDPF for power systems. The proposed method—based on the cumulant method (CM and multiple deterministic power flow (MDPF calculations—can deal with continuous variables such as wind power generation (WPG and loads, and discrete variables such as fuel cell generation (FCG. In this paper, continuous variables follow a normal distribution (loads or a non-normal distribution (WPG, and discrete variables follow a binomial distribution (FCG. Through testing on IEEE 14-bus and IEEE 118-bus power systems, the proposed method (CDPF has better accuracy compared with the CM, and higher efficiency compared with the Monte Carlo simulation method (MCSM.

  6. [Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction].

    Science.gov (United States)

    Lu, Yan-fang; An, Jing; Jiang, Ye

    2015-04-01

    For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.

  7. Development of an integrated MOX-scrap recycling flow-sheet by dry and wet routes using microwave heating techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Malav, R K; Karande, A P; Bhargava, V K; Kamath, H S [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur (India)

    1999-01-01

    A simple, short and efficient scrap, recycling flow-sheet, which is exclusively based on microwave heating techniques and, includes both dry and wet routes, for (U,Pu)O{sub 2} fuel scrap recycling has been developed and evaluated. (author) 6 refs., 1 tab.

  8. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  9. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  10. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  11. Pin-count reduction for continuous flow microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander; Pop, Paul; Madsen, Jan

    2017-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers integrating the necessary functions on-chip. We are interested in flow-based biochips, where a continuous flow of liquid is manipulated using integrated microvalves, controlled from external pressure sources via off...

  12. Enhancing chemical synthesis using catalytic reactions under continuous flow conditions

    OpenAIRE

    Asadi, Mousa

    2017-01-01

    Many advantages have been demonstrated for continuous flow chemistry in comparison with batch chemistry; such as easy automation, high level of reproducibility, improved safety, and process reliability. Indeed, with continuous flow processes constant reaction parameters such as temperature, time, amount of reagents, catalyst, solvents, efficient mixing etc. can easily be assured. The research detailed in this PhD thesis takes advantages of flow chemistry applying it to the Fukuyama ...

  13. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    International Nuclear Information System (INIS)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-01-01

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively

  14. Production of ethyl ester from crude palm oil by two-step reaction using continuous microwave system

    Directory of Open Access Journals (Sweden)

    Sukritthira Ratanawilai

    2011-02-01

    Full Text Available The esterification of free fatty acids (FFA in vegetable oils with alcohol using an acid catalyst is a promising methodto convert FFA into valuable ester and obtain a FFA-free oil that can be further transesterified using alkali bases. In thiswork, the direct esterification reaction of FFA in crude palm oil to ethyl ester by continuous microwave was studied and theeffects of the main variables involved in the process, amount of catalyst, reaction time and the molar ratio oil/ alcohol, wereanalyzed. The optimum condition for the continuous esterification process was carried out with a molar ratio of oil to ethanol1:6, using 1.25%wt of H2SO4/oil as a catalyst, microwave power of 78 W and a reaction time 90 min. This esterification processshows that the amount of FFA was reduced from 7.5%wt to values around 1.4 %wt. Similar results were obtained followingconventional heating at 70°C, but only after a reaction time of 240 min. The esterified crude palm oil is suitable to perform thetransesterification process. Transesterification of the esterified palm oil has been accomplished with a molar ratio of oil toethanol of 1:8.5, 2.5%wt of KOH as a catalyst, a microwave power of 78 W, and a reaction time of 7 min. In addition, theproblem of glycerin separation was solved by mixing 10%wt of pure glycerin into the ethyl ester to induce the glycerin fromthe reaction to separated. This two-step esterification and transesterification process provided a yield of 78%wt with anester content of 97.4%wt. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.

  15. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  16. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    Science.gov (United States)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  18. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  19. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  20. Microwave interferometry of PEOS plasma sources

    International Nuclear Information System (INIS)

    Weber, B.V.; Commisso, R.J.; Goodrich, P.J.; Hinshelwood, D.D.; Neri, J.M.

    1988-01-01

    A 70 GHz microwave interferometer is used to measure the electron density for various configurations of sources used in plasma erosion opening switch (PEOS) experiments. The interferometer is a phase quadrature system, so the density can be measured as a function of time without ambiguity. Measurements have been made for carbon guns and flashboards driven by a .6 μF. 25 kV capacitor. The plasma density from a gun rises to its peak value in about 10 μs. Then decays in the next 40 μs. A metal screen placed between the gun and the microwave beam attenuates the plasma density by a factor greater than the geometrical transparency of the screen. Density measurements as a function of distance from the gun are analyzed to give the plasma spatial dependence, and the particle flux density and flow velocity are calculated from the continuity equation. Density values used to model previous PEOS experiments are comparable to the values measured here. The flashboard sources produce a denser, faster plasma that is more difficult to diagnose with the interferometer than the gun plasma because of refractive bending of the microwave beam. Reducing the plasma length reduces the refractive bending enough that some measurements are possible. Direct comparison with Gamble II PEOS experiments that used these flashboard sources may not be possible at this frequency because of refraction, but estimates based on measurements at larger distances give reasonable agreement with values used to model these experiments. Other measurements that will be presented include the effects of plasma flow against metal walls, effects of changing the driving current waveform, measurements made in actual experimental configurations and comparisons with Faraday cup and electric probe measurements

  1. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  2. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  3. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  4. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    International Nuclear Information System (INIS)

    Seon, S. W.; Kim, H. J.; Wang, S. J.; Kim, J. N.

    2016-01-01

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable

  5. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Seon, S. W.; Kim, H. J.; Wang, S. J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, J. N. [KRF, Anyang (Korea, Republic of)

    2016-05-15

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable.

  6. Controlled synthesis of poly(3-hexylthiophene in continuous flow

    Directory of Open Access Journals (Sweden)

    Helga Seyler

    2013-07-01

    Full Text Available There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene, P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  7. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  8. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  9. Extending the versatility of the Hemetsberger-Knittel indole synthesis through microwave and flow chemistry.

    Science.gov (United States)

    Ranasinghe, Nadeesha; Jones, Graham B

    2013-03-15

    Microwave, flow and combination methodologies have been applied to the synthesis of a number of substituted indoles. Based on the Hemetsberger-Knittel (HK) process, modifications allow formation of products rapidly and in high yield. Adapting the methodology allows formation of 2-unsubstituted indoles and derivatives, and a route to analogs of the antitumor agent PLX-4032 is demonstrated. The utility of the HK substrates is further demonstrated through bioconjugation and subsequent ring closure and via Huisgen type [3+2] cycloaddition chemistry, allowing formation of peptide adducts which can be subsequently labeled with fluorine tags. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    DEFF Research Database (Denmark)

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu

    2015-01-01

    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology...

  11. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  12. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  13. Electrohydrodynamics and other hydrodynamic phenomena in continuous-flow electrophoresis

    International Nuclear Information System (INIS)

    Saville, D.A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow. 10 references

  14. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  15. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  16. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  17. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    International Nuclear Information System (INIS)

    Pohl, Pawel; Zapata, Israel Jimenez; Bings, Nicolas H.; Voges, Edgar; Broekaert, Jose A.C.

    2007-01-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2 SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml -1 . The microstrip plasma tolerated the introduction of 4.2 ml min -1 of H 2 in the Ar working gas, which corresponded to an H 2 /Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 . 10 14 cm -3 , respectively. Detection limits (3σ) of 18 ng ml -1 for As and 31 ng ml -1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml -1 level in a galvanic bath solution containing 2.5% of NiSO 4 . Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g -1 and a value of 144 ± 4 μg g -1 was found

  18. Beyond organometallic flow chemistry : the principles behind the use of continuous-flow reactors for synthesis

    NARCIS (Netherlands)

    Noel, T.; Su, Y.; Hessel, V.; Noël, T.

    2015-01-01

    Flow chemistry is typically used to enable challenging reactions which are difficult to carry out in conventional batch equipment. Consequently, the use of continuous-flow reactors for applications in organometallic and organic chemistry has witnessed a spectacular increase in interest from the

  19. A microwave-augmented plasma torch module

    International Nuclear Information System (INIS)

    Kuo, S P; Bivolaru, Daniel; Williams, Skip; Carter, Campbell D

    2006-01-01

    A new plasma torch device which combines arc and microwave discharges to enhance the size and enthalpy of the plasma torch is described. A cylindrical-shaped plasma torch module is integrated into a tapered rectangular cavity to form a microwave adaptor at one end, which couples the microwave power injected into the cavity from the other end to the arc plasma generated by the torch module. A theoretical study of the microwave coupling from the cavity to the plasma torch, as the load, is presented. The numerical results indicate that the microwave power coupling efficiency exceeds 80%. Operational tests of the device indicate that the microwave power is coupled to the plasma torch and that the arc discharge power is increased. The addition of microwave energy enhances the height, volume and enthalpy of the plasma torch when the torch operates at a low airflow rate, and even when the flow speed is supersonic, a noticeable microwave effect on the plasma torch is observed. In addition, the present design allows the torch to be operated as both a fuel injector and igniter. Ignition of ethylene fuel injected through the centre of a tungsten carbide tube acting as the central electrode is demonstrated

  20. The Generation of Diazo Compounds in Continuous-Flow.

    Science.gov (United States)

    Hock, Katharina J; Koenigs, Rene M

    2018-03-25

    Toxic, cancerogenic and explosive - these attributes are typically associated with diazo compounds. Nonetheless, diazo compounds are nowadays a highly demanded class of reagents for organic synthesis, yet the concerns with regards to safe and scalable transformations of these compounds are still exceptionally high. Lately, the research area of the continuous-flow synthesis of diazo compounds attracted significant interest and a whole variety of protocols for their "on-demand" preparation have been realized to date. This concept article focuses on the recent developments using continuous-flow technologies to access diazo compounds; thus minimizing risks and hazards when working with this particular class of compounds. In this article we discuss these concepts and highlight different pre-requisites to access and to perform downstream functionalization reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multistep Continuous-Flow Synthesis in Medicinal Chemistry

    DEFF Research Database (Denmark)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia Cwarzko

    2013-01-01

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained i...... studies in medicinal chemistry....

  2. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    Science.gov (United States)

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  4. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  5. Continuous country-wide rainfall observation using a large network of commercial microwave links: Challenges, solutions and applications

    Science.gov (United States)

    Chwala, Christian; Boose, Yvonne; Smiatek, Gerhard; Kunstmann, Harald

    2017-04-01

    Commercial microwave link (CML) networks have proven to be a valuable source for rainfall information over the last years. However, up to now, analysis of CML data was always limited to certain snapshots of data for historic periods due to limited data access. With the real-time availability of CML data in Germany (Chwala et al. 2016) this situation has improved significantly. We are continuously acquiring and processing data from 3000 CMLs in Germany in near real-time with one minute temporal resolution. Currently the data acquisition system is extended to 10000 CMLs so that the whole of Germany is covered and a continuous country-wide rainfall product can be provided. In this contribution we will elaborate on the challenges and solutions regarding data acquisition, data management and robust processing. We will present the details of our data acquisition system that we run operationally at the network of the CML operator Ericsson Germany to solve the problem of limited data availability. Furthermore we will explain the implementation of our data base, its web-frontend for easy data access and present our data processing algorithms. Finally we will showcase an application of our data in hydrological modeling and its potential usage to improve radar QPE. Bibliography: Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991-999, doi:10.5194/amt-9-991-2016, 2016

  6. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  7. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaick, C.R.; Bostick, W.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or 'microwave melter' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  8. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  9. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, M.; Samolov, A.; Popovic, S.; Vuskovic, L.; Godunov, A. [Department of Physics, Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529 (United States); Cuckov, F. [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowing microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.

  10. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  11. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey

    2011-01-01

    Medical imaging has recently expanded into the dual- or multi-modality fusion of anatomical and functional imaging modalities. This significantly improves the diagnostic power while simultaneously increasing the cost of already expensive medical devices or investigations and decreasing their mobility. We are introducing a novel imaging concept of four-dimensional (4D) microwave tomographic (MWT) functional imaging: three dimensional (3D) in the spatial domain plus one dimensional (1D) in the time, functional dynamic domain. Instead of a fusion of images obtained by different imaging modalities, 4D MWT fuses absolute anatomical images with dynamic, differential images of the same imaging technology. The approach was successively validated in animal experiments with short-term arterial flow reduction and a simulated compartment syndrome in an initial simplified experimental setting using a dedicated MWT system. The presented fused images are not perfect as MWT is a novel imaging modality at its early stage of the development and ways of reading reconstructed MWT images need to be further studied and understood. However, the reconstructed fused images present clear evidence that microwave tomography is an emerging imaging modality with great potentials for functional imaging.

  12. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaich, C.R.; Bostick, T.L.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ''microwave melter'' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  13. Plasma acceleration by means of microwave radiation pressure

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1977-01-01

    In the electric discharge of gas with microwaves, intense reflection waves occur simultaneously with the discharge, so the plasma ionized and formed by the microwaves is accelerated due to large radiation pressure. The basic experiment made, aiming at plasma gun, is described. In the gas electric discharge, the plasma flow velocity proportional to the reflected power is obtained. For 550 W microwave input power, the plasma velocity of 1 x 10 4 m/s was obtained. The accelerated plasma is bunched; its front as mass travels, recombines and disappears. (Mori, K.)

  14. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  15. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  16. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  17. Microwave plasma ion sources for selected ion flow tube mass spectrometry: Optimizing their performance and detection limits for trace gas analysis

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    2007-01-01

    Roč. 267, 1-3 (2007), s. 117-124 ISSN 1387-3806 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : microwave plasma ion source * selected ion flow tube mass spectrometry * SIFT-MS * breath analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.411, year: 2007

  18. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  19. Operational Aspects of Continuous Pharmaceutical Production

    DEFF Research Database (Denmark)

    Mitic, Aleksandar

    Introduction of the Process Analytical Technolo gy (PAT) Initiative, the Quality by Design (QbD) approach and the Continuous Improvement (CI) methodology/philosophy is considered as a huge milestone in the modern pharmaceutical indust ry. The above concepts, when applied to a pharmaceutical...... satisfaction of the demands defined by the PA T Initiative. This approach could be considered as establishing a Lean Production System (LPS) whic h is usually supported with tools associated with Process Intensifaction (PI) a nd Process Optimization (PO). Development of continuous processes is often c onnected...... tools, such as microwave assisted organic synthesis (MAOS), ultrasounds, meso-scale flow chemistry and microprocess technology. Furthermore, developmen t of chemical catalysts and enzymes enabled further acceleration of some chemical reactions that were known as very slow or impossible to be performed...

  20. Microwave Powered Gravitationally Independent Medical Grade Water Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative microwave system is proposed for the continuous production of medical grade water. This system will utilize direct absorption of microwave radiation to...

  1. Product differentiation during continuous-flow thermal gradient PCR.

    Science.gov (United States)

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  2. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  3. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  4. Hybrid Continuous-Flow Total Artificial Heart.

    Science.gov (United States)

    Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy

    2018-05-01

    Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    Directory of Open Access Journals (Sweden)

    Christian H. Hornung

    2017-01-01

    Full Text Available This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.

  6. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    Science.gov (United States)

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A microwave resonance dew-point hygrometer

    Science.gov (United States)

    Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.

    2012-08-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.

  8. A microwave resonance dew-point hygrometer

    International Nuclear Information System (INIS)

    Underwood, R J; Bell, S; Stevens, M; De Podesta, M; Cuccaro, R; Gavioso, R M; Ripa, D Madonna

    2012-01-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5–13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures. (paper)

  9. The synthesis of active pharmaceutical ingredients (APIs using continuous flow chemistry

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2015-07-01

    Full Text Available The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  10. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.

    Science.gov (United States)

    Baumann, Marcus; Baxendale, Ian R

    2015-01-01

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  11. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  12. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  13. Catalyst retention in continuous flow with supercritical carbon dioxide

    NARCIS (Netherlands)

    Stouten, S.C.; Noel, T.; Wang, Q.; Hessel, V.

    2014-01-01

    This review discusses the retention of organometallic catalysts in continuous flow processes utilizing supercritical carbon dioxide. Due to its innovative properties, supercritical carbon dioxide offers interesting possibilities for process intensification. As a result of safety and cost

  14. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    Science.gov (United States)

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.

    1980-08-01

    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  16. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    International Nuclear Information System (INIS)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy; Nichipor, Gerietta V

    2011-01-01

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH 4 and tetrafluoroethane C 2 H 2 F 4 were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min -1 . The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H 2 ] h -1 and 577 g [H 2 ] kWh -1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  17. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Shrestha, Shankar Prasad [Tribhuvan Univ., Kathmandu (Nepal)

    2014-03-15

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O{sub 2} flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O{sub 2} flow rate. Resistance changes only slightly with different O{sub 2} flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O{sub 2} or N{sub 2} plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

  18. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  19. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  20. COST-EFFECTIVENESS OF CONTINUOUS-FLOW LEFT VENTRICULAR ASSIST DEVICES

    NARCIS (Netherlands)

    Neyt, Mattias; Van den Bruel, Ann; Smit, Yolba; De Jonge, Nicolaas; Erasmus, Michiel; Van Dijk, Diederik; Vlayen, Joan

    Objectives: Mechanical circulatory support through left ventricular assist devices (LVADs) improves survival and quality of life for patients with end-stage heart failure who are ineligible for cardiac transplantation. Our aim was to calculate the cost-effectiveness of continuous-flow LVADs.

  1. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    Science.gov (United States)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  2. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  3. Continuous infusion thermodilution for assessment of coronary flow: Theoretical background and in vitro validation

    NARCIS (Netherlands)

    Veer, van 't M.; Geven, M.C.F.; Rutten, M.C.M.; Horst, van der A.; Aarnoudse, W.H.; Pijls, N.H.J.; Vosse, van de F.N.

    2009-01-01

    Direct volumetric assessment of coronary flow during cardiac catheterization has not been available so far. In the current study continuous infusion thermodilution, a method based on continuous infusion of saline into a selective coronary artery is evaluated. Theoretically, volumetric flow can be

  4. Continuous manufacturing of active pharmaceutical ingredients via flow technology

    NARCIS (Netherlands)

    Borukhova, S.; Hessel, V.; Kleinbudde, P.; Khinast, J.; Rantanen, J.

    2017-01-01

    The main drivers to implement continuous manufacturing are aspects related to logistics, quality of the final product, chemistry to be implemented, process and safety concerns. Flow technology offers a platform to realize those drivers. This chapter introduces the reader to a relatively new

  5. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  6. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Semi-continuous protein fractionating using affinity cross-flow filtration

    NARCIS (Netherlands)

    Borneman, Zandrie; Zhang, W.; van den Boomgaard, Anthonie; Smolders, C.A.

    2002-01-01

    Protein purification by means of downstream processing is increasingly important. At the University of Twente a semi-continuous process is developed for the isolation of BSA out of crude protein mixtures. For this purpose an automated Affinity Cross-Flow Filtration, ACFF, process is developed. This

  8. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  9. Renormalization group flows and continual Lie algebras

    International Nuclear Information System (INIS)

    Bakas, Ioannis

    2003-01-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  10. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    Science.gov (United States)

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  11. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  12. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  13. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  14. A miniature CSTR cascade for continuous flow of reactions containing solids

    OpenAIRE

    Mo, Yiming; Jensen, Klavs F

    2016-01-01

    Continuous handling of solids creates challenges for realizing continuous production of pharmaceuticals and fine chemicals. We present a new miniature continuous stirred-tank reactor (CSTR) cascade to handle solid-forming reactions in flow. Single-phase residence time distribution (RTD) measurements of the CSTR cascade reveal nearly ideal CSTR mixing behavior of the individual units. Consistency of experimental and predicted conversions of a Diels–Alder reaction further confirms the CSTR perf...

  15. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Nichipor, Gerietta V, E-mail: mj@imp.gda.pl [Joint Institute of Power and Nuclear Research, Academy of Sciences of Belarus, Minsk, Sosny 220109 (Belarus)

    2011-05-18

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH{sub 4} and tetrafluoroethane C{sub 2}H{sub 2}F{sub 4} were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min{sup -1}. The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H{sub 2}] h{sup -1} and 577 g [H{sub 2}] kWh{sup -1} of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  16. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  17. Phase-locked flux-flow Josephson oscillator

    DEFF Research Database (Denmark)

    Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.

    1992-01-01

    We report on the observation of large rf induced steps due to phase-locking of unidirectional flux-flow motion in long quasi-one-dimensional Josephson junctions. The external microwave irradiation in the frequency range 62–77 GHz was applied from the edge of the junction at which the fluxons enter....... The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...

  18. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia (Poland)

    2008-06-15

    In this paper, results of hydrogen production via methane reforming in the atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. Important advantages of the presented waveguide-based nozzleless cylinder-type MPS are: stable operation in various gases (including air) at high flow rates, no need for a cooling system, and impedance matching. The plasma generation was stabilized by an additional swirled nitrogen flow (50 or 100 l min{sup -1}). The methane flow rate was up to 175 l min{sup -1}. The absorbed microwave power could be changed from 3000 to 5000 W. The hydrogen production rate and the corresponding energy efficiency in the presented methane reforming by the waveguide-based nozzleless cylinder-type MPS were up to 255 g[H{sub 2}] h{sup -1} and 85 g[H{sub 2}] kWh{sup -1}, respectively. These parameters are better than those typical of the conventional methods of hydrogen production (steam reforming of methane and water electrolysis). (author)

  19. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    Science.gov (United States)

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Applying lean principles to achieve continuous flow in 3PLs’ outbound processes

    NARCIS (Netherlands)

    Overboom, M.A.; Small, J.S.; Naus, A.J.A.M.; de Haan, J.A.C.

    2013-01-01

    The article offers information on the application of lean principles to achieve continuous flow in third party logistics providers (3PLs). It mentions that lean management principles and practices have been traditionally applied to manufacturing systems and try to make products flow through the

  1. Apparatus with moderating material for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  2. Voltage stability analysis using a modified continuation load flow ...

    African Journals Online (AJOL)

    This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...

  3. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  4. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    Science.gov (United States)

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  5. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  6. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Nomura, Shinfuku

    2011-01-01

    Nanoparticles are continuously synthesized from submerged magnesium, zinc, and silver rods 1–2 mm in diameter by microwave plasma in pure water at 20 kPa. Magnesium-hydroxide nanoplates shaped as triangles, truncated triangles or hexagons with 25–125 nm in size are synthesized with a production rate of 60 g h −1 . Zinc-oxide nanoparticles formed as sharp sticks with diameters of 50 nm and lengths of 150–200 nm are synthesized with a production rate of 14 g h −1 . Silver nanoparticles with a diameter of approximately 6 nm are synthesized with a production rate of 0.8 g h −1 . The excitation temperature is estimated by applying the Boltzmann plot method in assumption of local thermodynamic equilibrium. The excitation temperatures obtained from hydrogen, magnesium, and zinc lines are 3300 ± 100 K, 4000 ± 500 K, and 3200 ± 500 K, respectively.

  7. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    International Nuclear Information System (INIS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-01-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  8. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  9. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  10. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    Science.gov (United States)

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  11. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  12. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours for postopera......Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...... than 0.03) in the other five patients as the level of sensory analgesia regressed postoperatively. These data suggest that changes in epidural blood flow during continuous epidural infusion of bupivacaine, and thus changes in rates of vascular absorption of bupivacaine from the epidural space, may...

  13. Microwave-mediated heat transport in a quantum dot attached to leads

    International Nuclear Information System (INIS)

    Chi Feng; Dubi, Yonatan

    2012-01-01

    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)

  14. Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF

    DEFF Research Database (Denmark)

    Petersen, Trine P; Larsen, Anders Foller; Ritzén, Andreas

    2013-01-01

    A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported.......A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported....

  15. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  16. Behavioral effects of microwave reinforcement schedules and variations in microwave intensity on albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, W.F.; Lambert, J.K.; Brown, S.W.; Quinn, J.M.

    1987-12-01

    The objective of this exploratory investigation was to determine the interactive effects of fixed-ratio scheduling of microwave reinforcement in tandem with changes in microwave intensity. Nine albino rats were conditioned to regulate their thermal environment with microwave radiation while living in a Skinner (operant conditioning) Box in which the ambient temperature was about 27.13 degrees F at the beginning of the session. Each rat obtained a 6-sec. exposure of microwave radiation on a fixed-ratio schedule of MW reinforcement, the values of which varied from FR-1 to FR-30. Intensities of MW radiation were 62.5 W, 125 W, 250 W, and 437.5 W. Sessions lasted for 8 to 9 hr. over an approximate 13-mo. period. The effects of the intensity of microwave reinforcement varied as a function of the ratio value of the schedule used. Continuous reinforcement (FR-1) produced the lowest over-all rates, whereas FR-15, and FR-25 produced the highest over-all rates. Relatively higher thermal-behavior rates occurred under 62.5 W than under any of the other MW intensities for FR-1, FR-15, and FR-25, whereas FR-10 and FR-30 ratios produced intermediate rates of thermal responding which were constant for all values of MW intensity. These data are explained in terms of interactive effects between the local satiation or deprivation properties of the MW intensity and the ratio requirements of the schedule of MW reinforcement.

  17. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  18. Non-invasive Continuous Monitoring of Cerebral Edema Using Portable Microwave Based System

    Science.gov (United States)

    Jiang, Yuhao; Zhao, Minji; Wang, Huiqian; Li, Guoquan

    2018-01-01

    A portable non-invasive head detecting system based on microwave technology was developed for evaluation of cerebral edema change inside human brain. Real-time monitoring of cerebral edema in the brain helps the clinician to assess medical condition and treatment. In this work, a microwave signal was transmitted and coupled into an open-end circular waveguide sensor, incident on a 3D printed head phantom, and reflected back to receiver. Theoretically, the operation of this instrument depends on the conductivity contrast between cerebral edema and healthy brain tissues. The efficacy of the proposed detecting system is verified using 3D printed anatomically and dielectrically realistic human head phantoms with simulated cerebral edema targets with different size. Changes in the amplitude of time domain result were shown to be induced by the expansion or decrease of the edema volume. The eventual goal of this proposed head evaluating system is use in the hospital as an effective real-time monitoring tool.

  19. Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein.

    Science.gov (United States)

    Huang, Yipeng; Ruan, Guihua; Qin, Zhijun; Li, Haiyun; Zheng, Yanjie

    2017-05-15

    A novel continuous microwave-assisted enzymatic digestion (cMAED) method is proposed for the digestion of protein from Scomberomorus niphonius to obtain potential antioxidant peptides. In this study, bromelain was found to have a high capacity for the digestion of the Scomberomorus niphonius protein. The following cMAED conditions were investigated: protease species, microwave power, temperature, bromelain content, acidity of the substrate solution, and incubation time. At 400W, 40°C, 1500U·g -1 bromelain, 20% substrate concentration, pH 6.0 and 5min incubation, the degree of hydrolysis and total antioxidant activity of the hydrolysates were 15.86% and 131.49μg·mL -1 , respectively. The peptide analyses showed that eight of the potential antioxidant peptide sequences, which ranged from 502.32 to 1080.55Da with 4-10 amino acid residues, had features typical of well-known antioxidant proteins. Thus, the new cMAED method can be useful to obtain potential antioxidant peptides from protein sources, such as Scomberomorus niphonius. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. State of the art of aerobic granulation in continuous flow bioreactors.

    Science.gov (United States)

    Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu

    In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of

  1. Industrial application of the decomposition of CO2 . NOx by large flow atmospheric microwave plasma LAMP employed in motorcar

    Science.gov (United States)

    Pandey, Anil; Niwa, Syunta; Morii, Yoshinari; Ikezawa, Shunjiro

    2012-10-01

    In order to decompose CO2 . NOx [1], we have developed the large flow atmospheric microwave plasma; LAMP [2]. It is very important to apply it for industrial innovation, so we have studied to apply the LAMP into motorcar. The characteristics of the developed LAMP are that the price is cheap and the decomposition efficiencies of CO2 . NOx are high. The mechanism was shown as the vertical configuration between the exhaust gas pipe and the waveguide was suitable [2]. The system was set up in the car body with a battery and an inverter. The battery is common between the engine and the inverter. In the application of motorcar, the flow is large, so the LAMP which has the merits of large flow, high efficient decomposition, and cheap apparatus will be superior.[4pt] [1] H. Barankova, L. Bardos, ISSP 2011, Kyoto.[0pt] [2] S. Ikezawa, S. Parajulee, S. Sharma, A. Pandey, ISSP 2011, Kyoto (2011) pp. 28-31; S. Ikezawa, S. Niwa, Y. Morii, JJAP meeting 2012, March 16, Waseda U. (2012).

  2. Microwave Heating of a Liquid Stably Flowing in a Circular Channel Under the Conditions of Nonstationary Radiative-Convective Heat Transfer

    Science.gov (United States)

    Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.

    2018-05-01

    A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.

  3. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  4. Microwave reactor for utilizing waste materials

    Directory of Open Access Journals (Sweden)

    M. Pigiel

    2010-01-01

    Full Text Available The paper presents a designed and manufactured, semi-industrial microwave reactor for thermal utilization of asbestos-bearing wastes. Presented are also semi-industrial tests of utilizing such wastes. It was found that microwave heating can be applied for utilizing asbestos with use of suitable wetting agents. The wetting agents should ensure continuous heating process above 600 °C, as well as uniform heat distribution in the whole volume of the utilized material. Analysis of the neutralization process indicates a possibility of presenting specific, efficient and effective process parameters of utilizing some asbestos-bearing industrial wastes.

  5. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  6. Information-Aided Smart Schemes for Vehicle Flow Detection Enhancements of Traffic Microwave Radar Detectors

    Directory of Open Access Journals (Sweden)

    Tan-Jan Ho

    2016-07-01

    Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.

  7. Diazo compounds in continuous-flow technology.

    Science.gov (United States)

    Müller, Simon T R; Wirth, Thomas

    2015-01-01

    Diazo compounds are very versatile reagents in organic chemistry and meet the challenge of selective assembly of structurally complex molecules. Their leaving group is dinitrogen; therefore, they are very clean and atom-efficient reagents. However, diazo compounds are potentially explosive and extremely difficult to handle on an industrial scale. In this review, it is discussed how continuous flow technology can help to make these powerful reagents accessible on large scale. Microstructured devices can improve heat transfer greatly and help with the handling of dangerous reagents safely. The in situ formation and subsequent consumption of diazo compounds are discussed along with advances in handling diazomethane and ethyl diazoacetate. The potential large-scale applications of a given methodology is emphasized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. "Batch" kinetics in flow: online IR analysis and continuous control.

    Science.gov (United States)

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  10. Method for curing polymers using variable-frequency microwave heating

    Science.gov (United States)

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  11. Percutaneous Microwave Ablation in the Spleen for Treatment of Hypersplenism in Cirrhosis Patients.

    Science.gov (United States)

    Jiang, XiangWu; Gao, Fei; Ma, Yan; Feng, ShuFen; Liu, XueLian; Zhou, HongKe

    2016-01-01

    The aim of this study was to estimate the feasibility and therapeutic effectiveness of percutaneous microwave ablation in the treatment of hypersplenism in cirrhosis. Forty-one cirrhosis patients with hypersplenism were treated with ultrasonography-guided percutaneous microwave ablation between February 2007 and August 2011. Peripheral blood cell counts, portal vein diameter, splenic vein diameter, and blood flow of splenic vein were evaluated before and after the operation, and complications of the treatment were also investigated. All patients were followed up for 24 months. The levels of platelets and white blood cells were increased, while the splenic vein diameter narrowed gradually after the therapy and 24 months later. Moreover, patients received percutaneous microwave ablation had much lower splenic venous flow velocity. The portal vein diameter did not change significantly 6 months after the treatment, although it narrowed gradually within 3 months after the treatment. Furthermore, no complications such as uncontrollable bleeding, splenic abscess, spleen rupture, and damage in surrounding organ happened after the therapy. Graded percutaneous microwave ablation, as a minimally invasive therapy, could damage the spleen, increase the levels of platelets and white blood cells, and reduce portal hypertension effectively without serious complications. Percutaneous microwave ablation is an effective, safe, and feasible method for cirrhosis patients with hypersplenism.

  12. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  13. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  14. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  15. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  16. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  17. Microwave hematoma detector

    Science.gov (United States)

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  18. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  19. Photochemical transformations accelerated in continuous-flow reactors : basic concepts and applications

    NARCIS (Netherlands)

    Su, Y.; Straathof, N.J.W.; Hessel, V.; Noel, T.

    2014-01-01

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable

  20. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  1. Continuous Flow of Upper Labrador Sea Water around Cape Hatteras.

    Science.gov (United States)

    Andres, Magdalena; Muglia, Mike; Bahr, Frank; Bane, John

    2018-03-14

    Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that time as it approached the separation point and flowed into deeper waters. Downstream increases were observed not only in the poleward transport across the sections but also in the current's maximum speed.

  2. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    Science.gov (United States)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  3. Highlights from panel discussion on key issues for future developments in microwave processing

    International Nuclear Information System (INIS)

    Gac, F.D.; Iskander, M.F.

    1992-01-01

    This paper reports on highlights from a panel discussion on Key Issues for Future Development in Microwave Processing. Although the panelists represented a mix of individuals from government, academia, and industry, only one aspect of industry was represented, namely microwave system manufacturers. For further panel discussions, it is recommended that the materials manufacturing (i.e., microwave user) sector also be represented. Three important points emerged from the panel discussion. The first deals with the credibility and usability of information, be it dielectric property measurements, experimental procedures, or microwave processing results. Second, a considerable communication and education gap continues to exist between the materials community and microwave engineers. Finally, a more realistic approach should be taken in identifying where microwave processing makes sense

  4. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an......, and reacted further with an alkylating agent....

  5. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  6. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  7. PDBD with continuous liquids flows in a discharge reactor

    International Nuclear Information System (INIS)

    Rodríguez-Méndez, B G; Gutiérrez-León, D G; López-Callejas, R; Valencia-Alvarado, R; Muñoz-Castro, A E; Mercado-Cabrera, A; Peña-Eguiluz, R; Belman-Flores, J M; De la Piedad-Beneitez, A

    2015-01-01

    This paper presents the design, construction and testing of a cylindrical pulsed dielectric barrier discharge (PDBD) reactor aimed to microbiological elimination of Escherichia coli ATCC 8739 bacteria. In the reactor, water flowed continuously and to countercurrent an oxygen gas was injected. The water pumping was carried out with a peristaltic pump type, stainless steel and aluminum constructed, and water was recirculated through norprene tubing. The considered parameters in order to promote energetic efficiency were: the residence time of the water contaminated with bacteria, flow rate of the liquid, shape and material used to build electrodes and dielectric, pressure, and gas injection flow rate. The pulsed power supply parameters are featured by 25-30 kV high voltage, 500 Hz frequency and 30 μs width. The outcome elimination of E. coli bacteria at 10 3 , 10 4 and 10 6 CFU/mL concentrations reached an efficiency over 0.5 log-order in absence of oxygen; while >2 log-orders when oxygen gas was injected during the process. (paper)

  8. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  9. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy.

    Science.gov (United States)

    Alam, Md Anik; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2017-06-30

    In-line monitoring of continuous powder flow is an integral part of the continuous manufacturing process of solid oral dosage forms in the pharmaceutical industry. Specifically, monitoring downstream from loss-in-weight (LIW) feeders and/or continuous mixers provides important data about the state of the process. Such measurements support control of the process and thereby enhance product quality. Near Infrared Spectroscopy (NIRS) is a potential PAT tool to monitor the homogeneity of a continuous powder flow stream in pharmaceutical manufacturing. However, the association of analytical results from NIR sampling of the powder stream and the homogeneity (content uniformity) of the resulting tablets provides several challenges; appropriate sampling strategies, adequately robust modeling techniques and poor sensitivities (for low dose APIs) are amongst them. Information from reflectance-based NIRS sampling is limited. The region of the powder bed that is interrogated is confined to the surface where the measurement is made. This potential bias in sampling may, in turn, limit the ability to predict the homogeneity of the finished dosage form. Further, changes to the processing parameters (e.g., rate of powder flow) often have a significant effect on the resulting data. Sample representation, interdependence between process parameters and their effects on powder flow behavior are critical factors for NIRS monitoring of continuous powder flow system. A transmission NIR method was developed as an alternative technique to monitor continuous powder flow and quantify API in the powder stream. Transmission NIRS was used to determine the thickness of the powder stream flowing from a loss-in-weight feeder. The thickness measurement of the powder stream provided an in-depth understanding about the effects of process parameters such as tube angles and powder flow rates on powder flow behaviors. This knowledge based approach helped to define an analytical design space that was

  10. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  11. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  12. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane

    Science.gov (United States)

    Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi

    2018-01-01

    Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929

  13. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    Science.gov (United States)

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  15. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    International Nuclear Information System (INIS)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: ► Effective bioremoval of Cr(III) using bacterial biofilms. ► Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. ► Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 °C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 × 10 7 , 4.5 × 10 7 and 3.5 × 10 5 CFU/cm 2 ), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  16. A Novel Pressure Indicator for Continuous Flow PCR Chip Using Micro Molded PDMS Pillar Arrays

    National Research Council Canada - National Science Library

    Zhao, Yi; Zhang, Xin

    2005-01-01

    .... Continuous flow PCR chip releases biologists from their laborious exercises. The use of such chip is, however, hindered by costly expense of the syringe pump, which is used to maintain a constant flow rate...

  17. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    Science.gov (United States)

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sequential continuous flow processes for the oxidation of amines and azides by using HOF·MeCN.

    Science.gov (United States)

    McPake, Christopher B; Murray, Christopher B; Sandford, Graham

    2012-02-13

    The generation and use of the highly potent oxidising agent HOF·MeCN in a controlled single continuous flow process is described. Oxidations of amines and azides to corresponding nitrated systems by using fluorine gas, water and acetonitrile by sequential gas-liquid/liquid-liquid continuous flow procedures are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hazardous gas treatment using atmospheric pressure microwave discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  20. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  1. Continuous-flow chemiluminometric determination of some tetracyclines

    International Nuclear Information System (INIS)

    Syropoulos, A.B.; Calokerinos, A.C.

    1991-01-01

    Chemiluminescence is found to be generated by action of lucigenin or hexacyanoferrate(III) on tetracyclines. The reaction with lucigenin exhibits chemiluminescence after alkaline degradation of tetracyclines to the corresponding iso derivatives. The reaction with hexacyanoferrate (III) occurs after acidic degradation of tetracyclines to corresponding anhydro derivatives. The chemiluminescence reaction takes place in alkaline medium, and allows the development of a continuous-flow method for the determination of 1.00-10.0 μgml -1 oxytetracycline and doxycycline. When applied to commercial formulations, the procedure was relatively free from interferences from common excipients. The results obtained for the assay of dosage forms compared well with those obtained by the official methods and demonstrated good accuracy and precision. (author). 32 refs.; 5 figs.; 6 tabs

  2. Continuous-flow chemiluminometric determination of some tetracyclines

    Energy Technology Data Exchange (ETDEWEB)

    Syropoulos, A B; Calokerinos, A C [University of Athens (greece). Laboratory of Analytical Chemistry

    1991-12-24

    Chemiluminescence is found to be generated by action of lucigenin or hexacyanoferrate(III) on tetracyclines. The reaction with lucigenin exhibits chemiluminescence after alkaline degradation of tetracyclines to the corresponding iso derivatives. The reaction with hexacyanoferrate (III) occurs after acidic degradation of tetracyclines to corresponding anhydro derivatives. The chemiluminescence reaction takes place in alkaline medium, and allows the development of a continuous-flow method for the determination of 1.00-10.0 {mu}gml{sup -1} oxytetracycline and doxycycline. When applied to commercial formulations, the procedure was relatively free from interferences from common excipients. The results obtained for the assay of dosage forms compared well with those obtained by the official methods and demonstrated good accuracy and precision. (author). 32 refs.; 5 figs.; 6 tabs.

  3. THE CONTROL ALGORITHM OF THE DRYING PROCESS PARTICULATE MATERIALS IN THE APPARATUS WITH THE SWIRLING FLOW OF COOLANT AND MICROWAVE ENERGY SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The technical task of the process is to improve the drying quality of the final product, increasing the precision and reliability of control, the reduction of specific energy consumption. One of the ways to improve the process is complex and i ts local automation. This paper deals with the problems of development and creation of a new control algorithm drying process of the particulate material. Identified a number of shortcomings of the existing methods of automatic control of the process. As a result, the authors proposed a method for drying particulate materials in the device with swirling flow and the microwave energy supply and its automatic control algorithm. The description of the operating principle of the drying apparatus consists in that the particulate material is wet by using a tangential flow of coolant supplied to the cylinder-drying apparatus which also serves the axial coolant flow, whereby the heat transfer fluid with the particulate material begins to undergo a complex circular movement along the circumference apparatus, thereby increasing its speed and its operation control algorithm. The work of this scheme is carried out at three levels of regulation on the basis of determining the coefficient of efficiency of the dryer, which makes it possible to determine the optimal value of the power equipment and to forecast the cost of electricity. All of the above allows you to get ready for a high quality product while minimizing thermal energy and material costs by optimizing the operating parameters of the drying of the particulate material in the dryer with a combined microwave energy supply and ensure the rational use of heat energy by varying their quantity depending on the characteristics to be dried particulate material and the course of the process.

  4. Optimizing microwave photodetection: input-output theory

    Science.gov (United States)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  5. An integrated continuous class-F-1 mode power amplifier design approach for microwave enhanced portable diagnostic applications

    OpenAIRE

    Imtiaz, Azeem; Lees, Jonathan; Choi, Heungjae; Joshi, Lovleen Tina

    2015-01-01

    © 2015 IEEE. This paper presents a novel technique for designing a microwave power delivery system targeted at compact and portable microwave-assisted diagnostic healthcare applications to help tackle the growing problem of anti-microbial resistance. The arrangement comprises a purpose-built cylindrical cavity resonator within which, the bacterial samples are exposed, driven by a high-efficiency 10-W GaN amplifier, critically coupled via a simple, adjustable internal loop antenna. The experim...

  6. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  7. Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine.

    Science.gov (United States)

    Bédard, Anne-Catherine; Longstreet, Ashley R; Britton, Joshua; Wang, Yuran; Moriguchi, Hideki; Hicklin, Robert W; Green, William H; Jamison, Timothy F

    2017-12-01

    Minimizing the waste stream associated with the synthesis of active pharmaceutical ingredients (APIs) and commodity chemicals is of high interest within the chemical industry from an economic and environmental perspective. In exploring solutions to this area, we herein report a highly optimized and environmentally conscious continuous-flow synthesis of two APIs identified as essential medicines by the World Health Organization, namely diazepam and atropine. Notably, these approaches significantly reduced the E-factor of previously published routes through the combination of continuous-flow chemistry techniques, computational calculations and solvent minimization. The E-factor associated with the synthesis of atropine was reduced by 94-fold (about two orders of magnitude), from 2245 to 24, while the E-factor for the synthesis of diazepam was reduced by 4-fold, from 36 to 9. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  9. Realization of high efficiency in a plasma-assisted microwave source with two-dimensional electron motion

    International Nuclear Information System (INIS)

    Shkvarunets, A.G.; Carmel, Y.; Nusinovich, G.S.; Abu-elfadl, T.M.; Rodgers, J.; Antonsen, T.M. Jr.; Granatstein, V.; Goebel, D.M.

    2002-01-01

    Conventional microwave sources utilize a strong axial magnetic field to guide an electron beam through an interaction region. A plasma-assisted slow wave microwave oscillator (Pasotron) can operate without an external magnetic field because the presence of ions neutralizes the space charge in the beam, permits the self-pinch forces to provide beam propagation, and allows for the radial motion of electrons under the action of transverse fields of the wave. While the inherent efficiency of conventional microwave sources with 1D electron flow is limited to 15%-20%, it is shown in this work that both the calculated and measured inherent efficiency of devices with 2D electron flow can be higher than 50%. Both in situ diagnostics and analysis confirmed that the enhanced efficiency is due to the fact that rf forces dominate the beam dynamics

  10. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  11. Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors

    Energy Technology Data Exchange (ETDEWEB)

    Dato, Albert [Applied Science and Technology Graduate Group, University of California, Berkeley, CA 94720 (United States); Frenklach, Michael, E-mail: amdato@me.berkeley.edu, E-mail: myf@me.berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States)

    2010-12-15

    The effects of applied microwave power, gas flow rate and precursor composition on the substrate-free gas-phase synthesis of graphene were investigated. Graphene was produced through the delivery of ethanol droplets into argon plasmas, and a decrease in the flow rate of the gas used to generate the plasmas resulted in the formation of graphitic particles and bulk graphite structures. Carbonaceous soot particles were created by delivering isopropyl alcohol into the reactor, while no solid matter was created from methanol. Increasing the applied microwave power was found to have no effect on the structures of the synthesized materials. These findings indicated that the synthesis of graphene in the gas phase was the result of the slow inception and extremely fast growth of aromatic nuclei in the plasma afterglows.

  12. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    Science.gov (United States)

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  13. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India); Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Effective bioremoval of Cr(III) using bacterial biofilms. Black-Right-Pointing-Pointer Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. Black-Right-Pointing-Pointer Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 Degree-Sign C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 Multiplication-Sign 10{sup 7}, 4.5 Multiplication-Sign 10{sup 7} and 3.5 Multiplication-Sign 10{sup 5} CFU/cm{sup 2}), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  14. Influence of continuous microwave irradiation of low intensity on the behaviour of albino rats

    International Nuclear Information System (INIS)

    Rynskov, V.V.

    1985-01-01

    A study was made of a single 10 min exposure of albino rats to microwaves (6 GHz, 0.2 MW/cm 2 ) on their orientative-trying reaction. The locomotive activity, attentiveness and trying activity of the experimental animals were found to increase

  15. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    Science.gov (United States)

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  16. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  17. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  18. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  19. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  20. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  1. Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

    Directory of Open Access Journals (Sweden)

    Quentin Lefebvre

    2013-09-01

    Full Text Available A continuous flow oxidative photocyclization of stilbene derivatives has been developed which allows the scalable synthesis of backbone functionalized phenanthrenes and helicenes of various sizes in good yields.

  2. Method and apparatus for improved melt flow during continuous strip casting

    Science.gov (United States)

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  3. Continuous flow electrophoretic separation of proteins and cells from mammalian tissues

    Science.gov (United States)

    Hymer, W. C.; Barlow, Grant H.; Blaisdell, Steven J.; Cleveland, Carolyn; Farrington, Mary Ann; Feldmeier, Mary; Hatfield, J. Michael; Lanham, J. Wayne; Grindeland, Richard; Snyder, Robert S.

    1987-01-01

    This paper describes an apparatus for continuous flow electrophoresis (CFE), designed to separate macromolecules and cells at conditions of microgravity. In this CFE, buffer flows upward in a 120-cm long flow chamber, which is 16-cm wide x 3.0-mm thick in the microgravity version (and 6-cm wide x 1.5-mm thick in the unit-gravity laboratory version). Ovalbumin and rat serum albumin were separated in space (flight STS-4) with the same resolution of the two proteins achieved at 25 percent total w/v concentration that was obtained in the laboratory at 0.2 percent w/v concentration. Rat anterior pituitary cells, cultured human embryonic kidney cells, and canine Langerhans cells were separated into subpopulations (flight STS-8) more effectively than in unit gravity, with comparable resolution having been achieved at 100 times the concentration possible on earth.

  4. Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique.

    Science.gov (United States)

    Giberson, R T; Demaree, R S; Nordhausen, R W

    1997-01-01

    A protocol for routine 4-hour microwave tissue processing of clinical or other samples for electron microscopy was developed. Specimens are processed by using a temperature-restrictive probe that can be set to automatically cycle the magnetron to maintain any designated temperature restriction (temperature maximum). In addition, specimen processing during fixation is performed in 1.7-ml microcentrifuge tubes followed by subsequent processing in flow-through baskets. Quality control is made possible during each step through the addition of an RS232 port to the microwave, allowing direct connection of the microwave oven to any personal computer. The software provided with the temperature probe enables the user to monitor time and temperature on a real-time basis. Tissue specimens, goat placenta, mouse liver, mouse kidney, and deer esophagus were processed by conventional and microwave techniques in this study. In all instances, the results for the microwave-processed samples were equal to or better than those achieved by routine processing techniques.

  5. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    Science.gov (United States)

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Taming hazardous chemistry in flow: The continuous processing of diazo and diazonium compounds

    OpenAIRE

    Deadman, Benjamin J.; Collins, Stuart G.; Maguire, Anita R.

    2014-01-01

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed.

  7. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  9. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  10. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  13. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    Science.gov (United States)

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  15. Epidural blood flow and regression of sensory analgesia during continuous postoperative epidural infusion of bupivacaine

    DEFF Research Database (Denmark)

    Mogensen, T; Højgaard, L; Scott, N B

    1988-01-01

    Epidural blood flow was measured in seven patients undergoing elective abdominal surgery during combined lumbar epidural and general anesthesia. After an initial dose of 20 ml plain bupivacaine 0.5%, a continuous epidural infusion of bupivacaine 0.5% (8 ml/hr) was given for 16 hours...... for postoperative pain relief. The epidural blood flow was measured by a local 133Xe clearance technique in which 15-35 MBq 133Xe diluted in 1 ml saline was injected through the epidural catheter on the day before surgery (no bupivacaine), 30 minutes after the initial dose of bupivacaine on the morning before...... surgery, and 8, 12, and 16 hours later during the continuous infusion. Initial blood flow was 6.0 +/- 0.7 ml/min per 100 g tissue (mean +/- SEM). After epidural bupivacaine, blood flow increased in all seven patients to 7.4 +/- 0.7 ml (P less than 0.02). Initial level of sensory analgesia was T4.5 +/- 0...

  16. Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing

    KAUST Repository

    Hatzell, Marta C.

    2014-12-09

    Efficient conversion of “mixing energy” to electricity through capacitive mixing (CapMix) has been limited by low energy recoveries, low power densities, and noncontinuous energy production resulting from intermittent charging and discharging cycles. We show here that a CapMix system based on a four-reactor process with flow electrodes can generate constant and continuous energy, providing a more flexible platform for harvesting mixing energy. The power densities were dependent on the flow-electrode carbon loading, with 5.8 ± 0.2 mW m–2 continuously produced in the charging reactor and 3.3 ± 0.4 mW m–2 produced in the discharging reactor (9.2 ± 0.6 mW m–2 for the whole system) when the flow-electrode carbon loading was 15%. Additionally, when the flow-electrode electrolyte ion concentration increased from 10 to 20 g L–1, the total power density of the whole system (charging and discharging) increased to 50.9 ± 2.5 mW m–2.

  17. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    Science.gov (United States)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  18. [Responses of sap flow to natural rainfall and continuous drought of tree species growing on bedrock outcrops].

    Science.gov (United States)

    Zhang, Hui Ling; Ding, Ya Li; Chen, Hong Song; Wang, Ke Lin; Nie, Yun Peng

    2018-04-01

    This study focused on bedrock outcrops, a very common habitat in karst region of southwest China. To reveal the responses of plant transpiration to natural rainfall and continuous drought, two tree species typical to this habitat, Radermachera sinica and Triadica rotundifolia, were selected as test materials. A rainout shelter was used to simulate continuous drought. The sap flow dynamics were monitored using the method of Granier's thermal dissipation probe (TDP). Our results showed that sap flow density increased to different degrees after rain in different stages of the growing season. Sap flow density of the deciduous species T. rotundifolia was always higher than that of the semi-deciduous species R. sinica. After two months without rainfall input, both species exhibited no obvious decrease in sap flow density, indicating that rainfall was not the dominant source for their water uptake, at least in the short-term. Based on the regression relationships between sap flow density and meteorological factors before and after rainfall, as well as at different stages of continuous drought, we found that the dynamics of meteorological factors contributed little to plant transpiration. The basic transpiration characteristics of both species were not changed in the circumstance of natural rainfall and short-term continuous drought, which would be closely related to the special water storage environments of bedrock outcrops and the reliance on deep water sources by tree species.

  19. Non-equilibrium microwave plasma for efficient high temperature chemistry

    NARCIS (Netherlands)

    van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.

    2017-01-01

    This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas

  20. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  1. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater

    KAUST Repository

    Nam, Joo-Youn; Yates, Matthew D.; Zaybak, Zehra; Logan, Bruce E.

    2014-01-01

    © 2014 Elsevier Ltd. Cellulose fermentation wastewaters (FWWs) contain short chain volatile fatty acids and alcohols, but they also have high concentrations of proteins. Hydrogen gas production from FWW was examined using continuous flow microbial

  2. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  3. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  5. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  6. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment

    NARCIS (Netherlands)

    Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T.

    2016-01-01

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous

  7. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  8. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds.

    Science.gov (United States)

    Deadman, Benjamin J; Collins, Stuart G; Maguire, Anita R

    2015-02-02

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Predicting bulk powder flow dynamics in a continuous mixer operating in transitory regimes

    OpenAIRE

    Ammarcha , Chawki; Gatumel , Cendrine; Dirion , Jean-Louis; Cabassud , Michel; Mizonov , Vadim; Berthiaux , Henri

    2012-01-01

    International audience; Over recent years there has been increasing interest in continuous powder mixing processes, due mainly to the development of on-line measurement techniques. However, our understanding of these processes remains limited, particularly with regard to their flow and mixing dynamics. In the present work, we study the behaviour of a pilot-scale continuous mixer during transitory regimes, in terms of hold-up weight and outflow changes. We present and discuss experimental resu...

  10. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  11. Modelling of hot air chamber designs of a continuous flow grain dryer

    DEFF Research Database (Denmark)

    Kjær, Lotte Strange; Poulsen, Mathias; Sørensen, Kim

    2018-01-01

    The pressure loss, flow distribution and temperature distribution of a number of designs of the hot air chamber in a continuous flow grain dryer, were investigated using CFD. The flow in the dryer was considered as steady state, compressible and turbulent. It is essential that the grain...... is uniformly dried as uneven drying can result in damage to the end-product during storage. The original commercial design was modified with new guide vanes at the inlets to reduce the pressure loss and to ensure a uniform flow to the line burner in the hot air chamber. The new guide vane design resulted...... in a 10% reduction in pressure loss and a γ-value of 0.804. Various design changes of the hot air chamber were analysed in terms of pressure loss and temperature distribution with the aim of a temperature variation of 5 K at the outlet ducts. An obstruction design was analysed, which improved mixing...

  12. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    chemistry. Therefore, the application of EP for the attitude control and station keeping of satellite, the propulsion of deep space exploration craft allows to reduce substantially the mass of on-board propellant and the launching cost. The EP research is now receiving high interest everywhere. microwave generating subsystem, the propellant supplying subsystem and the resonator (the thruster). Its principle is that the magnetron of the microwave generating subsystem transfers electric energy into microwave energy at given frequency which is introduced into a resonant cavity. Microwave will resonate within the cavity when it is adjusted. When the propellant gas (N2, Ar, He, NH3 or H2) is put into the cavity and coupled with microwave energy at the maximal electric intensity place, it will be broken down to form free-floating plasma, which flows from nozzle with high speed to produce thrust. Its characteristic is high efficiency, simple power supply and without electrode ablation, its specific impulse is greater than arcjet. 2450MHz, have been developed. The microwave generating subsystem and resonator of lower power MPT, 70-200W, are coaxial. The resonator with TEM resonating mode is section of coaxial wave-guide, of which one end is shorted, another is semi-opened. The maximal electric intensity field is in the lumped capacity formed between the end surface of inner conductor, retracting in the cavity, and the semi-opened surface of outer conductor. It provides favorable condition for gas breakdown. The microwave generating system and resonator of middle power MPT, 500-1,000W, are wave-guide cavity. The resonator with TM011 resonating mode is cylinder wave-guide cavity, of which two end surface are shorted. The distribution of electromagnetic field is axial symmetry, its maximal electric intensity field locates on the axis and closes to the exit of nozzle, where the propellant gas is breakdown to form free floating plasma. The plasma is free from the wall of

  13. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  14. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system

    NARCIS (Netherlands)

    Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M.

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase

  15. Experimental investigation of gas heating and dissociation in a microwave plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Su, Liu; Kumar, Rajneesh; Ogungbesan, Babajide; Sassi, Mohamed

    2014-01-01

    Highlights: • Atmospheric-pressure microwave plasma torch. • Gas heating and dissociation. • Parametric studies of plasma operating conditions. • Local thermal equilibrium plasma. - Abstract: Experimental investigations are made to understand gas heating and dissociation in a microwave (MW) plasma torch at atmospheric pressure. The MW induced plasma torch operates at 2.45 GHz frequency and up to 2 kW power. Three different gas mixtures are injected in the form of axial flow and swirl flow in a quartz tube plasma torch to experimentally investigate the MW plasma to gas energy transfer. Air–argon, air–air and air–nitrogen plasmas are formed and their operational ranges are determined in terms of gas flow rates and MW power. Visual observations, optical emission spectroscopy and K-type thermocouple measurements are used to characterize the plasma. The study reveals that the plasma structure is highly dependent on the carrier gas type, gas flow rate, and MW power. However, the plasma gas temperature is shown not to vary much with these parameters. Further spectral and analytical analysis show that the plasma is in thermal equilibrium and presents very good energy coupling between the microwave power and gas heating and dissociation. The MW plasma torch outlet temperature is also measured and found to be suitable for many thermal heating and chemical dissociation applications

  16. Effect Of Steel Flow Control Devices On Flow And Temperature Field In The Tundish Of Continuous Casting Machine

    Directory of Open Access Journals (Sweden)

    Sowa L.

    2015-06-01

    Full Text Available The mathematical model and numerical simulations of the liquid steel flow in a tundish are presented in this paper. The problem was treated as a complex and solved by the finite element method. One takes into consideration in the mathematical model the changes of thermophysical parameters depending on the temperature. The single-strand tundish is used to casting slabs. The internal work space of the tundish was modified by flow control devices. The first device was a pour pad situated in the pouring tundish zone. The second device was a dam. The third device was a baffle with three holes. The dam and baffle were placed in the tundish at different positions depending on the variant. The main purpose of using these was to put barriers in the steel flow path as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulations. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influences of the tundish modifications on the velocity fields in liquid phase of the steel were estimated, because these have essential an influence on high-quality of a continuous steel cast slab.

  17. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    Science.gov (United States)

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  18. Phase-synchronisation in continuous flow models of production networks

    Science.gov (United States)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  19. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  20. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    Science.gov (United States)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  1. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl

    2015-09-01

    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  2. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  3. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  4. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    Science.gov (United States)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  5. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  6. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  7. Bayesian Analysis of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, Jeffrey

    2007-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.

  8. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    Energy Technology Data Exchange (ETDEWEB)

    Aman, A., E-mail: alexander.aman@ovgu.de [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Majcherek, S. [Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Hirsch, S. [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Schmidt, B. [Chair of Micorsystem Technology, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany)

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  9. Simulation of transient fluid flow in mold region during steel continuous casting

    International Nuclear Information System (INIS)

    Liu, R; Thomas, B G; Sengupta, J

    2012-01-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  10. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  11. A Microwave Radiance Assimilation Study for a Tundra Snowpack

    Science.gov (United States)

    Kim, Edward; Durand, Michael; Margulis, Steve; England, Anthony

    2010-01-01

    Recent studies have begun exploring the assimilation of microwave radiances for the modeling and retrieval of snow properties. At a point scale, and for short durations (i week), radiance assimilation (RA) results are encouraging. However, in order to determine how practical RA might be for snow retrievals when applied over longer durations, larger spatial scales, and/or different snow types, we must expand the scope of the tests. In this paper we use coincident microwave radiance measurements and station data from a tundra site on the North Slope of Alaska. The field data are from the 3rd Radio-brightness Energy Balance Experiment (REBEX-3) carried out in 1994-95 by the University of Michigan. This dataset will provide a test of RA over months instead of one week, and for a very different type of snow than previous snow RA studies. We will address the following questions: flow well can a snowpack physical model (SM), forced with local weather, match measured conditions for a tundra snowpack?; How well can a microwave emission model, driven by the snowpack model, match measured microwave brightnesses for a tundra snowpack?; How well does RA increase or decrease the fidelity of estimates of snow depth and temperatures for a tundra snowpack?

  12. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  13. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  14. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  15. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  16. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    Science.gov (United States)

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    Science.gov (United States)

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  18. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  19. Microwave generation and complex microwave responsivity measurements on small Dayem bridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O; Mygind, Jesper

    1977-01-01

    Measurements of the active properties of a Dayem micro-bridge at X-band frequencies is described. The bridge was mounted in a microwave cavity designed to match the bridge properly and the microwave output from the cavity was detected using a sensitive X-band spectrometer. Microwave power...

  20. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  1. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene

    International Nuclear Information System (INIS)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-01-01

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time (∼0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO(reg s ign), with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  2. Continuous-flow leaching studies of crushed and cored SYNROC

    International Nuclear Information System (INIS)

    Coles, D.G.; Bazan, F.

    1980-01-01

    Both crushed (150 to 300 μm) and cored 1.8 mm diameter) samples of SYNROC have been leached with the single-pass continuous-flow leaching equipment. Crushed samples of Cs-hollandite were also leached in a similar experiment. Temperatures used were 25 0 C and 75 0 C and leachates were 0.03 N NaHCO 3 and distilled water. Leaching rates from SYNROC C were ranked Cs > Sr greater than or equal to Ca > Ba > Zr. A comparison of leaching rates is made between crushed SYNROC, cored SYNROC, and PNL 76-68 glass beads. Problems encountered when comparing the leaching rates of different waste forms are discussed

  3. Microwave Irradiation

    Indian Academy of Sciences (India)

    Way to Eco-friendly, Green Chemistry. Rashmi ... The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; ... of microwave heating in organic synthesis since the first contri-.

  4. Electronic quantum noise and microwave photons

    International Nuclear Information System (INIS)

    Bize-Reydellet, L.H.

    2003-06-01

    This work is devoted to the experimental study of quantum electronic noise in mesoscopic conductors. In the first part of this thesis, we studied shot noise in a one-dimensional ballistic conductor: a quantum point contact (QPC). We showed experimentally that, when one of the QPC contacts is irradiated with microwave photons, we observe partition noise in the absence of net current flowing through the sample. Thus, we validate the scattering theory of photo-assisted shot noise first by measuring the Fano factor without bias voltage across the conductor, and then by measuring shot noise in the doubly non equilibrium situation, where both a bias voltage and a microwave modulation are applied. In the second part, we realized the first tests of a new experimental set-up which will be able to measure high frequency noise of a mesoscopic conductor and the photon statistics emitted by this conductor in the measurement circuit. These tests consist in realizing Hanbury-Brown and Twiss type experiments (intensity interferometry) with two kinds of microwave photon source. First, we used a thermal incoherent source (macroscopic 50 Ohms resistor). It showed super-Poissonian noise, since the power fluctuations are proportional to the square of the mean photon power. Secondly, we studied a classical monochromatic source, which shows a Poissonian statistics. The giant Fano factor measured is perfectly explained by the attenuator and amplifier noise. (author)

  5. Microwave-Assisted Conversion of Levulinic Acid to γ-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates

    Directory of Open Access Journals (Sweden)

    Alfonso Yepez

    2015-09-01

    Full Text Available The microwave-assisted conversion of levulinic acid (LA has been studied using low-loaded supported Fe-based catalysts on porous silicates. A very simple, productive, and highly reproducible continuous flow method has been used for the homogeneous deposition of metal oxide nanoparticles on the silicate supports. Formic acid was used as a hydrogen donating agent for the hydrogenation of LA to effectively replace high pressure H2 mostly reported for LA conversion. Moderate LA conversion was achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal-based catalysts.

  6. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  7. Isotope investigation of the fluid flow in a continuous peritoneal dialysis in a rabbit

    International Nuclear Information System (INIS)

    Dziuk, E.; Siekierzynski, M.; Jedrzejczak, W.

    1975-01-01

    The peritoneal dialysis has become more and more popular in treating some diseases of the kidneys. In the standard technique, the dialization fluid is fed intermittently through a single catheter introduced into the peritoneal cavity. The efficiency of the procedure can be increased by using a continuous fluid flow. In 17 rabbits a continuous mode of peritoneal dialyses was employed by using two catheters introduced by a single injection. The studies were made on two groups of animals using a different distance between the catheter ends. The dialization fluid contained 131 I labelled albumin. By determining the amount of the isotope in the outflowing fluid the degree of the fluid intermixing in the peritoneal cavity was evaluated. An open one-compartamental model was found to be useful in the estimation of the dynamics of the fluid flow during the continuous peritoneal dialysis. When the distance between both catheter ends was larger the fluid was better intermixed in the peritoneal cavity. This made it possible to obtain a high gradient of the concentrations of various substances between the blood and the dialization fluid. (author)

  8. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    Science.gov (United States)

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  9. Optimisation of microwave-assisted processing in production of pineapple jam

    Science.gov (United States)

    Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati

    2017-10-01

    Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.

  10. Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation.

    Science.gov (United States)

    Ganiek, Maximilian A; Becker, Matthias R; Berionni, Guillaume; Zipse, Hendrik; Knochel, Paul

    2017-08-01

    An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    Science.gov (United States)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Science.gov (United States)

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  13. Determination of arsenic species in human urine using HPLC with on-line photooxidation or microwave-assisted oxidation combined with flow-injection HG-AAS

    Energy Technology Data Exchange (ETDEWEB)

    Sur, R.; Begerow, J.; Dunemann, L. [Department of Analytical Chemistry, Medizinisches Institut fuer Umwelthygiene, Duesseldorf (Germany)

    1999-03-01

    An improved analytical procedure is presented for the separation and simultaneous determination of hydride-forming (toxic) and not hydride-forming (non-toxic) arsenic species in human urine. Separation was performed by cation-exchange chromatography using a new solid phase type based on the continuous bed chromatography (CBC) technology. This column permits by a factor of 4 higher flow rates than conventional columns resulting in a drastical reduction of retention times without any loss of resolution. Using this type of column, arsenobetaine (AsBet), arsenocholine (AsChol), and dimethylarsinic acid (DMA) were separated from the more toxic arsenic species arsenous acid (As(III)), arsenic acid (As(V)), and methylarsonic acid (MA) within only 4 min. The HPLC system was coupled via a flow injection system and either a UV or a microwave (MW) reactor to the HG-AAS instrument. UV photolysis and MW digestion were used to transform AsBet and AsChol to hydride-forming species and to make them accessible to HG-AAS. UV photolysis turned out to be more suitable for this application than MW digestion, because the latter technique led to peak broadening and poorer performance. The described procedure was applied to the determination of arsenic species in urine samples of non-occupationally exposed persons before and 12 h after seafood consumption. Detection limits were about 1 {mu}g/L for each arsenic species. After consumption, the AsBet and DMA excretion increased by at least a factor of 150 for AsBet and by a factor of 6 for DMA, respectively, while the excretion of the other species did not increase significantly. This invalidates the use of total urinary arsenic as well as total hydride-forming arsenic as an indicator for exposure to inorganic arsenic. (orig.) With 4 figs., 2 tabs., 13 refs.

  14. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials

    OpenAIRE

    Ma, CY; Liu, JJ; Zhang, Y; Wang, XZ

    2015-01-01

    Reactor performance of confined jet mixers for continuous hydrothermal flow synthesis of nanomaterials is investigated for the purpose of scale-up from laboratory scale to pilot-plant scale. Computational fluid dynamics (CFD) models were applied to simulate hydrothermal fluid flow, mixing and heat transfer behaviours in the reactors at different volumetric scale-up ratios (up to 26 times). The distributions of flow and heat transfer variables were obtained using ANSYS Fluent with the tracer c...

  15. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    Science.gov (United States)

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  16. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Jason, L., E-mail: ludovic.jason@cea.fr [Atomic Energy Commission (CEA), DEN, DANS, DM2S, SEMT, Mechanics and System Simulation Laboratory (LM2S), F-91191 Gif sur Yvette (France); LaMSID, UMR CNRS-EDF-CEA 8193, F-92141 Clamart (France); Masson, B. [Electricité de France (EDF), SEPTEN, F-69628 Villeurbanne (France)

    2014-10-01

    Highlights: • The contribution focuses on the gas transfer through reinforced concrete structures. • A continuous approach with a damage–permeability law is investigated. • It is significant, for this case, only when the damage variable crosses the section. • In this case, two localized approaches are compared. • It helps at evaluating a “reference” crack opening for engineering laws. - Abstract: In this contribution, different techniques are compared to evaluate the gas flow rate through a representative section of a reinforced and prestressed concrete containment structure. A continuous approach is first applied which is based on the evaluation of the gas permeability as a function of the damage variable. The calculations show that the flow rate becomes significant only when the damage variable crosses the section. But in this situation, the continuous approach is no longer fully valid. That is why localized approaches, based on a fine description of the crack openings, are then investigated. A comparison between classical simplified laws (Poiseuille flow) and a more refined model which takes into account the evolution of the crack opening in the depth of the section enables to define the validity domain of the simplified laws and especially the definition of the associated “reference opening”.

  17. On the existence of and mechanism for microwave-specific reaction rate enhancement.

    Science.gov (United States)

    Dudley, Gregory B; Richert, Ranko; Stiegman, A E

    2015-04-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of "selective heating" of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement.

  18. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  19. Numerical simulation of forced convection in a duct subjected to microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Kuznetsov, A.V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, NC (United States); Sandeep, K.P. [North Carolina State University, Department of Food Science, Raleigh, NC (United States)

    2007-01-15

    In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell's equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell's equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system. (orig.)

  20. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  1. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices

    NARCIS (Netherlands)

    Martina, Jerson R.; Westerhof, Berend E.; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F. M.; de Mol, Bas A. J. M.; Lahpor, Jaap R.

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support.

  2. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  3. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  4. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  5. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  6. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  7. Production of biodiesel using the microwave technique

    Directory of Open Access Journals (Sweden)

    Shakinaz A. El Sherbiny

    2010-10-01

    Full Text Available Biodiesel production is worthy of continued study and optimization of production procedures because of its environmentally beneficial attributes and its renewable nature. Non-edible vegetable oils such as Jatropha oil, produced by seed-bearing shrubs, can provide an alternative and do not have competing food uses. However, these oils are characterized by their high free fatty acid contents. Using the conventional transesterification technique for the production of biodiesel is well established. In this study an alternative energy stimulant, “microwave irradiation”, was used for the production of the alternative energy source, biodiesel. The optimum parametric conditions obtained from the conventional technique were applied using microwave irradiation in order to compare the systems. The study showed that the application of radio frequency microwave energy offers a fast, easy route to this valuable biofuel with the advantages of enhancing the reaction rate (2 min instead of 150 min and of improving the separation process. The methodology allows for the use of high free fatty acid content feedstock, including Jatropha oil. However, this emerging technology needs to be further investigated for possible scale-up for industrial application.

  8. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat...... of the suggested technique, dictated by the underlying physics, are also analyzed....

  9. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  10. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  11. Microwave plasma generation and filtered transport of O{sub 2} (a {sup 1}{delta}{sub g})

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Skip [Air Force Research Laboratory, Mail Stop PRAS, 1950 Fifth Street, WPAFB, OH 45433-7251 (United States); Popovic, Svetozar [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Gupta, Manish [Los Gatos Research, Incorporated 67 East Evelyn Ave, Suite 3, Mountain View, CA 94041 (United States)], E-mail: skip.williams@wpafb.af.mil

    2009-08-01

    Singlet oxygen, O{sub 2}(a {sup 1}{delta}{sub g}), is generated using a low pressure, low power continuous microwave discharge operating at 2.45 GHz with a flow of helium seeded with 1-10% molecular oxygen. The absolute concentration of O{sub 2}(a {sup 1}{delta}{sub g}) is measured using off-axis integrated cavity output spectroscopy to probe the Q-branch transition of the (1, 0) band of the b{sup 1}{sigma}{sub g}{sup +}-a{sup 1}{delta}{sub g} Noxon system. In order to remove other energetic species from the flow, the post-discharge flow is passed through a coarse fritted quartz filter. The use of the quartz frit takes advantage of the substantially lower surface sticking probability of O{sub 2}(a {sup 1}{delta}{sub g}) in comparison with other excited species on the flow. Up to 6% of the total oxygen passing through the filter remains in the a {sup 1}{delta}{sub g} state, and absolute densities of 2.5 x 10{sup 14} cm{sup -3} are obtained using this method. This preparation method and transport is important in developing sources of singlet oxygen for kinetic and spectroscopic studies.

  12. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  13. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  14. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  15. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  16. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  17. Inactivation of Lactobacillus plantarum by pulsed-microwave irradiation

    International Nuclear Information System (INIS)

    Shin, J.K.; Pyun, Y.R.

    1997-01-01

    Suspensions of Lactobacillus plantarum cells were subjected to either conventional heating, continuous microwave (CW) or pulsed microwave (PW) irradiation at 50 degrees C for 30 min. Samples exposed to PW showed greater reductions (2 approximately 4 log) in survival counts than those treated with either conventional heating or CW irradiation. As exposure time increased, PW resulted in a remarkable increase in 260 nm-absorbing compounds that leaked into the suspending menstruum, as compared to CW or conventional heating, indicating that PW irradiated cells were the most injured. The growth of PW irradiated cells was delayed about 24h and the final acidity of the culture broth was about 60 approximately 80% that of other cells treated with conventional heating or CW irradiation

  18. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  19. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  20. The freely localized microwave discharge in air in the focused beam of the electromagnetic energy

    International Nuclear Information System (INIS)

    Alexandrov, A.F.; Kuzovnikov, A.A.; Shibkov, V.M.

    1995-01-01

    The successfull use of the microwave discharge in many applications make it necessary to research the physics of a new kind of discharge - the electrodeless microwave discharge in the focused beam, in the free space and to search for ways to optimize this discharge parameters. The breakdown was performed in a discharge chamber at approximately free space conditions: R/λ much-gt 1, where R = 1 m is the discharge chamber's dimension, λ = 2 divided-by 10 cm is the wavelength of the microwave radiation. The focused electromagnetic beam was formed by a trumped-lens antenna. The electric field E≤6 kV/cm, the density of energy flow S≤10 5 W/cm 2 , the wave is linearity polarized. The microwave pulse duration could be changed from 1 μs to 1 ms. The gas pressure (nitrogen, air) is varied from 1 to 760 torr

  1. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  2. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari

    2017-12-01

    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  3. Microwave reflection measurements of the dielectric properties of concrete : final report.

    Science.gov (United States)

    1983-01-01

    The use of microwave reflection measurements to continuously and nondestructively monitor the hydration of concrete is described. The method relies upon the influence of the free-water content on the dielectric properties of the concrete. Use of the ...

  4. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    Science.gov (United States)

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanoengineering of Ruthenium and Platinum-based Nanocatalysts by Continuous-Flow Chemistry for Renewable Energy Applications

    KAUST Repository

    AlYami, Noktan Mohammed

    2017-01-01

    This thesis presents an integrated study of nanocatalysts for heterogenous catalytic and electrochemical processes using pure ruthenium (Ru) with mixed-phase and platinum-based nanomaterials synthesized by continuous-flow chemistry. There are three

  6. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  7. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Science.gov (United States)

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  8. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  9. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  10. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    International Nuclear Information System (INIS)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-01-01

    Highlights: ► A continuous electrocoagulation/flotation reactor was designed built and operated. ► Highest NOM removal according to UV 254 was 77% relative to raw groundwater. ► Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. ► Highest As removal archived was 85% (6.2 μg/l), relative to raw groundwater. ► Specific reactor energy and electrode consumption was 1.7 kWh/m 3 and 66 g Al/m 3 . - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm 2 , A/V ratio = 0.248 cm −1 . The NOM removal according to UV 254 absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m 3 . According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  11. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    Science.gov (United States)

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram; Arsalan, Muhammad; Shamim, Atif

    2017-01-01

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water

  13. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  14. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2012-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD

  15. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  16. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  17. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  18. Review - On-chip diamagnetic repulsion in continuous flow

    Directory of Open Access Journals (Sweden)

    Mark D Tarn, Noriyuki Hirota, Alexander Iles and Nicole Pamme

    2009-01-01

    Full Text Available We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm were examined in two concentrations of MnCl2 (6 and 10%. The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  19. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  20. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry.

    Science.gov (United States)

    LaGrow, Alec P; Besong, Tabot M D; AlYami, Noktan M; Katsiev, Khabiboulakh; Anjum, Dalaver H; Abdelkader, Ahmed; Costa, Pedro M F J; Burlakov, Victor M; Goriely, Alain; Bakr, Osman M

    2017-02-21

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  1. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.; Besong, Tabot M.D.; AlYami, Noktan; Katsiev, Khabiboulakh; Anjum, Dalaver H.; Abdelkader, Ahmed; Da Costa, Pedro M. F. J.; Burlakov, Victor M.; Goriely, Alain; Bakr, Osman

    2017-01-01

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  2. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.

    2017-02-06

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  3. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  4. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  5. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    Science.gov (United States)

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  6. Continuous Hydrothermal Flow Synthesis of LaCrO3 in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Xu, Yu; Pirou, Stéven; Zielke, Philipp

    2018-01-01

    The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation of this p......The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation...

  7. Microwave Sensors for Breast Cancer Detection.

    Science.gov (United States)

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  8. Review of research and development on the microwave-plasma electrothermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.C.; Asmussen, J.; Filpus, J.W.; Frasch, L.L.; Whitehair, S.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized. 32 references.

  9. On-chip determination of C-reactive protein using magnetic particles in continuous flow.

    Science.gov (United States)

    Phurimsak, Chayakom; Tarn, Mark D; Peyman, Sally A; Greenman, John; Pamme, Nicole

    2014-11-04

    We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the inflammatory biomarker, C-reactive protein (CRP). The two-step sandwich immunoassay was accomplished in less than 60 s, a vast improvement on the 80-300 min time frame required for enzyme-linked immunosorbent assays (ELISA) and the 50 min necessary for off-chip magnetic particle-based assays. The combination of continuous flow and a stationary magnet enables a degree of autonomy in the system, while a detection limit of 0.87 μg mL(-1) makes it suitable for the determination of CRP concentrations in clinical diagnostics. Its applicability was further proven by assaying real human serum samples and comparing those results to values obtained using standard ELISA tests.

  10. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  11. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    Science.gov (United States)

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  12. Evaluation of lethal effect of microwave exposure on protoscolices of hydatid cyst in vitro

    Directory of Open Access Journals (Sweden)

    Zahra Eslamirad

    2015-10-01

    Full Text Available Objective: To investigate the lethal effect of microwave radiation on protoscolices of hydatid cyst. Methods: The protoscolices were divided in two separate groups. The first group received continuous irradiation while the second group received repetitive irradiation. According to the exposure time, the first and the second groups were divided into 8 subgroups. Non-treated protoscolices were considered as the control in each experiment. The protoscolex mortality rate was calculated, and changes in temperature difference in protoscolex suspension before and after the irradiation and the mortality rate with the increase of exposure time were recorded. Results: The results showed that microwave was able to increase the mortality rate of protoscolices in hydatid cyst. The mortality rate from 20% in 20 s of continuous exposure was increased to 100% in 50 s. Also, the differences between the mortality rates in subgroups of the first and the second groups and the control were significant (P < 0.001. Although the effect of temperature change in repetitive irradiation was not significant, non-thermal repetitive irradiation effects were obviously stronger than the thermal continuous irradiation effects. Conclusions: It seems that, microwaves especially in the repetitive mode, may be used as a supplementary measure for both treatment and prevention of hydatidosis.

  13. DECOMPOSITION OF TARS IN MICROWAVE PLASMA – PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski

    2014-07-01

    Full Text Available The paper refers to the main problem connected with biomass gasification - a presence of tar in a product gas. This paper presents preliminary results of tar decomposition in a microwave plasma reactor. It gives a basic insight into the construction and work of the plasma reactor. During the experiment, researches were carried out on toluene as a tar surrogate. As a carrier gas for toluene and as a plasma agent, nitrogen was used. Flow rates of the gases and the microwave generator’s power were constant during the whole experiment. Results of the experiment showed that the decomposition process of toluene was effective because the decomposition efficiency attained above 95%. The main products of tar decomposition were light hydrocarbons and soot. The article also gives plans for further research in a matter of tar removal from the product gas.

  14. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  15. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S-Pregabalin Precursor and (S-Warfarin

    Directory of Open Access Journals (Sweden)

    Riccardo Porta

    2015-08-01

    Full Text Available Continuous flow processes have recently emerged as a powerful technology for performing chemical transformations since they ensure some advantages over traditional batch procedures. In this work, the use of commercially available and affordable PEEK (Polyetheretherketone and PTFE (Polytetrafluoroethylene HPLC (High Performance Liquid Chromatography tubing as microreactors was exploited to perform organic reactions under continuous flow conditions, as an alternative to the commercial traditional glass microreactors. The wide availability of tubing with different sizes allowed quickly running small-scale preliminary screenings, in order to optimize the reaction parameters, and then to realize under the best experimental conditions a reaction scale up for preparative purposes. The gram production of some Active Pharmaceutical Ingredients (APIs such as (S-Pregabalin and (S-Warfarin was accomplished in short reaction time with high enantioselectivity, in an experimentally very simple procedure.

  16. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    Science.gov (United States)

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  17. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s.

    Science.gov (United States)

    Hafner, Andreas; Meisenbach, Mark; Sedelmeier, Joerg

    2016-08-05

    The benefits and limitations of a simple continuous flow setup for handling and performing of organolithium chemistry on the multigram scale is described. The developed metalation platform embodies a valuable complement to existing methodologies, as it combines the benefits of Flash Chemistry (chemical synthesis on a time scale of <1 s) with remarkable throughput (g/min) while mitigating the risk of blockages.

  18. Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

    Science.gov (United States)

    Wang, Ming-Wen; Jeng, Kuo-Shyang; Yu, Ming-Che; Su, Jui-Chih

    2012-03-01

    To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v = 0.02-0.1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

  19. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    International Nuclear Information System (INIS)

    Lee, D.D.; Collins, J.L.

    2000-01-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required

  20. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  1. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Abhishek [Haldia Institute of Technology, Production Engineering Department, Haldia (India); Ganguly, Ranjan; Datta, Amitava [Jadavpur University, Power Engineering Department (India); Modak, Nipu, E-mail: nmechju@gmail.com [Jadavpur University, Mechanical Engineering Department (India)

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index. - Highlights: • Immunomagnetic separation in a hybrid microchannel design is investigated numerically. • Influence of salient geometric parameters on the device performance is analysed. • Optimum device dimension for best separation parameters are identified. • Optimized design of hybrid separator performs better than FFF or SPLITT devices.

  2. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    Science.gov (United States)

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  4. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  5. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  6. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  7. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  8. Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record

    Science.gov (United States)

    Meier, W.; Stewart, J. S.

    2017-12-01

    The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We

  9. 76 FR 9984 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-02-23

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  10. [The posibility of usage microwave energy as an alternative method of disinfection for silicone impressions in orthopaedic dentistry].

    Science.gov (United States)

    Nespriad'ko, V P; Shevchuk, V O; Omel'ianenko, M D

    2011-01-01

    In this experimental investigation estimated the effect of microwave disinfection on the alteration of dimensional stability of silicone impressions and gypsum casts poured from them comparing to an invariable parameters of metal die. In this article uncovers the main point of origin, spreading and influence according to the classical theory of electro-magnetic waves (EMW) as an example was used the model M745R Samsung microwave oven. We evaluated possibilities and advantages of use the auxiliary plant for flowing regulation of the power of microwave radiation that calls "microUndaDent". It was designed, developed and installated by us in the department of orthopaedic dentistry.

  11. Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid

    Directory of Open Access Journals (Sweden)

    S. Seghar

    2015-12-01

    Full Text Available In this study, styrene butadiene rubber (SBR was devulcanized using microwave irradiation. In particular, effect of ionic liquid (IL, pyrrolidinium hydrogen sulfate [Pyrr][HSO4], on the devulcanization performance was studied. It was observed that the evolution of the temperature reached by rubber powder exposed to microwave irradiation for different energy values was favored by the presence of ionic liquid [Pyrr][HSO4] significantly over the whole range of the microwave energy values. Beyond the threshold point of 220 Wh/kg, the soluble fraction after devulcanization sharply increased with increasing devulcanization microwave energy. For the powder mixed with [Pyrr][HSO4], the increase was more significant. Furthermore, the crosslink density was observed to decrease slowly with the microwave energy up to 220 Wh/kg, beyond which the crosslink density decreased significantly for the rubber impregnated with IL. For the rubber with IL, significant and continuous increase in Tg with microwave energy values was observed in comparison with the SBR where no change in transition temperature was observed. Mechanical shearing of rubber gums in the two-roll mill favored the devulcanization process, which indicated that the combination of mechanical loading with microwave energy and IL is an efficient procedure allowing an optimal devulcanization of rubbers.

  12. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  13. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  14. Non-self-sustained microwave discharge and the concept of a microwave air jet engine

    International Nuclear Information System (INIS)

    Batanov, G M; Gritsinin, S I; Kossyi, I A

    2002-01-01

    A new type of microwave discharge - near-surface non-self-sustained discharge (NSND) - has been realized and investigated. A physical model of this discharge is presented. For the first time NSND application for microwave air jet engines has been proposed. Measurements under laboratory conditions modelling the microwave air jet engine operation shows the qualitative agreement between the model of NSND and actual processes near the target irradiated by a powerful microwave beam. Characteristic dependences of recoil momentum of target on the background pressure and microwave pulse duration obtained in experiments are presented. Measured cost of thrust produced by the NSND is no more than 3.0 kW N -1 , which is close to the predicted values

  15. Characterization of acid-base properties of unstable drugs using a continuous-flow system with UV-vis spectrophotometric detection.

    Science.gov (United States)

    Argemí, Anna; Saurina, Javier

    2007-08-15

    In this paper, we propose a continuous-flow system for the study of the acid-base characteristics of unstable drugs. 5-Azacytidine has been selected as a first model of unstable compound, which progressively decomposes in aqueous solutions. Besides, other compounds undergoing hydrolysis and oxidation side reactions have been also analyzed to explore the performance of the method. In comparison with conventional batch titrations, the drug decomposition can be minimized by the continuous renewal of the analyte solution. The composition of the buffer mixture is varied on-line during the process from successive changes in the flow rates of acid and basic stock solutions. As a result, the pH value of the test solution is varied in a controlled manner in the range of 1-13. Multivariate curve resolution based on alternating least squares has been used to extract relevant information concerning the acid-base properties of analytes. Results from the continuous-flow system have been compared with those obtained, using batch spectrophotometric titrations, and in the case of fast degradations, the performance of the proposed procedure has been superior.

  16. GaN-based Power amplifiers for microwave applications

    Directory of Open Access Journals (Sweden)

    Jorge Julián Moreno-Rubio

    2016-01-01

    Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.

  17. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  18. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 h

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J

    1984-01-01

    A method is presented which allows for continuous registration of forefoot blood flow over 24 h. Blood flow was estimated by the radioactive Xenon washout method and a portable CdTe detector system was used to measure the tracer disappearance rate. Since the semiconductor detector is placed very ...

  19. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    International Nuclear Information System (INIS)

    Kumar, N. Sanjeev; Goel, Sudha

    2010-01-01

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  20. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  1. A study on microwave oxidation of landfill leachate—Contributions of microwave-specific effects

    International Nuclear Information System (INIS)

    Chou, Yu-Chieh; Lo, Shang-Lien; Kuo, Jeff; Yeh, Chih-Jung

    2013-01-01

    Highlights: ► pH has an insignificant effect on TOC removals and 550 W has a well performance. ► MOP has well removals of color, UV 254 , and TOC at 550 W/85 °C. ► TOC removals were higher at higher microwave setting (550 W vs. 128 W). ► The microwave-specific effects on TOC removal were usually synergistic in MOP. ► COD analyses showed persulfate decayed rapidly in either MOP or CHO treatment. -- Abstract: Microwave oxidation process (MOP) was evaluated for treatment of landfill leachate. The experimental parameters include pH, temperature, oxidant doses, microwave power setting, and irradiation time. The study explored the microwave-specific effects of the MOP. The contributions of pure thermal, persulfate oxidation and microwave irradiation on TOC removal were quantified. It was then found the combinations of them were usually synergistic in MOP except two of them were antagonistic (128 W/85 °C/1 M Na 2 S 2 O 8 and 128 W/85 °C/2 M Na 2 S 2 O 8 ). At the highest temperature tested (85 °C) in this study, microwave irradiation may cause generation and termination of oxidizing radicals at adverse rates. The study also found that persulfate decayed rapidly in either MOP or conventional heating oxidation (CHO) treatment of landfill leachate

  2. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  3. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  4. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    Science.gov (United States)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm

  5. Modeling microwave/electron-cloud interaction

    International Nuclear Information System (INIS)

    Mattes, M; Sorolla, E; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in telecommunication satellites by electron clouds; the microwave-transmission techniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented. (author)

  6. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  7. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  8. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  9. Continuous-Flow Photocatalytic Degradation of Organics Using Modified TiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-01-01

    Full Text Available In this study, TiO2 nanotubes (TNTs were fabricated on a Ti sheet following the anodic oxidation method and were decorated with reduced graphene oxide (RGO, graphene oxide (GO, and bismuth (Bi via electrodeposition. The surface morphologies, crystal structures, and compositions of the catalyst were characterized by field emission scanning electron microscopy, Auger electron spectroscopy, X-ray diffraction, photoluminance spectra, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The TNTs loaded with RGO, GO, and Bi were used in a continuous-flow system as photocatalysts for the degradation of methylene blue (MB dye. It was found that the TNTs are efficient photocatalysts for the removal of color from water; upon UV irradiation on TNTs, the MB removal ratio was ~89%. Moreover, the photocatalytic activities of the decorated TNTs were higher than that of pristine TNTs in visible light. In comparison with TNTs, the rate of MB removal in visible light was increased by a factor of 3.4, 3.2, and 2.9 using RGO-TNTs, Bi-TNTs, and GO-TNTs, respectively. The reusability of the catalysts were investigated, and their quantum efficiencies were also calculated. The cylindrical anodized TNTs were excellent photocatalysts for the degradation of organic pollutants. Thus, it was concluded that the continuous-flow photocatalytic reactor comprising TNTs and modified TNTs is suitable for treating wastewater in textile industries.

  10. Microwave-driven asbestos treatment and its scale-up for use after natural disasters.

    Science.gov (United States)

    Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki

    2014-06-17

    Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.

  11. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  12. Nanoengineering of Ruthenium and Platinum-based Nanocatalysts by Continuous-Flow Chemistry for Renewable Energy Applications

    KAUST Repository

    AlYami, Noktan Mohammed

    2017-04-15

    This thesis presents an integrated study of nanocatalysts for heterogenous catalytic and electrochemical processes using pure ruthenium (Ru) with mixed-phase and platinum-based nanomaterials synthesized by continuous-flow chemistry. There are three major challenges to the application of nanomaterials in heterogenous catalytic reactions and electrocatalytic processes in acidic solution. These challenges are the following: (i) controlling the size, shape and crystallography of nanoparticles to give the best catalytic properties, (ii) scaling these nanoparticles up to a commercial quantity (kg per day) and (iii) making stable nanoparticles that can be used catalytically without degrading in acidic electrolytes. Some crucial limitations of these nanostructured materials in energy conversion and storage applications were overcome by continuous-flow chemistry. By using a continuous-flow reactor, the creation of scalable nanoparticle systems was achieved and their functionality was modified to control the nanoparticles’ physical and chemical characteristics. The nanoparticles were also tested for long-term stability, to make sure these nanoparticles were feasible under realistic working conditions. These nanoparticles are (1) shape- and crystallography-controlled ruthenium (Ru) nanoparticles, (2) size-controlled platinum-metal (Pt-M= nickel (Ni) & copper (Cu)) nanooctahedra (while maintaining morphology) and (3) core-shell platinum@ruthenium (Pt@Ru) nanoparticles where an ultrathin ruthenium shell was templated onto the platinum core. Thus, a complete experimental validation of the formation of a scalable amount of these nanoparticles and their catalytic activity and stability towards the oxygen evolution reaction (OER) in acid medium, hydrolysis of ammonia borane (AB) along with plausible explanations were provided.

  13. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  14. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  15. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  16. Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB)

    International Nuclear Information System (INIS)

    Bhakat, P.B.; Gupta, A.K.; Ayoob, S.

    2007-01-01

    This study examine the feasibility of As(III) removal from aqueous environment by an adsorbent, modified calcined bauxite (MCB) in a continuous flow fixed bed system. MCB exhibited excellent adsorption capacity of 520.2 mg/L (0.39 mg/g) with an adsorption rate constant 0.7658 L/mg h for an influent As(III) concentration of 1 mg/L. In a 2 cm diameter continuous flow fixed MCB bed, a depth of only 1.765 cm was found necessary to produce effluent As(III) concentration of 0.01 mg/L, from an influent of 1 mg/L at a flow rate of 8 mL/min. Also, bed heights of 10, 20, and 30 cm could treat 427.85, 473.88 and 489.17 bed volumes of water, respectively, to breakthrough. A reduction in adsorption capacity of MCB was observed with increase in flow rates. The theoretical service times evaluated from bed depth service time (BDST) approach for different flow rates and influent As(III) concentrations had shown good correlation with the corresponding experimental values. The theoretical breakthrough curve developed from constantly mixed batch reactor (CMBR) isotherm data also correlated well with experimental breakthrough curve

  17. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  18. Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges

    International Nuclear Information System (INIS)

    Jasinski, M.; Zakrzewski, Z.; Mizeraczyk, J.

    2008-01-01

    In this paper, we present results of the spectroscopic measurements of the electron density in a microwave surface wave sustained discharges in Ar and Ne at atmospheric pressure. The discharge in the form of a plasma column was generated inside a quartz tube cooled with a dielectric liquid. The microwave power delivered to the discharge via rectangular waveguide was applied in the range of 200-1500 W. In all investigations presented in this paper, the gas flow rate was relatively low (0.5 l/min), so the plasma column was generated in the form of a single filament, and the lengths of the upstream and downstream plasma columns were almost the same. The electron density in the plasma columns was determined using the method based on the Stark broadening of H β spectral line, including plasma region inside the waveguide which was not investigated earlier

  19. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  20. Synergistic Manganese(I) C-H Activation Catalysis in Continuous Flow: Chemoselective Hydroarylation.

    Science.gov (United States)

    Wang, Hui; Pesciaioli, Fabio; Oliveira, João C A; Warratz, Svenja; Ackermann, Lutz

    2017-11-20

    Chemoselective hydroarylations were accomplished by a novel synergistic Brønsted acid/manganese(I)-catalyzed C-H activation manifold. Thus, alkynes bearing O-leaving groups could, for the first time, be employed for C-H alkenylations without concurrent β-O elimination, thereby setting the stage for versatile late-stage diversifications. Also described is the first manganese-catalyzed C-H activation in continuous flow, thus enabling efficient hydroarylations within only 20 minutes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of microwave double absorption on hydrogen generation from methanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Lin, Bo-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-03-15

    Hydrogen generation from steam reforming of methanol (SRM) with a CuO/ZnO/Al{sub 2}O{sub 3} catalyst was investigated in the study; particular emphasis was placed on the reactions of SRM exposed to an environment with microwave irradiation. By virtue of the double absorption of microwaves by both the reagents and the catalyst, the experiments suggested that the SRM could be heated and triggered rapidly within a short time, and the methanol conversion from SRM with microwave heating was high compared to that with conventional heating. The obtained results also indicated that, when the reaction temperature was as high as 250 C, thermodynamic equilibrium governed the SRM, whereas the reaction was kinetically controlled for the temperature lower than 250 C. Contrary to Le Chatelier's principle, it was noted that an increase in S/C ratio decreased methanol conversion. This can be explained by the fact that water absorbs microwave irradiation stronger than methanol. The performance of the SRM was evaluated based on the carbon conservation method and the nitrogen tracer method. It was found that the latter was also capable of providing an accurate prediction on methanol conversion, even though the flow rate of the product gas was not measured. (author)

  2. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  3. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    Energy Technology Data Exchange (ETDEWEB)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.; Kumar, Challa; Sabliov, Cristina M.

    2017-01-01

    Abstract

    With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent of the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.

  4. Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.

    Science.gov (United States)

    McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G

    2017-04-07

    Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.

  5. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  6. Primary and Secondary Anisotropies of Cosmic Microwave Background

    Science.gov (United States)

    Seljak, Uros

    2002-01-01

    The three main topics we proposed to do are linear calculations (continuing development of CMBFAST), nonlinear calculations of gas physics relevant to Cosmic Microwave Background (CMB) (Sunyaev-Zeldovich effect, etc.) and nonlinear effects on CMB due to dark matter (gravitational lensing, etc.). We describe each of these topics, as well as additional topics PI and his group worked on that are related to the topics in the proposal.

  7. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    Science.gov (United States)

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  8. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  9. Quality comparison of continuous steam sterilization segmented-flow aseptic processing versus conventional canning of whole and sliced mushrooms.

    Science.gov (United States)

    Anderson, N M; Walker, P N

    2011-08-01

    This study was carried out to investigate segmented-flow aseptic processing of particle foods. A pilot-scale continuous steam sterilization unit capable of producing shelf stable aseptically processed whole and sliced mushrooms was developed. The system utilized pressurized steam as the heating medium to achieve high temperature-short time processing conditions with high and uniform heat transfer that will enable static temperature penetration studies for process development. Segmented-flow technology produced a narrower residence time distribution than pipe-flow aseptic processing; thus, whole and sliced mushrooms were processed only as long as needed to achieve the target F₀  = 7.0 min and were not overcooked. Continuous steam sterilization segmented-flow aseptic processing produced shelf stable aseptically processed mushrooms of superior quality to conventionally canned mushrooms. When compared to conventionally canned mushrooms, aseptically processed yield (weight basis) increased 6.1% (SD = 2.9%) and 6.6% (SD = 2.2%), whiteness (L) improved 3.1% (SD = 1.9%) and 4.7% (SD = 0.7%), color difference (ΔE) improved 6.0% (SD = 1.3%) and 8.5% (SD = 1.5%), and texture improved 3.9% (SD = 1.7%) and 4.6% (SD = 4.2%), for whole and sliced mushrooms, respectively. Segmented-flow aseptic processing eliminated a separate blanching step, eliminated the unnecessary packaging of water and promoted the use of bag-in-box and other versatile aseptic packaging methods. Segmented-flow aseptic processing is capable of producing shelf stable aseptically processed particle foods of superior quality to a conventionally canned product. This unique continuous steam sterilization process eliminates the need for a separate blanching step, reduces or eliminates the need for a liquid carrier, and promotes the use of bag-in-box and other versatile aseptic packaging methods. © 2011 Institute of Food Technologists®

  10. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  11. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study

    Science.gov (United States)

    Song, Zhiming; Gu, Kaiyun; Gao, Bin; Wan, Feng; Chang, Yu; Zeng, Yi

    2014-01-01

    Background The aim of this study was to determine the hemodynamic effects of various support modes of continuous flow left ventricular assist devices (CF-LVADs) on the cardiovascular system using a numerical cardiovascular system model. Material/Methods Three support modes were selected for controlling the CF-LVAD: constant flow mode, constant speed mode, and constant pressure head mode of CF-LVAD. The CF-LVAD is established between the left ventricular apex and the ascending aorta, and was incorporated into the numerical model. Various parameters were evaluated, including the blood assist index (BAI), the left ventricular external work (LVEW), the energy of blood flow (EBF), pulsatility index (PI), and surplus hemodynamic energy (SHE). Results The results show that the constant flow mode, when compared to the constant speed mode and the constant pressure head mode, increases LVEW by 31% and 14%, and EBF by 21% and 15%, respectively, indicating that this mode achieved the best ventricular unloading among the 3 support modes. As BAI is increased, PI and SHE are gradually decreased, whereas PI of the constant pressure head reaches the maximum value. Conclusions The study demonstrates that the continuous flow control mode of the CF-LVAD may achieve the highest ventricular unloading. In contrast, the constant rotational speed mode permits the optimal blood perfusion. Finally, the constant pressure head strategy, permitting optimal pulsatility, should optimize the vascular function. PMID:24793178

  12. Salt removal using multiple microbial desalination cells under continuous flow conditions

    KAUST Repository

    Qu, Youpeng

    2013-05-01

    Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..

  13. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  14. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    International Nuclear Information System (INIS)

    Kang, Tae Goo; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu; Yoon, Yong-Jin

    2014-01-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min −1 for an input blood flow rate of 12.5 µl min −1 . The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min −1 . Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems. (technical note)

  15. Gyrocon: a deflection-modulated, high-power microwave amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1977-10-01

    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  16. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    Science.gov (United States)

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  18. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  19. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  20. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    Science.gov (United States)

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  2. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  3. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  4. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress

    NARCIS (Netherlands)

    Harms, M.P.M.; Wesseling, K.H.; Pott, F.; Jenstrup, M.; Goudoever, J. van; Secher, N.H.; Lieshout, J.J. van

    1999-01-01

    The relationship between aortic flow and pressure is described by a three-element model of the arterial input impedance, including continuous correction for variations in the diameter and the compliance of the aorta (Modelflow). We computed the aortic flow from arterial pressure by this model, and

  5. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    Science.gov (United States)

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  7. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  8. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  9. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  10. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Science.gov (United States)

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  11. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.; Ragan, H.A.; Rogers, L.E.; Guy, A.W.; Hjeresen, D.L.; Hinds, W.T.; Phillips, R.D.

    1978-05-01

    One of many alternate sources of electrical energy that are being considered by the Department of Energy is a microwave-mediated Satellite Power System (SPS). Once inserted into geosynchronous orbit at an altitude of more than 40,000 kilometers, a satellite would collect then convert the sun's energy to 2450-MHz microwaves, which would be beamed to the Earth's surface, where a rectifying antenna (rectenna) would convert the microwaves to electrical current suitable for industrial and domestic use. The expanse of each rectenna (about 10 by 13 kilometers), the power density of the continuous-wave microwave beam (approx. 23 mW/cm/sup 2/ at center, with fall off to 1 mW/cm/sup 2/ or less at the periphery of the rectenna), and the possibility that 20 or more satellite systems will eventually be operating, creates two sets of interrelated problems for biological/ecological assessment. These are 1) the effects of microwave fields of higher intensity on airborne biota (including human beings in aircraft) that may traffic the area above the rectenna and 2) the effects of virtually perpetual fields of much lower intensity on all forms of life at and beyond the rectennae's zone of exclusion. In this review, the scientific literature is examined, not only for biological effects that are pertinent to assessment of SPS, but for hiatuses of knowledge that will have to be filled before SPS can be vouched for operational safety.

  12. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  13. Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of "Core-Shell" Microstructure during Microwave Sintering.

    Science.gov (United States)

    Liu, Wenchao; Xu, Feng; Li, Yongcun; Hu, Xiaofang; Dong, Bo; Xiao, Yu

    2016-02-23

    This research aims to deepen the understanding of the interaction mechanisms between microwave and matter in a metal-ceramic system based on in situ synchrotron radiation computed tomography. A special internal "core-shell" microstructure was discovered for the first time and used as an indicator for the interaction mechanisms between microwave and matter. Firstly, it was proved that the microwave magnetic field acted on metal particles by way of inducing an eddy current in the surface of the metal particles, which led to the formation of a "core-shell" microstructure in the metal particles. On this basis, it was proposed that the ceramic particles could change the microwave field and open a way for the microwave, thereby leading to selective heating in the region around the ceramic particles, which was verified by the fact that all the "core-shell" microstructure was located around ceramic particles. Furthermore, it was indicated that the ceramic particles would gather the microwaves, and might lead to local heating in the metal-ceramic contact region. The focusing of the microwave was proved by the quantitative analysis of the evolution rate of the "core-shell" microstructure in a different region. This study will help to reveal the microwave-matter interaction mechanisms during microwave sintering.

  14. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Geoffrey K.; Logan, Bruce E. [Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m{sup 2}/m{sup 3}). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m{sup 2}, cathode surface area; 74 A/m{sup 3}) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of {eta}{sub E} = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H{sub 2} gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. (author)

  15. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.; Logan, Bruce E.

    2010-01-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  16. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.

    2010-09-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  17. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  18. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  19. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  20. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Lampugnani, Leonardo [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy)]. E-mail: lampugnani@ipcf.cnr.it; Onor, Massimo [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy); D' Ulivo, Alessandro [C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa (Italy); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)

    2005-07-15

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 {mu}g l{sup -1} As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 {mu}g l{sup -1}. Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l{sup -1} acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l{sup -1} HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 {mu}g l{sup -1} for As(III) and 0.3 {mu}g l{sup -1} for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 {mu}g l{sup -1} (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non

  1. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    International Nuclear Information System (INIS)

    Karadjova, Irina B.; Lampugnani, Leonardo; Onor, Massimo; D'Ulivo, Alessandro; Tsalev, Dimiter L.

    2005-01-01

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l -1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 μg l -1 . Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l -1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l -1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l -1 for As(III) and 0.3 μg l -1 for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l -1 (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As

  2. Microwave Accelerated Polymerization of 2-Phenyl-2-Oxazoline: Microwave or Temperature Effects?

    NARCIS (Netherlands)

    Hoogenboom, R.; Leenen, M.A.M.; Wiesbrock, F.D.; Schubert, U.S.

    2005-01-01

    Summary: Investigations regarding the cationic ring-opening polymerization of 2-phenyl-2-oxazoline under microwave irradiation and conventional heating are reported. This study was inspired by contradictory reports of the (non-)existence of non-thermal microwave effects that might accelerate the

  3. Continuous flow bioassay method to evaluate the effects of outboard motor exhausts and selected aromatic toxicants on fish. [Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Brenniman, G. (Univ. of Illinois, Chicago); Hartung, R.; Weber, W.J. Jr.

    1976-01-01

    A continuous flow bioassay system was designed to measure the effects of outboard motor exhaust (OME) emissions and selected volatile and evaporative aromatic toxicants on goldfish (Carassius auratus). Continuous flow bioassays were run for 24, 48, 72, 96, and 720 h to determine lethal concentrations for 50 percent of individuals (LC 50's) for leaded OME, non-leaded OME, toluene, xylene, and 1,3,5 trimethylbenzene, the three individual compounds having been identified as significant aromatic components of OME. The 96 h LC-50's for these substances were found to be 171, 168, 23, 17, and 13 ppm, respectively. The values of 171 and 168 ppm for the two OME's are given in terms of gallons of fuel burned per million gallons of water. The continuous flow bioassay method was demonstrated to be a more reliable indicator of the effects of OME pollutants on aquatic organisms than is the static bioassay method.

  4. Contactless Inductive Flow Tomography: Brief History and Recent Developments in Its Application to Continuous Casting

    Directory of Open Access Journals (Sweden)

    Matthias Ratajczak

    2014-01-01

    Full Text Available The contactless inductive flow tomography (CIFT aims at reconstructing the velocity field of electrically conducting fluids, with special focus on applications in metallurgy and crystal growth technologies. The method relies on the induction of secondary magnetic fields if the moving fluid is exposed to a primary magnetic field. The theoretical foundation of the method is delineated, and some early experiments on the reconstruction of the three-dimensional flow in a cylinder are sketched. Then, the recent efforts to apply CIFT to various model problems in connection with the continuous casting of steel are summarized.

  5. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  6. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds.

    Science.gov (United States)

    Bana, Péter; Örkényi, Róbert; Lövei, Klára; Lakó, Ágnes; Túrós, György István; Éles, János; Faigl, Ferenc; Greiner, István

    2017-12-01

    Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  8. Numerical and Physical Parametric Analysis of a SEN with Flow Conditioners in Slab Continuous Casting Mold

    Directory of Open Access Journals (Sweden)

    Gonzalez-Trejo J.

    2017-06-01

    Full Text Available Some of the most recent technologies that improves the performance in continuous casting process has installed infrastructure outside the mold to modify the natural fluid flow pattern to obtain a quasi-steady condition and promote a uniform solidified shell of steel. The submerged entry nozzle distributes the liquid steel in the mold and can be used to obtain the flow symmetry condition with external geometry improvements. The fluid flow conditioners were located near the outlet ports of the nozzle. The aim of the modifiers is to impose a pseudo symmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. This work evaluates the effect of the thickness and length of the fluid-flow modifiers on the overall performance of the submerged nozzle. These properties of the fluid-flow modifiers were normalized based on two of the geometric dimensions of the standard equipment. Numerical and physical simulations suggest that the flow modifier should be as thin as possible.

  9. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  10. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  11. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  12. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    Science.gov (United States)

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  13. Faster Blood Flow Rate Does Not Improve Circuit Life in Continuous Renal Replacement Therapy: A Randomized Controlled Trial.

    Science.gov (United States)

    Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian

    2017-10-01

    To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.

  14. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system

    Directory of Open Access Journals (Sweden)

    José F. Ovalles

    2014-04-01

    Full Text Available The quantitative estimation of amikacin (AMK in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded without any sample pretreatment. A good linear calibration (r>0.999, %RSD<2.0 in the range of 7.7–77.0 mg/mL was found. The results showed a good correlation with the manufacturer's and overall they all fell within acceptable limits of most pharmacopoeial monographs on AMK sulfate. Keywords: Amikacin, FTIR derivative spectrometry, Continuous flow system, Pharmaceutical preparation, Injection, Sulfate

  15. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  16. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  17. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  18. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  20. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the

  1. Carotid Artery Stenting in a Patient With a Continuous-Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Piazza, Michele; Squizzato, Francesco; Grego, Franco; Bottio, Tommaso; Gerosa, Gino; Antonello, Michele

    2016-08-01

    To demonstrate the safety and feasibility of carotid artery stenting (CAS) in a patient with a continuous-flow left ventricular assist device (LVAD). A 54-year-old woman with a LVAD was referred for a 90% stenosis of the right internal carotid artery (ICA). The patient was offered CAS, and oral anticoagulant was not discontinued in the periprocedural period. Because of absent arterial pulses, percutaneous transfemoral access was obtained under ultrasound guidance. Particular attention was paid to cannulation of the innominate artery; a 7-F guiding catheter was advanced from the descending aorta into the innominate artery under road-mapping, avoiding maneuvers in the ascending aorta where the outflow Dacron graft of the LVAD was anastomosed. To avoid cerebral flow modifications, the Angioguard RX was used as the cerebral protection device rather than other devices such as the flow reversal or flow-clamping systems. At this point, CAS was performed in a standard fashion using the 7×30-mm Precise ProRX stent. The computed tomography angiogram at 6 months showed patency of the stented right ICA. With adequate planning, CAS appears feasible in patients with a LVAD. © The Author(s) 2016.

  2. Visualization of the microwave beam generated by a plasma relativistic microwave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I. S.; Ivanov, I. E.; Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation); Tarakanov, V. P., E-mail: karat@msk.su [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Ulyanov, D. K. [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)

    2017-03-15

    A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code.

  3. Potential of commercial microwave link network derived rainfall for river runoff simulations

    Science.gov (United States)

    Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald

    2017-03-01

    Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.

  4. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  5. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    Science.gov (United States)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  6. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  7. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  8. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  9. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  10. MIDAS: Automated Approach to Design Microwave Integrated Inductors and Transformers on Silicon

    Directory of Open Access Journals (Sweden)

    L. Aluigi

    2013-09-01

    Full Text Available The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors and transformers that are not commonly available in the process design-kits of the technologies. In this work we present an auxiliary CAD tool for Microwave Inductor (and transformer Design Automation on Silicon (MIDAS that exploits commercial simulators and allows the implementation of an automatic design flow, including three-dimensional layout editing and electromagnetic simulations. In detail, MIDAS allows the designer to derive a preliminary sizing of the inductor (transformer on the bases of the design entries (specifications. It draws the inductor (transformer layers for the specific process design kit, including vias and underpasses, with or without patterned ground shield, and launches the electromagnetic simulations, achieving effective design automation with respect to the traditional design flow for RFICs. With the present software suite the complete design time is reduced significantly (typically 1 hour on a PC based on Intel® Pentium® Dual 1.80GHz CPU with 2-GB RAM. Afterwards both the device equivalent circuit and the layout are ready to be imported in the Cadence environment.

  11. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    Science.gov (United States)

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  12. A Randomized Trial of Low-Flow Oxygen versus Nasal Continuous Positive Airway Pressure in Preterm Infants

    DEFF Research Database (Denmark)

    Heiring, Christian; Steensberg, Jesper; Bjerager, Mia

    2015-01-01

    BACKGROUND: Nasal continuous positive airway pressure (nCPAP) stabilizes the residual volume and may decrease the risk of 'atelectotrauma', potentially promoting lung development in neonates. OBJECTIVES: To assess whether replacing nCPAP by low-flow O2 by nasal cannula affects lung function...... the a/A pO2 ratio or weight gain negatively. Thus, prolonged nCPAP seems not to have a positive effect on lung function at 28 days of life and replacement by low-flow O2 could reduce the cost of equipment and increase the ease of nursing....

  13. Plasma Diagnostics by Microwave Interferometry in MHD Channels with the Aid of an Open Waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Muenkel, J. [Rheinische-Westfalische Technische Hochschule Aachen, Federal Republic of Germany (Germany)

    1966-10-15

    Plasma diagnostics of a novel kind, using microwave interferometry, is described. Use is made of an open non-conventional waveguide in the test path of the microwave bridge. Guiding the microwave has several advantages over free transmission of the test h.f. beam between two horn antennas if there are small plasma streams bounded by ceramics and metals as in the case of MHD channels. There are less unknown and uncontrolled disturbances of the electromagnetic waves introduced by the boundaries. On the other hand most guiding structures disturb the homogeneity of the streaming plasma (cf. arrangements with Lecher wires, dielectric rods, etc.); the waveguide used here does not do so. This waveguide, a so-called groove guide, consists of two parallel metal plates or bands with a shallow axially-directed groove in each. The plasma stream to be tested flows between these plates in a direction perpendicular to the direction of propagation of the microwaves. The groove guide has properties similar to the ideal parallel-plate guide with infinite side wards extension, but the energy flow is concentrated in the middle region by the grooves. An approximate analysis, the transverse resonance analysis, has been used to calculate the field distribution and propagation characteristics of the guide. Because of the cross-sectional dimensions of the MHD channel in question (height 16 mm) and the wavelength (4 mm) chosen, considering the expected electron density, the groove guide had to be built for use in an oversized quasi-optical technique. The transition from rectangular (hollow pipe) guide to the open guide is done in two steps. With a good knowledge of the groove guide data and an appropriate theory of propagation of electromagnetic waves in ionized media, measuring phase shift and additional damping of the microwaves by introduction of the ionized gas allows the electron density and collision frequency, two of the most important plasma parameters, to be evaluated. The system

  14. Hardware solution for continuous time-resolved burst detection of single molecules in flow

    Science.gov (United States)

    Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen

    1998-04-01

    Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.

  15. Microwave-Assisted Sample Treatment in a Fully Automated Flow-Based Instrument: Oxidation of Reduced Technetium Species in the Analysis of Total Technetium-99 in Caustic Aged Nuclear Waste Samples

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.

    2004-01-01

    An automated flow-based instrument for microwave-assisted treatment of liquid samples has been developed and characterized. The instrument utilizes a flow-through reaction vessel design that facilitates the addition of multiple reagents during sample treatment, removal of the gaseous reaction products, and enables quantitative removal of liquids from the reaction vessel for carryover-free operations. Matrix modification and speciation control chemistries that are required for the radiochemical determination of total 99Tc in caustic aged nuclear waste samples have been investigated. A rapid and quantitative oxidation procedure using peroxydisulfate in acidic solution was developed to convert reduced technetium species to pertechnetate in samples with high content of reducing organics. The effectiveness of the automated sample treatment procedures has been validated in the radiochemical analysis of total 99Tc in caustic aged nuclear waste matrixes from the Hanford site

  16. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold

    Directory of Open Access Journals (Sweden)

    Xu-bin Zhang

    2017-11-01

    Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.

  17. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    Science.gov (United States)

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Continuous-wave room-temperature diamond maser

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  19. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    Science.gov (United States)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  20. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en