WorldWideScience

Sample records for continuous energy lattice

  1. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  2. Continuous energy Monte Carlo method based lattice homogeinzation

    International Nuclear Information System (INIS)

    Li Mancang; Yao Dong; Wang Kan

    2014-01-01

    Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)

  3. A lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Fan Engui

    2008-01-01

    By introducing a discrete spectral problem, we derive a lattice hierarchy which is integrable in Liouville's sense and possesses a multi-Hamiltonian structure. It is show that the discrete spectral problem converges to the well-known AKNS spectral problem under a certain continuous limit. In particular, we construct a sequence of equations in the lattice hierarchy which approximates the AKNS hierarchy as a continuous limit

  4. Relationships between lattice energies of inorganic ionic solids

    Science.gov (United States)

    Kaya, Savaş

    2018-06-01

    Lattice energy, which is a measure of the stabilities of inorganic ionic solids, is the energy required to decompose a solid into its constituent independent gaseous ions. In the present work, the relationships between lattice energies of many diatomic and triatomic inorganic ionic solids are revealed and a simple rule that can be used for the prediction of the lattice energies of inorganic ionic solids is introduced. According to this rule, the lattice energy of an AB molecule can be predicted with the help of the lattice energies of AX, BY and XY molecules in agreement with the experimental data. This rule is valid for not only diatomic molecules but also triatomic molecules. The lattice energy equations proposed in this rule provides compatible results with previously published lattice energy equations by Jenkins, Kaya, Born-Lande, Born-Mayer, Kapustinskii and Reddy. For a large set of tested molecules, calculated percent standard deviation values considering experimental data and the results of the equations proposed in this work are in general between %1-2%.

  5. Low-energy scattering on the lattice

    International Nuclear Information System (INIS)

    Bour Bour, Shahin

    2014-01-01

    In this thesis we present precision benchmark calculations for two-component fermions in the unitarity limit using an ab initio method, namely Hamiltonian lattice formalism. We calculate the ground state energy for unpolarized four particles (Fermi gas) in a periodic cube as a fraction of the ground state energy of the non-interacting system for two independent representations of the lattice Hamiltonians. We obtain the values 0.211(2) and 0.210(2). These results are in full agreement with the Euclidean lattice and fixed-node diffusion Monte Carlo calculations. We also give an expression for the energy corrections to the binding energy of a bound state in a moving frame. These corrections contain information about the mass and number of the constituents and are topological in origin and will have a broad applications to the lattice calculations of nucleons, nuclei, hadronic molecules and cold atoms. As one of its applications we use this expression and determine the low-energy parameters for the fermion dimer elastic scattering in shallow binding limit. For our lattice calculations we use Luescher's finite volume method. From the lattice calculations we find κa fd =1.174(9) and κr fd =-0.029(13), where κ represents the binding momentum of dimer and a fd (r fd ) denotes the scattering length (effective-range). These results are confirmed by the continuum calculations using the Skorniakov-Ter-Martirosian integral equation which gives 1.17907(1) and -0.0383(3) for the scattering length and effective range, respectively.

  6. An integrable coupling system of lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Yu Fajun; Li Li

    2009-01-01

    In [E.G. Fan, Phys. Lett. A 372 (2008) 6368], Fan present a lattice hierarchy and its continuous limits. In this Letter, we extend this method, by introducing a complex discrete spectral problem, a coupling lattice hierarchy is derived. It is shown that a new sequence of combinations of complex lattice spectral problem converges to the integrable coupling couplings of soliton equation hierarchy, which has the integrable coupling system of AKNS hierarchy as a continuous limit.

  7. The lattice spinor QED Hamiltonian critique of the continuous space approach

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1993-01-01

    We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs

  8. Relativistic energy-dispersion relations of 2D rectangular lattices

    Science.gov (United States)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  9. Theory and application of deterministic multidimensional pointwise energy lattice physics methods

    International Nuclear Information System (INIS)

    Zerkle, M.L.

    1999-01-01

    The theory and application of deterministic, multidimensional, pointwise energy lattice physics methods are discussed. These methods may be used to solve the neutron transport equation in multidimensional geometries using near-continuous energy detail to calculate equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is described which reduces the computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  10. Free-energy analysis of spin models on hyperbolic lattice geometries.

    Science.gov (United States)

    Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej

    2016-04-01

    We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.

  11. Fermion bag approach to Hamiltonian lattice field theories in continuous time

    Science.gov (United States)

    Huffman, Emilie; Chandrasekharan, Shailesh

    2017-12-01

    We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.

  12. Lattice Design in High-energy Particle Accelerators

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.

  13. Relevant energy scale of color confinement from lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2009-01-01

    We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.

  14. Differentiability and continuity of quantum fields on a lattice

    International Nuclear Information System (INIS)

    deLyra, J.L.; Foong, S.K.; Gallivan, T.E.

    1991-01-01

    The differentiability and continuity properties of quantized bosonic fields on a lattice are examined. It is shown for free fields that, in the continuum limit, the dominant configurations in the functional integral become discontinuous when the spacetime dimension is greater than 1. It is argued that the same is true for interacting fields. This is unlike the one-dimensional case of quantum mechanics, in which the dominant configurations are continuous but not differentiable. As a consequence of this discontinuity, classically equivalent actions may produce inequivalent quantum field theories upon functional-integral quantization

  15. Working Group Report: Lattice Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  16. Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices

    Science.gov (United States)

    Ming, Yi; Ye, Liu; Chen, Han-Shuang; Mao, Shi-Feng; Li, Hui-Min; Ding, Ze-Jun

    2018-01-01

    Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-α β lattices. These clearly indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the root-mean-square velocity of solitons can be obtained from the effective phonons theory.

  17. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    Science.gov (United States)

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  18. A novel lattice energy calculation technique for simple inorganic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Banerjee, Priyabrata [Surface Engineering and Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209 (India)

    2017-01-01

    In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.

  19. Energy gains from lattice-enabled nuclear reactions

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    The energy gain of a system is defined as the ratio of its output energy divided by the energy provided to operate the system. Most familiar systems have energy gains less than one due to various inefficiencies. By contrast, lattice-enabled nuclear reactions (LENR) offer high energy gains. Theoretical values in excess of 1000 are possible. Energy gains over 100 have already been reported. But, they have not yet been sustained for commercially significant durations. This article summarizes the current status of LENR energy gains. (author)

  20. Exact vacuum energy of orbifold lattice theories

    International Nuclear Information System (INIS)

    Matsuura, So

    2007-01-01

    We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively

  1. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  2. A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    M. AKBARI

    2013-12-01

    Full Text Available Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO2–PUO2 (MOX is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H2O moderated UO2–PuO2 (MOX lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

  3. Solution of the Cauchy problem for a continuous limit of the Toda lattice and its superextension

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Sorba, P.

    1991-01-01

    A supersymmetric equation associated with a continuum limit of the classical superalgebra sl(n/n+1) is constructed. This equation can be considered as a superextension of a continuous limit of the Toda lattice with fixed end-points or, in other words, as a supersymmetric version of the heavenly equation. A solution of the Cauchy problem for the continuous limit of the Toda lattice and for its superextension is given using some formal reasonings. (orig.)

  4. Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms

    International Nuclear Information System (INIS)

    Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2003-01-01

    Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size

  5. A Low-Energy Ring Lattice Design

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2002-01-01

    The PEP-N project at SLAC [1] consists of a Very Low-Energy small electron Ring (VLER) that will collide with the low-energy 3.1 GeV positron beam (LER) of PEP-II, producing center-of-mass energies between the 1.1 GeV and the J/ψ. The beams will collide head-on and will be separated in the detector magnetic field which is part of the Interaction Region [2]. The IP β functions were chosen such as to optimize both luminosity and beam-beam tune shifts, while keeping the LER tune shifts small. This paper describes the lattice design of the VLER for the ''baseline'' at 500 MeV

  6. Effects of LatticeQCD EoS and Continuous Emission on Some Observables

    International Nuclear Information System (INIS)

    Hama, Y.; Andrade, R.; Grassi, F.; Socolowski, O.; Kodama, T.; Tavares, B.; Padula, S. S.

    2006-01-01

    Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ν 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations

  7. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  8. Cutoff effects on energy-momentum tensor correlators in lattice gauge theory

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2009-01-01

    We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.

  9. Excess Gibbs Energy for Ternary Lattice Solutions of Nonrandom Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Young [DukSung Womens University, Seoul (Korea, Republic of)

    2008-12-15

    It is assumed for three components lattice solution that the number of ways of arranging particles randomly on the lattice follows a normal distribution of a linear combination of N{sub 12}, N{sub 23}, N{sub 13} which are the number of the nearest neighbor interactions between different molecules. It is shown by random number simulations that this assumption is reasonable. From this distribution, an approximate equation for the excess Gibbs energy of three components lattice solution is derived. Using this equation, several liquid-vapor equilibria are calculated and compared with the results from other equations.

  10. Multi-graviton theory, a latticized dimension and the cosmological constant

    International Nuclear Information System (INIS)

    Kan, Nahomi; Shiraishi, Kiyoshi

    2003-01-01

    Beginning with the Pauli-Fierz theory, we construct a model for multi-graviton theory. Couplings between gravitons belonging to nearest-neighbour 'theory spaces' lead to a discrete mass spectrum. Our model coincides with the Kaluza-Klein theory whose fifth dimension is latticized. We evaluate one-loop vacuum energy in models with a circular latticized extra dimension as well as with compact continuous dimensions. We find that the vacuum energy can take a positive value, if the dimension of the continuous spacetime is 6, 10, .... Moreover, since the amount of vacuum energy can be an arbitrary small value depending on the choice of parameters in the model, our models are useful for explaining the small positive dark energy in the present universe

  11. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  12. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  13. The cross-over points in lattice gauge theories with continuous gauge groups

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Greensite, J.; Lautrup, B.

    1981-01-01

    We obtain a closed expression for the weak-to-strong coupling cross-over point in all Wilson type lattice gauge theories with continuous gauge groups. We use a weak-coupling expansion of the mean-field self-consistency equation. In all cases where our results can be compared with Monte Carlo calculations the agreement is excellent. (orig.)

  14. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....

  15. Nonlocal continuum analysis of a nonlinear uniaxial elastic lattice system under non-uniform axial load

    Science.gov (United States)

    Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud

    2016-09-01

    The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.

  16. Inequalities for magnetic-flux free energies and confinement in lattice gauge theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1982-01-01

    Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)

  17. Low energy ring lattice of the PEP-II asymmetric B-Factory

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Helm, R.; Irwin, J.; Nosochkov, Y.; Ritson, D.M.; Yan, Y.

    1995-01-01

    Developing a lattice that contains a very low beta value at the interaction point (IP) and has adequate dynamic aperture is one of the major challenges in designing the PEP-II asymmetric B-factory. For the Low Energy Ring (LER) the authors have studied several different chromatic correction schemes since the conceptual design report (CDR). Based on these studies, a hybrid solution with local and semi-local chromatic sextupoles has been selected as the new baseline lattice to replace the local scheme in the CDR. The new design simplifies the interaction region (IR) and reduces the number of sextupoles in the arcs. Arc sextupoles are paired at π phase difference and are not interleaved. In this paper the authors describe the baseline lattice with the emphasis on the lattice changes made since the CDR

  18. Lattice Gauge Theories Have Gravitational Duals

    International Nuclear Information System (INIS)

    Hellerman, Simeon

    2002-01-01

    In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk

  19. Regeneralized London free energy for high-Tc vortex lattices

    Directory of Open Access Journals (Sweden)

    M. A. Shahzamanian

    2006-09-01

    Full Text Available   The London free-energy is regeneralized by the Ginsburg-Landau free-energy density in the presence of both d and s order parameters. We have shown that the strength of the s-d coupling, makes an important rule to determine the form of the lattice vortex. Appearance of the ratios of the coherence length to penetration depth in the higher order corrections of the free-energy density will truncate these corrections for even large values of .

  20. Self-organization processes and nanocluster formation in crystal lattices by low-energy ion irradiation

    International Nuclear Information System (INIS)

    Tereshko, I.; Abidzina, V.; Tereshko, A.; Glushchenko, V.; Elkin, I.

    2007-01-01

    The goal of this paper is to study self-organization processes that cause nanostructural evolution in nonlinear crystal media. The subjects of the investigation were nonlinear homogeneous and heterogeneous atom chains. The method of computer simulation was used to investigate the interaction between low-energy ions and crystal lattices. It was based on the conception of three-dimensional lattice as a nonlinear atom chain system. We showed that that in homogeneous atom chains critical energy needed for self-organization processes development is less than for nonlinear atom chain with already embedded clusters. The possibility of nanostructure formation was studied by a molecular dynamics method of nonlinear oscillations in atomic oscillator systems of crystal lattices after their low-energy ion irradiation. (authors)

  1. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  2. Mobile localization in nonlinear Schroedinger lattices

    International Nuclear Information System (INIS)

    Gomez-Gardenes, J.; Falo, F.; Floria, L.M.

    2004-01-01

    Using continuation methods from the integrable Ablowitz-Ladik lattice, we have studied the structure of numerically exact mobile discrete breathers in the standard discrete nonlinear Schroedinger equation. We show that, away from that integrable limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule. This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the localization mobility along the lattice

  3. Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice

    Science.gov (United States)

    Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank

    2018-03-01

    We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.

  4. New continual analogs of two-dimensional Toda lattices related with nonlinear integro-differential equations

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1988-01-01

    Continual ''extensions'' of two-dimensional Toda lattices are proposed. They are described by integro-differential equations, generally speaking, with singular kernels, depending on new (third) variable. The problem of their integrability on the corresponding class of the initial discrete system solutions is discussed. The latter takes place, in particular, for the kernel coinciding with the causal function

  5. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain

    Directory of Open Access Journals (Sweden)

    Gerich M. S.

    2012-12-01

    Full Text Available Let ${xi(t, x(t}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  6. Computer simulations of low energy displacement cascades in a face centered cubic lattice

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Bourquin, R.D.

    1976-09-01

    Computer simulations of atomic motion in a copper lattice following the production of primary knock-on atoms (PKAs) with energies from 25 to 200 eV are discussed. In this study, a mixed Moliere-Englert pair potential is used to model the copper lattice. The computer code COMENT, which employs the dynamical method, is used to analyze the motion of up to 6000 atoms per time step during cascade evolution. The atoms are specified as initially at rest on the sites of an ideal lattice. A matrix of 12 PKA directions and 6 PKA energies is investigated. Displacement thresholds in the [110] and [100] are calculated to be approximately 17 and 20 eV, respectively. A table showing the stability of isolated Frenkel pairs with different vacancy and interstitial orientations and separations is presented. The numbers of Frenkel pairs and atomic replacements are tabulated as a function of PKA direction for each energy. For PKA energies of 25, 50, 75, 100, 150, and 200 eV, the average number of Frenkel pairs per PKA are 0.4, 0.6, 1.0, 1.2, 1.4, and 2.2 and the average numbers of replacements per PKA are 2.4, 4.0, 3.3, 4.9, 9.3, and 15.8

  7. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Necco, S.; Wenger, U. [Institut fuer theoretische Physik, Universitaet Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Duerr, S. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Juelich (Germany); El-Khadra, A.X. [University of Illinois, Department of Physics, Urbana, IL (United States); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Osaka (Japan); Horsley, R. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Kaneko, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Laiho, J. [University of Glasgow, SUPA, Department of Physics and Astronomy, Glasgow (United Kingdom); Syracuse University, Department of Physics, Syracuse, New York (United States); Lellouch, L. [Aix-Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); Sezione di Roma Tre, INFN, Rome (Italy); Lunghi, E. [Indiana University, Physics Department, Bloomington, IN (United States); Pena, C. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC and Departamento de Fisica Teorica, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [Sezione di Roma Tre, INFN, Rome (Italy); Sommer, R. [NIC rate at DESY, Zeuthen (Germany); Water, R.S.V. de [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vladikas, A. [Universita di Roma Tor Vergata, INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: FLAG Working Group

    2014-09-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f{sub +}(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio f{sub K}/f{sub π} of decay constants and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} andSU(3)L{sub L} x SU(3){sub R} Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  8. Hamiltonian approach to the lattice massive Schwinger model

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1996-01-01

    The authors consider the limit e 2 /m 2 much-lt 1 of the lattice massive Schwinger model, i.e., the lattice massive QED in two space-time dimensions, up to lowest order in the effective coupling constant e 2 /m 2 . Here, m is the fermion mass parameter and e is the electron charge. They compare their lattice QED model with the analogous continuous space and lattice space models, (CSM and LSM), which do not take account of the zero momentum mode, z.m.m., of the vector potential. The difference is that (due to extra z.m.m. degree of freedom) to every eigenstate of the CSM and LSM there corresponds a family of eigenstates of the authors lattice QED with the parameter λ. They restrict their consideration to small values of the parameter λ. Then, the energies of the particle states of their lattice QED and LSM do coincide (in their approximation). In the infinite periodicity length limit the Hamiltonian of the authors lattice QED (as well as the Hamiltonian of the LSM) possesses two different Hilbert spaces of eigenfunctions. Thus, in this limit the authors lattice QED model (as well as LSM) describes something like two connected, but different, worlds

  9. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    Science.gov (United States)

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  10. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  11. A lattice-model representation of continuous-time random walks

    International Nuclear Information System (INIS)

    Campos, Daniel; Mendez, Vicenc

    2008-01-01

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied

  12. A lattice-model representation of continuous-time random walks

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es

    2008-02-29

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.

  13. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  14. Lattice design in high-energy particle accelerators

    CERN Document Server

    Holzer, B J

    2006-01-01

    This lecture introduces storage-ring lattice desing. Applying the formalism that has been established in transverse beam optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice structures: drifts, mini beta insertions, dispersion suppressors, etc. In addition to the exact calculations indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘on the back of an envelope’.

  15. Continuous energy Monte Carlo method based homogenization multi-group constants calculation

    International Nuclear Information System (INIS)

    Li Mancang; Wang Kan; Yao Dong

    2012-01-01

    The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P 1 cross sections were used to calculate the diffusion coefficients for diffusion reactor simulator codes. B N theory is applied to take the leakage effect into account when the infinite lattice of identical symmetric motives is assumed. The MCMC code was developed and the code was applied in four assembly configurations to assess the accuracy and the applicability. At core-level, A PWR prototype core is examined. The results show that the Monte Carlo based multi-group constants behave well in average. The method could be applied to complicated configuration nuclear reactor core to gain higher accuracy. (authors)

  16. Higgs compositeness in Sp(2N) gauge theories - Determining the low-energy constants with lattice calculations

    Science.gov (United States)

    Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2018-03-01

    As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).

  17. Review of lattice results concerning low-energy particle physics

    International Nuclear Information System (INIS)

    Aoki, S.; Aoki, Y.; Brookhaven National Laboratory, Upton, NY; Becirevic, D.

    2016-07-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f_+(0), arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio f_K/f_π and its consequences for the CKM matrix elements V_u_s and V_u_d. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)_L x SU(2)_R and SU(3)_L x SU(3)_R Chiral Perturbation Theory. We review the determination of the B_K parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m_c and m_b (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α_s.

  18. Analytic determination at one loop of the energy-momentum tensor for lattice QCD

    International Nuclear Information System (INIS)

    Caracciolo, S.; Menotti, P.; Pelissetto, A.

    1991-01-01

    We give a completely analytical determinaton of the corrections to the naive energy-momentum tensor for lattice QCD at one loop. This tenor is conserved and gives rise to the correct trace anomaly. (orig.)

  19. On the energy benefit of compute-and-forward on the hexagonal lattice

    NARCIS (Netherlands)

    Ren, Zhijie; Goseling, Jasper; Weber, Jos; Gastpar, Michael; Skoric, B.; Ignatenko, T.

    2014-01-01

    We study the energy benefit of applying compute-and-forward on a wireless hexagonal lattice network with multiple unicast sessions with a specific session placement. Two compute-and-forward based transmission schemes are proposed, which allow the relays to exploit both the broadcast and

  20. Lattice Boltzmann simulation for the energy and entropy of excitable systems

    Institute of Scientific and Technical Information of China (English)

    Deng Min-Yi; Tang Guo-Ning; Kong Ling-Jiang; Liu Mu-Ren

    2011-01-01

    The internal energy and the spatiotemporal entropy of excitable systems are investigated with the lattice Boltzmann method. The numerical results show that the breakup of spiral wave is attributed to the inadequate supply of energy, i.e., the internal energy of system is smaller than the energy of self-sustained spiral wave. It is observed that the average internal energy of a regular wave state reduces with its spatiotemporal entropy decreasing. Interestingly, although the energy difference between two regular wave states is very small, the different states can be distinguished obviously due to the large difference between their spatiotemporal entropies. In addition, when the unstable spiral wave converts into the spatiotemporal chaos, the internal energy of system decreases, while the spatiotemporal entropy increases, which behaves as the thermodynamic entropy in an isolated system.

  1. In situ X-ray diffraction study of irradiation-induced lattice expansion in Al foils by MeV-energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Minagawa, Hideaki [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Murase, Ryu [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-04-01

    Using in situ X-ray diffraction measurements, we investigate lattice deformations of a free-standing aluminum foil induced by irradiation with MeV-energy heavy projectiles (C, O, and Si ions). The dependence of the ion-beam flux on the lattice expansion is analyzed in terms of two types of irradiation effects: (i) electronic excitation collision-induced lattice heating and (ii) elastic collision-induced displacement damage. We observe that the change in the lattice parameter is proportional to the energy in lattice heating, irrespective of projectile species. This result is in good agreement with a model calculation for thermal lattice expansion caused by beam heating. Moreover, with the correlation between lattice expansion and displacement damage, we consider a simple model for lattice expansion originating from the accumulation of Frenkel defects. From the model, we obtained the relationship between the relative changes in lattice parameter and the value of displacement per atom (dpa) rate. A comparison of the results from model calculations and experiments shows that the dpa rate calculated from the model, which takes account of athermal defect-recombination, is strongly correlated with the change in lattice parameter. This result suggests that the concentration of surviving defects under irradiation diminishes because of spontaneous recombination of defects produced.

  2. Continuous-Energy Data Checks

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, Wim [Radioprotection and Nuclear Safety Institute, Fontenay-aux-Roses (France); Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCartney, Austin Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    The purpose of this report is to provide an overview of all Quality Assurance tests that have to be performed on a nuclear data set to be transformed into an ACE formatted nuclear data file. The ACE file is capable of containing different types of data such as continuous energy neutron data, thermal scattering data, etc. Within this report, we will limit ourselves to continuous energy neutron data.

  3. A Dirac-Kaehler approach to the two dimensional Wess-Zumino N=2 model on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.; Aratyn, H.

    1983-08-01

    We introduce a Dirac-Kaehler model for the two dimensional Wess-Zumino N=2 Lagrangean. We can show that in the model, when we go to the euclidean space-time lattive, we have no energy doubling, the action has no lattice surface terms (contrary to other authors), while the Hamiltonians (when time is continuous) present lattice surface terms. (orig.)

  4. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Becirevic, D. [Universite Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR8627), CNRS, Orsay (France); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Wenger, U. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Dimopoulos, P. [Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Compendio del Viminale, Rome (Italy); Universita di Roma Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Duerr, S. [University of Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Forschungszentrum Juelich, Juelich (Germany); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Toyonaka, Osaka (Japan); Golterman, M. [San Francisco State University, Department of Physics and Astronomy, San Francisco, CA (United States); Gottlieb, Steven; Lunghi, E. [Indiana University, Department of Physics, Bloomington, IN (United States); Hashimoto, S.; Kaneko, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); The Graduate University for Advanced Studies (Sokendai), School of High Energy Accelerator Science, Tsukuba (Japan); Heller, U.M. [American Physical Society (APS), Ridge, NY (United States); Horsley, R. [University of Edinburgh, Higgs Centre for Theoretical Physics, School of Physics and Astronomy, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Lellouch, L. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); Lin, C.J.D. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); National Chiao-Tung University, Institute of Physics, Hsinchu (China); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Mawhinney, R. [Columbia University, Physics Department, New York, NY (United States); Pena, C. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [INFN, Sezione di Roma Tre, Rome (Italy); Sommer, R. [DESY, John von Neumann Institute for Computing (NIC), Zeuthen (Germany); Vladikas, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: Flavour Lattice Averaging Group (FLAG)

    2017-02-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  5. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Aoki, Y. [Nagoya Univ. (Japan). Kobayashi-Maskawa Inst. for the Origin of Particles and the Universe; Brookhaven National Laboratory, Upton, NY (United States). RIKEN BNL Research Center; Becirevic, D. [Univ. Paris-Saclay, Orsay (France). CNRS; Collaboration: FLAG Working Group; and others

    2016-07-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}.

  6. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  7. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  8. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    International Nuclear Information System (INIS)

    Schmidt, M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  9. Nuclear lattice simulations

    Directory of Open Access Journals (Sweden)

    Epelbaum E.

    2010-04-01

    Full Text Available We review recent progress on nuclear lattice simulations using chiral effective field theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb effects, and the binding energy of light nuclei.

  10. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  11. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    Energy Technology Data Exchange (ETDEWEB)

    Bin Mansoor, Saad; Sami Yilbas, Bekir, E-mail: bsyilbas@kfupm.edu.sa

    2015-08-15

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  12. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    International Nuclear Information System (INIS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-01-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system

  13. Hofstadter's butterfly energy spectrum of ultracold fermions on the two-dimensional triangular optical lattice

    International Nuclear Information System (INIS)

    Hou Jingmin; Lu Qingqing

    2009-01-01

    We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed

  14. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  15. Lattice parameters and Raman-active phonon modes of β-(AlxGa1−x)2O3

    International Nuclear Information System (INIS)

    Kranert, Christian; Jenderka, Marcus; Lenzner, Jörg; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2015-01-01

    We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (Al x Ga 1–x ) 2 O 3 thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x < 0.4, we observe the single-phase β-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics

  16. Toward lattice fractional vector calculus

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2014-01-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)

  17. Toward lattice fractional vector calculus

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  18. Localized structures in Kagome lattices

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  19. Numerical analysis of the reactivity for the dry lattices above the water level of the critical fuel cores

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Kameyama, Takanori

    2003-01-01

    Criticality analysis has been performed for dozens of tank type cores in which fuel lattices are loaded vertically and partially immersed in light water. The reactivity effect of dry part of lattices stuck above the critical water level has been calculated using the continuous energy Monte Carlo method. The reactivity effect exceeds 0.8% both for MOX and UOX fuel lattices of large buckling (B z 2 > 0.0025 cm -2 ). It is evaluated that at least 20 cm length of fuel rods above the critical water level has significant reactivity effect. (author)

  20. Lattice formulations of reggeon interactions

    International Nuclear Information System (INIS)

    Brower, R.C.; Ellis, J.; Savit, R.; Zinn-Justin, J.

    1976-01-01

    A class of lattice analogues to reggeon field theory is examined. First the transition from a continuum to a lattice field theory is discussed, emphasizing the necessity of a Wick rotation and the consideration of symmetry properties. Next the theory is transformed to a discrete system with two spins at each lattice site, and the problems of the triple-reggeon interaction and the reggeon energy gap are discussed. It is pointed out that transferring the theory from the continuum to a lattice necesarily introduces new relevant operators not normally present in reggeon field theory. (Auth.)

  1. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  2. Few quantum particles on one dimensional lattices

    International Nuclear Information System (INIS)

    Valiente Cifuentes, Manuel

    2010-01-01

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models

  3. Application to supersymmetric models of Dirac-kaehler formalism on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.

    1987-01-01

    Using Dirac-Kaehler techniques we formulate some supersymmetric models on the lattice. Specifically we consider the Wess-Zumino model with N=2 in two dimensions which is formulated on a space lattice in its Hamiltonian version (continuous time) as well as on the space-time lattice in its Lagrangean version (euclidean space). On the space lattice (Hamiltonian formulation) we study also the supersymmetric Yanh-Mills model with N=4 in four dimensions. After the introduction of lattice covariant derivatives for fields in the adjoint representation of a compact group we write down some new relations which we have obtained and which constitute generalizations on the lattice of those which are known in the continuous case. (author) [pt

  4. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  5. Topological quantization of energy transport in micromechanical and nanomechanical lattices

    Science.gov (United States)

    Chien, Chih-Chun; Velizhanin, Kirill A.; Dubi, Yonatan; Ilic, B. Robert; Zwolak, Michael

    2018-03-01

    Topological effects typically discussed in the context of quantum physics are emerging as one of the central paradigms of physics. Here, we demonstrate the role of topology in energy transport through dimerized micro- and nanomechanical lattices in the classical regime, i.e., essentially "masses and springs." We show that the thermal conductance factorizes into topological and nontopological components. The former takes on three discrete values and arises due to the appearance of edge modes that prevent good contact between the heat reservoirs and the bulk, giving a length-independent reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts, opening a direction to explore the ramifications of topological properties on nanoscale technology.

  6. SSC lattice database and graphical interface

    International Nuclear Information System (INIS)

    Trahern, C.G.; Zhou, J.

    1991-11-01

    When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser

  7. Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S; Bhattacharya, D P

    2011-01-01

    The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.

  8. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    International Nuclear Information System (INIS)

    Malrieu, Jean-Paul

    2012-01-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  9. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    Science.gov (United States)

    Malrieu, Jean-Paul

    2012-06-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  10. Non-Abelian vortex lattices

    Science.gov (United States)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  11. Field-controlled randomness of colloidal paths on a magnetic bubble lattice

    International Nuclear Information System (INIS)

    Jungnickel, C; Fischer, Th M; Khattari, Z; Johansen, T H

    2011-01-01

    Paramagnetic colloidal particles move in the potential energy landscape of a magnetically modulated bubble lattice of a magnetic garnet film. The modulation causes the energy minima to alternate between positions above the centres of the bubbles and interstitial positions. The particles deterministically follow the time-dependent positions of the energy minima until the minima become unstable in one or several directions and allow the particles to hop to a new minimum. We control the time delay between instabilities of the minima in alternative directions by the angle of the external magnetic field with the crystallographic directions of the bubble lattice. When the time delay is large, the particles deterministically hop to the next minimum along the direction that becomes unstable first. When the time delay is short, diffusion of the particle in the marginal potential randomizes the choice of the hopping directions or the choice of the transport network. Gradual changes of the external field direction from 0 0 to 30 0 lead to a continuous crossover from a deterministic to a fully stochastic path of the colloids.

  12. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  13. Quantum transport in d -dimensional lattices

    International Nuclear Information System (INIS)

    Manzano, Daniel; Chuang, Chern; Cao, Jianshu

    2016-01-01

    We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)

  14. On the hierarchical lattices approximation of Bravais lattices: Specific heat and correlation length

    International Nuclear Information System (INIS)

    Tsallis, C.

    1984-01-01

    Certain types of real-space renormalization groups (which essentially approximate Bravais lattices through hierarchical ones) do not preserve standard thermodynamic convexity properties. It is pointed out that this serious defect is not intrinsic to any real-space renormalization. It can be avoided if form-invariance (under uniform translation of the energy scale) of the equation connecting the Bravais lattice (which is intended to study) to the hierarchical one (which approximates it) is demanded. In addition to that expressions for the critical exponentes ν and α corresponding to hierarchical lattices are analysed; these are consistent with Melrose recent analysis of the fractal intrinsic dimensionality. (Author) [pt

  15. Lattice and algebra homomorphisms on C (X) in Zermelo-Fraenkel ...

    African Journals Online (AJOL)

    Let C (X) denote the lattice-ordered algebra of all real-valued continuous functions on a topological space X. This paper discusses in Zermelo-Fraenkel Set Theory the equivalence on C (X) between algebra homomorphisms, lattice homo- morphisms, and point evaluations. Keywords: Algebra homomorphism, lattice ...

  16. Free energy and plaquette expectation value for gluons on the lattice, in three dimensions

    International Nuclear Information System (INIS)

    Panagopoulos, H.; Skouroupathis, A.; Tsapalis, A.

    2006-01-01

    We calculate the perturbative value of the free energy in lattice QCD in three dimensions, up to three loops. Our calculation is performed using the Wilson formulation for gluons in SU(N) gauge theories. The free energy is directly related to the average plaquette. To carry out the calculation, we compute the coefficients involved in the perturbative expansion of the Free Energy up to three loops, using an automated set of procedures developed by us in Mathematica. The dependence on N is shown explicitly in our results. For purposes of comparison, we also present the individual contributions from every diagram. These have been obtained by means of two independent calculations, in order to cross check our results

  17. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  18. Study of possible energy upgrade for the ALS and modeling of the ''Real Lattice'' for the diagnosis of lattice problems

    International Nuclear Information System (INIS)

    Meddahi, M.; Bengtsson, J.

    1993-05-01

    We have studied change of expected performance of the Advanced Light Source storage ring at LBL for the (design) nominal and maximum energy of 1.5 and 1.9 GeV respectively. Furthermore, we have also studied a possible increase to 2.3 GeV by modeling the change of dynamical aperture caused by saturation of the magnets. Independently, we have also modeled the beam's trajectory at injection. Comparison with bpm data from early storage ring commissioning led to the diagnosis of a major lattice error due to a short in a quadrupole, which was rectified leading to stored beam of 60 turns

  19. Internal space decimation for lattice gauge theories

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1984-01-01

    By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)

  20. Generation and Testing of the ENDF/B-VI Continuous-Energy Cross-Section Library for Use with Continuous-Energy Versions of KENO

    International Nuclear Information System (INIS)

    Goluoglu, Sedat; Dunn, Michael E.; Greene, Norman Maurice; Petrie Jr, Lester M.; Hollenbach, Daniel F.

    2007-01-01

    KENO V.a and KENO-VI are Monte Carlo codes that solve the multigroup form of the Boltzmann transport equation. These codes are part of the SCALE system of codes and are used for performing criticality calculations of systems with fissionable material. In general, continuous-energy Monte Carlo methods are preferred because such an approach avoids many of the assumptions inherent in the multigroup treatment. On the other hand, continuous-energy treatment is much more demanding in terms of computer storage space for data, memory requirements, and calculation speed. Continuous-energy versions of KENO V.a and KENO-VI have been created and are being extensively tested. Generation of ENDF/B-VI continuous-energy cross sections is explained, and the results of the validation and verification of the codes and the data are presented

  1. A low-emittance lattice for SPEAR

    International Nuclear Information System (INIS)

    Safranek, J.; Wiedemann, H.

    1992-01-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented (J. Safranek, Ph. D. thesis, Stanford University, 1991). The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129 π nm rad, which makes the low emittance lattice the lowest emittance, runnning synchroton radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further incrased by reducing β y at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal despersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave resonable agreement with the design . The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992. (orig.)

  2. Lattice QCD and physics beyond the Standar Model: an experimentalist perspective

    Science.gov (United States)

    Artuso, Marina

    2017-01-01

    The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.

  3. First lattice calculation of the B-meson binding and kinetic energies

    CERN Document Server

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  4. Tri-critical behavior of the Blume Capel model on a diamond lattice

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jander P., E-mail: jander@ufsj.edu.br [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Departamento de Matemática, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Sá Barreto, F.C., E-mail: fcsabarreto@gmail.com [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Emeritus Professor, Departamento de Física, Universidade Federal de Minas Gerais, C.P. 110, CEP 31270-901 Belo Horizonte, MG (Brazil); Rosa, D.S., E-mail: derick@ift.unesp.br [Instituto de Física Teórica, Universidade Estadual Paulista, C.P. 110, CEP 01140-070 São Paulo, SP (Brazil)

    2017-02-01

    The mean field approximation results are obtained in a five-site cluster on the diamond lattice from the Bogoliubov inequality. Spin correlation identities for the Blume-Capel model on diamond lattice are derived from a five-site cluster and used to obtain an effective field approximation. The free-energy, magnetization, critical frontiers and tricritical points are obtained from the mean field approximation and the effective field approximation and are compared to those obtained by other methods. From the mean-field approximation, we also studied the unstable and metastable states besides the stable states present in the model. - Highlights: • From the Bogoliubov inequality the mean field approximation is applied. • Correlation identities for the Blume-Capel model on a diamond lattice are obtained. • From the spin correlation identities the effective-field theory is applied. • Lines of phase transitions of first order and continuous are obtained. • Multicritical points are obtained according to this procedure.

  5. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  6. Precise determination of lattice phase shifts and mixing angles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bing-Nan, E-mail: b.lu@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lähde, Timo A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-09-10

    We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.

  7. Large Lattice Discretization Effects on the Phase Coexistence of Ionic Fluids

    International Nuclear Information System (INIS)

    Panagiotopoulos, A.Z.; Kumar, S.K.

    1999-01-01

    We examine the phase behavior of lattice restricted primitive models for integer values of the ratio of ionic diameter to lattice spacing, ξ . For ξ≤2 , there is coexistence between a disordered phase and an antiferromagnetic phase, but no vapor-liquid equilibrium. For ξ≥3 , a region of normal vapor-liquid coexistence is found, with critical temperatures and densities which are very close to their continuous space counterparts. Our findings stress that lattice structure can result in qualitatively different physics from continuous space models, but that the two models converge even for relatively coarsely discretized lattices. copyright 1999 The American Physical Society

  8. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  9. Improved lattice fermion action for heavy quarks

    International Nuclear Information System (INIS)

    Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias

    2015-01-01

    We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.

  10. Condensate oscillations in a Penrose tiling lattice

    Science.gov (United States)

    Akdeniz, Z.; Vignolo, P.

    2017-07-01

    We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.

  11. Design of the SPEAR 3 magnet lattice

    International Nuclear Information System (INIS)

    Corbett, J.; Limborg, C.; Nosochkov, Y.; Safranek, J.

    1998-01-01

    The SPEAR 3 Upgrade Project seeks to replace the present 160 nm-rad FODO lattice with an 18 nm-rad double bend achromat (DBA) lattice. The new lattice must conform to the layout of the SPEAR racetrack tunnel and service the existing photon beamlines. Working within these constraints, the authors designed a lattice with 18 achromatic cells and 3 GeV beam energy. This paper reports on design of the main DBA cells, design of the matching cells leading into the 6.5 m racetrack straights, and simulation of the dynamic aperture. The new lattice has gradient dipoles, conventional quadrupoles, and provides horizontal dynamic aperture to ± 20 mm with conservative magnetic multipole errors

  12. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  13. Lattice solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Efremidis, Nikolaos K.; Christodoulides, Demetrios N.

    2003-01-01

    We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs

  14. Lattice parameters and Raman-active phonon modes of β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kranert, Christian, E-mail: christian.kranert@uni-leipzig.de; Jenderka, Marcus; Lenzner, Jörg; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius [Institut für Experimentelle Physik II, Universität Leipzig, Halbleiterphysik, Linnéstr. 5, 04103 Leipzig (Germany)

    2015-03-28

    We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (Al{sub x}Ga{sub 1–x}){sub 2}O{sub 3} thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x < 0.4, we observe the single-phase β-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics.

  15. Validation of a continuous-energy Monte Carlo burn-up code MVP-BURN and its application to analysis of post irradiation experiment

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio

    2000-01-01

    In order to confirm the reliability of a continuous-energy Monte Carlo burn-up calculation code MVP-BURN, it was applied to the burn-up benchmark problems for a high conversion LWR lattice and a BWR lattice with burnable poison rods. The results of MVP-BURN have shown good agreements with those of a deterministic code SRAC95 for burn-up changes of infinite neutron multiplication factor, conversion ratio, power distribution, and number densities of major fuel nuclides. Serious propagation of statistical errors along burn-up was not observed even in a highly heterogeneous lattice. MVP-BURN was applied to the analysis of a post irradiation experiment for a sample fuel irradiated up to 34.1 GWd/t, together with SRAC95 and SWAT. It was confirmed that the effect of statistical errors of MVP-BURN on a burned fuel composition was sufficiently small, and it could give a reference solution for other codes. In the analysis, the results of the three codes with JENDL-3.2 agreed with measured values within an error of 10% for most nuclides. However, large underestimation by about 20% was observed for 238 Pu, 242m Am and 244 Cm. It is probable that these discrepancies are a common problem for most current nuclear data files. (author)

  16. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  17. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. I show how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems

  18. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    A variational method is developed for systematic numerical computation of physical quantities-bound state energies and scattering amplitudes-in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. An algorithm is presented for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. It is shown how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. It is shown how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. The author discusses the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, the author does not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. The method is applied to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. The author describes a computer implementation of the method and present numerical results for simple quantum mechanical systems

  19. Wave transmission in nonlinear lattices

    International Nuclear Information System (INIS)

    Hennig, D.; Tsironis, G.P.

    1999-01-01

    The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Feedback control of atomic motion in an optical lattice

    International Nuclear Information System (INIS)

    Morrow, N.V.; Dutta, S.K.; Raithel, G.

    2002-01-01

    We demonstrate a real-time feedback scheme to manipulate wave-packet oscillations of atoms in an optical lattice. The average position of the atoms in the lattice wells is measured continuously and nondestructively. A feedback loop processes the position signal and translates the lattice potential. Depending on the feedback loop characteristics, we find amplification, damping, or an entire alteration of the wave-packet oscillations. Our results are well supported by simulations

  1. Tunneling couplings in discrete lattices, single-particle band structure, and eigenstates of interacting atom pairs

    International Nuclear Information System (INIS)

    Piil, Rune; Moelmer, Klaus

    2007-01-01

    By adjusting the tunneling couplings over longer than nearest-neighbor distances, it is possible in discrete lattice models to reproduce the properties of the lowest energy band of a real, continuous periodic potential. We propose to include such terms in problems with interacting particles, and we show that they have significant consequences for scattering and bound states of atom pairs in periodic potentials

  2. Unifying perspective: Solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability

    Science.gov (United States)

    Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna; Xu, Haitao

    2017-09-01

    In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H''(c0) evaluated at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

  3. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  4. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  5. Development and Application of New Solid-State Models for Low-Energy Vibrations, Lattice Defects, Entropies of Mixing, and Magnetic Properties

    Science.gov (United States)

    Schliesser, Jacob M.

    Low-temperature heat capacity data contain information on the physical properties of materials, and new models continue to be developed to aid in the analysis and interpretation of heat capacity data into physically meaningful properties. This work presents the development of two such models and their application to real material systems. Equations describing low-energy vibrational modes with a gap in the density of states (DOS) have been derived and tested on several material systems with known gaps in the DOS, and the origins of such gaps in the DOS are presented. Lattice vacancies have been shown to produce a two-level system that can be modeled with a sum of low-energy Schottky anomalies that produce an overall linear dependence on temperature in the low-temperature heat capacity data. These two models for gaps in the vibrational DOS and the relationship between a linear heat capacity and lattice vacancies and many well-known models have been applied to several systems of materials to test their validity and applicability as well as provide greater information on the systems themselves. A series of bulk and nanoscale Mn-Fe and Co-Fe spinel solid solutions were analyzed using the entropies derived from heat capacity data, and excess entropies of mixing were determined. These entropies show that changes in valence, cation distribution, bonding, and the microstructure between the mixing ions is non-ideal, especially in the nanoparticles. The heat capacity data of ten Al doped TiO2 anatase nanoparticle samples have also been analyzed to show that the Al3+ dopant ions form small regions of short-range order, similar to a glass, within the TiO2 particles, while the overall structure of TiO2 remains unchanged. This has been supported by X-ray diffraction (XRD) and electron energy-loss spectroscopy and provides new insights to the synthesis and characterization of doped materials. The final investigation examines nanocrystalline CuO using heat capacities, magnetization

  6. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    Science.gov (United States)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  7. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  8. Atomic interferometers in an optical lattice

    International Nuclear Information System (INIS)

    Pelle, Bruno

    2013-01-01

    The aim of the ForCa-G project, for Casimir force and short range Gravitation, lies into the measurement of short range forces between atoms and a mirror using atomic interferometry techniques. Particularly, the Casimir-Polder force and the pursuit of short range gravitational tests in the frame of potential deviations of Newton's law are aimed. This experiment is based on the trapping of neutral atoms in a 1D vertical optical lattice, where the energy eigenvalues of the Hamiltonian describing this system is the so-called Wannier-Stark ladder of discrete energy states localized in each lattice well. This work constitutes a demonstration of principle of this project with atoms set far from the mirror. Each energy state is thus separated from the one of the adjacent well by the potential energy increment between those two wells, called the Bloch frequency ν B . Then, atomic interferometers are realized in the lattice using Raman or microwave pulses where the trapped atomic wave functions are placed, and then recombined, in a superposition of states between different energy states localized either in the same well, either in adjacent wells. This work presents the study of different kinds of atomic interferometers in this optical lattice, characterized in terms of sensibility and systematic effects on the Bloch frequency measurement. One of the studied interferometers accessed to a sensitivity on the Bloch frequency of σ δ ν B /ν B =9.0x10 -6 at 1∼s in relative, which integrates until σ δ ν B /ν B =1. 10 -7 in 2800∼s. This corresponds to a state-of-the-art measurement of the gravity acceleration g for a trapped atomic gravimeter. (author)

  9. Distributed continuous energy scheduling for dynamic virtual power plants

    International Nuclear Information System (INIS)

    Niesse, Astrid

    2015-01-01

    This thesis presents DynaSCOPE as distributed control method for continuous energy scheduling for dynamic virtual power plants (DVPP). DVPPs aggregate the flexibility of distributed energy units to address current energy markets. As an extension of the Virtual Power Plant concept they show high dynamics in aggregation and operation of energy units. Whereas operation schedules are set up for all energy units in a day-ahead planning procedure, incidents may render these schedules infeasible during execution, like deviation from prognoses or outages. Thus, a continuous scheduling process is needed to ensure product fulfillment. With DynaSCOPE, software agents representing single energy units solve this problem in a completely distributed heuristic approach. Using a stepped concept, several damping mechanisms are applied to allow minimum disturbance while continuously trying to fulfill the product as contracted at the market.

  10. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  11. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  12. Exactly solvable irreversible processes on one-dimensional lattices

    International Nuclear Information System (INIS)

    Wolf, N.O.; Evans, J.W.; Hoffman, D.K.

    1984-01-01

    We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range

  13. The effects of degeneracy of the carrier ensemble on the energy loss rate and the high field mobility characteristics under the conditions of low lattice temperatures

    International Nuclear Information System (INIS)

    Basu, A.; Das, B.; Middya, T.R.; Bhattacharya, D.P.

    2017-01-01

    The rate of loss of energy of the non-equilibrium electrons to the acoustic mode lattice vibration in a degenerate semiconductor is obtained under the condition, when the lattice temperature is low enough, so that the traditional approximations like the elastic nature of the electron-phonon collisions and the truncation of the phonon distribution to the equipartition law are not valid any more. Using the results of the energy loss rate, the non-ohmic mobility is then calculated. Evaluating the loss rate and the non-ohmic mobility in degenerate samples of Si and Ge we find that significant changes in both the characteristics have been effected compared to that in the non-degenerate samples, in the regime of lower energy and for relatively lower fields. The effected changes are more significant the lower the lattice temperature is.

  14. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  15. Group lattices with applications to the molecule C60

    International Nuclear Information System (INIS)

    Stuart, S.

    1993-01-01

    A brief introduction to group lattices and their application to the electronic structure of C 6 0 is presented. Group lattice methods with experimental results yield a fairly clear picture of the electronic energy levels. (Author) 7 refs

  16. Entropy, free energy and phase transitions in the lattice Lotka-Volterra model

    International Nuclear Information System (INIS)

    Chichigina, O. A.; Tsekouras, G. A.; Provata, A.

    2006-01-01

    A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary dimensions, including fractal substrates. The thermodynamic formalism is successfully applied to the lattice Lotka-Volterra (LLV) model of autocatalytic reactions on various lattice substrates. Different regimes of reactions described as phases, and phase transitions, are obtained using this approach. The predictions of thermodynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices. Extensions of the formalism to multispecies LLV models are also presented

  17. Scattering theory for lattice phi4sub(D+1) theory

    International Nuclear Information System (INIS)

    Garczynski, W.

    1983-01-01

    Feynman rules are derived for a lattice version of the phi 4 sub(D+1) theory. The lattice values are transcribed, via a quasicontinual representation, into a continuous, non-local in spatial variables field theory, which is then quantized by the path integral method. (orig.)

  18. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    International Nuclear Information System (INIS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-01-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)

  19. Two-nucleon bound states in quenched lattice QCD

    International Nuclear Information System (INIS)

    Yamazaki, T.; Kuramashi, Y.; Ukawa, A.

    2011-01-01

    We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.

  20. Computational benchmark on the void reactivity effect in MOX lattices. Contribution to a NEA-NSC benchmark study organized by the Working Party on Plutonium Recycling

    International Nuclear Information System (INIS)

    Freudenreich, W.E.; Aaldijk, J.K.

    1994-08-01

    The Working Party on Plutonium Recycling of the Nuclear Science Committee of the OECD Nuclear Energy Agency has initiated a benchmark study on the calculation of the void reactivity effect in MOX lattices. The results presented here were obtained with the continuous energy, generalized geometry Monte Carlo transport code MCNP. The cross-section libraries used were processed from the JEF-2.2 evaluation taking into account selfshielding in the unresolved resonance ranges (selfshielding in the resolved resonance ranges is treated by MCNP). For an infinite lattice of unit cells a positive void reactivity effect was found only for the MOX fuel with the largest Pu content. For an infinite lattice of macro cells (voidable inner zone with different fuel mixtures surrounded by an outer zone of UO 2 fuel with moderator) a positive void reactivity effect was obtained for the three MOX fuel types considered. The results are not representative for MOX-loaded power reactor lattices, but serve only to intercompare reactor physics codes and libraries. (orig.)

  1. Changes in the vibrational energies and interatomic spacings upon the formation of vacancies in the volume and in the cores of crystallite conjugation regions of polycrystalline transition metals with cubic lattices

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Timofeev, A.N.

    2008-01-01

    Measured changes (ε vac ) i,j of vibrational energy on vacancies formation in i-fields (in volumes and nuclei of crystallite conjugation regions of polycrystalline metals (CCR-PM)): Cr, Mo, Ta, W, Cu, Ir are presented. Changes ε vol of vibrational energy of vacancy nearest environment formed in the metal volume, changes ε FCC of vibrational energy when vacancies formation in CCR nuclei of BCC- and FCC lattices transition metals are discussed. Measured changes ε FCC of vibrational energy, u FCC potential energy and determined sign of interatomic distances changes Δa FCC when formation of split vacancy in the FCC-lattice CCR-PM, changes ε BCC of vibrational energy, u BCC potential energy and determined sign of Δa BCC changes of interatomic distances when vacancies formation in the BCC-lattice CCR-PM are demonstrated. It is noted that the increase of interatomic distances when vacancies formation in the BCC-lattice CCR nucleus of transition metals is conditioned by the the appearance of vacancies alternative structure. Properties of CCR-PM nuclei are more sensitive to interatomic distances changes in the vacancies environment, than to changes of its nearest neighbours numbers [ru

  2. On Traveling Waves in Lattices: The Case of Riccati Lattices

    Science.gov (United States)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  3. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  4. Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami lattice model with continuous nucleation

    Science.gov (United States)

    Néda, Zoltán; Járai-Szabó, Ferenc; Boda, Szilárd

    2017-10-01

    The Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth model is considered on a one-dimensional (1D) lattice. Cells can grow with constant speed and continuously nucleate on the empty sites. We offer an alternative mean-field-like approach for describing theoretically the dynamics and derive an analytical cell-size distribution function. Our method reproduces the same scaling laws as the KJMA theory and has the advantage that it leads to a simple closed form for the cell-size distribution function. It is shown that a Weibull distribution is appropriate for describing the final cell-size distribution. The results are discussed in comparison with Monte Carlo simulation data.

  5. EU initiative on energy infrastructures and continuity of supply

    International Nuclear Information System (INIS)

    Heller, W.

    2004-01-01

    On December 10, 2003, the European Commission presented a comprehensive legislative package about energy infrastructure and continuity of supply. The proposals result in an agglomeration and extension of Community law provisions in the energy sector. A key role is played by the proposed directive ensuring the continuity of electricity supply and investments into infrastructure. This implies the need for the member countries henceforth to define the roles and responsibilities of grid operators and suppliers. The Energy Services Directive is to create a harmonized framework in the field of energy services and energy efficiency by providing common definitions, instruments, and methods. The legislative package has been forwarded to the European Parliament and to the Council. A first reading in the European Parliament is to be completed still in this legislative term by early May 2004. The Energy Ministers of the EU member countries were presented the package on continuity of supply on December 15, 2003. European legislation in the energy sector is keeping member countries busy, leaving them fewer and fewer possibilities for shaping policies of their own. There is danger of overregulation. (orig.)

  6. Acquired Nonpigmented Vitreous Cyst Associated With Lattice Degeneration.

    Science.gov (United States)

    Lu, Jing; Mai, Guiying; Liu, Ruyuan; Luo, Yan; Lu, Lin

    2017-10-01

    A 63-year-old male presented with a round-shaped floater and visual obscuration in the right eye. Clinical evaluation showed a nonpigmented vitreous cyst connected to a lattice degeneration by a stalk. Immunostaining of the vitreous cyst obtained from vitrectomy showed its origin of retinal neuroepithelium. The cyst was formed by continuous vitreous traction, which might tear up the disrupted retina at the area of lattice degeneration. This report added the lattice degeneration to the list of causes for the acquired vitreous cyst. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:856-858.]. Copyright 2017, SLACK Incorporated.

  7. Energy Dependent Streaming in Lattice Boltzmann Simulations

    Czech Academy of Sciences Publication Activity Database

    Pavlo, Pavol; Vahala, G.; Vahala, L.

    2001-01-01

    Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  8. SCALE Continuous-Energy Monte Carlo Depletion with Parallel KENO in TRITON

    International Nuclear Information System (INIS)

    Goluoglu, Sedat; Bekar, Kursat B.; Wiarda, Dorothea

    2012-01-01

    The TRITON sequence of the SCALE code system is a powerful and robust tool for performing multigroup (MG) reactor physics analysis using either the 2-D deterministic solver NEWT or the 3-D Monte Carlo transport code KENO. However, as with all MG codes, the accuracy of the results depends on the accuracy of the MG cross sections that are generated and/or used. While SCALE resonance self-shielding modules provide rigorous resonance self-shielding, they are based on 1-D models and therefore 2-D or 3-D effects such as heterogeneity of the lattice structures may render final MG cross sections inaccurate. Another potential drawback to MG Monte Carlo depletion is the need to perform resonance self-shielding calculations at each depletion step for each fuel segment that is being depleted. The CPU time and memory required for self-shielding calculations can often eclipse the resources needed for the Monte Carlo transport. This summary presents the results of the new continuous-energy (CE) calculation mode in TRITON. With the new capability, accurate reactor physics analyses can be performed for all types of systems using the SCALE Monte Carlo code KENO as the CE transport solver. In addition, transport calculations can be performed in parallel mode on multiple processors.

  9. A lattice with no transition and large dynamic aperture

    International Nuclear Information System (INIS)

    Guignard, G.

    1989-01-01

    In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab

  10. The free energy of spherical bubbles in lattice SU(3) gauge theory

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Karkkainen, Leo

    1992-01-01

    We study the coefficients of the expansion $F(R) = 1/3 c_3 R^3 + 1/2 c_2 R^2 + c_1 R$ of the free energy of spherical bubbles at $T=T_c$ in pure glue QCD using lattice Monte Carlo techniques. The coefficient $c_3$ vanishes at $T=T_c$ and our results suggest that the sign and the order of magnitude of $c_1$ is in agreement with the value $c_1=\\pm 32\\pi T_c^2/9$ (- for hadronic bubbles in quark phase, + for quark bubbles in hadronic phase) computed by Mardor and Svetitsky from the MIT bag model. The parameter $c_2$ is small in agreement with earlier determinations.

  11. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  12. High temperature expansions for the free energy of vortices respectively the string tension in lattice gauge theories

    International Nuclear Information System (INIS)

    Muenster, G.

    1980-05-01

    We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)

  13. Universality and the approach to the continuum limit in lattice gauge theory

    CERN Document Server

    De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U

    1995-01-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  14. Block spins and chirality in Heisenberg model on Kagome and triangular lattices

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs

  15. Renormalons on the lattice

    CERN Document Server

    Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T

    1994-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.

  16. Analysis of crystallite size and microdeformation crystal lattice the tungsten carbide milling in mill high energy

    International Nuclear Information System (INIS)

    Silva, F.T. da; Nunes, M.A.M.; Souza, C.P. de; Gomes, U.U.

    2010-01-01

    The tungsten carbide (WC) has wide application due to its properties like high melting point, high hardness, wear resistance, oxidation resistance and good electrical conductivity. The microstructural characteristics of the starting powders influences the final properties of the carbide. In this context, the use of nanoparticle powders is an efficient way to improve the final properties of the WC. The high energy milling stands out from other processes to obtain nanometric powders due to constant microstructural changes caused by this process. Therefore, the objective is to undertake an analysis of microstructural characteristics on the crystallite size and microdeformations of the crystal lattice using the technique of X-ray diffraction (XRD) using the Rietveld refinement. The results show an efficiency of the milling process to reduce the crystallite size, leading to a significant deformation in the crystal lattice of WC from 5h milling. (author)

  17. Lattice gauge theories

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Hasenfratz, P.

    1985-01-01

    This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future

  18. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Butt, Imran A; Wattis, Jonathan A D

    2006-01-01

    Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2 + 1)-dimensional cubic nonlinear Schroedinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalized (2 + 1)-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does not go to zero with the amplitude; we find that the energy threshold is maximized by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached

  19. Simulations to study the static polarization limit for RHIC lattice

    Science.gov (United States)

    Duan, Zhe; Qin, Qing

    2016-01-01

    A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)

  20. Large-amplitude superexchange of high-spin fermions in optical lattices

    International Nuclear Information System (INIS)

    Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören

    2013-01-01

    We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)

  1. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  2. Report of the workshop on realistic SSC lattices

    International Nuclear Information System (INIS)

    1985-10-01

    A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  3. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  4. Effect of loading mode on lattice strain measurements via neutron diffraction

    International Nuclear Information System (INIS)

    Skippon, T.; Clausen, B.; Daymond, M.R.

    2013-01-01

    The study of lattice strain evolution during uniaxial deformation via in situ neutron diffraction is a well established technique for characterizing the deformation behavior of metals. However, the relatively low flux of neutron facilities results in count times on the order of several minutes, requiring experimenters to choose between either applying a very slow strain rate, or loading the sample incrementally rather than continuously. Here we investigate the effects on lattice strain data obtained by using stress, strain, and position controlled incremental loading, as well as continuous loading, on samples of Zircaloy-2 under uniaxial compression. It was found that both qualitative and quantitative differences arise in the lattice strain behavior of certain grain families, particularly {101 ¯ 0} and {112 ¯ 0}, while other grain families show no discernible effect. The differences in lattice strain evolution brought on by the variation in loading modes are believed to be the result of thermally activated dislocation motion

  5. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  6. Thermodynamics of lattice QCD with 2 sextet quarks on Nt=8 lattices

    International Nuclear Information System (INIS)

    Kogut, J. B.; Sinclair, D. K.

    2011-01-01

    We continue our lattice simulations of QCD with 2 flavors of color-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the β function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This nontrivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it ''walks.'' We are simulating the lattice version of this theory with staggered quarks at finite temperature, studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (N t ) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with N t =4, 6 show both transitions move to weaker couplings as N t increases consistent with walking behavior. In this paper we extend these calculations to N t =8. Although both transitions again move to weaker couplings, the change in the coupling at the chiral transition from N t =6 to N t =8 is appreciably smaller than that from N t =4 to N t =6. This indicates that at N t =4, 6 we are seeing strong-coupling effects and that we will need results from N t >8 to determine if the chiral-transition coupling approaches zero as N t →∞, as needed for the theory to walk.

  7. Size and shape dependent lattice parameters of metallic nanoparticles

    International Nuclear Information System (INIS)

    Qi, W. H.; Wang, M. P.

    2005-01-01

    A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures

  8. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  9. DNA-linked NanoParticle Lattices with Diamond Symmetry: Stability, Shape and Optical Properties

    Science.gov (United States)

    Emamy, Hamed; Tkachenko, Alexei; Gang, Oleg; Starr, Francis

    The linking of nanoparticles (NP) by DNA has been proven to be an effective means to create NP lattices with specific order. Lattices with diamond symmetry are predicted to offer novel photonic properties, but self-assembly of such lattices has proven to be challenging due to the low packing fraction, sensitivity to bond orientation, and local heterogeneity. Recently, we reported an approach to create diamond NP lattices based on the association between anisotropic particles with well-defined tetravalent DNA binding topology and isotropically functionalized NP. Here, we use molecular dynamics simulations to evaluate the Gibbs free energy of these lattices, and thereby determine the stability of these lattices as a function of NP size and DNA stiffness. We also predict the equilibrium shape for the cubic diamond crystallite using the Wulff construction method. Specifically, we predict the equilibrium shape using the surface energy for different crystallographic planes. We evaluate surface energy directly form molecular dynamics simulation, which we correlate with theoretical estimates from the expected number of broken DNA bonds along a facet. Furthermore we study the optical properties of this structure, e.g optical bandgap.

  10. Monte Carlo numerical study of lattice field theories

    International Nuclear Information System (INIS)

    Gan Cheekwan; Kim Seyong; Ohta, Shigemi

    1997-01-01

    The authors are interested in the exact first-principle calculations of quantum field theories which are indeed exact ones. For quantum chromodynamics (QCD) at low energy scale, a nonperturbation method is needed, and the only known such method is the lattice method. The path integral can be evaluated by putting a system on a finite 4-dimensional volume and discretizing space time continuum into finite points, lattice. The continuum limit is taken by making the lattice infinitely fine. For evaluating such a finite-dimensional integral, the Monte Carlo numerical estimation of the path integral can be obtained. The calculation of light hadron mass in quenched lattice QCD with staggered quarks, 3-dimensional Thirring model calculation and the development of self-test Monte Carlo method have been carried out by using the RIKEN supercomputer. The motivation of this study, lattice QCD formulation, continuum limit, Monte Carlo update, hadron propagator, light hadron mass, auto-correlation and source size dependence are described on lattice QCD. The phase structure of the 3-dimensional Thirring model for a small 8 3 lattice has been mapped. The discussion on self-test Monte Carlo method is described again. (K.I.)

  11. Determination of space-energy distribution of resonance neutrons in reactor lattice cell and calculation of resonance integrals

    International Nuclear Information System (INIS)

    Zmijarevic, I.

    1980-01-01

    Space-energy distribution of resonance neutrons in reactor lattice cell was determined by solving the Boltzmann equation by spherical harmonics method applying P-3 approximation. Computer code SPLET used for these calculations is described. Resonance absorption and calculation of resonance integrals are described as well. Effective resonance integral values for U-238 resonance at 6.7 Ev are calculated for heavy water reactor cell with metal, oxide and carbide fuel elements

  12. London limit for lattice model of superconductor

    International Nuclear Information System (INIS)

    Ktitorov, S.A.

    2004-01-01

    The phenomenological approach to the strong-bond superconductor, which is based on the Ginzburg-Landau equation in the London limit, is considered. The effect of the crystalline lattice discreteness on the superconductors electromagnetic properties is studied. The classic problems on the critical current and magnetic field penetration are studied within the frames of the lattice model for thin superconducting films. The dependence of the superconducting current on the thin film order parameter is obtained. The critical current dependence on the degree of deviation from the continual approximation is calculated [ru

  13. Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices

    International Nuclear Information System (INIS)

    AD Wattis, Jonathan; M James, Lauren

    2014-01-01

    We consider the two-dimensional Fermi–Pasta–Ulam lattice with hexagonal honeycomb symmetry, which is a Hamiltonian system describing the evolution of a scalar-valued quantity subject to nearest neighbour interactions. Using multiple-scale analysis we reduce the governing lattice equations to a nonlinear Schrödinger equation coupled to a second equation for an accompanying slow mode. Two cases in which the latter equation can be solved and so the system decoupled are considered in more detail: firstly, in the case of a symmetric potential, we derive the form of moving breathers. We find an ellipticity criterion for the wavenumbers of the carrier wave, together with asymptotic estimates for the breather energy. The minimum energy threshold depends on the wavenumber of the breather. We find that this threshold is locally maximized by stationary breathers. Secondly, for an asymmetric potential we find stationary breathers, which, even with a quadratic nonlinearity generate no second harmonic component in the breather. Plots of all our findings show clear hexagonal symmetry as we would expect from our lattice structure. Finally, we compare the properties of stationary breathers in the square, triangular and honeycomb lattices. (paper)

  14. Representations of the Virasoro algebra from lattice models

    International Nuclear Information System (INIS)

    Koo, W.M.; Saleur, H.

    1994-01-01

    We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))

  15. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....

  16. Lattices applied to coding for reliable and secure communications

    CERN Document Server

    Costa, Sueli I R; Campello, Antonio; Belfiore, Jean-Claude; Viterbo, Emanuele

    2017-01-01

    This book provides a first course on lattices – mathematical objects pertaining to the realm of discrete geometry, which are of interest to mathematicians for their structure and, at the same time, are used by electrical and computer engineers working on coding theory and cryptography. The book presents both fundamental concepts and a wealth of applications, including coding and transmission over Gaussian channels, techniques for obtaining lattices from finite prime fields and quadratic fields, constructions of spherical codes, and hard lattice problems used in cryptography. The topics selected are covered in a level of detail not usually found in reference books. As the range of applications of lattices continues to grow, this work will appeal to mathematicians, electrical and computer engineers, and graduate or advanced undergraduate in these fields.

  17. A transitionless lattice for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Ng, K.Y.; Trbojevic, D.; Lee, S.Y.

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the γ t is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs

  18. Strong dynamics and lattice gauge theory

    Science.gov (United States)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  19. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  20. Dynamics of surface solitons at the edge of chirped optical lattices

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2007-01-01

    We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it

  1. Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice

    Science.gov (United States)

    Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig

    2016-05-01

    We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.

  2. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  3. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  4. Scaled lattice fermion fields, stability bounds, and regularity

    Science.gov (United States)

    O'Carroll, Michael; Faria da Veiga, Paulo A.

    2018-02-01

    We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free

  5. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    International Nuclear Information System (INIS)

    Beloy, K.

    2010-01-01

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  6. An efficient Korringa-Kohn-Rostoker method for ''complex'' lattices

    International Nuclear Information System (INIS)

    Yussouff, M.; Zeller, R.

    1980-10-01

    We present a modification of the exact KKR-band structure method which uses (a) a new energy expansion for structure constants and (b) only the reciprocal lattice summation. It is quite efficient and particularly useful for 'complex' lattices. The band structure of hexagonal-close-packed Beryllium at symmetry points is presented as an example of this method. (author)

  7. Entire solutions for bistable lattice differential equations with obstacles

    CERN Document Server

    Hoffman, Aaron; Vleck, E S Van

    2018-01-01

    The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by "holes") are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.

  8. Development of a continuous energy version of KENO V.a

    International Nuclear Information System (INIS)

    Dunn, M.E.; Bentley, C.L.; Goluoglu, S.; Paschal, L.S.; Dodds, H.L.

    1997-01-01

    KENO V.a is a multigroup Monte Carlo code that solves the Boltzmann transport equation and is used extensively in the nuclear criticality safety community to calculate the effective multiplication factor k eff of systems containing fissile material. Because of the smaller amount of disk storage and CPU time required in calculations, multigroup approaches have been preferred over continuous energy (point) approaches in the past to solve the transport equation. With the advent of high-performance computers, storage and CPU limitations are less restrictive, thereby making continuous energy methods viable for transport calculations. Moreover, continuous energy methods avoid many of the assumptions and approximations inherent in multigroup methods. Because a continuous energy version of KENO V.a does not exist, the objective of the work is to develop a new version of KENO V.a that utilizes continuous energy cross sections. Currently, a point cross-section library, which is based on a raw continuous energy cross-section library such as ENDF/B-V is not available for implementation in KENO V.a; however, point cross-section libraries are available for MCNP, another widely used Monte Carlo transport code. Since MCNP cross sections are based on ENDF data and are readily available, a new version of KENO V.a named PKENO V.a has been developed that performs the random walk using MCNP cross sections. To utilize point cross sections, extensive modifications have been made to KENO V.a. At this point in the research, testing of the code is underway. In particular, PKENO V.a, KENO V.a, and MCNP have been used to model nine critical experiments and one subcritical problem. The results obtained with PKENO V.a are in excellent agreement with MCNP, KENO V.a, and experiments

  9. Signatures of lattice geometry in quantum and topological Hall effect

    International Nuclear Information System (INIS)

    Göbel, Börge; Mook, Alexander; Mertig, Ingrid; Henk, Jürgen

    2017-01-01

    The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE features by discussing band structures, Hall conductivities, and topological edge states for square and triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced back to the band structure without magnetic field whose properties are dictated by the lattice geometry. Based on these findings, we derive an approximation that allows us to determine the energy dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for experiments to validate our findings for the THE and—indirectly—the QHE. (paper)

  10. Scattering processes and resonances from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-01

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.

  11. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Paris-XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Morte, Michele della [CERN, Geneva (Switzerland). Physics Dept.]|[Mainz Univ. (Germany). Inst. fuer Kernphysik; Hippel, Georg von; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Mendes, Tereza [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Sao Paulo Univ. (Brazil). IFSC

    2009-02-15

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E{sub N+1}-E{sub n}) t). The gap E{sub N+1}-E{sub n} can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m{sub b} in HQET. (orig.)

  12. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    International Nuclear Information System (INIS)

    Blossier, Benoit; Mendes, Tereza; Sao Paulo Univ.

    2009-02-01

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E N+1 -E n ) t). The gap E N+1 -E n can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m b in HQET. (orig.)

  13. Liquid metal liner implosion systems with blade lattice for fusion

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1980-01-01

    In this paper, the liquid liner implosion systems with the blade lattice is proposed for the rotational stabilization of the liner inner surface which is facing a plasma in a fusion reactor. The blades are electrically conducting and inclined to the radial direction. Its major function is either acceleration or deceleration of the liner in the azimuthal direction. This system enables us to exclude the rotary mechanism for the liner rotation. In this system, the liner is formed as an annular flow of a liquid metal (the waterfall concept). Results show that there is no significant difference of the energy cost for the stabilization compared with the earlier proposed system where a liner is rotated rigidly before implosion. Furthermore, the application of the rotating blade lattice makes it possible to reduce the rotational kinetic energy required for the stabilization at turnaround, where the lattice acts as an impeller in the initial liner rotation. There is an optimum blade angle to maximize the compressed magnetic field energy inside the liner for a given driving energy. (author)

  14. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  15. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    Science.gov (United States)

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  16. An optimized ultra-fine energy group structure for neutron transport calculations

    International Nuclear Information System (INIS)

    Huria, Harish; Ouisloumen, Mohamed

    2008-01-01

    This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)

  17. Nonequilibrium self-energy functional theory. Accessing the real-time dynamics of strongly correlated fermionic lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix

    2016-07-05

    The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the

  18. Unquenched lattice upsilon spectroscopy

    International Nuclear Information System (INIS)

    Marcantonio, L.M.

    2001-03-01

    A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the

  19. Nf=2 Lattice QCD and Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.

    2006-01-01

    By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit

  20. Exotic meson decay widths using lattice QCD

    International Nuclear Information System (INIS)

    Cook, M. S.; Fiebig, H. R.

    2006-01-01

    A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm

  1. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  2. Lattice continuum and diffusional creep.

    Science.gov (United States)

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  3. Exploring photonic topological insulator states in a circuit-QED lattice

    Science.gov (United States)

    Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng

    2018-04-01

    We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.

  4. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  5. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  6. Electron-lattice Interaction and Nonlinear Excitations in Cuprate Structures

    International Nuclear Information System (INIS)

    Paulsen, J.; Eschrig, H.; Drechsler, S.L.; Malek, J.

    1995-01-01

    A low temperature lattice modulation of the chains of the YBa 2 Cu 3 O 7 is considered by deriving a Hamiltonian of electron-lattice interaction from density-functional calculations for deformed lattice and solving it for the groundstate. Hubbard-type Coulomb interaction is included. The obtained groundstate is a charge-density-wave state with a pereodicity of four lattice constants and a gap for one-electron excitations of about 1eV, sensitively depending on parameters of the Hamiltonian. There are lots of polaronic and solitonic excitations with formation energies deep in the gap, which can pin the Fermi level and thus produce again metallicity of the chain. They might also contribute to pairing of holes in adjacent CuO 2 -planes. (author)

  7. Hadronic matrix elements in the QCD on the lattice

    International Nuclear Information System (INIS)

    Altmeyer, R.

    1995-01-01

    The work describes a lattice simulation of full QCD with dynamical Kogut-Susskind fermions. We evaluated different hadronic matrix elements which are related to the static and low-energy behaviour of hadrons. The analysis was performed on a 16 3 x 24 lattice with a coupling constant of β = 5.35 and a quark mass of m = 0.010. The calculations are based on a set of 85 configurations created by using a Hybrid-Monte-Carlo algorithm. First we evaluated the mass and energy spectrum of the low-lying hadrons using local operators as well as non-local operators. As the complete spectrum of the different pion and ρ meson lattice representations has been calculated we were able to check the restoration of continuum flavor symmetry. Moreover, the determination of energies E of hadron states with non-vanishing momentum vector q made it possible to investigate the lattice dispersion function E( vector q). Another part of the presented work is the determination of mesonic decay constants which parameterise the weak decay of mesons. They are related to hadronic matrix elements of the respective quark currents and through the calculation of these matrix elements we were able to determine the decay constants f π and f ρ . Before doing so, we calculated non-perturbatively renormalization constants for the currents under consideration. The next part is the determination of hadronic coupling constants. These parameterise in an effective low-energy model the interactions of different hadrons. They are related to hadronic matrix elements whose lattice calculation can be dpme bu evaluating 3-point correlation functions. Thus we evaluted the hadronic coupling constants g ρππ and g NNπ . Finally, an investigation of the pion-nucleon σterm was done. The σterm is defined through a hadronic matrix element of a quark-antiquark operator and can thus be evaluated on the lattice via the calculation of a 3-point correlation function. As we determined the connected and the disconnected

  8. A technique for analytical calculation of observables in lattice gauge theories

    International Nuclear Information System (INIS)

    Narayanan, R.; Vranas, P.

    1990-01-01

    It is shown that the partition function for a finite lattice factorizes into terms that can be associated with each vertex in the finite lattice. This factorization property forms the basis of well defined and efficient technique developed to calculate partition functions to high accuracy, on finite lattices for gauge theories. This technique along with the expansion in finite lattices, provides a powerful means for calculating observables in lattice gauge theories. This is applied to SU(2) lattice gauge theory in four dimensions. The free energy, expectation value of a plaquette and specific heat are calculated. The results are very good in the strong coupling region, succeed in entering the weak coupling region and describe the crossover region quite well, agreeing all the way with the Monte Carlo data. (orig.)

  9. Transitionless lattices for LAMPF II

    International Nuclear Information System (INIS)

    Franczak, B.J.

    1984-10-01

    Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties

  10. New edge-centered photonic square lattices with flat bands

    Science.gov (United States)

    Zhang, Da; Zhang, Yiqi; Zhong, Hua; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R.

    2017-07-01

    We report a new class of edge-centered photonic square lattices with multiple flat bands, and consider in detail two examples: the Lieb-5 and Lieb-7 lattices. In these lattices, there are 5 and 7 sites in the unit cell and in general, the number is restricted to odd integers. The number of flat bands m in the new Lieb lattices is related to the number of sites N in the unit cell by a simple formula m =(N - 1) / 2. The flat bands reported here are independent of the pseudomagnetic field. The properties of lattices with even and odd number of flat bands are different. We consider the localization of light in such Lieb lattices. If the input beam excites the flat-band mode, it will not diffract during propagation, owing to the strong mode localization. In the Lieb-7 lattice, the beam will also oscillate during propagation and still not diffract. The period of oscillation is determined by the energy difference between the two flat bands. This study provides a new platform for investigating light trapping, photonic topological insulators, and pseudospin-mediated vortex generation.

  11. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    Science.gov (United States)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  12. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    Science.gov (United States)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  13. Influence of blocking effect and energetic disorder on diffusion in one-dimensional lattice

    International Nuclear Information System (INIS)

    Mai Thi Lan; Nguyen Van Hong; Nguyen Thu Nhan; Hoang Van Hue

    2014-01-01

    The diffusion in one-dimensional disordered lattice with Gaussian distribution of site and transition energies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and kinetic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as the mean time between two consecutive jumps, correlation factor and diffusion coefficient. The calculation shows a good agreement between analytical and simulation results for all disordered lattice types. In many - particle case, the blocking effect results in decreasing correlation factor F and average time τ jump between two consecutive jumps. With increasing the number of particles, the diffusion coefficient D M decreases for site-energy and transition-energy disordered lattices due to the F-effect affect affects stronger than τ-effect. Furthermore, the blocking effect almost is temperature independent for both lattices. (author)

  14. Parton distributions from lattice QCD with momentum smearing

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Nicosia (Cyprus). Cyprus Inst.; Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Inst. of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-01-15

    In this work we continue our effort to explore a recent proposal, which allows light-cone distributions to be extracted from purely spatial correlations, being thus accessible to lattice methods. In order to test the feasibility of this method, we present our latest results from a twisted mass lattice calculation of the flavor non-singlet momentum, helicity and transversity distributions of the nucleon. Furthermore, we apply a newly proposed momentum improved smearing, which has the potential to reach higher nucleon momenta as required for a safe matching procedure to the physical distribution functions.

  15. National Computational Infrastructure for Lattice Gauge Theory: Final Report

    International Nuclear Information System (INIS)

    Richard Brower; Norman Christ; Michael Creutz; Paul Mackenzie; John Negele; Claudio Rebbi; David Richards; Stephen Sharpe; Robert Sugar

    2006-01-01

    This is the final report of Department of Energy SciDAC Grant ''National Computational Infrastructure for Lattice Gauge Theory''. It describes the software developed under this grant, which enables the effective use of a wide variety of supercomputers for the study of lattice quantum chromodynamics (lattice QCD). It also describes the research on and development of commodity clusters optimized for the study of QCD. Finally, it provides some high lights of research enabled by the infrastructure created under this grant, as well as a full list of the papers resulting from research that made use of this infrastructure

  16. On the equivalence of continuum and lattice models for fluids

    International Nuclear Information System (INIS)

    Panagiotopoulos, Athanassios Z.

    2000-01-01

    It was demonstrated that finely discretized lattice models for fluids with particles interacting via Lennard-Jones or exponential-6 potentials have essentially identical thermodynamic and structural properties to their continuum counterparts. Grand canonical histogram reweighting Monte Carlo calculations were performed for systems with repulsion exponents between 11 and 22. Critical parameters were determined from mixed-field finite-size scaling methods. Numerical equivalence of lattice and continuous space models, within simulation uncertainties, was observed for lattices with ratio of particle diameter σ to grid spacing of 10. The lattice model calculations were more efficient computationally by factors between 10 and 20. It was also shown that Lennard-Jones and exponential-6 based models with identical critical properties can be constructed by appropriate choice of the repulsion exponent. (c) 2000 American Institute of Physics

  17. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stride, J.A. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)], E-mail: stride@ill.fr; Adams, J.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Johnson, M.R. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)

    2005-10-31

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition.

  18. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Stride, J.A.; Adams, J.M.; Johnson, M.R.

    2005-01-01

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition

  19. National Computational Infrastructure for Lattice Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  20. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  1. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  2. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  3. Intertwined Lattice Deformation and Magnetism in Monovacancy Graphene

    OpenAIRE

    Padmanabhan, Haricharan; Nanda, B. R. K.

    2016-01-01

    Using density functional calculations we have investigated the local spin moment formation and lattice deformation in graphene when an isolated vacancy is created. We predict two competing equilibrium structures: a ground state planar configuration with a saturated local moment of 1.5 $\\mu_B$, and a metastable non-planar configuration with a vanishing magnetic moment, at a modest energy expense of ~50 meV. Though non-planarity relieves the lattice of vacancy-induced strain, the planar state i...

  4. Optical-lattice Hamiltonians for relativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    Kapit, Eliot; Mueller, Erich

    2011-01-01

    We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.

  5. Calculational methods for lattice cells

    International Nuclear Information System (INIS)

    Askew, J.R.

    1980-01-01

    At the current stage of development, direct simulation of all the processes involved in the reactor to the degree of accuracy required is not an economic proposition, and this is achieved by progressive synthesis of models for parts of the full space/angle/energy neutron behaviour. The split between reactor and lattice calculations is one such simplification. Most reactors are constructed of repetitions of similar geometric units, the fuel elements, having broadly similar properties. Thus the provision of detailed predictions of their behaviour is an important step towards overall modelling. We shall be dealing with these lattice methods in this series of lectures, but will refer back from time to time to their relationship with overall reactor calculation The lattice cell is itself composed of somewhat similar sub-units, the fuel pins, and will itself often rely upon a further break down of modelling. Construction of a good model depends upon the identification, on physical and mathematical grounds, of the most helpful division of the calculation at this level

  6. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  7. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  8. Monte Carlo study of the double and super-exchange model with lattice distortion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J R; Vallejo, E; Navarro, O [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D. F. (Mexico); Avignon, M, E-mail: jrsuarez@iim.unam.m [Institut Neel, Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2009-05-01

    In this work a magneto-elastic phase transition was obtained in a linear chain due to the interplay between magnetism and lattice distortion in a double and super-exchange model. It is considered a linear chain consisting of localized classical spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins tend to align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by anti-ferromagnetic super-exchange interactions between neighbor localized spins. Additionally, lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. Phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.

  9. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  10. Lattice fermions

    Energy Technology Data Exchange (ETDEWEB)

    Randjbar-Daemi, S

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.

  11. Lattice fermions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs

  12. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  13. Spin-2 NΩ dibaryon from lattice QCD

    International Nuclear Information System (INIS)

    Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji

    2014-01-01

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error

  14. Spin-2 NΩ dibaryon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-08-15

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.

  15. China cuts energy intensity, but overall energy growth continues, report notes

    Science.gov (United States)

    Showstack, Randy

    2012-02-01

    A new report states that China has cut its energy intensity—defined as energy use per unit of economic output—by 19.1% from 2006 to 2010, reversing the previous upward trend. However, energy use and carbon emissions in the country continue to grow sharply, according to the Climate Policy Initiative's (CPI) Annual Review of Low-Carbon Development in China: 2010, the second of such reports. China nearly hit its goal of a 20% target reduction in energy intensity during that time period, which spanned the country's eleventh Five-Year Period (FYP) for social and economic development, but during that same period energy-related growth in carbon dioxide (CO2) emissions in China increased by 33.6%, from 5.15 billion tons to 6.88 billion tons, said Qi Ye, CPI's Beijing office director, at a 2 February briefing held at the Brookings Institution in Washington, D. C.

  16. Multi-meson systems in lattice QCD / Many-body QCD

    Energy Technology Data Exchange (ETDEWEB)

    Detmold, William [College of William and Mary, Williamsburg, VA (United States)

    2013-08-31

    Nuclear physics entails the study of the properties and interactions of hadrons, such as the proton and neutron, and atomic nuclei and it is central to our understanding of our world at the smallest scales. The underlying basis for nuclear physics is provided by the Standard Model of particle physics which describes how matter interacts through the strong, electromagnetic and weak (electroweak) forces. This theory was developed in the 1970s and provides an extremely successful description of our world at the most fundamental level to which it has been probed. The Standard Model has been, and continues to be, subject to stringent tests at particle accelerators around the world, so far passing without blemish. However, at the relatively low energies that are relevant for nuclear physics, calculations involving the strong interaction, governed by the equations of Quantum Chromodynamics (QCD), are enormously challenging, and to date, the only systematic way to perform them is numerically, using a framework known as lattice QCD (LQCD). In this approach, one discretizes space-time and numerically solves the equations of QCD on a space-time lattice; for realistic calculations, this requires highly optimized algorithms and cutting-edge high performance computing (HPC) resources. Progress over the project period is discussed in detail in the following subsections

  17. Light-Induced Hofstadter's Butterfly Spectrum in Optical Lattices

    International Nuclear Information System (INIS)

    Hou Jingmin

    2009-01-01

    We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser field acting on Λ-type three-level atoms. When the dimensionless parameter α, being the ratio of flux through a lattice cell to one flux quantum, is rational, the energy spectrum shows a fractal band structure, which is so-called Hofstadter's butterfly. (general)

  18. BROOKHAVEN: Lattice gauge theory symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-12-15

    Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.

  19. Effect of applied orthorhombic lattice distortion on the antiferromagnetic phase of CeAuSb2

    Science.gov (United States)

    Park, Joonbum; Sakai, Hideaki; Erten, Onur; Mackenzie, Andrew P.; Hicks, Clifford W.

    2018-01-01

    We study the response of the antiferromagnetism of CeAuSb2 to orthorhombic lattice distortion applied through in-plane uniaxial pressure. The response to pressure applied along a 〈110 〉 lattice direction shows a first-order transition at zero pressure, which shows that the magnetic order spontaneously lifts the (110 ) /(1 1 ¯0 ) symmetry of the unstressed lattice. Sufficient 〈100 〉 pressure appears to rotate the principal axes of the order from 〈110 〉 to 〈100 〉 . At low 〈100 〉 pressure, the transition at TN is weakly first order; however, it becomes continuous above a threshold 〈100 〉 pressure. We discuss the possibility that this behavior is driven by order parameter fluctuations, with the restoration of a continuous transition being a result of reducing the point-group symmetry of the lattice.

  20. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  1. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  2. Improved actions for QCD thermodynamics on the lattice

    CERN Document Server

    Beinlich, B; Laermann, E

    1996-01-01

    Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N) gauge theories with three different O(a^2) and O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (T\\rightarrow \\infty) and perform Monte Carlo simulations with improved SU(3) actions at non-zero g^2. Already on lattices with temporal extent N_\\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.

  3. Nanoscale measurements of phosphorous-induced lattice expansion in nanosecond laser annealed germanium

    Science.gov (United States)

    Boninelli, S.; Milazzo, R.; Carles, R.; Houdellier, F.; Duffy, R.; Huet, K.; La Magna, A.; Napolitani, E.; Cristiano, F.

    2018-05-01

    Laser Thermal Annealing (LTA) at various energy densities was used to recrystallize and activate amorphized germanium doped with phosphorous by ion implantation. The structural modifications induced during the recrystallization and the related dopant diffusion were first investigated. After LTA at low energy densities, the P electrical activation was poor while the dopant distribution was mainly localized in the polycrystalline Ge resulting from the anneal. Conversely, full dopant activation (up to 1 × 1020 cm-3) in a perfectly recrystallized material was observed after annealing at higher energy densities. Measurements of lattice parameters performed on the fully activated structures show that P doping results in a lattice expansion, with a perpendicular lattice strain per atom βPs = +0.7 ± 0.1 Å3. This clearly indicates that, despite the small atomic radius of P compared to Ge, the "electronic contribution" to the lattice parameter modification (due to the increased hydrostatic deformation potential in the conduction band of P doped Ge) is larger than the "size mismatch contribution" associated with the atomic radii. Such behavior, predicted by theory, is observed experimentally for the first time, thanks to the high sensitivity of the measurement techniques used in this work.

  4. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  5. Topological color codes and two-body quantum lattice Hamiltonians

    Science.gov (United States)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the

  6. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.

    1996-01-01

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined

  7. Kink dynamics in a topological φ4 lattice

    Science.gov (United States)

    Adib, A. B.; Almeida, C. A. S.

    2001-09-01

    Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting lattice preserves the topological (Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no Peierls-Nabarro barrier even for large spatial discretizations (h~1.0). It was then suggested that these ``topological discrete systems'' are a natural choice for the numerical study of continuum kink dynamics. Giving particular emphasis to the φ4 theory, we numerically investigate kink-antikink scattering and breather formation in these topological lattices. Our results indicate that, even though these systems are quite accurate for studying free kinks in coarse lattices, for legitimate dynamical kink problems the accuracy is rather restricted to fine lattices (h~0.1). We suggest that this fact is related to the breaking of the Bogomol'nyi bound during the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi argument. We conclude, therefore, that these lattices are not suitable for the study of more general kink dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

  8. MVP/GMVP 2: general purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki

    2005-06-01

    In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two vectorized Monte Carlo codes MVP and GMVP have been developed at JAERI. MVP is based on the continuous energy model and GMVP is on the multigroup model. Compared with conventional scalar codes, these codes achieve higher computation speed by a factor of 10 or more on vector super-computers. Both codes have sufficient functions for production use by adopting accurate physics model, geometry description capability and variance reduction techniques. The first version of the codes was released in 1994. They have been extensively improved and new functions have been implemented. The major improvements and new functions are (1) capability to treat the scattering model expressed with File 6 of the ENDF-6 format, (2) time-dependent tallies, (3) reaction rate calculation with the pointwise response function, (4) flexible source specification, (5) continuous-energy calculation at arbitrary temperatures, (6) estimation of real variances in eigenvalue problems, (7) point detector and surface crossing estimators, (8) statistical geometry model, (9) function of reactor noise analysis (simulation of the Feynman-α experiment), (10) arbitrary shaped lattice boundary, (11) periodic boundary condition, (12) parallelization with standard libraries (MPI, PVM), (13) supporting many platforms, etc. This report describes the physical model, geometry description method used in the codes, new functions and how to use them. (author)

  9. Lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1982-01-01

    After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)

  10. Lattice potential energies and thermochemical properties of triethylammonium halides (Et3NHX) (X = Cl, Br, and I)

    International Nuclear Information System (INIS)

    Liu Yupu; Tan Zhicheng; Di Youying; Xing Yiting; Zhang Peng

    2012-01-01

    Highlights: ► The crystal structures of (Et 3 NHX) (X = Cl, Br, and I) were determined. ► Lattice potential energies and ionic radius of the common cation were obtained. ► Molar enthalpies of dissolution at infinite dilution were derived. ► Relative partial molar enthalpies were derived. ► Hydration enthalpy of Et 3 NH + was calculated. - Abstract: A series of triethylammonium halides (Et 3 NHCl, Et 3 NHBr, and Et 3 NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et 3 NH + was calculated to be ΔH + = −(150.386 ± 4.071) kJ · mol −1 by designing a thermochemical cycle.

  11. Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2015-09-01

    Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.

  12. Ghost circles in lattice Aubry-Mather theory

    Science.gov (United States)

    Mramor, Blaz; Rink, Bob

    Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.

  13. Energy flow around a moving dislocation

    International Nuclear Information System (INIS)

    Koizumi, H; Kirchner, H O K

    2009-01-01

    A dislocation moving in a lattice emits lattice waves. We study the energy flow accompanying the lattice wave emission in a molecular dynamics situation. About two thirds of the static free energy are emitted as lattice waves from the moving dislocation. Work done by the region around the dislocation helps to initiate the motion from the unstable equilibrium state under a small applied stress, or to compensate the energy emitted as lattice waves when the dislocation makes a long distance motion under a larger stress.

  14. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  15. Dissipation of the electronic excitation energy in fluorides with different type of a crystal lattice

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.

    2004-01-01

    Full text: In this paper we present results of comparison of efficiency creations of primary defects in crystals of fluorides of two different lattice structures: stone salt - LiF and rutile MgF 2 . We have used the methods with nanosecond time-resolved of pulse spectroscopy and found laws of creation and evolution self-trapped exciton (STE) and the F centers in a temperature range from 12.5 to 500 K and a time interval from 10 -8 to 10 -1 s after the ending of influence of a pulse electron. The density of excitation of crystals in a pulse is no more than 0.1 J·cm -3 , average energy electrons made 200 keV, duration electron pulse - 7 ns. It is established, that in crystal LiF under action of radiation are created STE two types which have various spectral-kinetic parameters absorption and emission transitions, various values of activation energy of processes of a post-industrial relaxation and different character of temperature dependences of creation efficiency under action electron pulse. In the field of low temperatures (12.5 K) created on center STE has absorption bands on 5.5 and 5.1 eV and emission band on 5.8 eV. Off-center STE has absorption on 5.3 and 4.75 eV and emission on 4.4 eV bands and are created in the interval 12.5-170 K with peak efficiency h area 60 K. In crystal MgF 2 at low temperatures (20 K) under action of radiation one STE with a nucleus occupying off-center configuration, having luminescence band on 3.2 eV and a series absorption transitions in area 4-5.5 eV is created. Concurrently with STE in both crystals under action of a pulse electron the F-centers with efficiency, not dependent on temperature of a crystal in area 20-100 K are created. There are two alternative processes under action of an irradiation with growth of temperature higher 100 K: reducing of STE creation and increasing of F centers creation. In both crystals quenching temperature of luminescence STE at T>60 K which is not accompanied by growth of efficiency of creation

  16. Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.

    Science.gov (United States)

    Huang, Ran

    The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.

  17. Interaction between a dark spot and a two-dimensional nonlinear photonic lattice with fully incoherent white light

    International Nuclear Information System (INIS)

    Liu, Zhaohong; Liu, Simin; Guo, Ru; Song, Tao; Zhu, Nan

    2007-01-01

    We study experimentally the interaction of a dark spot with a nonlinear photonic lattice with fully incoherent white light emitted from an incandescent bulb in the self-defocussing photovoltaic media when the dark spot is aimed at different positions of lattices with different lattice spacing. In this case a host of novel phenomena is demonstrated, including dark spot induced lattice dislocation-deformation, the annihilation of the dark spot and so on. Results demonstrate that the interaction between incoherent dark spot and photonic lattice is always attraction and the large-spacing photonic lattice is analogous to the continuous medium

  18. A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2010-01-01

    We propose a new method for discretizing the time variable in integrable lattice systems while maintaining the locality of the equations of motion. The method is based on the zero-curvature (Lax pair) representation and the lowest-order 'conservation laws'. In contrast to the pioneering work of Ablowitz and Ladik, our method allows the auxiliary dependent variables appearing in the stage of time discretization to be expressed locally in terms of the original dependent variables. The time-discretized lattice systems have the same set of conserved quantities and the same structures of the solutions as the continuous-time lattice systems; only the time evolution of the parameters in the solutions that correspond to the angle variables is discretized. The effectiveness of our method is illustrated using examples such as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger system) and the lattice Heisenberg ferromagnet model. For the modified Volterra lattice, we also present its ultradiscrete analogue.

  19. Unified derivation of the various definitions of lattice cell diffusion coefficients

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1978-01-01

    The various definitions of lattice cell diffusion coefficients are discussed within the context of a one-dimensional slab lattice in one energy group. It is shown how each definition, although originally derived in its own particular way, can be derived from a single approach. This makes clear the differences between, and the advantages of, the various definitions

  20. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  1. On the idea of low-energy nuclear reactions in metallic lattices by producing neutrons from protons capturing "heavy" electrons

    Science.gov (United States)

    Tennfors, Einar

    2013-02-01

    The present article is a critical comment on Widom and Larsens speculations concerning low-energy nuclear reactions (LENR) based on spontaneous collective motion of protons in a room temperature metallic hydride lattice producing oscillating electric fields that renormalize the electron self-energy, adding significantly to the effective electron mass and enabling production of low-energy neutrons. The frequency and mean proton displacement estimated on the basis of neutron scattering from protons in palladium and applied to the Widom and Larsens model of the proton oscillations yield an electron mass enhancement less than one percent, far below the threshold for the proposed neutron production and even farther below the mass enhancement obtained by Widom and Larsen assuming a high charge density. Neutrons are not stopped by the Coulomb barrier, but the energy required for the neutron production is not low.

  2. Phase diagram and Chiral Magnetic Effect in Dirac Semimetals from Lattice Simulation

    Directory of Open Access Journals (Sweden)

    Boyda D.L.

    2018-01-01

    Full Text Available Dirac Semimetals Na3Bi and Cd3As2 are recently discovered materials, which low energy electronic spectrum is described by two flavours of massless 3+1D fermions. In order to study electronic properties of these materials we formulated lattice field theory with rooted staggered fermions on anisotropic lattice. It is shown that in the limit of zero temporal lattice spacing this theory reproduces effective theory of Dirac semimetals. Using the lattice field theory we study the phase diagram of Dirac semimetals in the plane effective coupling constant - Fermi velocity anisotropy. We also measure conductivity of Dirac Semimetals within lattice field theory in external magnetic field. Our results confirm the existence of Chiral Magnetic Effect in Dirac Semimetals.

  3. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  4. Scattering phases for meson and baryon resonances on general moving-frame lattices

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Lage, M.; Rusetsky, A. [Bonn Univ. (Germany). Helmholtz-Inst. fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Meissner, U.G. [Bonn Univ. (Germany). Helmholtz-Inst. fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Forschungszentrum Juelich (Germany). Juelich Center for Hadron Physics and JARA - High Performance Computing; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics

    2012-06-15

    A proposal by Luescher enables one to compute the scattering phases of elastic two-body systems from the energy levels of the lattice Hamiltonian in a finite volume. In this work we generalize the formalism to S-, P- and D-wave meson and baryon resonances, and general total momenta. Employing nonvanishing momenta has several advantages, among them making a wider range of energy levels accessible on a single lattice volume and shifting the level crossing to smaller values of m{sub {pi}}L.

  5. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard [Boston U.; Christ, Norman [Columbia U.; DeTar, Carleton [Utah U.; Edwards, Robert [Jefferson Lab; Mackenzie, Paul [Fermilab

    2017-10-30

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  6. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Science.gov (United States)

    Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul

    2018-03-01

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  7. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Directory of Open Access Journals (Sweden)

    Brower Richard

    2018-01-01

    Full Text Available In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020’s. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  8. Area of Lattice Polygons

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  9. Spaces of continuous functions

    CERN Document Server

    Groenewegen, G L M

    2016-01-01

    The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given. Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem. The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.

  10. Manipulation of single neutral atoms in optical lattices

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.

    2006-01-01

    We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices

  11. Effects of radiation damage on the silicon lattice

    Science.gov (United States)

    Dumas, Katherine A.; Lowry, Lynn; Russo, O. Louis

    1987-01-01

    Silicon was irradiated with both proton and electron particle beams in order to investigate changes in the structural and optical properties of the lattice as a result of the radiation damage. Lattice expansions occurred when large strain fields (+0.34 percent) developed after 1- and 3-MeV proton bombardment. The strain was a factor of three less after 1-MeV electron irradiation. Average increases of approximately 22 meV in the 3.46-eV interband energy gap and 14 meV in the Lorentz broadening parameter were measured after the electron irradiation.

  12. Electronic properties of disordered graphene antidot lattices

    DEFF Research Database (Denmark)

    Yuan, Shengjun; Roldán, Rafael; Jauho, Antti-Pekka

    2013-01-01

    Regular nanoscale perforations in graphene (graphene antidot lattices, GALs) are known to lead to a gap in the energy spectrum, thereby paving a possible way towards many applications. This theoretical prediction relies on a perfect placement of identical perforations, a situation not likely to o...

  13. Monte Carlo simulation of the three-state vector Potts model on a three-dimensional random lattice

    International Nuclear Information System (INIS)

    Jianbo Zhang; Heping Ying

    1991-09-01

    We have performed a numerical simulation of the three-state vector Potts model on a three-dimensional random lattice. The averages of energy density, magnetization, specific heat and susceptibility of the system in the N 3 (N=8,10,12) lattices were calculated. The results show that a first order nature of the Z(3) symmetry breaking transition appears, as characterized by a thermal hysterisis in the energy density as well as an abrupt drop of magnetization being sharper and discontinuous with increasing of volume in the cross-over region. The results obtained on the random lattice were consistent with those obtained on the three-dimensional cubic lattice. (author). 12 refs, 4 figs

  14. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  15. Lattice gauge theory approach to quantum chromodynamics

    International Nuclear Information System (INIS)

    Kogut, J.B.

    1983-01-01

    The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed

  16. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.F., E-mail: gfsun82@gmail.com [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Bhattacharya, S. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); Dinda, G.P.; Dasgupta, A. [Center for Advanced Technologies, Focus: Hope, Detroit, MI, 48238 (United States); Mazumder, J. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-06-15

    Highlights: {yields} Orientation relationships among phases in the DMD are given. {yields} Martensite lattice parameters increased with laser specific energy. {yields} Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  17. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    International Nuclear Information System (INIS)

    Sun, G.F.; Bhattacharya, S.; Dinda, G.P.; Dasgupta, A.; Mazumder, J.

    2011-01-01

    Highlights: → Orientation relationships among phases in the DMD are given. → Martensite lattice parameters increased with laser specific energy. → Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  18. The similarity of attractive and repulsive forces on a lattice

    Science.gov (United States)

    Mirahmadi, Marjan-S.; Fatollahi, Amir H.; Khorrami, Mohammad

    2015-07-01

    On a lattice, as the momentum space is compact, the kinetic energy is bounded not only from below but also from above. It is shown that this somehow removes the distinction between repulsive and attractive forces. In particular, it is seen that a region with attractive force would appear forbidden for states with energies higher than a certain value, while repulsive forces could develop bound-states. An explicit transformation is introduced which transforms the spectrum of a system corresponding to a repulsive force, to that of a similar system corresponding to an attractive force. Explicit numerical examples are presented for discrete energies of bound-states of a particle experiencing repulsive force by a piecewise constant potential. Finally, the parameters of a specific one-dimensional (1D) translationally invariant system on continuum are tuned so that the energy of the system resembles the kinetic energy of a system on a 1D lattice. In particular, the parameters are tuned so that while the width of the first energy band and its position are kept finite, the gap between the first energy band and the next energy band goes to infinity, so that effectively only the first energy band is relevant.

  19. Statistical Transmutation in Floquet Driven Optical Lattices.

    Science.gov (United States)

    Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex

    2015-11-06

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

  20. Neutron transmission bands in one dimensional lattices

    International Nuclear Information System (INIS)

    Monsivais, G.; Moshinsky, M.

    1999-01-01

    The original Kronig-Penney lattice, which had delta function interactions at the end of each of the equal segments, seems a good model for the motion of neutrons in a linear lattice if the strength b of the δ functions depends of the energy of the neutrons, i.e., b(E). We derive the equation for the transmission bands and consider the relations of b(E) with the R(E) function discussed in a previous paper. We note the great difference in the behavior of the bands when b(E) is constant and when it is related with a single resonance of the R function. (Author)

  1. New integrable lattice hierarchies

    International Nuclear Information System (INIS)

    Pickering, Andrew; Zhu Zuonong

    2006-01-01

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula

  2. Continuous-energy version of KENO V.a for criticality safety applications

    International Nuclear Information System (INIS)

    Dunn, Michael E.; Greene, N. Maurice; Petrie, Lester M.

    2003-01-01

    KENO V.a is a multigroup Monte Carlo code that solves the Boltzmann transport equation and is used extensively in the criticality safety community to calculate the effective multiplication factor of systems with fissionable material. In this work, a continuous-energy or pointwise version of KENO V.a has been developed by first designing a new continuous-energy cross-section format and then by developing the appropriate Monte Carlo transport procedures to sample the new cross-section format. In order to generate pointwise cross sections for a test library, a series of cross-section processing modules were developed and used to process 50 ENDF/B-6 Release 7 nuclides for the test library. Once the cross-section processing procedures were in place, a continuous-energy version of KENO V.a was developed and tested by calculating 21 critical benchmark experiments. The point KENO-calculated results for the 21 benchmarks are in agreement with calculated results obtained with the multigroup version of KENO V.a using the 238-group ENDF/B-5 and 199-group ENDF/B-6 Release 3 libraries. Based on the calculated results with the prototypic cross-section library, a continuous-energy version of the KENO V.a code has been successfully developed and demonstrated for modeling systems with fissionable material. (author)

  3. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  4. Lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Hassenfratz, P.

    1983-01-01

    It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper

  5. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  6. Lattice gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1983-04-01

    In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed

  7. Testing the standard model of particle physics using lattice QCD

    International Nuclear Information System (INIS)

    Water, Ruth S van de

    2007-01-01

    Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future

  8. q Breathers in Finite Lattices: Nonlinearity and Weak Disorder

    Science.gov (United States)

    Ivanchenko, M. V.

    2009-05-01

    Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors that could be diminished, but never excluded. We generalize the concept of q breathers—periodic orbits in nonlinear lattices, exponentially localized in the linear mode space—to the case of weak disorder, taking the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The instability threshold depends sensitively on a particular realization of disorder and can be modified by specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is discussed.

  9. Vacuum polarization and chiral lattice fermions

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-09-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs

  10. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  11. Convection-diffusion lattice Boltzmann scheme for irregular lattices

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Ernst, M.H.

    2000-01-01

    In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the

  12. Proceedings of the SLAC/KEK ATF lattice workshop

    International Nuclear Information System (INIS)

    Urakawa, Junji

    1993-04-01

    The SLAC/KEK ATF Lattice Workshop was held on December 8-11, 1992 at KEK, National Laboratory for High Energy Physics. The purpose of this workshop is to critically review the ATF lattice design for any possible improvements, and also to bring SLAC colleagues up to date on recent progress at KEK. At KEK studies on intense multi-bunch beam acceleration and emittance reduction have been actively pursued, evolving into the ATF project since 1990. In 1991 we have launched a large scale reconstruction of the experimental hall. This is to build the shielded housing for the 1.54 GeV injector linac and the test damping ring. Our plan is to begin construction of the linac in March 1993. Some results from the discussions during the Workshop have been already incorporated in the revised ATF lattice design. (J.P.N.)

  13. MCB. A continuous energy Monte Carlo burnup simulation code

    International Nuclear Information System (INIS)

    Cetnar, J.; Wallenius, J.; Gudowski, W.

    1999-01-01

    A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)

  14. Improved methods for the study of hadronic physics from lattice QCD

    International Nuclear Information System (INIS)

    Orginos, Kostas; Richards, David

    2015-01-01

    The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD. (paper)

  15. Improved methods for the study of hadronic physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-02-05

    The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.

  16. Statistical mechanics of directed models of polymers in the square lattice

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce partition functions and free energies, and then investigate these using the general framework of critical phenomena. Generating function and statistical mechanics approaches are closely related. For example, questions regarding the limiting free energy may be approached by considering the radius of convergence of a generating function, and the scaling properties of thermodynamic quantities are related to the asymptotic properties of the generating function. In this review the methods for obtaining generating functions and determining free energies in directed lattice path models of linear polymers is presented. These methods include decomposition methods leading to functional recursions, as well as the Temperley method (that is implemented by creating a combinatorial object, one slice at a time). A constant term formulation of the generating function will also be reviewed. The thermodynamic features and critical behaviour in models of directed paths may be

  17. Nucleon, Δ and Ω excited state spectra in Nf=2+1 lattice QCD

    International Nuclear Information System (INIS)

    Bulava, J.; Edwards, R.G.; Joo, B.; Richards, D.G.; Engelson, E.; Wallace, S.J.; Lin, H.W.; Morningstar, C.

    2010-04-01

    The energies of the excited states of the Nucleon, Δ and Ω and are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses m π =392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we nd reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified. (orig.)

  18. Lattices with unique complements

    CERN Document Server

    Saliĭ, V N

    1988-01-01

    The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.

  19. Field strength correlators in QCD: new fits to the lattice data

    International Nuclear Information System (INIS)

    Meggiolaro, E.

    1999-01-01

    We discuss the results obtained by fitting the lattice data of the gauge-invariant field strength correlators in QCD with some particular functions which are commonly used in the literature in some phenomenological approaches to high-energy hadron-hadron scattering. A comparison is done with the results obtained in the original fits to the lattice data. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Classical ground states of Heisenberg and X Y antiferromagnets on the windmill lattice

    Science.gov (United States)

    Jeevanesan, Bhilahari; Orth, Peter P.

    2014-10-01

    We investigate the classical Heisenberg and planar (X Y ) spin models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations, and analytical calculations, we determine the complete ground-state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate noncoplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.

  1. Continuous measurement of an atomic current

    Science.gov (United States)

    Laflamme, C.; Yang, D.; Zoller, P.

    2017-04-01

    We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.

  2. Polymers with nearest- and next nearest-neighbor interactions on the Husimi lattice

    Science.gov (United States)

    Oliveira, Tiago J.

    2016-04-01

    The exact grand-canonical solution of a generalized interacting self-avoid walk (ISAW) model, placed on a Husimi lattice built with squares, is presented. In this model, beyond the traditional interaction {ω }1={{{e}}}{ɛ 1/{k}BT} between (nonconsecutive) monomers on nearest-neighbor (NN) sites, an additional energy {ɛ }2 is associated to next-NN (NNN) monomers. Three definitions of NNN sites/interactions are considered, where each monomer can have, effectively, at most two, four, or six NNN monomers on the Husimi lattice. The phase diagrams found in all cases have (qualitatively) the same thermodynamic properties: a non-polymerized (NP) and a polymerized (P) phase separated by a critical and a coexistence surface that meet at a tricritical (θ-) line. This θ-line is found even when one of the interactions is repulsive, existing for {ω }1 in the range [0,∞ ), i.e., for {ɛ }1/{k}BT in the range [-∞ ,∞ ). Thus, counterintuitively, a θ-point exists even for an infinite repulsion between NN monomers ({ω }1=0), being associated to a coil-‘soft globule’ transition. In the limit of an infinite repulsive force between NNN monomers, however, the coil-globule transition disappears, and only NP-P continuous transition is observed. This particular case, with {ω }2=0, is also solved exactly on the square lattice, using a transfer matrix calculation where a discontinuous NP-P transition is found. For attractive and repulsive forces between NN and NNN monomers, respectively, the model becomes quite similar to the semiflexible-ISAW one, whose crystalline phase is not observed here, as a consequence of the frustration due to competing NN and NNN forces. The mapping of the phase diagrams in canonical ones is discussed and compared with recent results from Monte Carlo simulations on the square lattice.

  3. The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars

    Directory of Open Access Journals (Sweden)

    Juan Tang

    2014-01-01

    Full Text Available Purpose. The purpose of this paper is to study a class of the natural languages called the lattice-valued phrase structure languages, which can be generated by the lattice-valued type 0 grammars and recognized by the lattice-valued Turing machines. Design/Methodology/Approach. From the characteristic of natural language, this paper puts forward a new concept of the l-valued Turing machine. It can be used to characterize recognition, natural language processing, and dynamic characteristics. Findings. The mechanisms of both the generation of grammars for the lattice-valued type 0 grammar and the dynamic transformation of the lattice-valued Turing machines were given. Originality/Value. This paper gives a new approach to study a class of natural languages by using lattice-valued logic theory.

  4. Lattice design for the CEPC double ring scheme

    Science.gov (United States)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  5. Additive lattice kirigami.

    Science.gov (United States)

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  6. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Irradiation effects on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} irradiated with energetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Norito; Chimi, Yasuhiro; Iwase, Akihiro; Maeta, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuru, Koji; Michikami, Osamu

    1997-03-01

    We report an irradiation effect on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} oxide superconductors when irradiated with ions of energy ranging from 0.85 to 200 MeV. For the irradiation with low energy (0.85-2 MeV) ions, the defect production and the resultant c-axis lattice expansion were dominated by elastic collisions. On the other hand, for the irradiation with high energy (120-200 MeV) ions, the change in the c-axis lattice parameter was found to be much greater than that expected from the elastic displacement of target atoms. For high energy ion irradiation we could observe the excessive increase of c-axis lattice parameter reflecting additional production of defects which can be attributed to the electronic excitation. The large increase in c-axis lattice parameter due to high energy ion irradiation should be taken into account for the study on the interaction between vortices and irradiation-induced defects. (author)

  8. Order-disorder transitions in lattice gases with annealed reactive constraints

    Science.gov (United States)

    Dudka, Maxym; Bénichou, Olivier; Oshanin, Gleb

    2018-04-01

    We study equilibrium properties of catalytically-activated reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential μ and react when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: in the Model I some fraction p of the bonds connecting neighbouring sites possesses special catalytic properties such that any two As appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction p of the adsorption sites possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of annealed disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability p, we provide an exact solution for both models for the interior of an infinitely large Cayley tree—the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: for the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of p.

  9. Renormalisation-group specific heat of the square lattice Potts ferromagnet

    International Nuclear Information System (INIS)

    Martin, H.O.; Tsallis, C.

    1982-01-01

    The free and internal energies and specific heat of the q-state Potts ferromagnet are discussed. A real space renormalisation group approach is presented which recovers a considerable amount of exact particular results for all dimensionalities (hypercubic lattices). The square lattice case is calculated in detail by using self-dual clusters (which provide the exact critical point for all q). Comparison with Onsager results (q=2) is satisfactory; the general tendencies for q different 2 (1 [pt

  10. The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces

    International Nuclear Information System (INIS)

    Durakanoglu, S.

    2004-01-01

    Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient

  11. Spectroscopy of doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College, Dublin

    2013-11-01

    We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) Ⓧ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental Bc meson mass, we predict the mass splittings of B*c-Bc to be about 80 ± 8 MeV and mΩccb=8050±10 MeV.

  12. Wilson Dslash Kernel From Lattice QCD Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.

  13. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  14. Finite-lattice-spacing corrections to masses and g factors on a lattice

    International Nuclear Information System (INIS)

    Roskies, R.; Wu, J.C.

    1986-01-01

    We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice

  15. Monte Carlo simulation of lattice bosons in three dimensions

    International Nuclear Information System (INIS)

    Blaer, A.; Han, J.

    1992-01-01

    We present an algorithm for calculating the thermodynamic properties of a system of nonrelativistic bosons on a three-dimensional spatial lattice. The method, which maps the three-dimensional quantum system onto a four-dimensional classical system, uses Monte Carlo sampling of configurations in either the canonical or the grand canonical ensemble. Our procedure is applicable to any system of lattice bosons with arbitrary short-range interactions. We test the algorithm by computing the temperature dependence of the energy, the heat capacity, and the condensate fraction of the free Bose gas

  16. ICT energy efficiency in higher education. Continuous measurement and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ter Hofte, H. [Novay, Enschede (Netherlands)

    2011-11-15

    Power consumption of information and communications technology (ICT) is rising rapidly worldwide. Reducing (the growth in) energy demand helps to achieve sustainability goals in the area of energy resource depletion, energy security, economy, and ecology. Various governments and industry consortia have set out policies and agreements to reduce the (growth in) demand for energy. In the MJA3 agreements in the Netherlands, various organizations, including all 14 universities and 39 universities of applied sciences pledged to achieve 30% increase in energy efficiency in 2020 compared to 2005. In this report, we argue that using the number of kilowatt-hours of final electricity used for ICT per enrolled student per day (kWh/st/d), should be used as the primary metric for ICT energy efficiency in higher education. For other uses of electricity than ICT in higher education, we express electricity use in kilowatthours per person per day (kWh/p/d). Applying continuous monitoring and management of ICT energy is one approach one could take to increase ICT energy efficiency in education. In households, providing direct (i.e. real-time) feedback about energy use typically results in 5-15% energy savings, whereas indirect feedback (provided some time after consumption occurs), results in less energy savings, typically 0-10%. Continuous measurement of ICT electricity use can be done in a variety of ways. In this report, we distinguish and describe four major measurement approaches: (1) In-line meters, which require breaking the electrical circuit to install the meter; (2) clamp-on-meters, which can be wrapped around a wire; (3) add-ons to existing energy meters, which use analog or digital ports of existing energy meters; (4) software-only measurement, which uses existing network interfaces, protocols and APIs. A measurement approach can be used at one or more aggregation levels: at building level (to measure all electrical energy used in a building, e.g. a datacenter); at

  17. Lattices for laymen: a non-specialist's introduction to lattice gauge theory

    International Nuclear Information System (INIS)

    Callaway, D.J.E.

    1985-01-01

    The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)

  18. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  19. Entropic multirelaxation lattice Boltzmann models for turbulent flows

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  20. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  1. Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers

    Directory of Open Access Journals (Sweden)

    J. Y. Xie

    2013-01-01

    Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.

  2. Apiary B Factory lattice design

    International Nuclear Information System (INIS)

    Donald, M.H.R.; Garren, A.A.

    1991-04-01

    The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab

  3. Quantum concept of the rearrangement of a crystal lattice

    International Nuclear Information System (INIS)

    Gureev, M.D.; Mednikov, S.I.

    1995-01-01

    Using quantum considerations based on the concept of lattice rearrangement waves, we carried out an analysis of processes of rearrangement of a crystal lattice occurring on a moving front (interface) of crystal rearrangement. For the introduction and quantization of these waves we use the method of acoustomechanical analogy and the Sommerfeld quantum conditions. We calculate the energies and the propagation velocities of the lattice rearrangement waves. Along with quanta having a certain momentum, quanta that have a certain angular momentum are introduced into consideration. On the basis of the concepts developed, we suggest a new expression for calculating the probability of thermofluctuational processes in a crystal. We perform a numerical analysis of the rate of growth of the γ-phase in iron in the process of α-γ-conversion. Satisfactory agreement with experiment is obtained. We discuss the limitations and prospects of further development of the concept suggested. For direct experimental verification of the concept we propose to investigate the diffraction of electrons and other particles on the lattice rearrangement waves, i.e., in the process of phase conversions or disintegration of crystals

  4. Lattice design of beam transport system of FELI

    International Nuclear Information System (INIS)

    Miyauchi, Y.; Koga, A.; Morii, Y.; Sato, S.; Keishi, T.; Tomimasu, T.

    1994-01-01

    A plan of lasing wide range FEL (Free Electron Laser) is in progress at FELI. For this purpose, an S-band linac accelerator system of four output energy levels is under construction. This paper describes the lattice design of its beam transport (BT) system. (author)

  5. Fluctuating local field method probed for a description of small classical correlated lattices

    Science.gov (United States)

    Rubtsov, Alexey N.

    2018-05-01

    Thermal-equilibrated finite classical lattices are considered as a minimal model of the systems showing an interplay between low-energy collective fluctuations and single-site degrees of freedom. Standard local field approach, as well as classical limit of the bosonic DMFT method, do not provide a satisfactory description of Ising and Heisenberg small lattices subjected to an external polarizing field. We show that a dramatic improvement can be achieved within a simple approach, in which the local field appears to be a fluctuating quantity related to the low-energy degree(s) of freedom.

  6. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  7. Lattice QCD and b Physics - a 2006 Update

    International Nuclear Information System (INIS)

    Davies, C.T.H.

    2007-01-01

    Realistic lattice QCD calculations, including the effects of up, down and strange sea quarks, are maturing and continued comparison against experiment is consolidating the confidence we can place in the results. I will review in particular the latest results in bottom and charm physics and what the near future holds for the numbers needed for the B physics programme

  8. Exact compact breather-like solutions of two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Sarkar, Ranja; Dey, Bishwajyoti

    2006-01-01

    We demonstrate that two-dimensional Fermi-Pasta-Ulam lattice support exact discrete compact breather-like solutions. We also find exact compact breather solutions of the same lattice in presence of long-range interaction with r -s dependence on the distance in the continuum limit. The usefulness of these solutions for energy localization and transport in various physical systems are discussed. (letter to the editor)

  9. Optimised Dirac operators on the lattice. Construction, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2006-11-15

    We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)

  10. Optimised Dirac operators on the lattice: construction, properties and applications

    International Nuclear Information System (INIS)

    Bietenholz, Wolfgang

    2006-12-01

    We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)

  11. Optimised Dirac operators on the lattice. Construction, properties and applications

    International Nuclear Information System (INIS)

    Bietenholz, W.; Deutsches Elektronen-Synchrotron

    2006-11-01

    We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)

  12. Optimised Dirac operators on the lattice: construction, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Humbolt-Universitaet zu Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing (NIC)

    2006-12-15

    We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)

  13. Modeling of the (liquid + liquid) equilibrium of polydisperse hyperbranched polymer solutions by lattice-cluster theory

    International Nuclear Information System (INIS)

    Enders, Sabine; Browarzik, Dieter

    2014-01-01

    Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region

  14. Transverse momentum distributions inside the nucleon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Musch, Bernhard Ulrich

    2009-05-29

    Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)

  15. Coherent lattice vibrations in superconductors

    International Nuclear Information System (INIS)

    Kadin, Alan M.

    2008-01-01

    A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed

  16. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  17. Continuous Energy Photon Transport Implementation in MCATK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pritchett-Sheats, Lori A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  18. Renormalization of Supersymmetric QCD on the Lattice

    Science.gov (United States)

    Costa, Marios; Panagopoulos, Haralambos

    2018-03-01

    We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.

  19. Energy-balance check for continuous energy cross section library CENACE-1.0

    International Nuclear Information System (INIS)

    Zhao Qiujuan; Wu Haicheng; Ge Zhigang

    2014-01-01

    In order to verify the reliability of the multiple-temperature continuous energy cross section library CENACE-1.0 when used for calculating nuclear heating in reactor core, NJOY99/HEATR module and auxiliary code chkACEheat developed locally were used to perform energy-balance check for all materials in the library. The test results show that the pass rate of KERMA factors and heat production cross sections of the CENACE-1.0 library is better than that of the other ACE libraries used as comparison. However, unreasonable KERMA factors still exist in various evaluation libraries, and methods to directly revise the calculation results of KERMA factors need to be developed. (authors)

  20. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  1. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  2. Safety research in the field of energy production. Plan for continued Nordic projects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, P E [Statens Vattenfallsverk, Stockholm (Sweden); Berg, J [Institutt for Atomenergi, Kjeller (Norway); Eckered, T [Statens Kaernkraftinspektion, Stockholm (Sweden)

    1980-01-01

    NGS, an ad hoc group of the Nordic Co-ordination Committee for Atomic Energy, has prepared this survey of proposed cooperative projects as a continuation of previous projects. New areas to be given priority are:- reactor safety, environmental effects in energy production and human reliability. Continued projects are:- quality assurance, radioactive waste and radioecology. (JIW)

  3. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  4. HELIOS calculations for UO2 lattice benchmarks

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1998-01-01

    Calculations for the ANS UO 2 lattice benchmark have been performed with the HELIOS lattice-physics code and six of its cross-section libraries. The results obtained from the different libraries permit conclusions to be drawn regarding the adequacy of the energy group structures and of the ENDF/B-VI evaluation for 238 U. Scandpower A/S, the developer of HELIOS, provided Los Alamos National Laboratory with six different cross section libraries. Three of the libraries were derived directly from Release 3 of ENDF/B-VI (ENDF/B-VI.3) and differ only in the number of groups (34, 89 or 190). The other three libraries are identical to the first three except for a modification to the cross sections for 238 U in the resonance range

  5. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, R; Yadav, R S [Aligarh Muslim Univ. (India). Dept. of Physics; Naqvi, T H [Z.H. Engineering Coll., Aligarh (India); Ahmed, Rais [National Council of Educational Research and Training, New Delhi (India)

    1975-12-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described.

  6. Predicting lattice thermal conductivity with help from ab initio methods

    Science.gov (United States)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  7. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    Science.gov (United States)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  8. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  9. Extrapolation of lattice gauge theories to the continuum limit

    International Nuclear Information System (INIS)

    Duncan, A.; Vaidya, H.

    1978-01-01

    The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references

  10. Lattice theory for nonspecialists

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-01-01

    These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)

  11. Spin-Orbital Quantum Liquid on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Philippe Corboz

    2012-11-01

    Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.

  12. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  13. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  14. Spinor bose gases in cubic optical lattice

    International Nuclear Information System (INIS)

    Mobarak, Mohamed Saidan Sayed Mohamed

    2014-01-01

    hyperfine spin 0 (1) is macroscopically occupied, in accordance with previous mean-field results. On the other hand, in the presence of the external magnetic field for ferromagnetic interaction, the superfluid phase does not change as the minimization of the energy implies the maximal spin value. However, when an anti-ferromagnetic interaction competes with the linear Zeeman effect, we can distinguish various ferromagnetic and anti-ferromagnetic superfluid phases within the range of validity of the Ginzburg-Landau theory. Increasing the external magnetic field yields a breaking of spin singlet pairs and a subsequent alignment of spins, thus anti-ferromagnetic phases decrease until only a ferromagnetic superfluid phase prevails. In addition, we find that the superfluid-Mott insulator phase transition is always of second order for both ferromagnetic and anti-ferromagnetic interactions. However, the transitions between different superfluid phases for an anti-ferromagnetic interaction can be both of first and second order depending on whether the respective macroscopic occupation of hyperfine spin states changes discontinuously or continuously. The established Ginzburg-Landau theory for spin-1 bosons in optical lattices will certainly be the basis for many further applications as, for instance, time-of-flight absorption pictures or collective excitations, which are of experimental importance.

  15. Benchmark calculation of APOLLO-2 and SLAROM-UF in a fast reactor lattice

    International Nuclear Information System (INIS)

    Hazama, T.

    2009-07-01

    A lattice cell benchmark calculation is carried out for APOLLO2 and SLAROM-UF on the infinite lattice of a simple pin cell featuring a fast reactor. The accuracy in k-infinity and reaction rates is investigated in their reference and standard level calculations. In the 1. reference level calculation, APOLLO2 and SLAROM-UF agree with the reference value of k-infinity obtained by a continuous energy Monte Carlo calculation within 50 pcm. However, larger errors are observed in a particular reaction rate and energy range. The major problem common to both codes is in the cross section library of 239 Pu in the unresolved energy range. In the 2. reference level calculation, which is based on the ECCO 1968 group structure, both results of k-infinity agree with the reference value within 100 pcm. The resonance overlap effect is observed by several percents in cross sections of heavy nuclides. In the standard level calculation based on the APOLLO2 library creation methodology, a discrepancy appears by more than 300 pcm. A restriction is revealed in APOLLO2. Its standard cross section library does not have a sufficiently small background cross section to evaluate the self shielding effect on 56 Fe cross sections. The restriction can be removed by introducing the mixture self-shielding treatment recently introduced to APOLLO2. SLAROM-UF original standard level calculation based on the JFS-3 library creation methodology is the best among the standard level calculations. Improvement from the SLAROM-UF standard level calculation is achieved mainly by use of a proper weight function for light or intermediate nuclides. (author)

  16. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    International Nuclear Information System (INIS)

    Kumar, S.; Prasad, R.; Yadav, R.S.; Ahmed, Rais

    1975-01-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described. (author)

  17. Light meson physics from maximally twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Baron, R.; Boucaud, P.

    2009-12-01

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N f =2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 PS < or similar 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision. (orig.)

  18. Unidirectional Transition Waves in Bistable Lattices.

    Science.gov (United States)

    Nadkarni, Neel; Arrieta, Andres F; Chong, Christopher; Kochmann, Dennis M; Daraio, Chiara

    2016-06-17

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  19. Many-body localization of bosons in optical lattices

    Science.gov (United States)

    Sierant, Piotr; Zakrzewski, Jakub

    2018-04-01

    Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.

  20. MEETING: Lattice 88

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Paul

    1989-03-15

    The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.

  1. MEETING: Lattice 88

    International Nuclear Information System (INIS)

    Mackenzie, Paul

    1989-01-01

    The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab

  2. Many-body dynamics with cold atoms and molecules in optical lattices

    International Nuclear Information System (INIS)

    Schachenmayer, J.

    2012-01-01

    Systems of cold atoms or molecules, trapped in a periodic potential formed from standing waves of laser light, provide an experimental possibility to study strongly correlated many-body lattice models, which are traditionally used in condensed matter physics. Due to the relatively weak energy scales in these ''optical lattices'' (next-neighbor tunneling energies are typically on the order of tens of Hertz), the time-scales of the dynamics in these systems is relatively slow and can be observed in experiments. Furthermore, the microscopic parameters of the models can be very well controlled by lattice laser intensities and external fields. Thus, optical lattices provide an excellent framework to study many-body quantum non-equilibrium dynamics, which on the theoretical level is the topic of this thesis. This thesis contains a study of many-body dynamics in optical lattices for both idealized isolated models and realistic models with imperfections. It is centered around four main topics: The first two topics are studies of coherent many-body dynamics. This contains explicitly: (i) an analysis of the possibility to dynamically prepare crystalline states of Rydberg atoms or polar molecules by adiabatically tuning laser parameters; and (ii) a study of the collapses and revivals of the momentum-distribution of a Bose-Einstein condensate with a fixed number of atoms, which is suddenly loaded into a deep optical lattice. The third main topic is entanglement and specifically the dynamical growth of entanglement between portions of an optical lattice in quench experiments. A method to create and measure large-scale entanglement is presented in this thesis. The fourth main topic addresses classical noise. Specifically, a system of atoms in an optical lattice, which is created from lasers with intensity fluctuations, is analyzed in this work. The noisy evolution of many-body correlation functions is studied and a method to cancel this noise in a realistic experimental setup is

  3. Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks

    CERN Document Server

    Giusti, Leonardo

    2009-01-01

    The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.

  4. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  5. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  6. Spectroscopy of doubly charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  7. ENERGY RECOVERY FOR CONTINUOUS DYEING PROCESS IN TEXTILE INDUSTRY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper ascertains and presents alteration in the energy consumption as a consequence of utilizing the low-temperature waste streams commonly used in the lines of continuous dyeing at the finishing shops of textile enterprises of Belarus. The utilization realizes through the engagement of lithium-bromide absorption heat pumps with various energy characteristics such as the heating coefficient (relative conversion ratio COPhp = 1,15; 1,7; 2,2 and the heating capacity. The latter associates with the converted heat-flow energy utilization variant with the heat-transfer medium heating system scheme (one-, twoand multistage heating. The article considers transition to previously not applied service-water preheating due to the technological acceptance of feeding higher temperature water into the dyeing machine and widening specification of the heattransfer media. The authors adduce variants of internal and external energy use and their evaluation based on the relative energy and exergy characteristics. With results of the thermodynamic analysis of the modernized production effectiveness the researchers prove that alongside with traditional and apparent interior utilization of the energy associated with the stream heat recuperation, it is advisable to widen the range of applied heat-transfer media. The transition to the service water twoand multi-stage preheating is feasible. The study shows that the existing energy supply efficiency extremely low index-numbers improve by one or two degrees. Since they are conditioned, inter alia, by the machinery design, traditional approach to energy supply and heat-medium usage as well as the enterprise whole heating system answering requirements of the bygone era of cheap energy resources. The authors examine the continuous dyeing line modernization options intending considerable investments. Preliminary economic assessment of such inevitable modernization options for the enterprise entire heat-and-power system

  8. Inelastic neutron scattering and lattice dynamics of GaPO4

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Kolesnikov, A.I.; Loong, C.K.; Jayakumar, O.D.; Kulshreshtha, S.K.

    2004-01-01

    We report here measurements of phonon spectrum and lattice dynamical calculations for GaPO 4 . The measurements in low-cristobalite phase of GaPO 4 are carried out using high-resolution medium-energy chopper spectrometer at ANL, USA in the energy transfer range 0-160 MeV. Semiempirical interatomic potential in GaPO 4 , previously determined using ab-initio calculations have been widely used in studying the phase transitions among various polymorphs. The calculated phonon spectrum using the available potential show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarisability of the oxygen atoms in the framework of the shell model. The lattice dynamical models are also exploited for calculations of various thermodynamic properties of GaPO 4 . (author)

  9. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  10. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  11. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    International Nuclear Information System (INIS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-01-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)

  12. Confinement in dually transformed U(1) lattice gauge theory

    International Nuclear Information System (INIS)

    Zach, M.

    1997-10-01

    The aim of this work is a detailed investigation of the confinement mechanism in U(1) lattice gauge theory. In the first chapters we give a review on the definition of compact Abelian gauge theory on space-time lattices, the numerical calculation of physical observables for exploring confinement, and the interpretation of the results in terms of the dual superconductor picture, which is introduced at two levels of description. We work out that the electric field strength and the magnetic currents around a charge pair can be described very well by a classical effective model of Maxwell and London equations, if fluctuations of the occurring fluxoid string are considered. In order to obtain a deeper understanding of confinement in U(1), we extend the duality transformation of the path integral to the correlation functions which are used to calculate expectation values of fields and currents. This not only helps to interpret U(1) lattice gauge theory as a limit of the dual Higgs model, but also opens the possibility for efficient calculations of expectation values in the presence of static charges by simulating the dual model. Using this technique we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. The dual simulation is applied to flux tubes between static charges, to periodically closed flux tubes (torelons), and to doubly charged systems. We find that the behavior of flux tubes for large charge distances cannot be explained by the picture of a classical dual type-II superconductor; the observed roughening of the flux tube agrees very well with the prediction from the effective string description. We also analyze the different contributions to the total energy of the electromagnetic field. For torelons we calculate both the free energy and the total field energy, split the free energy into a string tension and a string fluctuation part, and apply lattice sum rules modified for finite

  13. Neutron thermalization in reactor lattice cells: An NPY-project report

    International Nuclear Information System (INIS)

    Stamm'ler, R.J.J.; Takac, S.M.; Weiss, Z.J.

    1966-01-01

    The NPY-Project is a joint research programme in reactor physics between Norway, Poland, Yugoslavia and the International Atomic Energy Agency. One of the tasks of the project was to make a theoretical and experimental investigation of the phenomena of neutron thermalization in lattice cells, and this work is covered by the present monograph. The different lattices of the zero-power assemblies in the NPY countries offered ample opportunity for the theoreticians and experimentalists to test and compare their methods, and the exchange of experiences was stimulating and valuable. 85 refs, 26 figs, 19 tabs

  14. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  15. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  16. Review of lattice results concerning low energy particle physics

    DEFF Research Database (Denmark)

    Aoki, Sinya; Aoki, Yasumichi; Bernard, Claude

    2014-01-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition...... Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters...

  17. Supersymmetric lattices

    International Nuclear Information System (INIS)

    Catterall, Simon

    2013-01-01

    Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.

  18. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  19. Improved continuum limit lattice action for QCD with Wilson fermions

    International Nuclear Information System (INIS)

    Sheikholeslami, B.; Wohlert, R.

    1985-03-01

    Two possible ways of extending Symanzik's improvement programme to lattice fermions namely improvement to first and second order in the lattice spacing 'a' are discussed. The corresponding lattice actions for fermions are constructed and tree level improvement conditions are derived by considering classical improvement. The concept of on shell improvement is generalized to the lattice fermions studied here and the free parameters are determined for O(a) and O(a 2 ) on shell improved actions to all orders of perturbation theory. No evidence is found that the complicated structure of the O(a 2 ) on shell improved action especially the arising fermion contact terms can be removed beyond tree level. The effect of terms in the action that explicitly break chiral symmetry and therefore remove the phenomenon of species doubling are investigated by considering the energy momentum relations of the arising tree level improved actions. Our main result is that the O(a) improved action is a slightly modified Wilson fermion action which can still be written with only nearest neighbour fermion interactions. (orig.)

  20. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  1. Properties of the quark gluon plasma from lattice QCD

    International Nuclear Information System (INIS)

    Mages, Simon Wolfgang

    2015-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  2. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  3. Common misconceptions about the dynamical theory of crystal lattices: Cauchy relations, lattice potentials and infinite crystals

    International Nuclear Information System (INIS)

    Elcoro, Luis; Etxebarria, Jesus

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.

  4. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1999-01-01

    The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)

  5. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  6. Controlled generation of nonlinear resonances through sinusoidal lattice modes in Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Das, Priyam; Panigrahi, Prasanta K

    2015-01-01

    We study Bose–Einstein condensate in the combined presence of time modulated optical lattice and harmonic trap in the mean-field approach. Through the self-similar method, we show the existence of sinusoidal lattice modes in this inhomogeneous system, commensurate with the lattice potential. A significant advantage of this system is wide tunability of the parameters through chirp management. The combined effect of the interaction, harmonic trap and lattice potential leads to the generation of nonlinear resonances, exactly where the matter wave changes its direction. When the harmonic trap is switched off, the BEC undergoes a nonlinear compression for the static optical lattice potential. For better understanding of chirp management and the nature of the sinusoidal excitation, we investigate the energy spectrum of the condensate, which clearly reveals the generation of nonlinear resonances in the appropriate regime. We have also identified a classical dynamical phase transition occurring in the system, where loss of superfluidity takes the superfluid phase to an insulating state. (paper)

  7. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin

    2016-01-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  8. Light meson physics from maximally twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R.; Boucaud, P. [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT)] (and others)

    2009-12-15

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N{sub f}=2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision. (orig.)

  9. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Wu, Zhenkun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  10. Freezing in the presence of disorder: a lattice study

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Lafuente, Luis; Cuesta, Jose A

    2003-01-01

    We investigate the freezing transition in a two-dimensional lattice model of annealed hard squares that are subject to the influence of randomly placed quenched particles of the same size. The latter model is a porous medium. By combining two recent density functional approaches we arrive at a theory for quenched-annealed lattice fluids that treats the quenched particles on the level of their one-body density distribution. We show that this approach yields thermodynamics that compare well with results from treating matrix realizations explicitly and performing subsequent averaging over the disorder. The freezing transition from a fluid to a columnar phase is found to be continuous. On increasing matrix density it shifts towards close packing and vanishes beyond a threshold matrix density

  11. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  12. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  13. Almost Periodicity in Time of Solutions of the Toda Lattice

    OpenAIRE

    Binder, Ilia; Damanik, David; Lukic, Milivoje; VandenBoom, Tom

    2016-01-01

    We study an initial value problem for the Toda lattice with almost periodic initial data. We consider initial data for which the associated Jacobi operator is absolutely continuous and has a spectrum satisfying a Craig-type condition, and show the boundedness and almost periodicity in time and space of solutions.

  14. Phase diagrams and Hofstadter butterflies in the strongly correlated bosonic systems on the lattices with Dirac points

    Science.gov (United States)

    Sajna, A. S.; Polak, T. P.

    2018-06-01

    Gauge potentials with different configurations have been recently realized in the optical lattice experiments. It is remarkable that one of the simplest gauge potential can generate particle energy spectrum with the self-similar structure known as a Hofstadter butterfly. We investigate theoretically the impact of strong on-site interaction on such a spectrum in the bosonic Mott insulator within Bose-Hubbard model. In particular, it is shown that the fractal structure is encoded in the quasi-particle and hole bosonic branches for different lattice backgrounds. For example a square lattice and other structures (brick-wall and staggered magnetic flux lattice) which contain Dirac points in energy dispersions are considered. This shows that single-particle physics is still present even in the strong interaction limit for whole Hofstadter spectrum. Additionally we observe, that although in brick-wall and staggered flux lattices the quasi-particle densities of states look qualitatively similar, the corresponding Hofstadter butterfly assumes different forms. In particular, we use a superposition of two different synthetic gauge fields which appears to be a generator of non-trivial phenomena in the optical lattice systems. We also discuss the consequences of these phenomena on the phase diagrams between bosonic Mott insulator and superfluid phase. The analysis is carried out within the strong coupling expansion method on the finite size lattices and also at finite temperatures which are relevant for the currently made experiments.

  15. Development of a reference scheme for MOX lattice physics calculations

    International Nuclear Information System (INIS)

    Finck, P.J.; Stenberg, C.G.; Roy, R.

    1998-01-01

    The US program to dispose of weapons-grade Pu could involve the irradiation of mixed-oxide (MOX) fuel assemblies in commercial light water reactors. This will require licensing acceptance because of the modifications to the core safety characteristics. In particular, core neutronics will be significantly modified, thus making it necessary to validate the standard suites of neutronics codes for that particular application. Validation criteria are still unclear, but it seems reasonable to expect that the same level of accuracy will be expected for MOX as that which has been achieved for UO 2 . Commercial lattice physics codes are invariably claimed to be accurate for MOX analysis but often lack independent confirmation of their performance on a representative experimental database. Argonne National Laboratory (ANL) has started implementing a public domain suite of codes to provide for a capability to perform independent assessments of MOX core analyses. The DRAGON lattice code was chosen, and fine group ENDF/B-VI.04 and JEF-2.2 libraries have been developed. The objective of this work is to validate the DRAGON algorithms with respect to continuous-energy Monte Carlo for a suite of realistic UO 2 -MOX benchmark cases, with the aim of establishing a reference DRAGON scheme with a demonstrated high level of accuracy and no computing resource constraints. Using this scheme as a reference, future work will be devoted to obtaining simpler and less costly schemes that preserve accuracy as much as possible

  16. The continuous tower of scalar fields as a system of interacting dark matter–dark energy

    International Nuclear Information System (INIS)

    Santos, Paulo

    2015-01-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  17. Lattice degeneracies of geometric fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-05-01

    We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)

  18. Lattice gauge theory using parallel processors

    International Nuclear Information System (INIS)

    Lee, T.D.; Chou, K.C.; Zichichi, A.

    1987-01-01

    The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory

  19. Emission channeling lattice location experiments with short-lived isotopes

    CERN Multimedia

    Wahl, U; Ronning, C R

    2007-01-01

    Emission channeling with position-sensitive detectors is a well-established technique at ISOLDE for studying the lattice location of radioactive impurities implanted into single crystals. In the case of electron emitting isotopes, however, due to count rate and noise-related limitations of the detection systems, the technique was restricted to isotopes with half lives above 6 h and electron energies above 40 keV. Recently, major technical developments have been realized and new equipment has been acquired which has allowed these limitations to be overcome and made feasible electron emission channeling experiments with short-lived isotopes and at low electron energies.\\\\ As first application, making use of two new on-line emission channeling setups at ISOLDE, we propose to investigate the lattice location of the transition metals Ni (2.5 h) and Co (1.6 h) in semiconductors, in particular in ZnO and GaN, by means of on-line $\\beta^{-}$-emission channeling experiments. In addition, we would like to study the lat...

  20. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.

    Science.gov (United States)

    Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A

    2017-01-01

    In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum

  1. Lattice degeneracies of fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-10-01

    We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)

  2. STATUS REPORT ON THE SIX-MONTH STUDY ON HIGH ENERGY MUON COLLIDERS

    International Nuclear Information System (INIS)

    KING, B.J.

    2001-01-01

    The structure, study topics, straw-man muon collider parameter sets and technical challenges for ''Six-Month Study on High Energy Muon Colliders: Oct'00-Apr'0l'' have been summarized at one month from completion of the study. The extremely high constituent particle energies and luminosities of the parameter sets presented in table 1 continue to suggest that muon colliders could play a central role in exploring and extending the HEP energy frontier. The study has already resulted in encouraging progress in areas such as the final focus lattice design and cost-efficient acceleration

  3. Nucleon form factors on the lattice with light dynamical fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-09-01

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  4. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  5. Existence and stability of discrete breathers in diatomic Fermi–Pasta–Ulam type lattices

    International Nuclear Information System (INIS)

    Yoshimura, Kazuyuki

    2011-01-01

    We consider discrete breathers in one-dimensional diatomic Fermi–Pasta–Ulam type lattices. A discrete breather in the limit of zero mass ratio, i.e. the anti-continuous limit, consists of a finite number of in-phase or anti-phase excited light particles, separated by particles at rest. The existence of discrete breathers is proved for small mass ratio by continuation from the anti-continuous limit. We prove that the discrete breathers are all unstable near the anti-continuous limit, except for those continued from solutions consisting of alternating anti-phase excited particles

  6. Additional Quadrupoles At Center Of Long Straights In The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Lin, F.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of installing additional quadrupoles at the center of selected long straight sections in order to provide two low-beta source locations for undulators in the same straight. The required modification to the linear lattice is discussed as well as the preservation of adequate dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses the possibility of producing two low-beta source locations for optimum brightness of undulators in the long straights of NSLS-II lattice by installing additional quadrupoles at the center. The linear optics is optimized to satisfy the requirements of lattice function and properties. Nonlinear optimization for a lattice with working point at (37.16, 17.22) is performed. Considering the magnets misalignment errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the modified high-low beta function lattice can achieve a modest dynamic aperture in this preliminary study. Further work will continue to expand the dynamic aperture to meet the requirement of good injection efficiency and sufficient Touschek lifetime.

  7. The packing of two species of polygons on the square lattice

    International Nuclear Information System (INIS)

    Dei Cont, David; Nienhuis, Bernard

    2004-01-01

    We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24-vertex model which is known in the literature as the fully packed double loop model (FPL 2 ). In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular, we find the free energy of the four-colouring model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to 2 the model undergoes an infinite-order phase transition

  8. Development of square and hexagonal lattice analysis capability in WIMS-AECL

    International Nuclear Information System (INIS)

    Donnelly, J.V.

    1990-11-01

    WIMS, originally developed by the UKAEA (Winfrith), is a widely used computer code for reactor physics analysis of lattice cells. WIMS-AECL (Atomic Energy of Canada Limited) has been developed from a version of the code received from Winfrith in the early 1970s and is generally used within AECL. The facilities existing in the original version of WIMS were very capable for the analysis of reactor designs normally encountered within AECL at that time, such as CANDU fuel lattices, but had limitations in the analysis of more general reactor geometries, such as square light-reactor assemblies. This paper discusses the development and testing of modifications to the two-dimensional collision-probability calculation module in WIMS-AECL to enable more rigorous analysis of lattice geometries based on square or hexagonal cells

  9. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  10. Hoelder continuity of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, Taoufik

    2004-10-01

    The goal of the present paper is to establish some kind of regularity of an energy minimizer map between Riemannian polyhedra. More precisely, we will show the Hoelder continuity of local energy minimizers between Riemannian polyhedra with the target spaces without focal points. With this new result, we also complete our existence theorem obtained elsewhere, and consequently we generalize completely, to the case of target polyhedra without focal points (which is a weaker geometric condition than the nonpositivity of the curvature), the Eells-Fuglede's existence and regularity theorem which is the new version of the famous Eells-Sampson's theorem. (author)

  11. Representation theory of lattice current algebras

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.

    1996-04-01

    Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)

  12. ISABELLE lattice

    International Nuclear Information System (INIS)

    Smith, L.

    1975-01-01

    An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed

  13. First validation of the new continuous energy version of the MORET5 Monte Carlo code

    International Nuclear Information System (INIS)

    Miss, Joachim; Bernard, Franck; Forestier, Benoit; Haeck, Wim; Richet, Yann; Jacquet, Olivier

    2008-01-01

    The 5.A.1 version is the next release of the MORET Monte Carlo code dedicated to criticality and reactor calculations. This new version combines all the capabilities that are already available in the multigroup version with many new and enhanced features. The main capabilities of the previous version are the powerful association of a deterministic and Monte Carlo approach (like for instance APOLLO-MORET), the modular geometry, five source sampling techniques and two simulation strategies. The major advance in MORET5 is the ability to perform calculations either a multigroup or a continuous energy simulation. Thanks to these new developments, we now have better control over the whole process of criticality calculations, from reading the basic nuclear data to the Monte Carlo simulation itself. Moreover, this new capability enables us to better validate the deterministic-Monte Carlo multigroup calculations by performing continuous energy calculations with the same code, using the same geometry and tracking algorithms. The aim of this paper is to describe the main options available in this new release, and to present the first results. Comparisons of the MORET5 continuous-energy results with experimental measurements and against another continuous-energy Monte Carlo code are provided in terms of validation and time performance. Finally, an analysis of the interest of using a unified energy grid for continuous energy Monte Carlo calculations is presented. (authors)

  14. Chiral Extrapolations of the $\\boldsymbol{ρ(770)}$ Meson in $\\mathbf{N_f=2+1}$ Lattice QCD Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)

    2018-04-01

    Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.

  15. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  16. Mott-insulating phases and magnetism of fermions in a double-well optical lattice

    International Nuclear Information System (INIS)

    Wang, Xin; Zhou, Qi; Das Sarma, S.

    2011-01-01

    We theoretically investigate, using nonperturbative strong correlation techniques, Mott-insulating phases and magnetic ordering of two-component fermions in a two-dimensional double-well optical lattice. At filling of two fermions per site, there are two types of Mott insulators, one of which is characterized by spin-1 antiferromagnetism below the Neel temperature. The superexchange interaction in this system is induced by the interplay between the interband interaction and the spin degree of freedom. A great advantage of the double-well optical lattice is that the magnetic quantum phase diagram and the Neel temperature can be easily controlled by tuning the orbital energy splitting of the two-level system. Particularly, the Neel temperature can be one order of magnitude larger than that in standard optical lattices, facilitating the experimental search for magnetic ordering in optical lattice systems.

  17. VIM: a continuous energy Monte Carlo code at ANL

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Lell, R.M.; Gelbard, E.M.

    1980-01-01

    The continuous-energy Monte Carlo neutron transport code VIM and its auxiliaries are briefly described. The ENDF/B cross section data processing procedure is summarized and its benchmarking against MC 2 -2 is reviewed. Several representative applications at ANL are described, including fast critical assembly benchmark calculations and STF and TREAT Upgrade benchmark calculations. 2 figures

  18. A SIMPLIFIED FORMULATION OF SPACE-ENERGY CELL THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Cady, K. B.; MacVean, C. R.

    1963-11-15

    A simple formulation of polyenergetic thermal utilization theory for heterogeneous lattices is proposed. The main ideas are those of Leslie, who postulated an infinite moderator region with a fictitious, energy dependent absorption which includes all heterogeneous properties of the lattice, and those of Amouyal, Benoist, and Horowitz who postulated absorption rates in terms of fuel and moderator escape probabilities. Simple approximations to energy dependent escape probabilities are discussed and lattice spectra are calculated for several light water lattices. (auth)

  19. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  20. Lattice of optical islets: a novel treatment modality in photomedicine

    International Nuclear Information System (INIS)

    Altshuler, Gregory; Smirnov, Mikhail; Yaroslavsky, Ilya

    2005-01-01

    A majority of photothermal applications of laser and non-laser light sources in medicine (in particular, in dermatology) are based on the paradigm of (extended) selective photothermolysis. However, realization of this principle in its strict form may not always be possible and/or practical. Spatial (or geometric) selectivity (as opposed to wavelength and temporal selectivity) can provide an alternative approach delivering effective and safe treatment techniques. A method of creating a lattice of localized areas of light-tissue interaction (optical islets) is an example of this 'spatially confined' approach. The lattice of optical islets can be formed using a variety of energy sources and delivery optics, including application of lenslet arrays, phase masks and matrices of exogenous chromophores. Using a state-of-the-art theory of optical and thermal light-tissue interactions and a comprehensive computer model of skin, we have conducted a theoretical and numerical analysis of the process of formation of such a lattice in human tissue. Effects of the wavelength, beam geometry, pulsewidth and physical properties of tissues have been considered. Conditions for obtaining optical, thermal and damage islet lattices in the human skin without inducing adverse side effects (e.g. bulk damage) have been established

  1. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  2. Introduction to lattice gauge theory

    International Nuclear Information System (INIS)

    Gupta, R.

    1987-01-01

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs

  3. Structure factors associated with the continuous melting of two-dimensional lattice gases: Models with (√3 x √3)R300 and p(2 x 2) ordered states on triangular nets

    International Nuclear Information System (INIS)

    Bartelt, N.C.; Einstein, T.L.; Roelofs, L.D.

    1987-01-01

    We study the temperature dependence of the structure factors of two lattice gases which undergo order-disorder phase transitions. Our goal is to determine how much information about the critical behavior of these phase transitions a low-energy electron-diffraction experiment might obtain. We use Monte Carlo simulation to compute the structure factors. Both lattice gases are on triangular nets; one has a (√3 x √3)R30 0 ordered phase; the other has a p(2 x 2) ordered phase. The structure factors scale almost halfway from the center of an extra spot to the zone center; for system sizes comparable to those that are physically realizable we see effective critical exponents which are typically within of order 10% of expectations based on universality. Below the transition temperature, nonlinearities in log-log plots are significant, indicating that corrections to scaling cannot be ignored. We consider how asymmetries in the structure factor reflect differences between lattice-gas systems and magnetic analogs in the same universality class and also briefly treat the effects of quenched random vacancies and of a fixed concentration of annealed vacancies

  4. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  5. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  6. Basis reduction for layered lattices

    NARCIS (Netherlands)

    Torreão Dassen, Erwin

    2011-01-01

    We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be

  7. Basis reduction for layered lattices

    NARCIS (Netherlands)

    E.L. Torreão Dassen (Erwin)

    2011-01-01

    htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these

  8. Development of a force sensor using atom interferometry to constrain theories on dark matter and dark energy

    Science.gov (United States)

    Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul

    2017-04-01

    Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.

  9. Lattice-Based Revocable Certificateless Signature

    Directory of Open Access Journals (Sweden)

    Ying-Hao Hung

    2017-10-01

    Full Text Available Certificateless signatures (CLS are noticeable because they may resolve the key escrow problem in ID-based signatures and break away the management problem regarding certificate in conventional signatures. However, the security of the mostly previous CLS schemes relies on the difficulty of solving discrete logarithm or large integer factorization problems. These two problems would be solved by quantum computers in the future so that the signature schemes based on them will also become insecure. For post-quantum cryptography, lattice-based cryptography is significant due to its efficiency and security. However, no study on addressing the revocation problem in the existing lattice-based CLS schemes is presented. In this paper, we focus on the revocation issue and present the first revocable CLS (RCLS scheme over lattices. Based on the short integer solution (SIS assumption over lattices, the proposed lattice-based RCLS scheme is shown to be existential unforgeability against adaptive chosen message attacks. By performance analysis and comparisons, the proposed lattice-based RCLS scheme is better than the previously proposed lattice-based CLS scheme, in terms of private key size, signature length and the revocation mechanism.

  10. Lattice Gauge Theory and the Origin of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andreas S.

    2013-08-01

    Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.

  11. Lattice Higgs models

    International Nuclear Information System (INIS)

    Jersak, J.

    1986-01-01

    This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development

  12. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  13. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation

    International Nuclear Information System (INIS)

    Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M.

    2014-01-01

    Highlights: • Difficulties in assessing distribution network adequacy with DG are addressed. • Indices are proposed to assess adequacy of energy supply and service continuity. • Analytical methodology is developed to assess the proposed indices. • Concept of joint probability distribution of demand and generation is applied. - Abstract: Continuity of electricity supply with renewable distributed generation (DG) is a topical issue for distribution system planning and operation, especially due to the stochastic nature of power generation and time varying load demand. The conventional adequacy and reliability analysis methods related to bulk generation systems cannot be applied directly for the evaluation of adequacy criteria such as ‘energy supply’ and ‘continuity of service’ for distribution networks embedded with renewable DG. In this paper, new indices highlighting ‘available supply capacity’ and ‘continuity of service’ are proposed for ‘energy supply’ and ‘continuation of service’ evaluation of generation-rich distribution networks, and analytical techniques are developed for their quantification. A probability based analytical method has been developed using the joint probability of the demand and generation, and probability distributions of the proposed indices have been used to evaluate the network adequacy in energy supply and service continuation. A data clustering technique has been used to evaluate the joint probability between coincidental demand and renewable generation. Time sequential Monte Carlo simulation has been used to compare the results obtained using the proposed analytical method. A standard distribution network derived from Roy Billinton test system and a practical radial distribution network have been used to test the proposed method and demonstrate the estimation of the well-being of a system for hosting renewable DG units. It is found that renewable DG systems improve the ‘energy supply’ and ‘continuity

  14. Infinitesimal diffeomorfisms on the lattice

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...

  15. Effect of pressure and doping on lattice structure of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zolfaghari, Mahmoud, E-mail: mzolfaghari@phys.usb.ac.ir

    2017-01-15

    The semiconductor ZnO belongs to the IIb-VI binary compound. It has a high exciton binding energy of 60 meV. The bonding in these materials is covalent with some ionic character. Induced changes on the physical properties of Mn doped ZnO samples due to different dopant concentrations and pressure were evaluated. The results obtained showed higher solubility limit for Mn doped ZnO due to pressure. The trend of XRD results for higher Mn concentration (9 at%) as pressure increases, was towards doping improvement. The XRD, SEM and UV–vis study of the samples also revealed that there were variations in the lattice parameters, nanoparticle size and bandgap energy of the doped and pressurized doped samples. Further, the directions of variation of bandgap energy values and calculated particle size, as well as SEM values of the doped samples due to pressure variation were found to be the same i.e. all of them together either increase or decrease as pressure varies. However, these variations were found to be opposite to that of lattice constants (all a and most c values) variation for both Mn dopant concentrations (3 at% and 9 at%). These physical variations of unpressurized doped samples can be attributed to the change in the polar bonding of the elemental constitutions in the lattice. While for the pressurized doped samples, the variations attributed to repulsion of lone pairs as well as change in the electronegativity of the system.

  16. Computing the writhe on lattices

    International Nuclear Information System (INIS)

    Laing, C; Sumners, D W

    2006-01-01

    Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers

  17. Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.

    2006-01-01

    We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime

  18. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  19. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    , which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  20. Universal quantum computation with temporal-mode bilayer square lattices

    Science.gov (United States)

    Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.

    2018-03-01

    We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.

  1. Edge states in a ferromagnetic honeycomb lattice with armchair boundaries

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Y.

    2018-02-01

    We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.

  2. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  3. Parallel computer calculation of quantum spin lattices

    International Nuclear Information System (INIS)

    Lamarcq, J.

    1998-01-01

    Numerical simulation allows the theorists to convince themselves about the validity of the models they use. Particularly by simulating the spin lattices one can judge about the validity of a conjecture. Simulating a system defined by a large number of degrees of freedom requires highly sophisticated machines. This study deals with modelling the magnetic interactions between the ions of a crystal. Many exact results have been found for spin 1/2 systems but not for systems of other spins for which many simulation have been carried out. The interest for simulations has been renewed by the Haldane's conjecture stipulating the existence of a energy gap between the ground state and the first excited states of a spin 1 lattice. The existence of this gap has been experimentally demonstrated. This report contains the following four chapters: 1. Spin systems; 2. Calculation of eigenvalues; 3. Programming; 4. Parallel calculation

  4. Hyper-lattice algebraic model for data warehousing

    CERN Document Server

    Sen, Soumya; Chaki, Nabendu

    2016-01-01

    This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

  5. Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji; Kawazoe, Yoshiyuki

    2009-01-01

    Plutonium dioxide (PuO 2 ) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO 2 at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO 2 were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO 2 were investigated up to 1500 K

  6. An overview of lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.

    1988-03-01

    The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)

  7. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  8. Structure optimization by heuristic algorithm in a coarse-grained off-lattice model

    International Nuclear Information System (INIS)

    Jing-Fa, Liu

    2009-01-01

    A heuristic algorithm is presented for a three-dimensional off-lattice AB model consisting of hydrophobic (A) and hydrophilic (B) residues in Fibonacci sequences. By incorporating extra energy contributions into the original potential function, we convert the constrained optimization problem of AB model into an unconstrained optimization problem which can be solved by the gradient method. After the gradient minimization leads to the basins of the local energy minima, the heuristic off-trap strategy and subsequent neighborhood search mechanism are then proposed to get out of local minima and search for the lower-energy configurations. Furthermore, in order to improve the efficiency of the proposed algorithm, we apply the improved version called the new PERM with importance sampling (nPERMis) of the chain-growth algorithm, pruned-enriched-Rosenbluth method (PERM), to face-centered-cubic (FCC)-lattice to produce the initial configurations. The numerical results show that the proposed methods are very promising for finding the ground states of proteins. In several cases, we found the ground state energies are lower than the best values reported in the present literature

  9. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  10. Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice

    International Nuclear Information System (INIS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B.A.; Crasovan, L.-C.; Kartashov, Y.V.; Torner, L.

    2005-01-01

    The existence and stability of solitons in Bose-Einstein condensates with attractive interatomic interactions, described by the Gross-Pitaevskii equation with a three-dimensional (3D) periodic potential, are investigated in a systematic form. We find a one-parameter family of stable 3D solitons in a certain interval of values of their norm, provided that the strength of the potential exceeds a threshold value. The minimum number of 7 Li atoms in the stable solitons is 60, and the energy of the soliton at the stability threshold is ≅6 recoil energies in the lattice. The respective energy versus norm diagram features two cuspidal points, resulting in a typical swallowtail pattern, which is a generic feature of 3D solitons supported by quasi-two-dimensional or fully dimensional lattice potentials

  11. Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2003-01-01

    The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice

  12. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  13. Continued growth expected for wood energy despite turbulence of the economic crisis : wood energy markets, 2008-2009

    Science.gov (United States)

    Rens Hartkamp; Bengt Hillring; Warren Mabee; Olle Olsson; Kenneth Skog; Henry Spelter; Johan Vinterback; Antje Wahl

    2009-01-01

    The economic crisis has not reduced the demand for wood energy, which is expected to continue to grow. The downturn in sawmill production caused a shortage of raw material supply for wood pellet producers. With decreased demand for pulpwood-quality roundwood for wood and paper products in 2009, some pulpwood is being converted into wood energy. Economies of scale are...

  14. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  15. 'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings

    International Nuclear Information System (INIS)

    Meleshenko, Peter A.; Klinskikh, Alexander F.

    2011-01-01

    We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.

  16. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  17. A new consistent definition of the homogenized diffusion coefficient of a lattice, limitations of the homogenization concept, and discussion of previously defined coefficients

    International Nuclear Information System (INIS)

    Deniz, V.C.

    1980-01-01

    The problem concerned with the correct definition of the homogenized diffusion coefficient of a lattice, and the concurrent problem of whether or not a homogenized diffusion equation can be formally set up, is studied by a space-energy-angle dependent treatment for a general lattice cell using an operator notation which applies to any eigen-problem. A new definition of the diffusion coefficient is given, which combines within itself the individual merits of the two definitions of Benoist. The relation between the new coefficient and the ''uncorrected'' Benoist coefficient is discussed by considering continuous-spectrum and multi-group diffusion equations. Other definitions existing in the literature are briefly discussed. It is concluded that a diffusion coefficient should represent only leakage effects. A comparison is made between the homogenization approach and the approach via eigen-coefficients, and brief indications are given of a possible scheme for the latter. (author)

  18. Anomalous dimensions from boson lattice models

    Science.gov (United States)

    de Carvalho, Shaun; de Mello Koch, Robert; Larweh Mahu, Augustine

    2018-06-01

    Operators dual to strings attached to giant graviton branes in AdS5×S5 can be described rather explicitly in the dual N =4 super-Yang-Mills theory. They have a bare dimension of order N so that for these operators the large N limit and the planar limit are distinct; summing only the planar diagrams will not capture the large N dynamics. Focusing on the one-loop S U (3 ) sector of the theory, we consider operators that are a small deformation of a 1/2 -Bogomol'nyi-Prasad-Sommerfield (BPS) multigiant graviton state. The diagonalization of the dilatation operator at one loop has been carried out in previous studies, but explicit formulas for the operators of a good scaling dimension are only known when certain terms which were argued to be small are neglected. In this article, we include the terms which were neglected. The diagonalization is achieved by a novel mapping which replaces the problem of diagonalizing the dilatation operator with a system of bosons hopping on a lattice. The giant gravitons define the sites of this lattice, and the open strings stretching between distinct giant gravitons define the hopping terms of the Hamiltonian. Using the lattice boson model, we argue that the lowest energy giant graviton states are obtained by distributing the momenta carried by the X and Y fields evenly between the giants with the condition that any particular giant carries only X or Y momenta, but not both.

  19. Proton decay matrix elements from lattice QCD

    International Nuclear Information System (INIS)

    Aoki, Yasumichi; Shintani, Eigo

    2012-01-01

    We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.

  20. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  1. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    Lai, Huilin; Ma, Changfeng

    2010-01-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  2. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  3. Superspace approach to lattice supersymmetry

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Rabin, J.M.

    1984-01-01

    We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them

  4. Dynamical lattice theory

    International Nuclear Information System (INIS)

    Chodos, A.

    1978-01-01

    A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory

  5. Benchmarking of EPRI-cell epithermal methods with the point-energy discrete-ordinates code (OZMA)

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.

    1982-01-01

    The purpose of the present study is to benchmark E-C resonance-shielding and cell-averaging methods against a rigorous deterministic solution on a fine-group level (approx. 30 groups between 1 eV and 5.5 keV). The benchmark code used is OZMA, which solves the space-dependent slowing-down equations using continuous-energy discrete ordinates or integral transport theory to produce fine-group cross sections. Results are given for three water-moderated lattices - a mixed oxide, a uranium method, and a tight-pitch high-conversion uranium oxide configuration. The latter two lattices were chosen because of the strong self shielding of the 238 U resonances

  6. An analysis of the nucleon spectrum from lattice partially-quenched QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Armour, W.; Allton, C. R.; Leinweber, D. B.; Thomas, A. W.; Young, R. D.; Physics; Swansea Univ.; Univ. of Adelaide; Coll. of William and Mary

    2010-09-01

    The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.

  7. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Armour, W. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Allton, C.R., E-mail: c.allton@swan.ac.u [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Leinweber, D.B. [Special Research Centre for the Subatomic Structure of Matter (CSSM), School of Chemistry and Physics, University of Adelaide, 5005 (Australia); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Ave., Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States); Young, R.D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-09-01

    The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M{sub n} in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.

  8. Computing nucleon EDM on a lattice

    Science.gov (United States)

    Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey

    2018-03-01

    I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.

  9. Computing nucleon EDM on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, Michael; Izubuchi, Taku

    2017-06-18

    I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.

  10. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  11. A spin-orbital-entangled quantum liquid on a honeycomb lattice

    Science.gov (United States)

    Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.

    2018-02-01

    The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.

  12. Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain

    Science.gov (United States)

    Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki

    2018-01-01

    Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.

  13. Analytical methods applied to the study of lattice gauge and spin theories

    International Nuclear Information System (INIS)

    Moreo, Adriana.

    1985-01-01

    A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es

  14. Searching for new physics at the frontiers with lattice quantum chromodynamics.

    Science.gov (United States)

    Van de Water, Ruth S

    2012-07-01

    Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature. © 2012 New York Academy of Sciences.

  15. Topological magnon bands in ferromagnetic star lattice

    International Nuclear Information System (INIS)

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  16. Topological magnon bands in ferromagnetic star lattice.

    Science.gov (United States)

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  17. Gabor's signal expansion on a quincunx lattice and the modified Zak transform

    NARCIS (Netherlands)

    Leest, van A.J.; Bastiaans, M.J.

    1999-01-01

    Gabor's expansion of a signal on a quincunx lattice with oversampling by a rational factor is presented for continuous-time signals. It is shown how a modified Zak transform instead of the ordinary Zak transform can be helpful in determining Gabor's signal expansion coefficients and how it can be

  18. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  19. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  20. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  1. WIMSD5, Deterministic Multigroup Reactor Lattice Calculations

    International Nuclear Information System (INIS)

    2004-01-01

    1 - Description of program or function: The Winfrith improved multigroup scheme (WIMS) is a general code for reactor lattice cell calculation on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered the choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are included in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a successor version of WIMS-D/4. 2 - Method of solution: The treatment of resonances is based on the use of equivalence theorems with a library of accurately evaluated resonance integrals for equivalent homogeneous systems at a variety of temperatures. The collision theory procedure gives accurate spectrum computations in the 69 groups of the library for the principal regions of the lattice using a simplified geometric representation of complicated lattice cells. The computed spectra are then used for the condensation of cross-sections to the number of groups selected for solution of the transport equation in detailed geometry. Solution of the transport equation is provided either by use of the Carlson DSN method or by collision probability methods. Leakage calculations including an allowance for streaming asymmetries may be made using either diffusion theory or the more elaborate B1-method. The output of the code provides Eigenvalues for the cases where a simple buckling mode is applicable or cell-averaged parameters for use in overall reactor calculations. Various reaction rate edits are provided for direct comparison with experimental measurements. 3 - Restrictions on the complexity of

  2. Introduction to lattice gauge theories

    International Nuclear Information System (INIS)

    La Cock, P.

    1988-03-01

    A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs

  3. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  4. Ising antiferromagnet on the Archimedean lattices

    Science.gov (United States)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  5. POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.; Greene, N.M.

    2000-12-01

    POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.

  6. Statistical hydrodynamics of lattice-gas automata

    OpenAIRE

    Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.

    1993-01-01

    We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...

  7. Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Shallcross, S.

    2003-01-01

    We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-ri......-rich CuAu alloys shows that the model yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the bond length distribution in random alloys....

  8. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  9. Estimating the continuous-time dynamics of energy and fat metabolism in mice.

    Science.gov (United States)

    Guo, Juen; Hall, Kevin D

    2009-09-01

    The mouse has become the most popular organism for investigating molecular mechanisms of body weight regulation. But understanding the physiological context by which a molecule exerts its effect on body weight requires knowledge of energy intake, energy expenditure, and fuel selection. Furthermore, measurements of these variables made at an isolated time point cannot explain why body weight has its present value since body weight is determined by the past history of energy and macronutrient imbalance. While food intake and body weight changes can be frequently measured over several weeks (the relevant time scale for mice), correspondingly frequent measurements of energy expenditure and fuel selection are not currently feasible. To address this issue, we developed a mathematical method based on the law of energy conservation that uses the measured time course of body weight and food intake to estimate the underlying continuous-time dynamics of energy output and net fat oxidation. We applied our methodology to male C57BL/6 mice consuming various ad libitum diets during weight gain and loss over several weeks and present the first continuous-time estimates of energy output and net fat oxidation rates underlying the observed body composition changes. We show that transient energy and fat imbalances in the first several days following a diet switch can account for a significant fraction of the total body weight change. We also discovered a time-invariant curve relating body fat and fat-free masses in male C57BL/6 mice, and the shape of this curve determines how diet, fuel selection, and body composition are interrelated.

  10. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim; Dellar, Paul J.

    2012-01-01

    lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier

  11. On the performance of 1-level LDPC lattices

    OpenAIRE

    Sadeghi, Mohammad-Reza; Sakzad, Amin

    2013-01-01

    The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type ...

  12. Structure and lattice dynamics in non-centrosymmetric borates

    International Nuclear Information System (INIS)

    Stein, W.D.R.

    2007-01-01

    This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB 3 O 6 ). The structure of the tetraborates MB 4 O 7 (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal directions the dispersion

  13. Edge and line enhancement by adaptive lattice filtering

    International Nuclear Information System (INIS)

    Brolley, J.E.

    1979-01-01

    Digitized images have been two-dimensionally transformed to the Haar sequency domain. High-sequency boosting was performed and the inverse Haar two-dimensional transform applied. The resulting image was then raster-scanned with a continuously adaptive lattice filter. This procedure was applied to a simple image of a photographic step tablet and a complex scene. All of the lines of the step tablet were well defined over the whole dynamic range. Useful definition of lines in the complex scene was obtained

  14. Laguerre-Freud equations for the recurrence coefficients of the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices

    International Nuclear Information System (INIS)

    Bangerezako, Gaspard; Foupouagnigni, Mama

    2003-10-01

    We give an algorithmic derivation of the Laguerre-Freud equations for the recurrence coefficients β n and γ n of the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices. This algorithm is the most general one since it is valid for the Laguerre-Hahn orthogonal polynomials of any class k, on the special nonuniform lattices including the continuous (limiting cases), linear, q-linear and the q-nonlinear ones. Moreover, the algorithm allows to deduce an upper bound for the order of the equations in β n and γ n , which is respectively 2 k + 2 and 2 k + 3 when k is even, or 2 k + 3 and 2 k + 2 when k is odd. Finally, as applications, we discuss explicitly these equations for k = 1 in the continuous and linear cases, and k = 2 in the continuous symmetric one. (author)

  15. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  16. Observing long colour flux tubes in SU(2) lattice gauge theory

    CERN Document Server

    Bali, G S; Schlichter, C; Bali, G S; Schilling, K; Schlichter, C

    1995-01-01

    We present results of a high statistics study of the chromo field distribution between static quarks in SU(2) gauge theory on lattices of volumes 16^4, 32^4, and 48^3*64, with physical extent ranging from 1.3 fm up to 2.7 fm at beta=2.5, beta=2.635, and beta=2.74. We establish string formation over physical distances as large as 2 fm. The results are tested against Michael's sum rules. A detailed investigation of the transverse action and energy flux tube profiles is provided. As a by-product, we obtain the static lattice potential in unpreceded accuracy.

  17. Study of shear viscosity of SU(2)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny, 141700 (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,Protvino, 142281 Russian Federation (Russian Federation); Far Eastern Federal University, School of Biomedicine,Vladivostok, 690950 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation)

    2015-09-14

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor 〈T{sub 12}T{sub 12}〉 for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T{sub c}≃1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density η/s=0.134±0.057.

  18. Spatial classification with fuzzy lattice reasoning

    NARCIS (Netherlands)

    Mavridis, Constantinos; Athanasiadis, I.N.

    2017-01-01

    This work extends the Fuzzy Lattice Reasoning (FLR) Classifier to manage spatial attributes, and spatial relationships. Specifically, we concentrate on spatial entities, as countries, cities, or states. Lattice Theory requires the elements of a Lattice to be partially ordered. To match such

  19. X-ray determination of crystallite size and effect of lattice strain on ...

    Indian Academy of Sciences (India)

    X-ray diffraction; lattice strain; crystallite size; Debye–Waller factor; vacancy formation energy. 1. Introduction ... In the present investigation, results of a system- atic study of .... that while milling is enough to create strains, it affects the particle ...

  20. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)