WorldWideScience

Sample records for continuous dynamic recrystallization

  1. Continuous dynamic recrystallization and discontinuous dynamic recrystallization in 99.99% polycrystalline aluminum during hot compression

    Institute of Scientific and Technical Information of China (English)

    LIU Chu-ming; JIANG Shu-nong; ZHANG Xin-ming

    2005-01-01

    The dynamic restoration behavior of 99.99% polycrystalline aluminum was investigated.The deformation was carried out by compression test at 533-773 K and initial strain rate of 0.002-2 s 1 to a true strain of 1.0followed by water quench.Polarized optical microscopy and transmission electron microscopy were applied to observe the deformation microstructure.It's found that discontinuous dynamic recrystallization,which is commonly observed in lower stacking fault energy metals or ultra-high purity aluminum(≥99.999%),occurs when ZennerHollomon parameter(Z parameter) is low,but the true stress-strain curve doesn't accompany stress oscillation.Continuous dynamic recrystallization occurs when Z parameter is intermediate,and only dynamic recovery takes place if Z parameter is high.

  2. STUDY OF DYNAMIC RECRYSTALLIZATION OF LOW CARBON STEEL IN THIN SLAB CONTINUOUS ROLLING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.K. Liang; X.J. Sun; Q.Y. Liu; H. Dong

    2006-01-01

    Combined with the technological characteristics of thin slab continuous rolling process (TSCR),dynamic recrystallization of an extremely coarse austenite of low carbon steel is studied by Thermecmaster-Z hot simulator. By the analysis of true stress-strain curves and the observation of microstructures at different deformation stages, the critical stress and critical strain are determined under different deformation conditions. The effect of Z parameter on dynamic recrystallization of coarse austenite is studied. The microstructure evolution in real production is also discussed.

  3. Dynamic recrystallization behavior of commercial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    LI Hui-zhong; ZHANG Xin-ming; CHEN Ming-an; LIU Zi-juan

    2006-01-01

    The flow stress feature and microstructure evolvement of a commercial pure aluminum were investigated by compression on Gleeble-1500 dynamic materials test machine. Optical microscopy (OM) and transmission electron microscopy (TEM) were applied to analyze the deformation microstructure of the commercial pure aluminum.The results show that the flow stress tends to be constant after a peak value and the dynamic recovery occurs when the deformation temperatures is 220 ℃ with the strain rate of 0.01 s-1; while the dynamic recrystallization occurs when the deformation temperature is higher than 380 ℃, and the flow stress exhibits a single peak at 460 ℃ with different strain rates from 0.001 s-1 to 1 s-1, and continuous dynamic recrystallization and geometric dynamic recrystallization occur during the hot compression of the commercial pure aluminum.

  4. Dynamic Recrystallization: The Dynamic Deformation Regime

    Science.gov (United States)

    Murr, L. E.; Pizaña, C.

    2007-11-01

    Severe plastic deformation (PD), especially involving high strain rates (>103 s 1), occurs through solid-state flow, which is accommodated by dynamic recrystallization (DRX), either in a continuous or discontinuous mode. This flow can be localized in shear instability zones (or adiabatic shear bands (ASBs)) with dimensions smaller than 5 μ, or can include large volumes with flow zone dimensions exceeding centimeters. This article illustrates these microstructural features using optical and electron metallography to examine a host of dynamic deformation examples: shaped charge jet formation, high-velocity and hypervelocity impact crater formation, rod penetration into thick targets (which includes rod and target DRX flow and mixing), large projectile-induced target plug formation and failure, explosive welding, and friction-stir welding and processing. The DRX is shown to be a universal mechanism that accommodates solid-state flow in extreme (or severe) PD regimes.

  5. Dynamic recrystallization behavior of Inconel 690 during hot contin-uous deformation%690合金高温连续变形动态再结晶行为

    Institute of Scientific and Technical Information of China (English)

    谭化超; 董建新; 张麦仓; 姚志浩

    2013-01-01

    Continuous hot deformation testing of Inconel 690 cone samples at three different temperatures (1100, 1140 and 1180 ℃) was performed with a hydraulic press machine. Dynamic recrystallization in the alloy during con-tinuous hot deformation was studied by optical microscopy and back scattering diffraction. It is found that dynamic recrystallization in Inconel 690 happens during continuous hot compression deformation. The nucleation of dynamic recrystallization is in the order of triple junctions of grains→strain-induced boundary migration→twin boundaries→inside of grains, and the twin promotes the recrystallization process of Inconel 690.%应用液压机对690合金圆锥试样在3种不同温度下(1100、1140和1180℃)进行连续压缩变形实验,利用光学显微镜和背散射衍射技术研究690合金在热加工过程的动态再结晶行为。研究发现:在连续热压缩变形过程中动态再结晶以三叉晶界形核-原始晶界形核-孪晶形核(孪晶界和孪晶碎化)-晶内形核的顺序发展,而孪晶促进了690合金的再结晶过程。

  6. Dynamic Recrystallization Behavior of Microalloyed Forged Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; CHEN Jun; ZHAO Zhen; RUAN Xue-yu

    2008-01-01

    The dynamic recrystallization behavior of microalloyed forged steel was investigated with a compression test in the temperature range of 1 223--1 473 K and a strain rate of 0. 01--5 s-1. Activation energy was calculated to be 305. 9 kJ/mol by regression analysis. Modeling equations were developed to represent the dynamic reerystalliza-tion volume fraction and grain size. Parameters of the modeling equations were determined as a function of the Zener-Hollomon parameter. The developed modeling equation will be combined with finite element modeling to prediet microstructural change during the hot forging processing.

  7. Dynamic recrystallization behavior of 35CrMo structural steel

    Institute of Scientific and Technical Information of China (English)

    张斌; 张鸿冰; 阮雪榆

    2003-01-01

    The dynamic recrystallization behavior of 35CrMo steel was studied with compression test in the temperature range of 1 223-1 423 K and the strain rate range of 0.01-10.00 s-1. The initiation and evolution of dynamic recrystallization were investigated with microstructure analysis and then the critical strain εc for dynamic recrystallization initiation, the strain for maximum softening rate ε* and the steady strain εs were obtained to be 2.92 × 10-3 Z0.1381, 1.60 × 10-3 Z0.1780 and 3.26 × 10-2×Z0.0972 respectively by analysis of work-hardening rate-strain θ-ε curves, where Z is the Zener-Hollomon parameter. The dynamic recrystallization fraction was determined using recrystallization theory, and the effects of initial grain size, strain rate and deformated temperature on the dynamic recrystallization kinetics were investigated. The results show: XDRX = 1-exp(-3. 23(ε-εc/εs-εc )2.28), the dynamic recrystallization fraction is slightly delayed due to the somewhat larger initial grain size and markedly delayed with the decrease of temperature. On the other hand, it is significantly accelerated with the increase of the strain rate. Finally, the relationships between the initiation time, ending time of dynamic recrystallization and the deformed temperature were analyzed in detail.

  8. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang;

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  9. SOME IMPROVEMENTS IN VISCO-PLASTIC MODEL CONSIDERING DYNAMIC RECRYSTALLIZATION

    Institute of Scientific and Technical Information of China (English)

    QU Jie; JIN Quanlin; XU Bingye

    2004-01-01

    Some improvements in Jin's thermal visco-plastic constitutive model considering dynamic recrysytallization is presented in this paper. By introducing the influence of the strain rate on the mobility of dynamic recovery, the improved model can be more smoothly applied to numerical simulation of material flow behaviour and microstructure prediction during hot working. Another improvement is to consider the accumulated dislocation energy in the newly recrystallized grains as a resistance to the driving force of dynamic recrystallization volume. This improvement makes the predicted results of dynamic recrystallization progress agree better with the actual physical process.Finally, some numerical examples are given to show the advantages of the improved model and the ability to predict the dynamic recrystallization.

  10. Simulation of Dynamic Recrystallization Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    XIAO Hong; XIE Hong-biao; YAN Yan-hong; Jun YANAGIMOTO

    2004-01-01

    A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plastic flow behavior during thermomechanical processing. The driving force for the nucleation and growth of dynamically recrystallized grain is the volume free energy due to the stored dislocation density of a deformation matrix. The growth terminates the impingement. The model is capable of simulating kinetics, microstructure and texture evolution during recrystallization. The predictions of microstructural evolution agree with the experimental results.

  11. Dynamic recrystallization--scientific curiosity or industrial tool

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, J.J. (Department of Metallurgical Engineering, McGill University, 3450 University Street, Montreal, Que. H3A 2A7 (Canada))

    1994-08-15

    Rolling processes are categorized by the lengths of their interpass times: those that involve interpass intervals significantly longer than 1 s (e.g. reversing mills) are particularly suitable for conventional controlled rolling or recrystallization-controlled rolling; by contrast, those involving interpass times of 15-100 ms or more (e.g. the finishing trains of tandem mills) are shown to be suitable for dynamic or metadynamic recrystallization-controlled rolling. This distinction relies on the minimum time required to permit strain-induced precipitation, the occurrence of which inhibits both static and dynamic recrystallization. The effect of metadynamic recrystallization on the austenite grain size and on the retained strain is described. Examples are given of industrial processes in which dynamic recrystallization can play an important role. These include the stretch-reducing mill for the finishing of seamless tubes, the finishing stages of rod rolling, and the finishing of microalloyed steels in hot-strip mills. The practical consequences of dynamic recrystallization on the microstructures produced by these operations and on the modelling of rolling load are also described. ((orig.))

  12. Dynamic recrystallization of AZ91 magnesium alloy during compression deformation at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    李淑波; 王艳秋; 郑明毅; 吴昆

    2004-01-01

    High temperature compressive tests of AZ91 Mg alloy were carried out at 573 -723 K and strain rates of 0. 001 - 1s -1. The microstructures of as-compressed samples were observed by optical microscopy and transmission electron microscopy (TEM), and the microhardness was also tested. It is shown that with the increase of temperature or the decrease of strain rate, the flow stress decreases, at the same time the dynamic recrystallization (DRX)of the alloy is more noticeable. The microstructures reveal that continuous dynamic recrystallization, which develops through conversion of low-angle grain boundaries into high-angle boundaries, occurs preferentially at the grain boundary.

  13. Simulations of boundary migration during recrystallization using molecular dynamics

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner; Trautt, Z.T.; Upmanyu, M.

    2007-01-01

    We have applied an atomistic simulation methodology based on molecular dynamics to study grain boundary migration in crystalline materials, driven by the excess energy of dislocation arrangements. This method is used to simulate recrystallization in metals. The simulations reveal that the migration...

  14. Disclination mediated dynamic recrystallization in metals at low temperature.

    Science.gov (United States)

    Aramfard, Mohammad; Deng, Chuang

    2015-09-16

    Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials.

  15. Grain Boundary Assemblies in Dynamically-Recrystallized Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Marina Tikhonova

    2016-11-01

    Full Text Available The grain boundary misorientation distributions associated with the development of dynamic recrystallization were studied in a high-nitrogen austenitic stainless steel subjected to hot working. Under conditions of discontinuous dynamic recrystallization, the relationships between the grain or subgrain sizes and flow stresses can be expressed by power law functions with different grain/subgrain size exponents of about −0.76 (for grain size or −1.0 (for subgrain size. Therefore, the mean grain size being much larger than the subgrain size under conditions of low flow stress gradually approaches the size of the subgrains with an increase in the flow stress. These dependencies lead to the fraction of high-angle boundaries being a function of the flow stress. Namely, the fraction of ordinary high-angle boundaries in dynamically-recrystallized structures decreases with a decrease in the flow stress. On the other hand, the fraction of special boundaries, which are associated with annealing twins, progressively increases with a decrease of the flow stress.

  16. Dynamic recrystallization behavior and kinetics of high strength steel

    Institute of Scientific and Technical Information of China (English)

    吴光亮; 周超洋; 刘新彬

    2016-01-01

    The dynamic recrystallization behavior of high strength steel during hot deformation was investigated. The hot compression test was conducted in the temperature range of 950−1150 °C under strain rates of 0.1, 1 and 5 s−1. It is observed that dynamic recrystallization (DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate. The relationship between material constants (Q, n, α and lnA) and strain is identified by the sixth order polynomial fit. The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified. Moreover, the critical characteristics of DRX are extracted from the stress−strain curves under different deformation conditions by linear regression. The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate. The kinetics of DRX increases with increasing deformation temperature or strain rate.

  17. Dynamic Recrystallization Behaviour of Nb-Ti Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    MA Liqiang; LIU Zhenyu; JIAO Sihai; YUAN Xiangqian; WU Di

    2008-01-01

    The dynamic recrystallization(DRX)behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 S-1.DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides,resulting in higher values of the peak strain.An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements.A BeW value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature.The ratio of critical strain to peak strain decreases with increasing equivalent Nb content.In addition,the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined.Finally,the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.

  18. Characterization of Austenite Dynamic Recrystallization under Different Z Parameters in a Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    M. Shaban; B. Eghbali

    2011-01-01

    A low carbon Nb-Ti microalloyed steel was subjected to hot torsion testing over the temperature range 850-1100℃ and strain rates 0.01-1 s-1 to study the influence of deformation conditions on the dynamic recrystallization characteristics of austenite. The results show that dynamic recrystallization occurs more easily with the decrease of strain rate and the increase of deformation temperature. The complete dynamically recrystallized grain size as a function of Zener-Hollomon parameter was established. It was found that dynamically recrystallized grain sizes decrease with increasing strain rate and decreasing deformation temperature. The effect of microalloying elements on peak strain was investigated and the solute drag corrected peak strain was determined. Also, the dynamic recrystallization map of austenite was obtained by using recrystallization critical parameters.

  19. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  20. Modeling of microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Wangyue Yang; Zuqing Sun

    2007-01-01

    The aim of the current study was to investigate the microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite in thin slab direct rolling (TSDR) processing. A model was developed to predict the change of the austenite grain size during the dynamic recrystallization, by using the law of mixtures. The equations initially developed for partial static recrystallization were used for partial dynamic recrystallization, by adjusting the value of the constant. The results show that the change of the austenite grain size can be reasonably described by using the equations developed according to the law of mixtures.

  1. Paleowattmeters: A scaling relation for dynamically recrystallized grain size

    Science.gov (United States)

    Austin, Nicholas J.; Evans, Brian

    2007-04-01

    During dislocation creep, mineral grains often evolve to a stable size, dictated by the deformation conditions. We suggest that grain-size evolution during deformation is determined by the rate of mechanical work. Provided that other elements of microstructure have achieved steady state and that the dissipation rate is roughly constant, then changes in internal energy will be proportional to changes in grain-boundary area. If normal grain-growth and dynamic grain-size reduction occur simultaneously, then the steady-state grain size is determined by the balance of those rates. A scaling model using these assumptions and published grain-growth and mechanical relations matches stress grain-size relations for quartz and olivine rocks with no fitting. For marbles, the model also explains scatter not rationalized by assuming that recrystallized grain size is a function of stress alone. When extrapolated to conditions typical for natural mylonites, the model is consistent with field constraints on stresses and strain rates.

  2. Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression

    Institute of Scientific and Technical Information of China (English)

    Amir Momeni; Shahab Kazemi; Golam Ebrahimi; Alireza Maldar

    2014-01-01

    Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150°C at strain rates of 0.001 s-1-1 s-1. All the flow curves within the studied deformation regimes were typ-ical of dynamic recrystallization. A window was constructed to determine the value of apparent activation energy as a function of strain rate and deformation temperature. The kinetics of dynamic recrystallization was analyzed using the Avrami kinetics equation. A range of apparent activation energy for hot deformation from 303 kJ/mol to 477 kJ/mol is obtained at different deformation regimes. Microscopic characterization confirms that under a certain deformation condition (medium Zener-Hollomon parameter (Z) values), dynamic recrystalliza-tion appears at first, but large particles can not inhibit the recrystallization. At low or high Z values, dynamic recrystallization may occur be-fore dynamic precipitation and proceeds faster. In both cases, secondary phase precipitation is observed along prior austenite grain bounda-ries. Stress relaxation tests at the same deformation temperatures also confirm the possibility of dynamic precipitation. Unexpectedly, the Avrami's exponent value increases with the increase of Z value. It is associated with the priority of dynamic recrystallization to dynamic pre-cipitation at higher Z values.

  3. Dynamic Recrystallization Behavior of a Coarse-Grained Mg-2Zn-2Nd Magnesium Alloy

    Science.gov (United States)

    Wang, Tong; Jonas, John J.; Yue, Stephen

    2017-02-01

    Compression tests were performed on samples of Mg-2Zn-2Nd at 673 K (400 °C) and at three different strain rates. At 0.1/s, three mechanisms of dynamic recrystallization (DRX) were observed to operate: discontinuous DRX (DDRX), twinning DRX (TDRX), and continuous DRX (CDRX). At 0.01/s, DDRX took place as a result of grain boundary bulging, followed by CDRX on further straining. At 0.001/s, only CDRX was observed. At a strain of 0.3, the activation of multiple DRX mechanisms in the 0.1/s samples produced the weakest deformation textures.

  4. Dynamic Recrystallization and Grain Growth Behavior of 20SiMn Low Carbon Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    DONG Lanfeng; ZHONG Yuexian; MA Qingxian; YUAN Chaolong; MA Lishen

    2008-01-01

    A senes of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel.A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the expenment data.Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase.The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.

  5. EBSD observations of dynamic recrystallization mechanisms in ice.

    Science.gov (United States)

    Montagnat, Maurine; Chauve, Thomas; Barou, Fabrice; Beausir, Benoît; Fressengeas, Claude; Tommasi, Andrea

    2014-05-01

    Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) in materials during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX in metals is essential for industrial applications, in rocks for interpreting geophysical data and modeling geodynamic flows, or in ice for predicting ice sheet flow and climate evolution. Owing to its high viscoplastic anisotropy, ice has long been considered as a "model material". This happens to be particularly true in the case of the understanding of the fundamental of DRX mechanisms as they occur under a relatively easily controlled environment. Creep compression experiments were performed on polycrystalline ice samples in the laboratory in order to observe the evolution of the fabrics and microstructures during DRX. During the tests, performed at temperatures of -5°C and -7°C, under 0.8 MPa compressive stress, dynamic recrystallization was initiated after 1% macroscopic strain and could be followed up to 18% strain on separated samples. Fabrics and microstructures were analysed post-mortem using an Automatic Ice Texture Analyser (AITA, Russell-Head and Wilson 2001) and EBSD measurements with the Crystal Probe of Géosciences Montpellier. Both techniques enable high resolution observations, both in space and orientation (5 to 50 microns, EBSD: 0.7° - AITA: 3°), which is new for DRX observations in ice. While AITA provides only the c-axis orientations, EBSD provides full orientations (c- and a-axes). In particular, we could access to an estimate of a relative dislocation density (from the Nye tensor obtained with EBSD) and its evolution with strain. Fabric evolution with strain is very similar to what was measured by Jacka and Maccagnan (1984) with a strong strengthening toward a few maxima for c- and a-axes. The c-axes maxima are oriented about 30° from the compression

  6. Analysis of dynamic recrystallization of ice from EBSD orientation mapping

    Science.gov (United States)

    Montagnat, Maurine; Chauve, Thomas; Barou, Fabrice; Tommasi, Andrea; Beausir, Benoît; Fressengeas, Claude

    2015-12-01

    We present high resolution observations of microstructure and texture evolution during dynamic recrystallization (DRX) of ice polycrystals deformed in the laboratory at high temperature (≈0.98Tm). Ice possesses a significant viscoplastic anisotropy that induces strong strain heterogeneities, which result in an early occurrence of DRX mechanisms. It is therefore a model material to explore these mechanisms. High resolution c-axis measurements at sample scale by optical techniques and full crystallographic orientation measurements by cryo- Electron Back Scattering Diffraction (EBSD) provide a solid database for analyzing the relative impact of the macroscopic imposed stress versus the local and internal stress field on DRX mechanisms. Analysis of misorientation gradients in the EBSD data highlights a heterogeneous dislocation distribution, which is quantified by the Nye tensor estimation. Joint analyses of the dislocation density maps and microstructural observations highlight spatial correlation between high dislocation density sites and the onset of nucleation taking place by grain-boundary bulging, subgrain rotation or by the formation of kink-bands.

  7. Examination of dynamic recrystallization during compression of AZ31 magnesium

    Institute of Scientific and Technical Information of China (English)

    XIN RenLong; WANG BingShu; CHEN XingPin; HUANG GuangJie; LIU Qing

    2009-01-01

    This study aimed to investigate dynamic recrystallization (DRX) behavior during compression of mag-nesium alloy AZ31. Cylinder samples were cut from the extruded rod and hot rolled sheet AZ31 for compression test. The samples were compressed using a Gleeble 1500D at a temperature of 300Ⅱ and a strain rate of 0.01 s-1. Grain orientations and misorientation angles across grain boundaries for the tested samples were obtained by using electron backscatter diffraction (EBSD) technique. The results showed that strong basal texture was observed after 50% compression (ε = 0.69) on both the extruded and hot rolled samples, which have different initial textures. It was observed that with increased strain, DRX grains gradually rotated to basal orientation, and grain boundaries with misorientation angle of near 30° was formed in the samples. At the strain of 0.69, a high fraction of high-angle (> 60°) bounda-ries was present in the extruded sample, whereas almost no high angle boundaries were observed in the hot rolled sheet sample.

  8. Examination of dynamic recrystallization during compression of AZ31 magnesium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This study aimed to investigate dynamic recrystallization (DRX) behavior during compression of magnesium alloy AZ31. Cylinder samples were cut from the extruded rod and hot rolled sheet AZ31 for compression test. The samples were compressed using a Gleeble 1500D at a temperature of 300℃ and a strain rate of 0.01 s-1. Grain orientations and misorientation angles across grain boundaries for the tested samples were obtained by using electron backscatter diffraction (EBSD) technique. The results showed that strong basal texture was observed after 50% compression (ε = 0.69) on both the extruded and hot rolled samples, which have different initial textures. It was observed that with increased strain, DRX grains gradually rotated to basal orientation, and grain boundaries with misorientation angle of near 30° was formed in the samples. At the strain of 0.69, a high fraction of high-angle (> 60°) bounda-ries was present in the extruded sample, whereas almost no high angle boundaries were observed in the hot rolled sheet sample.

  9. Dynamic recrystallization behavior of AZ61 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-tao; YAN An-qing; LIU Chu-ming

    2005-01-01

    An AZ61 alloy was subjected to hot compression at temperatures ranging from 523 K to 673 K,with strain rates of 0. 001 - 1 s-1. Flow softening occurs at all temperatures and strain rates. There are peak and plateau stresses on flow curves. The initiation and evolution of dynamic recrystallization(DRX) were studied by the flow softening mechanism based on the flow curves and microstructural observations. A linear relationship was established between the logarithmic value of the critical strain for DRX initiation(lnεc) and the logarithmic value of the Zener-Hollomon parameter (lnZ). The volume fraction of DRX grain (ψd) is formulated as a function of the process parameters including strain rate, temperature, and strain. The calculated values of ψd agree well with the values extracted from the flow curves. The size of DRX grain(d) was also formulated as a function of the ZenerHollomon parameter. This study suggests that DRX behavior of AZ61 can be predicated from plastic process parameters.

  10. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-yue; JI Ze-sheng; H. MIURA; T. SAKAI

    2009-01-01

    The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.

  11. Dynamic recrystallization and texture development during hot deformation of a magnesium alloy AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Miura, H.; Sakai, T. [Univ. of Electro-Communications, Dept. of Mechanical Engineering and Intelligent Systems, Chofu, Tokyo (Japan)]. E-mail: Sakai@mce.uec.ac.jp

    2002-07-01

    Dynamic recrystallization (DRX) and texture development, taking place during hot deformation of a magnesium alloy AZ31 with a strong wire texture, was studied in compression at 673K (0.73T{sub m}). Two kinds of samples were machined parallel to the extruded and transverse direction of the Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and developed rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization (DRX). The latter is discussed comparing with conventional, i.e. discontinuous, DRX. (author)

  12. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  13. Continuous recrystallization in pure Al-1.3% Mn investigated by local orientation analysis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Local orientation analysis was used to investigate the continuous recrystallization process in a pure Al-1.3% Mn alloy with the emphasis on the influence of matrix orientations on the subgrain growth and precipitation. Results show that the differences of (mis)orientations in deformed matrices give rise to inhomogeneous subgrain growth and precipitation with respect to precipitate density and morphologies. Moreover, no apparent high angle grain boundaries were developed by accumulation of misorientations during subgrain growth.

  14. Research on microstructural evolution and dynamic recrystallization behavior of JB800 bainitic steel by FEM

    Institute of Scientific and Technical Information of China (English)

    Qingjun Chen; Yonglin Kang; Hao Yu; Chunmei Wang; Chengxiang Li

    2008-01-01

    Single pass compression tests were conducted on Gleeble1500 thermal simulator. The effect of different deformation parameters on the grain size of dynamically recrystallized austenite was analyzed. A mathematical model of dynamic recrystallization and a material database of JB800 steel, whose tensile strength is above 800 Mpa, were set up. A subprogram was compiled using Fortran language and called by Marc finite element software. A thermal coupled elastoplastic finite element model was established to simulate the compression process. The grain size of recrystallized austenite obtained by different recrystailization models was simulated. The results show that the optimized dynamic recrystallization model of JBS00 bainitic steel has a higher precision and yields good agreement with metallographic observations.

  15. Modeling dynamic recrystallization of olivine aggregates deformed in simple shear

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, H.-R. [Department of Geology and Geophysics, University of California, Berkeley (United States); Tome, C. N. [Materials, Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    1999-11-10

    Experiments by Zhang and Karato [1995] have shown that in simple shear dislocation creep of olivine at low strains, an asymmetric texture develops with a [100] maximum rotated away from the shear direction against the sense of shear. At large strain where recrystallization is pervasive, the texture pattern is symmetrical, and [100] is parallel to the shear direction. The deformation texture can be adequately modeled with a viscoplastic self-consistent polycrystal plasticity theory. This model can be expanded to include recrystallization, treating the process as a balance of boundary migration (growth of relatively underformed grains at the expense of highly deformed grains) and nucleation (strain-free nuclei replacing highly deformed grains). If nucleation dominates over growth, the model predicts a change from the asymmetric to the symmetric texture as recrystallization proceeds and stabilization in the ''easy slip'' orientation for the dominant (010)[100] slip system. This result is in accordance with the experiments and suggests that the most highly deformed orientation components dominate the recrystallization texture. The empirical model will be useful to simulate more adequately the development of anisotropy in the mantle where olivine is largely recrystallized. (c) 1999 American Geophysical Union.

  16. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.

    Science.gov (United States)

    Bobbili, Ravindranadh; Madhu, V

    2016-06-01

    The dynamic recrystallization (DRX) behavior of a biomedical titanium Ti-13Nb-13Zr alloy has been investigated using the high temperature compression tests under wide range of strain rates (0.001-1/s) and temperatures 900-1050°C. A constitutive equation represented as a function of temperature, strain rate and true strain is developed and the hot deformation apparent activation energy is calculated about 534kJ/mol. By considering the exponential relationship between work-hardening rate (θ) and stress, a new mathematical model was proposed for predicting flow stress up to the critical strain during hot deformation. The mathematical model for predicting flow stress up to the critical strain exhibits better consistency and accuracy. The DRX kinetic equation of Ti-13Nb-13Zr alloy is described as XDRX=1-exp[-0.32(Ɛ-ƐcƐ(*))(2.3)] . The DRX kinetic model was validated by microstructure observation. It was also found that the process of DRX was promoted by decreasing strain rate and increasing deformation temperature. Eventually, the continuous dynamic recrystallization (CDRX) was identified to be the DRX mechanism using transmission electron microscope (TEM).

  17. Nucleation mechanism of a nickel-base superalloy during dynamic recrystallization

    Institute of Scientific and Technical Information of China (English)

    Shuai WANG; Lei WANG; Yang LIU; Guohua XU; Beijiang ZHANG; Guangpu ZHAO

    2011-01-01

    Hot compression test was carried out at 1000 ℃ to investigate the dynamic recrystallization nucleation mechanism of a nickel-base superalloy.It was found that the bulging of original grain boundaries was inhibited by carbides and deformation twins at the boundaries.Recrystallized nuclei evolved from the subgrains of dislocation reconfiguration along original grain boundaries,and the growth of the potential nuclei was carried out by the coalescence of subgrains.The necklace structure of recrystallized grains along original grain boundaries was attributed to the strain gradient from grain boundary to grain interior.

  18. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N.R.; Mishin, Oleg V.

    2015-01-01

    dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation...... of recrystallization are found in the 〈111〉- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong 〈111〉 fibre recrystallization texture....

  19. Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wu; Linxiu Du; Xianghua Liu

    2011-01-01

    The hot deformation behavior of a Mn-Cu-V weathering steel was investigated at temperatures ranging from 850 to 1050℃ and strain rates ranging from 0.01 to 5 s-1 using MMS-300 thermal-mechanical simulator. The activation energy for dynamic recrystallization and stress exponent were calculated to be 551 kJ/mol and 7.73, respectively. The accurate values of critical strain were determined by the relationship between work hardening rate and flow stress (θ-σ) curves. The hyperbolic sine constitutive equation was employed to describe the relationship between the peak stress and Zener-Hollomon parameter during hot deformation. The interaction between dynamic recrystallization and dynamic precipitation of V(C,N) at a low strain rate was analyzed. The results showed that precipitation particles size of weathering steel increased with increasing strain at deformation temperature 950℃ and strain rate 0.1 s-1. The calculation results of the recrystallization driving force and pinning force showed that dynamic precipitation could retard the progress of dynamic recrystallization but not prevent it while the pinning forces is less than driving force. On the contrary, dynamic precipitation can effectively prevent the progress of dynamic recrystallization.

  20. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  1. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  2. Influence of initial textures on dynamic recrystallization and textures in AZ31 magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    YANG Ping(杨平); CUI Feng-e(崔凤娥); MA Shi-cai(马世才); G Gottstein

    2003-01-01

    Microscopy and X-ray diffractometry were applied to inspect the influence of initial texture on dynamic recrystallization and texture formation in AZ31 magnesium alloys during channel die compression. The results show that stress-strain curves, microstructures and textures depend on initial textures. Two types of nucleation sites are detected which are in different proportions depending on initial textures. Dynamic recrystallization proceeds faster in samples with more inhomogeneity. When the basal planes of grains are parallel to rolling plane of sample with scattering around transverse direction, no new texture component occurs and texture is strengthened together with dynamic recrystallization. By other initial textures there are texture changes during hot deformation. New grains rotate gradually to basal orientation at heavy strain.

  3. Effect of strain-induced precipitation on dynamic recrystallization in Mg–Al–Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Abu Syed Humaun, E-mail: abu.kabir@mail.mcgill.ca; Sanjari, Mehdi; Su, Jing; Jung, In-Ho; Yue, Stephen

    2014-10-20

    Two different amounts of tin (Sn) were added to a Mg–3 wt% Al binary alloy to form different amounts of precipitates during hot deformation. The thermodynamic modeling software, FactSage{sup ™}, was used to calculate the amounts of Sn to generate the desired relative levels of precipitation. The alloys were deformed at four different temperatures and three different strain rates to generate different amounts of precipitates. The objective was to study the effect of these precipitates on dynamic recrystallization. The results indicated that the formation of strain-induced precipitates is a function of deformation temperature, strain, and strain rate. The findings also revealed that higher amounts of precipitates reduced the volume fraction of dynamic recrystallization and refined the dynamically recrystallized grain size.

  4. Full field modeling of dynamic recrystallization in a global level set framework, application to 304L stainless steel

    Directory of Open Access Journals (Sweden)

    Boulais-Sinou Romain

    2016-01-01

    Full Text Available A new full field numerical approach for the simulation of dynamic and post-dynamic recrystallization will be detailed. A level Set framework is employed to link a crystal plasticity finite element method with the modeling of recrystallization. Plasticity is calculated through the activation of slip systems and provides predictions for both SSDs and GNDs densities. These predictions control the activation and kinetics of recrystallization. All the developments are applied on 304L stainless steel.

  5. Continuous Measurements of Recrystallization and Grain Growth in Cobalt Super Alloys

    Science.gov (United States)

    Keyvani, Mahsa; Garcin, Thomas; Fabrègue, Damien; Militzer, Matthias; Yamanaka, Kenta; Chiba, Akihiko

    2017-02-01

    L605 (20Cr-15W-10Ni wt pct) and CCM (28Cr-6Mo wt pct) cobalt-based superalloys are candidates for a wide range of applications, from gas turbine components to biomedical implants. Attention is currently focused on the optimization of grain structure as an appropriate approach to increase yield stress without affecting significantly the ductility. In this study, the Laser Ultrasonics for Metallurgy (LUMet) technology is used to examine in situ the evolution of the mean grain size associated with recrystallization and grain growth during heat treatments from the cold-rolled state. The recrystallization process is completed at 1373 K (1100 °C) for L605 and 1273 K (1000 °C) for CCM. The subsequent grain growth rate in L605 is larger compared to CCM. Continuous measurements of the grain size evolution are found to be consistent with grain growth affected by solute drag. Through in situ measurements, the laser ultrasonic technology significantly accelerates the determination of metallurgical parameters allowing for fast optimization of process parameters required to meet specific applications.

  6. Isotope uptake dynamics in the Ostwald ripening model of recrystallization

    CERN Document Server

    Lakshtanov, Evgeny

    2011-01-01

    Within the framework of the LSW theory of Ostwald ripening, an explicit expression for mass of the newly formed mineral has been obtained. It has been shown that mass of the mineral formed within an interval from $t_0$ to $t$ is a certain function of $t/t_0$. It has been shown that an uptake of an isotope added at time $t_0$ by forming mineral layers allows determination of the main parameters of Ostwald ripening as time lapsed from the beginning of ripening and recrystallization rate. It has also been shown that the results obtained for the initial rate of isotope uptake is a zeroth order approximation over a particles volume fraction $\\phi$.

  7. Microstructures and TitaniQ geothermometry in high - temperature dynamically recrystallized mylonites, Ribeira belt (SE Brazil)

    Science.gov (United States)

    Cavalcante, Carolina; Morales, Luiz

    2016-04-01

    The Ribeira belt (southern Brazil) was formed by the collision between the São Francisco and West Congo cratons at around 670 - 480 Ma, during the western Gondwana amalgamation. It consists of dextral strike-slip shear zones trending NE-SW to NNE-SSW. The ~20 km wide and ~120 km long Três Rios - Além Paraíba - Pádua shear zone is one these shear zones, in which quartzfeldspathic mylonites were formed at upper amphibolite to granulite conditions. The deformation of these rocks was accompanied by dynamic recrystallization and intense grain-size reduction that is reflected by the large amount of recrystallized grains with sizes >30 - 150 μm. Grain-size reduction is often pointed out as a process that promotes changes in the mechanical behavior of rocks, from grain-size insensitive (GSI) to grain-size sensitive (GSS) deformation mechanisms. However, it is still not clear if the switch from GSI to GSS deformation mechanisms may occur in coarsed grain recrystallized rocks. Furthermore, it is also not clear what is the effect of dynamic recrystallization on the titanium retention in quartz. Here we apply the TitaniQ geothermometer to coarse recrystallized quartz, coupled with detailed microstructural characterization to investigate thermal conditions and deformation mechanisms during recrystallization/deformation of quartz. Quartz grains show typically high temperature microstructure, such as irregular-lobate grain boundaries and subgrain walls. The average titanium contents are ~30 ppm for samples from the Três Rios region, 46 to 54 ppm for samples from Além Paraíba, and 74 to 86 ppm for samples from Santo Antônio de Pádua. The calculated temperatures are fairly homogenous at ~800 °C throughout the studied segments of the shear zone, which is compatible with the observed microstructures. The crystallographic orientation in these rocks is fairly weak, possibly due to static recovery and/or strong activity of such as diffusion processes due to the high

  8. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    Science.gov (United States)

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  9. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong;

    2014-01-01

    Recrystallization and mechanical behavior of nanocrystalline copper prepared by dynamic plastic deformation (DPD) and DPD with additional cold-rolling (DPD+CR) were investigated, with an emphasis on the effects of heterogeneity within the deformation microstructure. The DPD sample was found...... than 1, which is explained using a two-stage kinetics model incorporating the heterogeneity. The heterogeneity of the DPD sample is largely reduced by applying additional rolling. This change in deformation path leads to a more random distribution of the recrystallized grains and more conventional...

  10. Dynamic recrystallization and grain boundary migration in B2 FeAl

    Science.gov (United States)

    Baker, I.; Gaydosh, D. J.

    1987-01-01

    Transmission electron microscopy and optical microscopy were used to examine polycrystalline specimens of the B2-structured alloy FeAl strained under tension to fracture at elevated temperature. Strain-induced grain boundary migration was observed above 900 K and dynamic recrystallization was found at 1000 K and 1100 K. Little evidence of dynamic recovery was evident but some networks were formed at 1100 K.

  11. Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin; ZHANG Kui; LI Xinggang; LI Yongjun; HE Qingbiao; SUN Jianfeng

    2008-01-01

    The characteristics of dynamic reerystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compres-sion tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s-1 with maximum strain of 0.693. The strain-hardening rate can be obtained from true stress-true strain curves, plots of θ-σ,-(θ/ σ)-σ and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((/ σ)(-θ/ σ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (am) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot deformation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystal-lized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drec) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural loga-rithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress.

  12. Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Y–Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H.C. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Jiang, S.N., E-mail: shnjiang@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); School of Civil Engineering, Central South University, Changsha 410083 (China); Tang, B.; Hao, W.H.; Gao, Y.H.; Chen, Z.Y.; Liu, C.M. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2015-03-25

    Hot deformation and dynamic recrystallization (DRX) behaviors of Mg–8.3Gd–2.6Y–0.4Zr alloy were investigated by uniaxial compression tests conducted at temperatures ranging from 300 °C to 500 °C and strain rates varying from 0.001 s{sup −1} to 1 s{sup −1}. The results reveal that the alloy exhibits a high deformability due to the DRX softening when the temperature is >400 °C. Apart from the premature failure at relative low temperatures, the stress–strain curves exhibit typical features of DRX that the flow stress presents a peak and then gradually declines to a steady-state. Optical microscopy examinations exhibit that DRX takes place dominantly either at twin boundaries or initial grain boundaries depending on the deformation conditions. With increasing temperature or decreasing strain rate, the DRX sites would transfer from the twin boundaries to initial grain boundaries gradually. The analysis of transmission electron microscopy (TEM) images indicates that the deformation is controlled by basal slip and twinning in the temperature range of 300–350 °C, continuous DRX associated with the operation of multiple slips plays a dominant role when temperature is >400 °C.

  13. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-01-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  14. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-03-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  15. Relationship between dynamic recrystallization, grain size distribution and rheology

    NARCIS (Netherlands)

    Heege, Johannes Hendrik ter

    2002-01-01

    The solid state flow behavior (rheology) of materials constituting the Earth’s mantle and crust is of key importance in controlling the dynamics of large scale geodynamic processes, such as mantle convection, subduction, mountain building and basin formation. Flow laws that are calibrated using

  16. Relationship between dynamic recrystallization, grain size distribution and rheology

    NARCIS (Netherlands)

    Heege, Johannes Hendrik ter

    2002-01-01

    The solid state flow behavior (rheology) of materials constituting the Earth’s mantle and crust is of key importance in controlling the dynamics of large scale geodynamic processes, such as mantle convection, subduction, mountain building and basin formation. Flow laws that are calibrated using l

  17. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD

    Science.gov (United States)

    Chauve, T.; Montagnat, M.; Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.

    2017-02-01

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the `parent' ones suggests the possibility of `spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue 'Microdynamics of ice'.

  18. Dynamic recrystallization of electroformed copper liners of shaped charges in high—strain—rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    WenhuaiTian; QiSun; 等

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were in vestigated by transmission microscopy(TEM).Meanwhile,the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern(EBSP) technique.EBSP analysis illustrated that unlike the as-formed electroformed copper liners of shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate.Optical microscopy shows a typical recrystallization structure,and TEM examination reveals dislocation cells existed in the thin foil specimen.These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process,and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  19. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  20. Molecular dynamics simulation of the recrystallization of amorphous Si layers: Comprehensive study of the dependence of the recrystallization velocity on the interatomic potential

    CERN Document Server

    Krzeminski, Christophe; Cuny, V; Lecat, Emmanuel; Lampin, Evelyne; Cleri, Fabrizio; 10.1063/1.2743089

    2011-01-01

    The molecular dynamics method is applied to simulate the recrystallization of an amorphous/crystalline silicon interface. The atomic structure of the amorphous material is constructed with the method of Wooten, Winer, and Weaire. The amorphous on crystalline stack is annealed afterward on a wide range of temperature and time using five different interatomic potentials: Stillinger-Weber, Tersoff, EDIP, SW115, and Lenosky. The simulations are exploited to systematically extract the recrystallization velocity. A strong dependency of the results on the interatomic potential is evidenced and explained by the capability of some potentials (Tersoff and SW115) to correctly handle the amorphous structure, while other potentials (Stillinger-Weber, EDIP, and Lenosky) lead to the melting of the amorphous. Consequently, the interatomic potentials are classified according to their ability to simulate the solid or the liquid phase epitaxy.

  1. Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets

    Directory of Open Access Journals (Sweden)

    Lili Guo

    2015-06-01

    Full Text Available Conventional rolling experiments via the embedded pin in rolling sheet method were carried out at different reduction rates, starting rolling temperatures, and rolling speeds, and the effects of rolling parameters (i.e., temperature, equivalent strain, and rolling time on dynamically recrystallized (DRX microstructures of AZ31 alloy during hot rolling were studied quantitatively. The temperature-strain dependence of the high-angle grain boundary fraction (HAGB% was examined through electron backscattered diffraction. Results showed that as-rolled microstructures with high HAGB% may be obtained under average rolling temperatures of 270–320 °C, equivalent strains higher than 0.8, and a rolling speed of 246 mm/s. These results may be related to the DRX kinetics and dynamic recovery which are controlled by deformation temperature and strain. HAGB% decreased with increasing rolling time (decreasing rolling speed, which is attributed to dynamic recovery, and the recrystallized grain size decreased as rolling time increased. However, further increases in rolling time increased average grain sizes but decreased mean subgrain sizes; these results are attributed to increases in the low-angle grain boundary (LAGB length per unit area with rolling time. LAGB formation was controlled by dynamic recovery, which consistently follows polygonization or formation of new subgrains inside larger grains; hence, average subgrain sizes decreased with the rolling time. The effect of dynamic recovery on HAGB and LAGB formation and their related mechanisms over a wide range of strains and temperatures were discussed in detail.

  2. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s-1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decreas...

  3. Metadynamic recrystallization in C steels

    Indian Academy of Sciences (India)

    A R Morgridge

    2002-08-01

    Metadynamic recrystallization has been investigated in three plain carbon steels (ENIA, EN2 and EN24) through the use of hot interrupted compression tests on a wedge plastometer. Holding time was 0.5 s between passes. Strain rates of 0.05 and 0.12/s and small strain increments of 3, 5 and 7% were employed. Test temperatures were varied between 800 and 1100°C. Various incremental and continuous stress strain curves were highlighted at different temperatures and strain rates for 3 steels, ENIA, EN2 and EN24, resulting in varying flow stresses and strains. Highest peak stress was 180 MPa for EN24 at peak strain of 0.25 and 900°C, with a strain rate 0.12/s. Peak strain values for all steels at 1100°C was 0.133 at a strain rate of 0.05/s and 0.15 at a strain rate of 0.12/s. Strain accumulation resulted in dynamic and metadynamic recrystallization with refinement to about 15 m for dynamic and 22 m for metadynamic recrystallization. Fractional softening, , decreased from 0.27 to 0.12 as recrystallization times in metadynamic recrystallization increased from 0.9 s to 1.5 s at 1100°C. Time for 50% metadynamic recrystallization was also reduced as temperature increased. For ENIA, a drop from 10000 s to 20 s, as temperature increased from 800 to 1100 °C was observed. For EN24 and EN2 steels, a drop from 4000 s to 6 s for similar temperature rise was observed. Metadynamic recrystallization (at strains higher than critical strain) is observed to be a strong function of strain rate and a very weak function of temperature and strain. It significantly refined the austenite grain size prior to transformation.

  4. A Physically Based Dynamic Recrystallization Model Considering Orientation Effects for a Nitrogen Alloyed Ultralow Carbon Stainless Steel during Hot Forging

    Institute of Scientific and Technical Information of China (English)

    Gan-lin XIE; An HE; Hai-long ZHANG; Gen-qi WANG; Xi-tao WANG

    2016-01-01

    The nitrogen alloyed ultralow carbon stainless steel is a good candidate material for primary loop pipes of AP1000 nuclear power plant.These pipes are manufactured by hot forging,during which dynamic recrystallization acts as the most important microstructural evolution mechanism.A physically based model was proposed to describe and predict the microstructural evolution in the hot forging process of those pipes.In this model,the coupled effects of dislocation density change,dynamic recovery,dynamic recrystallization and grain orientation function were con-sidered.Besides,physically based simulation experiments were conducted on a Gleeble-3500 thermo-mechanical sim-ulator,and the specimens after deformation were observed by optical metallography (OM)and electron back-scat-tered diffraction (EBSD)method.The results confirm that dynamic recrystallization is easy to occur with increasing deformation temperature or strain rate.The grains become much finer after full dynamic recrystallization.The model shows a good agreement with experimental results obtained by OM and EBSD in terms of stress-strain curves,grain size,and recrystallization kinetics.Besides,this model obtains an acceptable accuracy and a wide applying scope for engineering calculation.

  5. Dynamic Recrystallization and Precipitation in 13Cr Super-Martensitic Stainless Steels

    Science.gov (United States)

    Ebrahimi, Gholam Reza; Momeni, Amir; Jahazi, Mohammad; Bocher, Philippe

    2014-04-01

    The influence of precipitation on the kinetics of static and dynamic recrystallization (DRX) was investigated in AISI 403 and 403Nb martensitic stainless steels. Hot compression tests were performed in the temperature range of 1073 K to 1473 K (800 °C to 1200 °C) and strain rates of 0.001 and 0.1 s-1 to study DRX and precipitation behaviors. In parallel, stress relaxation tests were conducted with pre-strains of 0.1, 0.15, 0.2, and 0.25, a strain rate of 0.1 s-1, and in the 1073 K to 1473 K (800 °C to 1200 °C) temperature range to study the kinetics of precipitation and recrystallization. Samples of hot compression and stress relaxation tests were quenched and the evolution of the microstructure was examined using optical and scanning electron microscopy. The results indicated that DRX interacts with dynamic precipitation (DP) over the temperature range of 1173 K to 1273 K (900 °C to 1000 °C). Hot compression testing results, confirmed by EBSD analysis, indicated that partial DRX occurs before precipitation in 403Nb, at 1073 K (800 °C). By contrast, no DRX was observed in 403 steel. At higher temperatures, i.e., over 1273 K (1000 °C), DRX preceded DP in both steels. Increasing the strain rate raised the temperature range of interaction between DRX and DP up to 1373 K (1100 °C). Strain-induced precipitation (SIP) was observed over the entire range of investigated test temperatures. Static recrystallization (SRX) took place predominantly in the temperature range of 1173 K to 1373 K (900 °C to 1100 °C), at which SIP significantly delayed the SRX finishing time. The results are analyzed in the framework of the classical nucleation theory and the underlying mechanisms are identified.

  6. Evaluating flow laws for dynamically recrystallized quartz based on field data

    Science.gov (United States)

    Peters, Max; Herwegh, Marco

    2013-04-01

    The extrapolation of experimentally controlled deformation conditions, and the resulting relations between physical parameters acting during ductile deformation, to nature is considered controversial (see Herwegh et al., 2005 and references therein). Whereas the relationship between flow stress and recrystallized grain size can be empirically derived from lab experiments using paleopiezometers (e.g. Stipp & Tullis, 2003), the relation between recrystallized grain size, strain rate, differential stress, temperature and activation energy for dislocation creep requires further constraints. For these relations, various power law flow laws for dynamically recrystallized quartz were proposed over the past years (Paterson & Luan, 1990; Luan & Paterson, 1992; Gleason & Tullis, 1995; Hirth et al., 2001, Rutter & Brodie, 2004). The variations in the flow laws are mainly characterized by different starting materials, experimental conditions, the activation energy for dislocation creep and the stress exponent n. In this study we compare and evaluate experimentally derived flow laws regarding their reliability for the prediction of rheology of background deformation of naturally deformed crystalline samples from mylonites of the Aar massif (Swiss Central Alps). The majority of samples comprises highly deformed rocks (e.g. Central Aare granite), which exhibit severe grain size reduction. This reduction dominantly occurred by subgrain rotation (SGR), in the case of low temperature overprint by bulging recrystallization (BLG). Towards elevated temperatures, grain boundary migration (GBM) and SGR recrystallization were active. Along the metamorphic gradient (300 - 475°C) quartz microstructures and associated recrystallized grain size distributions indicate steady state mean grain sizes. The quantification of the metamorphic gradient (temperature, pressure, water fugacity) over the sampling area allowed the application of flow laws, yielding variations of 6 orders of magnitude in

  7. Complicated Interaction of Dynamic Recrystallization and Precipitation During Hot Deformation of Ultrahigh-Strength Stainless Steel

    Science.gov (United States)

    Wang, Xiaohui; Liu, Zhenbao; Luo, Haiwen

    2016-12-01

    A new ultrahigh-strength stainless steel was compressed at the temperature range of 1273 K to 1423 K (1000 °C to 1150 °C) with a strain rate varying from 0.01 to 10 s-1 using a thermomechanical simulator. The microstructures quenched after hot deformation were examined. It was found that dynamic recrystallization (DRX) could occur in this heavily alloyed steel during the entire studied deformation condition. In contrast, dynamic precipitation only takes place at temperatures below 1373 K (1100 °C) and its influence on DRX depends on both deformation temperature and strain rate. The critical strain for the onset of DRX increases as usual with the decreasing temperature or the increasing strain rate; however, it decreases with the increase of strain rate from 1 to 10 s-1 at the temperatures of 1273 K and 1323 K (1000 °C and 1050 °C). This is attributed to the complicated interaction of DRX and dynamic precipitation when both can occur during deformation. On the one hand, dynamic precipitation could occur during deformation below 1373 K (1100 °C) and then suppress DRX due to the pinning of migrating boundaries. On the other hand, such a suppression shall decrease when not enough particles could dynamically precipitate during the short period of deformation at a high strain rate, which should facilitate DRX. Therefore, strain rate has a complicated influence on DRX kinetics. Finally, we developed quantitative models, which can successfully predict the critical strain for DRX, the recrystallized fraction, and grain sizes using the Zener-Holloman parameter as a mere input. Moreover, this model can also simulate the unusual acceleration of DRX at the high strain rate, resulting from the above-stated complicated interaction of dynamic precipitation and DRX.

  8. Verification of new model for calculation of critical strain for the initialization of dynamic recrystallization using laboratory rolling

    Directory of Open Access Journals (Sweden)

    R. Fabík

    2009-10-01

    Full Text Available This paper presents a new model for calculation of critical strain for initialization of dynamic recrystallization. The new model reflects the history of forming in the deformation zone during rolling. In this region of restricted deformation, the strain rate curve for the surface of the strip exhibits two peaks. These are the two reasons why the onset of dynamic recrystallization DRX near the surface of the rolled part occurs later than in theory during strip rolling. The present model had been used in a program for simulation of forming processes with the aid of FEM and a comparison between the physical experiment and a mathematical model had been drawn.

  9. Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun

    2016-09-01

    The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s-1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than ɛc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.

  10. Discontinuous Dynamic Recrystallization of Inconel 718 Superalloy During the Superplastic Deformation

    Science.gov (United States)

    Huang, Linjie; Qi, Feng; Hua, Peitao; Yu, Lianxu; Liu, Feng; Sun, Wenru; Hu, Zhuangqi

    2015-09-01

    The superplastic behavior of Inconel 718 superalloy with particular emphasis on the microstructural evolution has been systematically investigated through tensile tests at the strain rate of 10-3 s-1 and the temperatures ranging from 1223 K to 1253 K (950 °C to 980 °C). Its elongations exceeded 300 pct under all of the experimental conditions and peaked a maximum value of 520 pct at 1223 K (950 °C). Moreover, the stress reached the top value at the strain of 0.3, and then declined until the tensile failure. In addition, we have found that the grain size reduced after deformation while the δ phase precipitation increased. Microstructural evolution during the superplasticity was characterized via transmission electron microscope, and the randomly distributed dislocation, dislocation network, dislocation arrays, low-angled subgrains, and high-angled recrystallized new grains were observed in sequence. These new grains were found to nucleate at the triple junction, twin boundary, and near the δ phase. Based on these results, it is deemed that the discontinuous dynamic recrystallization occurred as the main mechanism for the superplastic deformation of Inconel 718 alloy.

  11. Dynamical recrystallization of high purity austenitic stainless steels; Recristallisation dynamique d'aciers inoxydables austenitiques de haute purete

    Energy Technology Data Exchange (ETDEWEB)

    Gavard, L

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  12. Effect of the strain rate in the dynamic recrystallization of ETP copper during its hot compression with descending temperatures; Efecto de la velocidad de deformacion en la recristalizacion dinamica de un cobre ETPdurante su compresion en caliente con temperatura descendente

    Energy Technology Data Exchange (ETDEWEB)

    Torrente, G.; Torres, M.; Sanoja, L.

    2011-07-01

    The main purpose of this project is to establish the effect of strain rate in the dynamic recrystallization of an ETP copper during its hot deformation with descending temperature. For this, there were made some tests of hot compression until true deformations close to one, with four strain rates while the temperature was descending. The tests that were made to the two lowest strain rates, showed a multiple peaks dynamic recrystallization with a rise of the tension instead it reaches the steady state, maybe due a continuous decline of the temperature.With the increase of rate the rest of the tests showed simple peak recrystallization and recovering respectively. The experimental results were compared with the results of a simulation based on the Damped Cosine Avrami Model. The simulation produced results closed to those measured during the multiple peaks dynamic recrystallization. These suggest that the application of this Model may be extended to multiple peaks dynamic recrystallization processes with changeable temperature. (Author) 33 refs.

  13. Mesoscale simulation of discontinuous dynamic recrystallization using the cellular automaton method

    Institute of Scientific and Technical Information of China (English)

    Baojun YU; Xiaojun GUAN; Lijun WANG; Qingkai ZENG; Qianqian LIU; Yu CAO

    2011-01-01

    A dynamic recrystallization (DRX) cellular automaton (CA) model that can mark the microstructure with DRX circle was developed.The effects of initial grain size on the stress-strain curve,mean grain size and DRX fraction were mainly investigated,and the simulated results were compared with those obtained from previous researches.The results show that the shape of the stress-strain curve is sensitive,while the stress and mean grain size at the steady state are insensitive to the initial grain size.The transition from a multiple-peak stress-strain curve to a single-peak one can be explained by variations in DRX circle fraction,and the initial grain size to make this transition is between 70 and 80 μm.

  14. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

  15. Effect of Niobium and Titanium on Dynamic Recrystallization Behavior of Low Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    MA Li-qiang; LIU Zhen-yu; JIAO Si-hai; YUAN Xiang-qian; WU Di

    2008-01-01

    Using a Gleeble 3800 thermo-mechanical simulator, the effect of niobium and titanium on the dynamic re-crystallization (DRX) behavior of low carbon steels was investigated. Isothermal single compression tests were per-formed in the temperature range of 850 to 1 150 ℃ at eonatant strain rates of 0. 1 to 5 s-1. The experimental results showed that the addition of niobium and titanium to the low carbon steels significantly increased both the peak stress and steady state stress. The activation energy of deformation Qd was larger than the activation energy associated with the steady state stress Qss. Furthermore, the difference between Qd and Qss became significant because of the addition of niobium and titanium. DRX is effeetively retarded beeause of solute dragging and dynamic precipitate pinning of niobium and titanium, resulting in higher values of the peak strain and steady state strain. Finally, the influence of niobium and titanium on the DRX kinetics and steady state grain size was determined.

  16. Mesoscopic simulations of recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E.A. [Sandia National Labs., Albuquerque, NM (United States); Rollett, A.D. [Los Alamos National Lab., NM (United States); Srolovitz, D.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    1995-08-01

    The application of computer simulation to grain growth and recrystallization was strongly stimulated in the early 80s by the realization that Monte Carlo models could be applied to problems of grain structure evolution. By extension of the Ising model for domain modeling of magnetic domains to the Potts model (with generalized spin numbers) it was then possible to represent discretely grains (domains) by regions of similarly oriented sets of material (lattice) points. In parallel with this fascinating development, there also occured notable work on analytical models, especially by Abbruzzese and Bunge, which has been particularly useful for understanding the variation of texture (crystallographic preferred orientation) during grain growth processes. Geometric models of recrystallization, worked on most recently and productively by Nes et al., have been useful in connection with grain size prediction as a result of recrystallization. Also, mesh-based models have been developed to a high degree by Kawasaki, Fradkov and others, and, rather recently, by Humphreys to model not just grain growth but also the nucleation process in recrystallization. These models have the strength that they deal with the essential features of grains, i.e. the nodes, but have some limitations when second phases must be considered. These various approaches to modeling of recrystallization processes will be reviewed, with a special emphasis on practical approaches to implementing the Potts model. This model has been remarkably successful in modeling such diverse phenomena as dynamic recrystallization, secondary recrystallization (abnormal grain growth), particle-inhibited recrystallization, and grain structure evolution in soldering and welding. In summary, the application of mesoscopic simulation to the phenomenon of recrystallization has yielded much new insight into some longstanding deficiencies in our understanding.

  17. Modeling Recrystallization of Austenite for C-Mn Steels during Hot Deformation by Cellular Automaton

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperature, strain, and strain rate on the dynamic recrystallization fraction, and the effect of the keeping time on the static recrystallization fraction based on a hot deformation test on a Gleeble-1500 simulator. In addition, the size changing of γ grains during continuous hot deformation was simulated by applying the model.

  18. Using a Numerical Model to Quantitatively Assess Dynamic Recrystallization as a Mechanism for He Enrichment in Mantle Shear Zones

    Science.gov (United States)

    Kaminski, K.; Mittelstaedt, E. L.; Warren, J. M.; Kurz, M. D.; Kumamoto, K.

    2015-12-01

    Recent studies of ductile peridotite shear zones in the Josephine Peridotite in SW Oregon find higher helium concentrations in whole rock samples located where total strain is greatest and recrystallized grain sizes are smallest. Based upon these results, previous workers suggest that dynamic recrystallization may lead to increased storage of He on grain boundaries. To assess the feasibility of this mechanism for enhanced He storage, we utilize a combined set of new and previous data from Shear Zone A (SZA) and B (SZB) of the Fresno Bench of the Josephine Peridotite to constrain a 1D numerical model of a ductile shear zone; the combined data set includes both He concentrations as well as measured total strain across the shear zone. Existing data within the region of highest strain (0 to ~2.5 m from the center of each shear zone) are sparse and, thus, we strategically sampled locations within this zone to maximize data resolution across a range of total strain. In each sample, we measure helium concentrations in unserpentinized harzburgite bulk rock using mass spectrometry. Analysis of the orientation of pyroxene foliation planes compared to shear planes provides an estimation of shear strain during deformation. Numerically, our model is discretized using finite differences and incorporates a non-linear, temperature-dependent viscosity, shear heating, and dynamic recrystallization. Here, we present our newly compiled collection of helium concentrations relative to total strain within SZA and SZB and measured grain sizes, which are used to constrain the modeled equilibrium grain size and quantitatively test dynamic recrystallization as a mechanism for concentrating He within peridotite shear zones.

  19. COMPETITION BEETWEN DYNAMIC RECUPERATION AND RECRYSTALLIZATION OF ASTM F 138 AUSTENITIC STAINLESS STEEL UTILIZED IN MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    Fabio Henrique Casarini Geronimo

    2013-06-01

    Full Text Available ASTM F 138 austenitic stainless steel has being used in the manufacture of orthopedical devices by hot forging. In this work, the flow stress curves are determined by hot torsion tests in a wide range of temperatures and strain rates. With the observed microestrutural evolution by optical microscopy in different hot forming conditions in addiction with EBSD (Electron Backscatter Diffraction techniques it is possible to obtained the recrystallized volume fraction and the misorientation angles of the samples. Due to the intermediate level of stacking fault energy of this material, during the dynamic softening occurs a competition between recrystallization and recovery. The aim of this work is to identify the softening mechanisms in this stainless steel, as well as in which hot work conditions they become more active.

  20. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Xizhang, E-mail: kernel.chen@gmail.com [School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 (China); Madigan, Bruce [Montana Tech, Butte, MT (United States); Cao, Hongyan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Konovalov, Sergey [Center for Collective Use Material Science, Siberian State Industrial University, Novokuznetsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Average grain sizes of 1.8 μm are observed at strain rate of 10 s{sup −1}. • Peak stress value increased, but strain decreased with increasing of strain rate. • A catenuliform recrystallized occurred at a strain rate of 5 s{sup −1}. • DRX effect improved with increasing of deformation amounts. - Abstract: To investigate the effects of strain rate on dynamic recrystallization (DRX) behavior on China low activation martensitic steel, hot uniaxial compression tests with strain rates ranging from 0.1 s{sup −1} to 10 s{sup −1} and deformations amounts of 40% and 70% where conducted. The true stress–true strain curves were analyzed for the occurrence of DRX under the different strain rates and compressive deformation amounts. The steel microstructures were examined and linked to the observed stress-strain diagrams to study DRX. Results show that DRX was responsible for refining the grain structure over a wide range of strain rates under 70% deformation. However, significant DRX occurred only at the relatively low strain rate of 0.1 s{sup −1} under 40% deformation. The original elongated microstructure of the rolled plate from which the specimens were taken was replaced by dynamic recrystallization grains. At 70% deformation, the average grain size was 4.2 μm at a strain rate of 0.1 s{sup −1}, 2.5 μm at a strain rate of 5 s{sup −1}, 1.8 μm at a strain rate of 10 s{sup −1}. In conclusion, with increasing strain rate, the recrystallized grain size decreased and the peak stress increased.

  1. The effect of composition on the mechanism of continuous recrystallization and superplastic response of aluminum-scandium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.L. III

    1993-05-01

    The continuous recrystallization (CRX) appears to be fundamental in Al-Sc because it occurs irrespective of solute composition. It appears to be due to a combination of subgrain coalescence at low strains and incorporation of additional dislocations generated during grain boundary sliding at higher strains when the misorientation has increased sufficiently. Alloying additives such as Mg, Li are more important with respect to deformation after CRX is completed. Mg, and to a lesser extent Li, affect the max m-values (strain-rate sensitivities) in Al-Sc by changing the melting points (mp). Max m- values correlate inversely with mp so that the alloy with the greatest Mg had the highest m-values and lowest mp; the stress is raised at which power-law creep and breakdown occurs. The power-law breakdonw at much lower stresses in Al-0.5Sc and Al-1.2Li-0.5Sc causes the m-value to decrease more rapidly with strain rate. Al alloys for commercial superplastic applications should contain elements that raise the power-law strength so that the m-values are maximized while preserving the post-formed mechanical properties. Refs, figs, tabs.

  2. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin; Zhang, Kaifeng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiang, Shaosong, E-mail: jiangshaosong@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Haiping [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Changhong; Yang, Xiaoli [Fushun Special Steel Co. Ltd, Fushun 113000 (China)

    2015-02-25

    Highlights: • The relationship between the peak stress and stable DRX grain size has been expressed by a power law function. • The effect of CDRX characterized by progressive subgrain rotation became weaker with the increasing deformation temperature. • The effect of DDRX became stronger with the increasing strain for the alloy deformed at 1160 °C/0.1 s{sup −1}. • The fraction of twin boundaries is closely related to the deformation temperature and strain. - Abstract: The hot deformation behavior of a γ′-hardened nickel-based superalloy was investigated by means of isothermal compression tests in the temperature range of 1010–1210 °C with a strain rate of 0.1 s{sup −1}. The electron backscatter diffraction (EBSD) technique and transmission electron microscope (TEM) were employed to investigate the effect of deformation temperature and strain on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). Microstructure observations revealed that the size and volume fraction of DRX grains increased with the increasing temperature. A power exponent relationship was obtained between the stable DRX grain size and the peak stress. Additionally, it was found that the effect of CDRX characterized by progressive subgrain rotation became weaker with the increasing deformation temperature, and DDRX was the operating nucleation mechanism of DRX at higher deformation temperature. On the other hand, the effect of DDRX became stronger with the increasing strain, and CDRX can only be considered as an assistant nucleation mechanism of DRX at the later stage of deformation for the alloy deformed at 1160 °C. Nucleation of DRX can also be activated by the twinning formation. Hence, particular attention was also paid to the evolution of twin boundaries during hot deformation.

  3. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties

    Science.gov (United States)

    Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro

    2016-12-01

    Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application.

  4. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  5. A Dynamic Continuation-Passing Style for Dynamic Delimited Continuations

    DEFF Research Database (Denmark)

    Biernacki, Dariusz; Danvy, Olivier; Millikin, Kevin Scott

    2005-01-01

    -passing style.' We show that the new machine operates more efficiently than the definitional one and that the notion of computation induced by the corresponding evaluator takes the form of a monad. We also present new examples and a new simulation of dynamic delimited continuations in terms of static ones....

  6. Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems.

    Science.gov (United States)

    Regand, A; Goff, H D

    2002-11-01

    Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was observed but is not the only mechanism of stabilizer action. Thermodynamic incompatibility between biopolymers was observed to promote localized high concentrations of milk proteins located at the ice crystal interface, probably exerting a water-holding action that significantly enhanced the stabilizer effect. Qualitatively, solution heterogeneity (phase separation) was directly proportional to ice crystal growth inhibition. It is suggested that water-holding by stabilizer and proteins, and in some cases steric hindrance induced by a stabilizer gel-like network, caused a reduction in the kinetics of the ice recrystallization phenomena and promoted mechanisms of melt-regrow instead of melt-diffuse-grow recrystallization, thus resulting in the preservation of the ice crystal size and in a small span of the ice crystal size distribution.

  7. Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61 + Sr magnesium alloys

    Directory of Open Access Journals (Sweden)

    S. Aliakbari Sani

    2016-06-01

    Full Text Available In this study, the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests. A reference alloy (AZ61 and an Sr-containing alloy (AZ61 + Sr was cast while their average initial grain size were supposed to be about 140 and 40 µm, respectively. In AZ61 + Sr alloy, the Sr-containing precipitations were stable at homogenization temperature. Analysing the hot compression curves, it was revealed that dynamic recrystallization phenomenon had occurred and controlled the thermomechanical behaviour of the alloys. The derived constitutive equations showed that the hot deformation parameters (n and Q in AZ61 + Sr alloy is smaller than those of AZ61 alloy; this can be related to the small initial grain size and the lower amounts of solute aluminium atoms. The analysis of DRX kinetics along with the micrographs of the deformed microstructures showed that at the same condition the development of DRXed microstructure in AZ61 + Sr alloy was faster than AZ61 alloy. The increased recrystallized microstructure was interpretated to be attributed to (1 the more grain boundaries present and (2 the existance of the Al-Mg-Sr precipitations assisted the PSN mechanism. Also, the attenuated intensity of the basal texture of AZ61 + Sr was related to the DRX fraction of microstructure.

  8. Discontinuous Dynamic Recrystallization during Accumulative Back Extrusion of a Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    S.M. Fatemi-Varzaneh

    2013-12-01

    Full Text Available The study of nucleation mechanism of new grains during severe plastic deformation of magnesium alloys is of great importance to control the characteristics of final microstructures.  To investigate the role of discontinuous recrystallization, a wrought AZ31 magnesium alloy was deformed by accumulative back extrusion process at 330 °C.  The obtained microstructures were studied using optical and field emission microscopy as well as electron back scattered diffraction techniques.  The results demonstrated that the fine and ultrafine grains formed along the prior grain boundaries yielding a bimodal structure.  The EBSD analysis showed that the new grains exhibit a similar basal texture to deformed grains, which may confirm the operation of strain induced boundary migration mechanism.

  9. Dynamic recrystallization behavior and constitutive modeling of as-cast 30Cr2Ni4MoV steel based on flow curves

    Science.gov (United States)

    Zhou, Peng; Ma, Qingxian

    2017-03-01

    The compression deformation of 30Cr2Ni4MoV steel at different temperatures and strain rates is carried out on Gleeble 1500 thermal mechanical simulation tester. Based on the experimental flow curves, the strain hardening rate curves ( θ = dσ/ dɛ versus σ) are derived, from which the characteristic stresses and strains are identified. Meanwhile, the dependences of the characteristic stresses and strains on Zener-Hollomon parameter are determined and the results show that the value of the critical stress of dynamic recrystallization is close to the value of the steady stress. With the aid of the experimental flow curves, the Avrami equation is employed to describe the kinetics of dynamic recrystallization. The time exponent ( n) is expressed as a power law function of Zener-Hollomon parameter and the Avrami constant ( k) is determined as a function of half of the time for the complete dynamic recrystallization ( t 50). Furthermore, a constitutive model is presented based on the rule of mixtures when the dynamic recrystallization occurs. Validation of the constitutive model is implemented and the simulated results agree well with the experimental results.

  10. Austenite Recrystallization and Controlled Rolling of Low Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    DU Lin-xiu; ZHANG Zhong-ping; SHE Guang-fu; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases and the strain rate decreases, the shape of the stress-strain curve is changed from dynamic recovery shape to dynamic recrystallization shape. The austenite could not recrystallize within a few seconds after deformation at temperature below 900 ℃. According to the change in microstructure during deformation, the controlled rolling of low carbon steel can be divided into four stages: dynamic recrystallization, dynamic recovery, strain-induced ferrite transformation, and rolling in two-phase region. According to the microstructure after deformation, the controlled rolling of low carbon steel can be divided into five regions: non-recrystallized austenite, partly-recrystallized austenite, fully-recrystallized austenite, austenite to ferrite transformation, and dual phase.

  11. Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-ren; CAO Ya-bin; QIAO Gui-ying; ZHANG Xiao-bing; LIAO Bo

    2012-01-01

    Nb is often considered to be a powerful alloying element for controlling the recrystaUization process in mi- croalloyed high strength steels. However, Nb can be presented either as solute in solution, where it is thought to ex- hibit a strong solute drag effect, or as NbC precipitates, which are thought to be effective at pinning grain bounda- ries. Therefore, it is very important to quantitatively measure Nb in solution or in NbC precipitates. A quantitative analysis method of Nb in solution and in precipitates was proposed. The test procedure involved chemical dissolution, filtration and inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis. The amount of Nb in solution in Nb-microallyed steels under different treatment conditions was evaluated. The results show that the niobium and carbon contents in steels have a great effect on niobium dissolution kinetics. The solute Nb is more effective to retard dynamic recrystallization, while the NbC precipitates are more effective to inhibit static recrystaltization. The results may help to comprehend effect of Nb in steels, and provide some guides in the design of new high strength Nb-bearing steels.

  12. Comparison between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafari; A.Najafizadeh

    2008-01-01

    Several methods have been proposed to calculate the critical stress for initiation of dynamic recrystallization (σc) on the basis of mathematical methods.One of them is proposed by Stewart et al.in which this critical point appears as a distinct minimum in the (-dθ/dσ vs σ) through differentiating from θ vs σ.Another one is presented by Najafizadeh and Jonas by modifying the Poliak and Jonas method.According to this method,the strain hardening rate was plotted against flow stress,and the value of σc was attained numerically from the coefficients of the third-order equation that was the best fit from the experimental θ-σ data.Hot compression tests were used in the range of 1000 to 1100℃ with strain rates of 0.01-1 s-1 and strain of 1 on 316 stainless steel.The result shows that Najafizadeh and Jonas method is simpler than the previous one,and has a good agreement with microstructures.Furthermore,the value of normalized critical stress for this steel was obtained uc=σc/σp=0.92.

  13. From Continuous Dynamics to Symbols

    Science.gov (United States)

    Jaeger, Herbert

    This article deals with mathematical models of discrete, identifiable, `symbolic' events in neural and cognitive dynamics. These dynamical symbols are the supposed correlates of identifiable motor action patterns, from phoneme utterances to restaurant visits. In the first main part of the article, models of dynamical symbols offered by dynamical systems theory are reviewed: attractors, bifurcations, spatial segregation and boundary formation, and several others. In the second main part, the concept of transient attractor (TA) is offered as yet another mathematical model of dynamical symbols. TAs share with ordinary attractors a basic property, namely, local phase space contraction. However, a TA can disappear almost as soon as it is created, which could (not very rigorously) be interpreted as a bifurcation induced by quickly changing control parameters. Such `fast bifurcation sequences' standardly occur in neural and cognitive dynamics.

  14. Recrystallization behavior of high purity aluminum at 300 ℃

    Institute of Scientific and Technical Information of China (English)

    DU Yu-xuan; ZHANG Xin-ming; YE Ling-ying; LUO Zhi-hui

    2006-01-01

    The recrystallization behavior of 98.5% cold rolled high purity aluminum foils annealed at 300 ℃ was investigated, and the evolution of the microstructures was followed by electron back scattered diffraction(EBSD). The results show that the recrystallization process of the high purity aluminum foils at 300 ℃ is a mixture of discontinuous- and continuous-recrystallization.The orientations of the recrystallization nuclei include not only the cube orientation, but also other orientations such as some near deformation texture components which are the results of strong recovery process. However, such continuously recrystallized grains are usually associated with relatively high free energy, so they would be consumed by the discontinuously-recrystallized grains (cube-oriented grains) in subsequent annealing. On the other hand, the pattern quality index of recrystallized grains shows dependence on the crystal orientation which might introduce some errors into evaluating volume fraction of recrystallization by integrating pattern quality index of EBSD.

  15. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  16. Ultrasonic Determination Of Recrystallization

    Science.gov (United States)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  17. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Science.gov (United States)

    Lin, Y. C.; Wen, Dong-Xu; Chen, Ming-Song; Chen, Xiao-Min

    2016-09-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy.

  18. Continuous Time Group Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K; Eliassi-Rad, T

    2010-11-04

    With the rise in availability and importance of graphs and networks, it has become increasingly important to have good models to describe their behavior. While much work has focused on modeling static graphs, we focus on group discovery in dynamic graphs. We adapt a dynamic extension of Latent Dirichlet Allocation to this task and demonstrate good performance on two datasets. Modeling relational data has become increasingly important in recent years. Much work has focused on static graphs - that is fixed graphs at a single point in time. Here we focus on the problem of modeling dynamic (i.e. time-evolving) graphs. We propose a scalable Bayesian approach for community discovery in dynamic graphs. Our approach is based on extensions of Latent Dirichlet Allocation (LDA). LDA is a latent variable model for topic modeling in text corpora. It was extended to deal with topic changes in discrete time and later in continuous time. These models were referred to as the discrete Dynamic Topic Model (dDTM) and the continuous Dynamic Topic Model (cDTM), respectively. When adapting these models to graphs, we take our inspiration from LDA-G and SSN-LDA, applications of LDA to static graphs that have been shown to effectively factor out community structure to explain link patterns in graphs. In this paper, we demonstrate how to adapt and apply the cDTM to the task of finding communities in dynamic networks. We use link prediction to measure the quality of the discovered community structure and apply it to two different relational datasets - DBLP author-keyword and CAIDA autonomous systems relationships. We also discuss a parallel implementation of this approach using Hadoop. In Section 2, we review LDA and LDA-G. In Section 3, we review the cDTM and introduce cDTMG, its adaptation to modeling dynamic graphs. We discuss inference for the cDTM-G and details of our parallel implementation in Section 4 and present its performance on two datasets in Section 5 before concluding in

  19. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  20. CONTINUITY OF DYNAMIC-SYSTEMS - THE CONTINUOUS-TIME CASE

    NARCIS (Netherlands)

    NIEUWENHUIS, JW; WILLEMS, JC

    1992-01-01

    The purpose of this paper is to study continuity of the parametrization of continuous-time linear time-invariant differential systems having a finite-dimensional state space. We show that convergence of the behavior of such systems corresponds to convergence of the coefficients of a set of associate

  1. 一种铌微合金钢热变形过程中的动态再结晶%Dynamic Recrystallization Behavior of Nb Micro-alloyed Steel During Hot Deformation

    Institute of Scientific and Technical Information of China (English)

    朱利敏; 文九巴

    2011-01-01

    通过一种铌微合金钢高温下(900~1100℃)不同应变速率(0.01~10s)的热模拟单道次压缩试验,结合组织观察,研究了热变形参数对动态再结晶过程的影响,求出动态再结晶形变激活能及相关参数,建立了该钢的热变形本构方程.实验结果表明,合金元素的添加,由于固溶原子拖曳及析出物的钉扎作用,增加了动态再结晶激活能,显著抑制了该钢的动态再结晶及晶粒长大过程.原始奥氏体晶粒尺寸增大、变形温度降低及应变速率增大将抑制动态再结晶过程.%A micro-alloyed pipeline steel was deformed in compression at high temperature (900 ℃ ~ 1 100 ℃) and strain rate from 0.01 s-1 to 10 s-1 using Gleeble 2000 thermo-mechanical simulator. By analyzing the curves of the flow stress and the microstructure, the effects of thermo-mechanical treatment parameters on dynamic recrystallization (DRX) behavior of observing the steel were investigated. The results show that the addition of microalloy elements produces a retardation of dynamic recrystallization and grain growing because of increasing active energy of dynamic recrystallization under the action of solid solution drawing and precipitate pinning. The initial anstenite grain size, deformation conditions (temperature, strain and strain rate) affect dynamic recrystallization kinetics.

  2. 低碳Q690qENH高强桥梁钢的动态再结晶行为%Dynamic Recrystallization Behaviors of Low Carbon Q690qENH High-strength Bridge Steels

    Institute of Scientific and Technical Information of China (English)

    陈俊; 唐帅; 周砚磊; 刘振宇; 王国栋; 杨颖; 陈军平

    2012-01-01

    对低碳Q690qENH高强桥梁钢进行压缩实验,研究了动态再结晶行为.结果表明,在低碳Q690qENH高强桥梁钢的轧制热变形过程中,其软化以动态回复为主,只在0.1s^-1和0.2s^-1低应变速率下才发生明显的动态再结晶.通过计算将应力因子a修正为0.0099MPa^-1,得到了实验钢的动态再结晶激活能,建立了动态再结晶动力学模型。采用P-M-K法确定了εc/εp约为0.72,且峰值应变与Z/A满足幂函数关系,建立了动态再结晶临界应变模型,其计算值与热变形中的显微组织演变规律一致。研究了温度对动态再结晶过程中界面迁移速率的影响规律。%The dynamic recrystallization behaviors of low carbon Q690qENH high-strength bridge steel were investigated by hot compression deformation using MMS-300 thermo-simulation machine. The results show the softening of low carbon Q690qENH high-strength bridge steel is mainly controlled by dynamic recovery during hot rolling deformation and the dynamic recrystallization occurs obviously at low strain rates of 0.1 s^-1 and 0.2 s^-1. The stress factor was modified as 0.0099 MPa-1, the dynamic recrystal- lization activation energies were gained, and the dynamic recrystallization kinetics model was established. The expression of εc=0.72εp was determined using P-M-K method. Correlations between peak strain and Z/A are power function, and dynamic recrystallization critical strain model was established calculation values of which are good agreement with evolution of microstructure during hot deformation. EfFects of temperature on migration-rate of interface were also investigated during dynamic recrystallization.

  3. Nucleation and growth during recrystallization

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2005-09-01

    Full Text Available The evolution in the understanding of the recrystallization phenomena is summarized in this paper. Initially the main developments concerning recrystallization are presented from a historical perspective. Definitions and concepts involving recrystallization are presented regarding it as a solid-state reaction that occurs by nucleation and growth. The recrystallization nucleation mechanisms are subsequently discussed. Finally, the growth step is highlighted, emphasizing boundary and sub-boundary mobilities and the forces acting on the high angle grain boundaries that sweep the microstructure during recrystallization.

  4. Recrystallization Modelling of Hot Deformed Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-juan; WU Di; ZHAO Xian-ming

    2007-01-01

    By means of hot compression single and double hit experiments, the kinetics of dynamic and static recrystallization in hot-rolled Si-Mn TRIP steel was studied, and the emphasis was put on the influence of high silicon content. The results show that the calculated parameters are consistent with the experimental ones, and addition of silicon retards both dynamic and static recrystallization as well as increases the flow stress of austenite, and the non-recrystallization zone can be enlarged by increasing the silicon contents.

  5. Multiscale Modeling of Recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, A.W.; Holm, E.A.; Hughes, D.A.; Lesar, R.; Miodownik, M.A.

    1998-12-07

    We propose a multi length scale approach to modeling recrystallization which links a dislocation model, a cell growth model and a macroscopic model. Although this methodology and linking framework will be applied to recrystallization, it is also applicable to other types of phase transformations in bulk and layered materials. Critical processes such as the dislocation structure evolution, nucleation, the evolution of crystal orientations into a preferred texture, and grain size evolution all operate at different length scales. In this paper we focus on incorporating experimental measurements of dislocation substructures, rnisorientation measurements of dislocation boundaries, and dislocation simulations into a mesoscopic model of cell growth. In particular, we show how feeding information from the dislocation model into the cell growth model can create realistic initial microstructure.

  6. Recrystallization behaviour of fine-grained magnesium alloy after hot deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Annealing behaviors of hot-deformed magnesium alloy AZ31 were studied at temperatures from 300 to 673 K by optical and SEM/EBSD metallographic observation. Temperature dependence of the average grain size(D) is categorized into three temperature regions, i.e. an incubation period for grain growth, rapid grain coarsening, and normal grain growth. The number of fine grains per unit area, however, is reduced remarkably even in incubation period. This leads to grain coarsening taking place continuously in the whole temperature regions. In contrast, the deformation texture scarcely changes even after full annealing at high temperatures. It is concluded that the annealing processes operating in hot-deformed magnesium alloy with continuous dynamic recrystallized grain structures can be mainly controlled by grain coarsening accompanied with no texture change, that is, continuous static recrystallization.

  7. Study of dynamic recrystallization of Q345B steel%Q345B钢动态再结晶动力学模型研究

    Institute of Scientific and Technical Information of China (English)

    杨静; 徐光; 韩斌; 补丛华; 邹航

    2012-01-01

    Single-pass compression deformation tests of Q345B steel were conducted on Gleeble 1500 hot simulator. Deformation values of the steel including critical strain, peak strain and steady strain were obtained according to the stain-stress data and work hardening data. The Zener-Hollomon parameter equation was given and status diagram of dynamic recrystallization (DXR) was plotted. Then measured DXR values were calculated by the method of Johnson-Mehl-Avrami (JMA). Three different DXR models were fitted with test data, and it is shown by the comparison of measured and predicted DXR values that the model considering steady and critical strain has the highest accuracy.%在Gleeble 1500热模拟机上进行Q345B钢单道次压缩变形实验,得到其真应力-真应变曲线,结合加工硬化率曲线,确定了Q345B钢动态再结晶临界应变εC、峰值应变εP和稳态应变εS.根据实验结果得到ZenerHollomon方程和动态再结晶状态图,利用Johnson-Mehl-Avrami(JMA)方程法得到再结晶体积分数实际值,采用3种不同的再结晶体积分数预报模型对实验数据进行回归,并对再结晶体积分数实测值和预报值进行对比.结果表明,Epsilon-S/Epsilon-C模型精度最高,Epsilon-S模型精度次之,Epsilon-P模型精度最差.

  8. Simulations of Recrystallization in Metals

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner

    2007-01-01

    The growth of new near-perfect grains during recrystallization of deformed metals is governed by the migration of the grain boundaries surrounding the new grains. The grain boundaries migrate through the deformed metal driven by the excess energy of the dislocation structures created during...... deformation. Recently, it has been found that recrystallization is far more inhomogeneous than previously thought. The purpose of this PhD-project is to study recrystallization by computer simulations with special focus on inhomogeneous growth. Two types of simulations have been employed: geometric......-inhomogeneities into a simple recrystallization-model can affect the recrystallization kinetics and microstructure significantly, which makes it very important to understand the origin of such inhomogeneities. The MD simulations show that grain boundary migration during recrystallization is strongly affected by the dislocation...

  9. Recrystallization during and following hot working of magnesium alloy AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, M.R. [School of Engineering and Technology, Deakin Univ., Geelong, Vic. (Australia)

    2003-07-01

    The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. It was found that the progress of dynamic recrystallization is strongly sensitive to processing conditions but that the dynamically recrystallized grain size was less sensitive to stress than in other metals. It was also found that, for structures containing between 80 and 95% dynamic recrystallization, abnormal grain growth occurs during annealing. The crystallographic texture produced is also sensitive to the deformation conditions. (orig.)

  10. Research on the Mathematical Modeling for Dynamic Recrystallization of V-N Microalloyed Steel%钒氮微合金钢的动态再结晶数学模型研究

    Institute of Scientific and Technical Information of China (English)

    赵宝纯; 赵坦; 李桂艳

    2012-01-01

    利用Gleeble-3800热模拟试验机对含钒微合金钢进行了温度范围为900~1 050℃,应变速率范围为0.1~10s-1的单道次压缩试验,得到了试验钢的应力-应变曲线.采用回归分析法确定了双曲线本构方程中的材料常数,动态再结晶激活能和临界应变量与Z参数的关系.根据该试验钢发生动态再结晶的条件,建立了其动态再结晶图.%Single — pass compressing tests were performed with the Gleeble — 3800 thermo-mechanical simulator at the temperature of 900℃ to 1 050℃ and strain rate of 0.1 s-1 to 10 s-1 to investigate the dynamic recrystallization behavior of a kind of vanadium-bearing microalloyed steel and the stress-strain curve was obtained as a result. By the regression analysis of the stress-strain data obtained from the test, the material parameters in the hyperbolic sine constitutive equation and the dynamic recrystallization activation energy, including the relationship between the critical strain and parameter Zener-Hollomon, were determined. Based on the conditions for the deformation, the dynamic recrystallization diagram of the tested steel was drawn.

  11. Recrystallization in AZ31 magnesium alloy during hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Essadiqi, E.; Liu, W.J.; Kao, V. [Natural Resources Canada, Materials Technology Lab., CANMET, Ottawa, ON (Canada); Yue, S. [Dept. of Metallurgical Engineering, McGill Univ., Montreal, PQ (Canada); Verma, R. [General Motors, Materials and Processes Lab, Warren, MI (United States)

    2005-07-01

    In this study, isothermal torsion tests were carried out on magnesium AZ31B alloy under constant strain rate conditions, in the range of 250 to 400 C at 0.01, 0.1, and 1.0 s{sup -1}. Alloy flow stress dependence on strain rate and temperature can be described by a power law with activation energy of 130 kJ/mol. Microstructural examination of hot deformed samples shows very fine recrystallized grains decorating grain boundaries of larger gains in the form of a necklace. These fine grains are produced by dynamic recrystallization at the grain boundaries of original grains. Microstructure evolution, based on samples quenched at different strain levels, indicates that increasing deformation strain has little effect on recrystallized grain size but widens the recrystallized region, with full recrystallization achieved at a certain high strain level. Recrystallized grain size increases with increasing deformation temperature and strain rate. The latter suggests recrystallization in AZ31 to be essentially a time dependant phenomenon. (orig.)

  12. Escape dynamics through a continuously growing leak

    Science.gov (United States)

    Kovács, Tamás; Vanyó, József

    2017-06-01

    We formulate a model that describes the escape dynamics in a leaky chaotic system in which the size of the leak depends on the number of the in-falling particles. The basic motivation of this work is the astrophysical process, which describes the planetary accretion. In order to study the dynamics generally, the standard map is investigated in two cases when the dynamics is fully hyperbolic and in the presence of Kolmogorov-Arnold-Moser islands. In addition to the numerical calculations, an analytic solution to the temporal behavior of the model is also derived. We show that in the early phase of the leak expansion, as long as there are enough particles in the system, the number of survivors deviates from the well-known exponential decay. Furthermore, the analytic solution returns the classical result in the limiting case when the number of particles does not affect the leak size.

  13. A completion construction for continuous dynamical systems

    CERN Document Server

    Calcines, J M Garcia; Rodriguez, M T Rivas

    2012-01-01

    In this work we construct the $\\Co^{\\r}$-completion and $\\Co^{\\l}$-completion of a dynamical system. If $X$ is a flow, we construct canonical maps $X\\to \\Co^{\\r}(X)$ and $X\\to \\Co^{\\l}(X)$ and when these maps are homeomorphism we have the class of $\\Co^{\\r}$-complete and $\\Co^{\\l}$-complete flows, respectively. In this study we find out many relations between the topological properties of the completions and the dynamical properties of a given flow. In the case of a complete flow this gives interesting relations between the topological properties (separability properties, compactness, convergence of nets, etc.) and dynamical properties (periodic points, omega limits, attractors, repulsors, etc.).

  14. GH4169惯性摩擦焊接过程动态再结晶组织演化的数值模拟%Numerical simulation of microstructure evolution for dynamic recrystallization of GH4169 during inertia friction welding

    Institute of Scientific and Technical Information of China (English)

    朱大喜; 张立文; 祝文卉; 曲伸

    2009-01-01

    利用MSC.Marc的热力耦合弹塑性有限元模拟技术,建立了GH4169环形件惯性摩擦焊接过程的二维热力耦合有限元模型.考虑到惯性摩擦焊接过程中的温度变化,采用叠加原理对Na YS建立的GH4169动态再结晶数学模型进行调整.借助MSc.Marc二次开发,将动态再结晶数学模型和有限元模型相结合,对惯性摩擦焊接过程中GH4169合金的动态再结晶组织演化进行数值模拟,得到了焊接过程中的动态再结晶分数和平均晶粒尺寸分布.对接头的宏观形貌和焊缝区的微观组织进行观察分析,发现模拟结果与实验结果吻合较好.%Using the coupled thermo-mechanical FEM technology of software MSC. Marc, a 2D thermo-mechanical coupled finite dement model for inertia friction welding process of GH4169 super-alloy ring parts was developed. Take into account of the non-isothermal condition during the inertia friction welding, the additivity rule was introduced to adapted the mathematical model for dynamic recrystallization of GH4169 established by Na Y S. By second-development of MSC. Marc, the mathematical model for dynamic recrystallization was combined with the finite model to simulate the microstructure evolution for dynamic recrystallization of GH4169 during the inertia friction welding process. The distributions of dynamic recrystallized fraction and average grain size during the welding process were obtained. The macrostructure of the friction welded joint and the microstructure of welding area was examined and analyzed, it was found that the simulation results agree well with the experimental results.

  15. Recrystallization Behavior Design for Controlling Grain Size in Strip Rolling Process

    Institute of Scientific and Technical Information of China (English)

    ZHU Guo-hui; S V Subramanian

    2008-01-01

    To promote effectively dynamic recrystallization and obtain a homogeneous distribution of ultrafine grain size in strip finish rolling process, the behavior of static and dynamic recrystallization must be appropriately designed to provide an ultrafine austenite microstructure without mixed grain size. The design of rolling schedule was analyzed based on the control of the recrystallization behavior to achieve ultrafine grain size in the strip rolling process of niobium microalloyed steel. The experimental simulations were presented to validate the twice dynamic recrystallization design to achieve ultrafine grain size control.

  16. Numerical Simulation of Austenite Recrystallization in CSP Hot Rolled C-Mn Steel Strip

    Institute of Scientific and Technical Information of China (English)

    TANG Guang-bo; LIU Zheng-dong; DONG Han; GAN Yong; KANG Yong-lin; LI Lie-jun; MAO Xin-ping

    2007-01-01

    An integrated mathematical model is developed to predict the microstructure evolution of C-Mn steel during multipass hot rolling on the CSP production line, and the thermal evolution, the temperature distribution, the deformation, and the austenite recrystallization are simulated. The characteristics of austenite recrystallization of hot rolled C-Mn steel in the CSP process are also discussed. The simulation of the microstructure evolution of C-Mn steel ZJ510L during CSP multipass hot rolling indicates that dynamic recrystallization and metadynamic recrystallization may easily occur in the first few passes, where nonuniform recrystallization and inhomogeneous grain size microstructure may readily occur; during the last few passes, static recrystallization may occur dominantly, and the microstructure will become more homogeneous and partial recrystallization may occur at relatively low temperature.

  17. Parallel Dynamics of Continuous Hopfield Model Revisited

    Science.gov (United States)

    Mimura, Kazushi

    2009-03-01

    We have applied the generating functional analysis (GFA) to the continuous Hopfield model. We have also confirmed that the GFA predictions in some typical cases exhibit good consistency with computer simulation results. When a retarded self-interaction term is omitted, the GFA result becomes identical to that obtained using the statistical neurodynamics as well as the case of the sequential binary Hopfield model.

  18. Logit dynamic for continuous strategy games: existence of solutions

    OpenAIRE

    Lahkar, R.

    2007-01-01

    We define the logit dynamic in the space of probability measures for a game with a compact and continuous strategy set. The original Burdett and Judd (1983) model of price dispersion comes under this framework. We then show that if the payoff functions of the game satisfy Lipschitz continuity under the strong topology in the space of signed measures, the logit dynamic admits a unique solution in the space of probability measures. As a corollary, we obtain that logit dynamic gen...

  19. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification of t...

  20. 新的单参数动态再结晶动力学建模及晶粒尺寸预测%A NEW ONE-PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

    Institute of Scientific and Technical Information of China (English)

    刘娟; 李居强; 崔振山; 阮立群

    2012-01-01

    通过引入动态再结晶的演化速率,分析了基于Avrami方程的经典动态再结晶动力学模型的不足,提出了一种新的具有单参数的动态再结晶动力学模型,反映了动态再结晶过程缓慢 快速-缓慢的特点.采用Gleeble-1500热模拟试验机,对典型的具有动态再结晶特性的材料镁合金AZ31B进行了热压缩实验,通过进行参数回归得到了其动态再结晶动力学模型,并与实验结果相对比,验证了该模型的正确性.进一步将稳态变形条件下获得的微观组织演化模型改写成分步叠加形式,与动态再结晶晶粒尺寸模型相结合,应用到非稳态条件的晶粒预测,模拟与实验的对比表明计算结果和定量金相法所获得的结果基本一致,说明了非稳态变形过晶粒的叠加预测方法的合理性.%Dynamic recrystallization (DRX) is considered as one of the most important mi-crostructural evolution mechanisms to obtain fine metallurgical structures, eliminate defects and improve mechanical properties of products. Although the DRX kinetics models proposed by researchers have some differences in parameters and forms, they are all based on the Avrami function describing the relationship between dynamically recrystallized volume fraction and strain or time. Avrami equation is in the form of exponential function and the kinetics curve of DRX exhibits different when the exponent is assumed to be different (between 1 and 2). Under these conditions, however, the exponential function cannot exactly describe the "slow-rapid-slow" property of the development speed of DRX process. By introducing the velocity of development of DRX process, which is referred to as the variation of the dynamically recrystallized volume fraction with strain, namely, the first partial derivative of the dynamically recrystallized volume fraction to strain, a new kinetics model of DRX was proposed in comparison with the classical kinetics model of DRX. The new model

  1. Automatic twin vessel recrystallizer. Effective purification of acetaminophen by successive automatic recrystallization and absolute determination of purity by DSC.

    Science.gov (United States)

    Nara, Osamu

    2011-01-24

    I describe an interchangeable twin vessel (J, N) automatic glass recrystallizer that eliminates the time-consuming recovery and recycling of crystals for repeated recrystallization. The sample goes in the dissolution vessel J containing a magnetic stir-bar K; J is clamped to the upper joint H of recrystallizer body D. Empty crystallization vessel N is clamped to the lower joint M. Pure solvent is delivered to the dissolution vessel and the crystallization vessel via the head of the condenser A. Crystallization vessel is heated (P). The dissolution reservoir is stirred and heated by the solvent vapor (F). Continuous outflow of filtrate E out of J keeps N at a stable boiling temperature. This results in efficient dissolution, evaporation and separation of pure crystals Q. Pure solvent in the dissolution reservoir is recovered by suction. Empty dissolution and crystallization vessels are detached. Stirrer magnet is transferred to the crystallization vessel and the role of the vessels are then reversed. Evacuating mother liquor out of the upper twin vessel, the apparatus unit is ready for the next automatic recrystallization by refilling twin vessels with pure solvent. We show successive automatic recrystallization of acetaminophen from diethyl ether obtaining acetaminophen of higher melting temperatures than USP and JP reference standards by 8× automatic recrystallization, 96% yield at each stage. Also, I demonstrate a novel approach to the determination of absolute purity by combining the successive automatic recrystallization with differential scanning calorimetry (DSC) measurement requiring no reference standards. This involves the measurement of the criterial melting temperature T(0) corresponding to the 100% pure material and quantitative ΔT in DSC based on the van't Hoff law of melting point depression. The purity of six commercial acetaminophen samples and reference standards and an eight times recrystallized product evaluated were 98.8 mol%, 97.9 mol%, 99

  2. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... (FeAl3), which start to become operative when the degree of deformation is raised from 15 to 30 pct. The temperature of nucleation and of recrystallization decreases when the degree of deformation is increased and the initial grain size is decreased. The recrystallized grain size follows the same...... trend and it is observed that the refinement of the recrystallized grain size caused by an increasing degree of deformation and decreasing initial grain size is enhanced by the FeAl3 particles (when the degree of deformation is raised from 15 to 30 pct). Finally, the structural and kinetic observations...

  3. Approaches to Modeling of Recrystallization

    Directory of Open Access Journals (Sweden)

    Håkan Hallberg

    2011-10-01

    Full Text Available Control of the material microstructure in terms of the grain size is a key component in tailoring material properties of metals and alloys and in creating functionally graded materials. To exert this control, reliable and efficient modeling and simulation of the recrystallization process whereby the grain size evolves is vital. The present contribution is a review paper, summarizing the current status of various approaches to modeling grain refinement due to recrystallization. The underlying mechanisms of recrystallization are briefly recollected and different simulation methods are discussed. Analytical and empirical models, continuum mechanical models and discrete methods as well as phase field, vertex and level set models of recrystallization will be considered. Such numerical methods have been reviewed previously, but with the present focus on recrystallization modeling and with a rapidly increasing amount of related publications, an updated review is called for. Advantages and disadvantages of the different methods are discussed in terms of applicability, underlying assumptions, physical relevance, implementation issues and computational efficiency.

  4. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  5. Large deviations for Glauber dynamics of continuous gas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is devoted to the large deviation principles of the Glauber-type dynamics of finite or infinite volume continuous particle systems.We prove that the level-2 empirical process satisfies the large deviation principles in the weak convergence topology,while it does not satisfy the large deviation principles in the T-topology.

  6. Dynamic HMM Model with Estimated Dynamic Property in Continuous Mandarin Speech Recognition

    Institute of Scientific and Technical Information of China (English)

    CHENFeili; ZHUJie

    2003-01-01

    A new dynamic HMM (hiddem Markov model) has been introduced in this paper, which describes the relationship between dynamic property and feature of space. The method to estimate the dynamic property is discussed in this paper, which makes the dynamic HMMmuch more practical in real time speech recognition. Ex-periment on large vocabulary continuous Mandarin speech recognition task has shown that the dynamic HMM model can achieve about 10% of error reduction both for tonal and toneless syllable. Estimated dynamic property can achieve nearly same (even better) performance than using extracted dynamic property.

  7. Recrystallization from a Three-Grain Crystalline Iron

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-01-01

    Full Text Available The solid state recrystallization and grain boundary migrations in an iron nanoparticle Fe2616 with three grains were studied by a molecular dynamics simulation. It was found that nucleation rates could be determined as the smaller grains were consumed by the larger ones. Moreover, the grain disorder was more important than the misorientation angle in governing the rates. Suggestions about the critical nuclei for the recrystallization are proposed. No obvious interaction between the grain boundaries was observed in the example studied in this report.

  8. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...

  9. Dynamic Water Modeling and Application of Billet Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-hong; XIE Zhi; JI Zhen-ping; WANG Biao; LAI Zhao-yi; JIA Guang-lin

    2008-01-01

    The continuous casting process is used for solidifying molten steel into semi-finished steel. The technology of secondary cooling is extremely important for output of the casting machine and billet quality. A dynamic water model was introduced, including solidification model in the secondary cooling, feedforward control strategy based on continuous temperature measurement in tundish, and feedback control strategy based on surface temperature measurement. The mathematical model of solidification process was developed according to the principle of solidification, and the solidification model was validated by measuring billet shell thickness through shooting nail and sulfur print. Primary water distribution was calculated by the solidification model according to procedure parameters, and it was adjusted by the other two control strategies online. The model was applied on some caster and billet quality was obviously improved, indicating that the dynamic water model is better than conventional ones.

  10. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Güntner

    2013-10-01

    Full Text Available Knowledge of Suspended Sediments Dynamics (SSD across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period

  11. Verification of Continuous Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended...... to enable formal verification of temporal properties of dynamical systems without simulating any system trajectory, which is currently not possible. Therefore, conditions for obtaining sound, complete, and refinable abstractions are set up. The novelty of the method is the partitioning of the state space...... of the verification process. The proposed abstraction is applied to two examples, which illustrate how sound and complete abstractions are generated and the type of specification we can check. Finally, an example shows how the compositionality of the abstraction can be used to analyze a high-dimensional system....

  12. GH4169合金动态再结晶的有限元模拟与实验研究%Thermal simulating experiment and finite element simulation of dynamic recrystallization of annealed GH4169 alloy

    Institute of Scientific and Technical Information of China (English)

    王家文; 王岩; 陈前; 李伟; 陈钰青; 靳书岩; 牛伟; 陈凤霞

    2014-01-01

    以热模拟实验为基础,建立固溶态GH4169合金的动态再结晶模型,应用DEFORM-3D有限元软件模拟圆柱状试样在不同压缩变形条件下的动态再结晶体积分数分布;结合金相定量分析、电子背散射衍射(Electron backsatter diffraction (EBSD))分析及有限元模拟结果,对比研究变形参数对圆柱状GH4169合金心部微观组织的影响。研究结果表明:升高变形温度及降低应变速率,均可促进圆柱状GH4169合金热模拟压缩试样变形的均匀性;应变速率的降低可加速GH4169合金中小角度晶界向大角度晶界的转变过程;GH4169合金的动态再结晶形核机制为以原始晶界为主的非连续动态再结晶,在试验变形条件下,孪晶界的演化对动态再结晶过程起重要作用;同时,分析实验结果与模拟结果之间的差异及其原因。%Dynamic recrystallization (DRX) model of the annealed GH4169 alloy was established based on the thermal-mechanical simulation tests. The finite element analysis software DEFORM-3D was introduced to simulating the DRX volume of the cylindrical annealed GH4169 alloy under different deformation conditions. Combined quantitative metallographic analysis, electron backscatter diffraction (EBSD) analysis with finite element analysis, the effects of the deformation parameters on the microstructures of the center for the cylindrical samples were investigated. The results show that increasing the deformation temperature and lowering the strain rate would promote the deformation homogeneity of the cylindrical samples during thermal-mechanical simulation tests. The transformation procedure of grain boundaries with low angles and with high angles is accelerated with decreasing the strain rate. The nucleation mechanism of the dynamic recrystallization for the alloy is the discontinuous one dominated mainly by the bulging of the original grain boundaries. Under the tested conditions, the evolution of

  13. Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Qin, Zhenjiang

    In a framework of heterogeneous beliefs, I investigate a two-date consumption model with continuous trading over the interval [0; T], in which information on the aggregate consumption at time T is revealed by an Ornstein-Uhlenbeck Bridge. This information structure allows investors to speculate o...... a sufficient statistic for computation of the price of redundant dividend derivative and the equilibrium portfolios. The investors form their Pareto optimal trading strategies as if they intend to dynamically endogenously replicate the value of the dividend derivative....... on the heterogeneous posterior variance of dividend throughout [0; T). The market populated with many time-additive exponential-utility investors is dynamically effectively complete, if investors are allowed to trade in only two long-lived securities continuously. The underlying mechanism is that these assumptions...... imply that the Pareto efficient individual consumption plans are measurable with respect to the aggregate consumption. Hence, I may not need a dynamically complete market to facilitate a Pareto efficient allocation of consumption, the securities only have to facilitate an allocation which is measurable...

  14. A generalized scheme for designing multistable continuous dynamical systems

    Indian Academy of Sciences (India)

    PAL SANTINATH; SAHOO BANSHIDHAR; PORIA SWARUP

    2016-06-01

    In this paper, a generalized scheme is proposed for designing multistable continuous dynamical systems. The scheme is based on the concept of partial synchronization of states and the concept of constants of motion. The most important observation is that by coupling two mdimensional dynamical systems, multistable nature can be obtained if i number of variables of the two systems are completely synchronized and j number of variables keep a constant difference between them i.e., their differences are constants of motion, where $i+j = m$ and $1 \\le i, j \\le m−1$. The proposed scheme is illustrated by taking coupled Lorenz systems and coupled chaotic Lorenzlike systems. According to the scheme, two coupled systems reduce to single modified system withsome initial condition-dependent parameters. Time evolution plots, phase diagrams, variation of maximum Lyapunov exponent and bifurcation diagrams of the systems are presented to show the multistable nature of the coupled systems.

  15. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although the experimen......Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  16. Recrystallization of Al-Sc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Toropova, L.S.; Bykov, Yu.G.; Ber, L.B.

    Scandium effect on the temperature range of aluminium recrystallization was investigated. Al-Sc alloys were studied under cold rolled and hot pressed conditions. It is found that the temperature range of Al-Sc alloy recrystallization depends on ScAl/sub 3/ particle dispersion during recrystallization heats. During heating in quenched alloys at 200-300 deg C decomposition occurs which prevents recrystallization, In the alloys with scandium contents less 0.2% decomposition and recrystallization processes pass simultaneously. In quenched alloys with scandium contents over 0.2% and in aged alloys the initiation and subsequent development of recrystallization are determined by the processes of coalescence and solution of ScAl/sub 3/ phase particles.

  17. Dynamical continuous time random Lévy flights

    Science.gov (United States)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  18. Application of EBSD in the study of dynamic recrystallization mechanisms in Nimonic 80A%EBSD在Nimonic80A动态再结晶机制研究中的应用

    Institute of Scientific and Technical Information of China (English)

    吴洁琼; 陈科; 陈杏芳; 田胜; 沈治; 张澜庭; 单爱党

    2011-01-01

    本文采用背散射电子衍射(EBSD)技术对镍基高温合金Nimonic 80A在不同温度下热压变形后的微观结构进行表征.基于对动态再结晶过程关键参数-再结晶体积百分含量(volume fraction of DRX)、晶界取向差分布(misorientation angle distribution)和孪晶界含量(fraction of twin boundaries)的量化分析,实现对动态再结晶机制的辨别.充分发挥了EBSD大面积定量分析的优点,展示了其在量化分析金属材料动态再结晶机制中的优势.%Electron backscatter diffraction ( EBSD) was applied to characterize the microstructures of Nimonic 80A deformed at elevated temperature. Based on quantitative analyses of key dynamic recrystallization (DRX) parameters, including volume fraction of DRX, misorientation angle distribution, and fraction of twin boundaries, DRX mechanisms occurring during the hot working were studied and successfully identified for different hot-working temperatures. With the advantage of fast indexing for large-area quantitative analyses, EBSD was demonstrated by this work to have a high potential in the study of DRX mechanisms in metals.

  19. Dynamic Soft Reduction for Continuously Cast Rail Bloom

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; LI Gui-jun; YANG Su-bo; ZHU Miao-yong

    2007-01-01

    Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloom casting for heavy rail steel in Panzhihua Iron and Steel Group were not fully achieved because of the improper soft reduction process. Therefore, experiments for optimizing the process parameters of soft reduction for bloom were carried out. The results show that the proportion of the center porosity, which is less than 1.0, increases from 28.41% to 99.81%, while the proportion of the centerline segregation class increases from 40.91% to 100%, and the proportion of the central cavity increases from 92.05% to 100%, whereas the center carbon segregation index decreases from 1.17 to 1.05. The internal quality and the mechanical performance of the rails produced from continuously cast blooms meet the requirement of high-speed tracks of 350 km/h.

  20. Study on Static-recrystallization and Phase Transition under Continuous Cooling of Offshore Platform Steel F550%F550再结晶和连续冷却相变行为研究

    Institute of Scientific and Technical Information of China (English)

    王焕洋

    2013-01-01

    Double-pass compression tests were carried out on the MMS-200 thennomechanical simulator to obtain static-recrystalization curves of offshore platform steel F550.By using a combined method of dilatometry and metallography,dilatometric curves of continuous cooling of F550 were measured,and dynamic CCT curves were obtained.Transformation process of austenite during continuous cooling and microstructure of the transformed products were studied.These tests could provide references for the on-site rolling process of F550.%在MMS-200热模拟试验机上进行双道次压缩试验,测定了F550级海洋平台用钢的静态再结晶曲线;利用膨胀法、结合金相法,测定了F550连续冷却转变的膨胀曲线,获得了动态CCT曲线;研究了F550连续冷却过程的奥氏体转变及转变产物的显微组织,为现场轧制工艺的制定提供了依据.

  1. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  2. Modeling of a continuous pretreatment reactor using computational fluid dynamics.

    Science.gov (United States)

    Berson, R Eric; Dasari, Rajesh K; Hanley, Thomas R

    2006-01-01

    Computational fluid dynamic simulations are employed to predict flow characteristics in a continuous auger driven reactor designed for the dilute acid pretreatment of biomass. Slurry containing a high concentration of biomass solids exhibits a high viscosity, which poses unique mixing issues within the reactor. The viscosity increases significantly with a small increase in solids concentration and also varies with temperature. A well-mixed slurry is desirable to evenly distribute acid on biomass, prevent buildup on the walls of the reactor, and provides an uniform final product. Simulations provide flow patterns obtained over a wide range of viscosities and pressure distributions, which may affect reaction rates. Results provide a tool for analyzing sources of inconsistencies in product quality and insight into future design and operating parameters.

  3. Gradient-based adaptation of continuous dynamic model structures

    Science.gov (United States)

    La Cava, William G.; Danai, Kourosh

    2016-01-01

    A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting its individual components in symbolic form. A key contribution of this work is its introduction of the model's parameter sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in symbolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its potential utility.

  4. Grain Boundary Microstructures of Wet and Dry Recrystallizing Marble

    Science.gov (United States)

    de Bresser, H.; Urai, J.; Olgaard, D.

    2003-12-01

    We analyzed 2D grain boundary maps of samples of marble that were deformed at high temperature with and without added water. Our aim was to relate the grain boundary geometry of wet and dry marble to the observed mechanical behavior, and to obtain criteria that can help interpretation of natural calcite rocks in terms of the influence of water on their deformation. We made use of cylindrical samples of pure white, microporous Carrara marble that were axially compressed in a gas medium deformation apparatus at temperatures (T) ranging 600-1000° C, a constant confining pressure of 300 MPa and strain rates around 10-5 s-1. Samples were jacketed in sealed Pt-capsules with or without the addition of 0.4-2.1 wt% water. Microstructural analysis was carried out using Scanning Electron Microscopy (SEM) and Light Optical Microscopy. Traced grain boundary maps were made from ultra thin sections of samples, and were quantitatively analyzed using Image Analysis techniques. The strength of water-added samples was found to be slightly less than of dry samples at all temperatures investigated (weakening ~40% at T=600° C, decreasing to ˜10% at higher T), with one exception at T=800° C. Microstructurally, the samples showed grain flattening and twinning at T=600° C and development of new grains by dynamic recrystallization at higher T, dominated by grain boundary migration. Grain boundaries in wet samples showed isolated or locally continuous remnants of fluid pockets in SEM. Quantitatively, the mean grain size and grain size distribution were found to only marginally vary between dry and wet samples. Average roundness of grains in wet recrystallized samples is systematically better than in dry samples. The fractal dimension D for the relationship between grain diameter d and grain perimeter P (expressed P ˜dD) for wet samples is systematically lower than for dry samples. Thus, grain boundaries in wet-deformed samples have less irregular shapes than in dry samples. Average

  5. Dynamics of Stride Interval Characteristics during Continuous Stairmill Climbing

    Science.gov (United States)

    Raffalt, Peter C.; Vallabhajosula, Srikant; Renz, Jessica J.; Mukherjee, Mukul; Stergiou, Nicholas

    2017-01-01

    It has been shown that statistical persistence in stride intervals characteristics exist during walking, running and cycling and were speed-dependent among healthy young adults. The purpose of this study was to determine if such statistical persistence in stride time interval, stride length and stride speed also exists during self-paced continuous stairmill climbing and if the strength is dependent on stepping rate. Stride time, stride length, and stride speed were collected from nine healthy participants during 3 min of stairmill climbing at 100, 110, and 120% of their preferred stepping rate (PSR) and 5 min of treadmill walking at preferred walking speed (PWS). The amount of variability (assessed by standard deviation and coefficient of variation) and dynamics (assessed by detrended fluctuation analysis and sample entropy) of the stride time, stride length, and stride speed time series were investigated. The amounts of variability were significantly higher during stairmill climbing for the stride time, stride length, and stride speed and did only change with increased stepping rate for stride speed. In addition to a more irregular pattern during stairmill climbing, the detrended fluctuation analysis (DFA) revealed that the stride length fluctuations were statistical anti-persistent for all subjects. On a group level both stride time and stride speed fluctuations were characterized by an uncorrelated pattern which was more irregular compared to that during treadmill walking. However, large inter-participant differences were observed for these two variables. In addition, the dynamics did not change with increase in stepping rate. PMID:28878688

  6. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey

    Science.gov (United States)

    Lorenz, Jan

    Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.

  7. Soap film dynamics and topological jumps under continuous deformation

    Science.gov (United States)

    Moffatt, Keith

    2015-11-01

    Consider the dynamics of a soap-film bounded by a flexible wire (or wires) which can be continuously and slowly deformed. At each instant the soap-film relaxes in quasi-static manner to a minimum-area (i.e. minimum-energy) state compatible with the boundary configuration. This can however pass through a critical configuration at which a topological jump is inevitable. We have studied an interesting example of this behaviour: the jump of a one-sided (Möbius strip) soap-film to a two-sided film as the boundary is unfolded and untwisted from the double cover of a circle. The nature of this jump will be demonstrated and explained. More generally, dynamical systems have a natural tendency to relax through dissipative processes to a minimum-energy state, subject to any relevant constraints. An example is provided by the relaxation of a magnetic field in a perfectly conducting but viscous fluid, subject to the constraint that the magnetic field lines are frozen in the fluid. One may infer the existence of magnetostatic equilibria (and analogous steady Euler flows) of arbitrary field-line topology. In general, discontinuities (current sheets) appear during this relaxation process, and this is where reconnection of field-lines (with associated change of topology) can occur. Just as for the soap film, slow change of boundary conditions can lead to critical conditions in which such topological jumps are inevitable. (Work in collaboration with Ray Goldstein, Adriana Pesci, Renzo Ricca and Gareth Alexander.) This work was supported by Engineering and Physical Sciences Research Council Grant EP/I036060/1.

  8. RECRYSTALLIZATION BEHAVIOR AND PRIOR AUSTENITE GRAIN BOUNDARY CORROSION IN THE PLANE STRAIN COMPRESSION CONDITION FOR A LOW CARBON X70 PIPELINE STEEL

    Institute of Scientific and Technical Information of China (English)

    Y.H. Li; J. Wang; Y.S. Li; Y. Y. Shan

    2004-01-01

    Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystallization occurred in the current experimental condition. A method for examining the prior austenite grain boundary corrosion was supposed.

  9. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-02-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  10. Importance of Local Structural Variations on Recrystallization

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Lin, Fengxiang; Zhang, Yubin

    2013-01-01

    Effects of local variations in the deformation microstructure on subsequent recrystallization are discussed and illustrated by three examples. The three examples consider local variations on different length scales and are: 1. Effects of local variations in the deformation microstructure on the f...... on the formation of protrusions on migrating boundaries. 2. Effects of an inhomogeneous spatial distribution of second phase particles on growth. 3. Effects of stored energy and orientation variations on recrystallization kinetics. © (2013) Trans Tech Publications, Switzerland....

  11. Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar.

    Science.gov (United States)

    Chen, C-L; Tatlock, G J; Jones, A R

    2009-03-01

    The ferritic oxide dispersion-strengthened alloy PM2000 is an ideal candidate for high-temperature applications as it contains uniform nano-oxide dispersoids, which act as pinning points to obstruct dislocation and grain boundary motion and therefore impart excellent creep resistance. The development of the microstructure during re-crystallization of oxide dispersion-strengthened alloys has been discussed by a number of authors, but the precise mechanism of secondary re-crystallization still remains uncertain. Hence, this work is aimed at investigating the re-crystallization behaviour of extruded PM2000 bar for different annealing temperatures, using electron backscatter diffraction, in particular, to determine grain orientations, grain boundary misorientation angles, etc. The results show that the as-extruded bar microstructure comprises both low-angle grain boundaries pinned by oxide particles and high-angle boundaries that will have inherent boundary mobility to allow boundary migration. In addition, dynamical re-crystallization was found in the outer region of the non-heat-treated PM2000 bar, which suggested that deformation heterogeneities can be introduced during thermo-mechanical processing that enhance the nucleation of re-crystallization. Subsequent heat treatments promote and stimulate secondary re-crystallization, giving rise to large grains with few sub-grain boundaries.

  12. Flow Stress and Mathematical Model for DRX Evolution of Semi-continuous Cast AZ80 Alloy During Hot Deformation

    Directory of Open Access Journals (Sweden)

    Liang Haicheng

    2016-01-01

    Full Text Available Using electromagnetic fields application ways, AZ80 magnesium alloy is semi-continuously cast into billets with diameter of 165 mm. And the dynamic recrystallization (DRX evolution of the semi-continuous cast AZ80 magnesium alloy during hot compression has been experimentally studied on Gleeble 2000 thermal-mechanical simulator, at temperatures from 260 to 410 °C and strain rates from 0.001 to 10s-1. It is found that the chief microstructure evolution is dynamic recrystallization, and the effect of deformation process parameters on DRX evolution is analyzed. The mathematical models including critical recrystallization model, kinetics model and grain size model of DRX are established and the results show good agreement between experiments and the models.

  13. 应变速率和固溶处理对7075铝合金锻件动态再结晶的影响%The Influence of Strain Rate and Solution Treatment on Dynamic Recrystallization for 7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    周建; 张廷杰; 张小明; 马光来; 田锋; 周廉

    2004-01-01

    7075 aluminum alloy with different states (T6 and solution treatment) were forged at different strain rates (10-2s-1and 102s-1) and strains. OM (optical microscope) and TEM (transmission electronic microscope) were used to observe themicrostructure of 7075 aluminum alloy after hot deformation. Experiment results indicate that dynamic recrystallization for7075 aluminum alloy is apt to occur under the higher strain rate and recrystallization mechanism is discontinuous dynamicrecrystallization, dynamic recovery takes place at the lower strain rate. The second-phase particles play a very important role inthe process of refinement of the grains.%通过对不同状态的7075铝合金以不同的应变速率和不同的应变锻造,并利用了光镜(OM)、透射电镜(TEM)对热变形显微组织进行观察.实验表明:对于7075铝合金,较高的应变速率有利于出现动态再结晶,动态再结晶的方式为不连续动态再结晶,当应变速率较低时,只出现动态回复.弥散的第二相粒子在动态再结晶过程中起了重要作用.

  14. Dynamic analysis and continuous control of semiconductor lasers

    CERN Document Server

    Behnia, Sohrab; Afrang, Saeid

    2011-01-01

    Stability control in laser is still an emerging field of research. In this paper the dynamics of External cavity semiconductor lasers (ECSLs) is widely studied applying the methods of chaos physics. The stability is analyzed through plotting the Lyapunov exponent spectra, bifurcation diagrams and time series. The oscillation of the electric field E has been reported to be either periodic (P1,P2,..) or chaotic. The results of the study show that the rich nonlinear dynamics of the electric field |E|^2 includes saddle node bifurcations, quasi-periodicity and regular pulse packages. The issue of finding the conditions for creating stable domains has been studied. By considering the dynamical pumping current system coupled with laser, a method for the creation of the stable domain has been introduced.

  15. Classical vs Quantum Games: Continuous-time Evolutionary Strategy Dynamics

    CERN Document Server

    Leung, Ming Lam

    2011-01-01

    This paper unifies the concepts of evolutionary games and quantum strategies. First, we state the formulation and properties of classical evolutionary strategies, with focus on the destinations of evolution in 2-player 2-strategy games. We then introduce a new formalism of quantum evolutionary dynamics, and give an example where an evolving quantum strategy gives reward if played against its classical counterpart.

  16. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    Science.gov (United States)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  17. Dynamics of a pulsed continuous-variable quantum memory

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel

    2006-01-01

    We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show i...

  18. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2011-01-01

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with c

  19. Continuation Methods for Qualitative Analysis of Aircraft Dynamics

    Science.gov (United States)

    Cummings, Peter A.

    2004-01-01

    A class of numerical methods for constructing bifurcation curves for systems of coupled, non-linear ordinary differential equations is presented. Foundations are discussed, and several variations are outlined along with their respective capabilities. Appropriate background material from dynamical systems theory is presented.

  20. Behavioural dynamics in high-performing continuous improvement teams

    NARCIS (Netherlands)

    van Dun, Desirée Hermina; van Eck, Tim; van Vuuren, Hubrecht A.; Wilderom, Celeste P.M.

    2011-01-01

    We have explored from an Organisational-Behavioural perspective, why a Continuous Improvement (CI) team performs well. We report on the first part of a longitudinal study on intra-team behaviour of five, carefully selected, high-performing CI teams in five major Dutch organizations. Not only did we

  1. DYSIM - A Modular Simulation System for Continuous Dynamic Processes

    DEFF Research Database (Denmark)

    Christensen, P. la Cour; Kofoed, J. E.; Larsen, N.

    1986-01-01

    The report describes a revised version of a simulation system for continuous processes, DYSIM. In relation to the previous version, which was developed in 1981, the main changes are conversion to Fortran 77 and introduction of a modular structure. The latter feature gives the user a possibility...

  2. Organizational Structure and Performance Dynamics in Continuing Education Administration.

    Science.gov (United States)

    King, B. Kay; Lerner, Allan W.

    1987-01-01

    The authors attempt to show that pure types exist upon which to fashion continuing education unit structures. They argue for a purposefully integrated, mixed model to benefit the multiprofessional institution and express the need for a dialogue devoted to the further exploration of this context. (CH)

  3. Asymmetric pedestrian dynamics on a staircase landing from continuous measurements

    CERN Document Server

    Corbetta, Alessandro; Muntean, Adrian; Toschi, Federico

    2015-01-01

    We investigate via extensive experimental data the dynamics of pedestrians walking in a corridor-shaped landing in a building at Eindhoven University of Technology. With year-long automatic measurements employing a Microsoft KinectTM 3D-range sensor and ad hoc tracking techniques, we acquired few hundreds of thousands pedestrian trajectories in real-life conditions. Here we discuss the asymmetric features of the dynamics in the two walking directions with respect to the flights of stairs (i.e. ascending or descending). We provide a detailed analysis of position and speed fields for the cases of pedestrians walking alone undisturbed and for couple of pedestrians in counter-flow. Then, we show average walking velocities exploring all the observed combinations in terms of numbers of pedestrians and walking directions.

  4. Control uncertain continuous-time chaotic dynamical system

    Institute of Scientific and Technical Information of China (English)

    齐冬莲; 赵光宙

    2003-01-01

    The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.

  5. Control uncertain continuous-time chaotic dynamical system.

    Science.gov (United States)

    Qi, Dong-Lian; Zhao, Guang-Zhou

    2003-01-01

    The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.

  6. Complex systems dynamics in aging: new evidence, continuing questions.

    Science.gov (United States)

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  7. DYNAMIC SIMULATION AND FUZZY CONTROL OF A CONTINUOUS DISTILLATION COLUMN

    OpenAIRE

    Arbildo López, A.; Unidad de Post Grado, Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos. Lima, Perú; Lombira Echevarría, J.; Unidad de Post Grado, Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos. Lima, Perú; Osario López, l.; Unidad de Post Grado, Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos. Lima, Perú

    2014-01-01

    The objective of this work is the study of the dinamic simulation and fuzzy control of a multicomponent continuous distillation column. In this work, the mathematical model of the distillation column and the computing program for the simulation are described. Also, the structure and implementation of the fuzzy controller are presentad. Finally, the results obtained using this programare compared with those reported in the scientific literature for different mixtures. El objetivo de nuestra...

  8. Solvent Selection for Recrystallization: An Undergraduate Organic Experiment.

    Science.gov (United States)

    Baumann, Jacob B.

    1979-01-01

    This experiment develops the students' ability to carry out a simple recrystallization effectively, and demonstrates how a solvent may be selected or rejected for the recrystallization of a specific organic compound. (Author/BB)

  9. Dynamics of a pulsed continuous variable quantum memory

    CERN Document Server

    Dantan, A; Grangier, P; Pinard, M; Cviklinski, Jean; Dantan, Aurelien; Grangier, Philippe; Pinard, Michel

    2005-01-01

    We study the transfer dynamics of non-classical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different than those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model - a cavity with variable transmission - which accounts for the behavior of the atomic quantum memory.

  10. Modelling Opinion Dynamics: Theoretical analysis and continuous approximation

    CERN Document Server

    Pinasco, Juan Pablo; Balenzuela, Pablo

    2016-01-01

    Frequently we revise our first opinions after talking over with other individuals because we get convinced. Argumentation is a verbal and social process aimed at convincing. It includes conversation and persuasion. In this case, the agreement is reached because the new arguments are incorporated. In this paper we deal with a simple model of opinion formation with such persuasion dynamics, and we find the exact analytical solutions for both, long and short range interactions. A novel theoretical approach has been used in order to solve the master equations of the model with non-local kernels. Simulation results demonstrate an excellent agreement with results obtained by the theoretical estimation.

  11. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  12. Evolutionary dynamics of the continuous iterated prisoner's dilemma.

    Science.gov (United States)

    Le, Stephen; Boyd, Robert

    2007-03-21

    The iterated prisoner's dilemma (IPD) has been widely used in the biological and social sciences to model dyadic cooperation. While most of this work has focused on the discrete prisoner's dilemma, in which actors choose between cooperation and defection, there has been some analysis of the continuous IPD, in which actors can choose any level of cooperation from zero to one. Here, we analyse a model of the continuous IPD with a limited strategy set, and show that a generous strategy achieves the maximum possible payoff against its own type. While this strategy is stable in a neighborhood of the equilibrium point, the equilibrium point itself is always vulnerable to invasion by uncooperative strategies, and hence subject to eventual destabilization. The presence of noise or errors has no effect on this result. Instead, generosity is favored because of its role in increasing contributions to the most efficient level, rather than in counteracting the corrosiveness of noise. Computer simulation using a single-locus infinite alleles Gaussian mutation model suggest that outcomes ranging from a stable cooperative polymorphism to complete collapse of cooperation are possible depending on the magnitude of the mutational variance. Also, making the cost of helping a convex function of the amount of help provided makes it more difficult for cooperative strategies to invade a non-cooperative equilibrium, and for the cooperative equilibrium to resist destabilization by non-cooperative strategies. Finally, we demonstrate that a much greater degree of assortment is required to destabilize a non-cooperative equilibrium in the continuous IPD than in the discrete IPD. The continuous model outlined here suggests that incremental amounts of cooperation lead to rapid decay of cooperation and thus even a large degree of assortment will not be sufficient to allow cooperation to increase when cooperators are rare. The extreme degree of assortment required to destabilize the non

  13. On the origin of recrystallization textures

    Indian Academy of Sciences (India)

    K T Kashyap

    2001-02-01

    The development of recrystallization textures has been debated for the past 50 years. Essentially the rival theories of evolution of recrystallization textures i.e. oriented nucleation (ON) and oriented growth (OG) has been under dispute. In the ON model, it has been argued that a higher frequency of the special orientation (grains) than random occur, thus accounting for the texture. In the OG model, it has been argued that the specially oriented grains have a high mobility boundary and thus can migrate faster and grow to a larger size as compared to random orientations thus contributing to the final recrystallization texture. In FCC metals and alloys like aluminium, cube orientation [(001) $\\langle$100$\\rangle$] is the recrystallization texture component. In the classic OG model, cube orientation is supposed to be misoriented from -orientation [(123) $\\langle$63$\\bar{4}\\rangle$] which is a deformation texture component by a 40° about $\\langle$111$\\rangle$ relationship which is supposed to be a high mobility boundary leading to faster growth of cube grains. Stereographic calculations and analytical calculations are presented in this paper to the effect that the -orientation (123) $\\langle$63$\\bar{4}\\rangle$ is not misoriented from cube (100) $\\langle$001$\\rangle$ by 40° (111) whereas another deformation texture component (123) $\\langle$41$\\bar{2}\\rangle$ which is termed the -component is misoriented from cube component by 40°$\\ \\langle$111$\\rangle$ . -component is also seen in deformation textures of aluminium and hence the classic OG model remains valid with respect to the -component.

  14. Recrystallization of amylopectin in concentrated starch gels

    NARCIS (Netherlands)

    Keetels, CJAM; Oostergetel, GT; vanVliet, T

    1996-01-01

    The relation between the recrystallization of amylopectin and the increase in stiffness of starch gels during storage was studied by various techniques. From transmission electron microscopy it was concluded that the size of the crystalline domains in retrograded 30% w/w potato starch gels was about

  15. EBSP studies of growth rates during recrystallization

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    1996-01-01

    . The potential of the EBSP technique for both these types of measurements is illustrated for recrystallization of heavily deformed aluminium. It is discussed how these approaches apply to grain growth. Finally, new possibilities for in-situ grain growth studies by 3D mapping of orientations in the bulk...

  16. Orientation aspects of growth during recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Juul Jensen, D.

    1997-04-01

    Recrystallization of heavily cold rolled aluminium and copper is studied with the aim of achieving information about effects of crystallography orientation on the growth process. The potentials of several experimental techniques are analysed, and a method well suited for characterizing growth rates of grains with different orientations is developed. This method, which is referred to as the extended Cahn-Hagel method, is used for growth rate determinations in aluminium and copper deformed and annealed under five different conditions. In all the investigated cases, preferential growth of cube oriented grains is observed. Recrystallization models, which simulates the orientational as well as microstructural development, are described. selected models are applied for studies of recrystallization in aluminium and copper under specific deformation and annealing conditions as well as for more general studies of the effects of orientation dependent growth rates on the recrystallization microstructure and texture. Finally, reasons for the observed orientation dependent growth rates are discussed. A new mechanism, orientation pinning, is suggested and it is shown that this mechanism is necessary for the understanding of experimental results. (au) 4 tabs., 41 ills., 153 refs.

  17. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Stasse, O.; Suchtelen, van J.; Enckevort, van W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly, c

  18. Mixed Solvent Reactive Recrystallization of Sodium Carbonate

    NARCIS (Netherlands)

    Gaertner, R.S.

    2005-01-01

    Investigation of the reactive recrystallization of trona (sodium sesquicarbonate) and sodium bicarbonate to sodium carbonate (soda) in a mixed solvent led to the design of several alternative, less energy consumptive, economically very attractive process routes for the production of soda from all pr

  19. Slow recrystallization of tripalmitoylglycerol from MCT oil observed by 2H NMR.

    Science.gov (United States)

    Smith, Kevin W; Smith, Paul R; Furó, István; Pettersson, Erik Thyboll; Cain, Fred W; Favre, Loek; Talbot, Geoff

    2007-10-17

    The crystallization and recrystallization of fats have a significant impact on the properties and quality of many food products. While crystallization has been the subject of a number of studies using pure triacylglycerols (TAG), recrystallization in similarly pure systems is rarely studied. In this work, perdeuterated tripalmitoylglycerol ( (2)H-PPP) was dissolved in medium chain triacylglycerol oil (MCT) to yield a saturated solution. The solution was heated to cause partial melting of the solid and dissolution of the molten fraction of (2)H-PPP in MCT and was then cooled to the original temperature to induce recrystallization from the supersaturated solution. (2)H NMR was used to monitor the disappearance of (2)H-PPP from the solution and showed that recrystallization occurred in two steps. The first step was rapid, taking place over a few minutes, and accounted for more than two-thirds of the total recrystallization. The second step was much slower, taking place over a remarkably long timescale of hours to days. It is proposed that dissolution occurs from all parts of the crystals, leaving an etched and pitted surface. The first step of crystallization is the infilling of these pits, while the second step is the continued growth on the smoothed crystal faces.

  20. Recrystallization as a controlling process in the wear of some f.c.c. metals

    Science.gov (United States)

    Bill, R. C.; Wisander, D.

    1977-01-01

    Detailed examination of copper specimens after sliding against 440 C steel in liquid methane at speeds up to 25 m/s and loads of up to 2 kg showed the metal comprising the wear surface to possess a fine cell recrystallized structure. Wear proceeded by the plastic shearing of metal in this near surface region without the occurrence of visible metal transfer. A dynamic balance between the intense shear process at the surface and the nucleation of recrystallized grains was proposed to account for the behavior of the metal at the wear surface. Sliding wear experiments were also conducted on Ag, Cu-10% Al, Cu-10% Sn, Ni and Al. It was found that low wear and the absence of heavy metal transfer were associated with those metals observed to undergo recrystallization nucleation without prior recovery.

  1. Recrystallization of freezable bound water in aqueous solutions of medium concentrations

    Institute of Scientific and Technical Information of China (English)

    赵立山; 潘礼庆; 纪爱玲; 曹则贤; 王强

    2016-01-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings diffi-culty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentra-tion range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrys-tallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.

  2. Recrystallization of freezable bound water in aqueous solutions of medium concentration

    Science.gov (United States)

    Lishan, Zhao; Liqing, Pan; Ailing, Ji; Zexian, Cao; Qiang, Wang

    2016-07-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings difficulty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentration range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrystallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries. Project supported by the Knowledge Innovation Project of Chinese Academy of Sciences on Water Science Research (Grant No. KJZD-EW-M03) and the National Natural Science Foundation of China (Grant Nos. 11474325 and 11290161).

  3. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from three domains. First, we use parameter continuation methods...

  4. Recrystallization behavior of cold-rolled Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Western Energy Material Technologies Co., Ltd., Xi’an 710016 (China); Wang, Xitao; Gong, Weijia [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Jun [Western Energy Material Technologies Co., Ltd., Xi’an 710016 (China); Zhang, Hailong, E-mail: hlzhang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-01-15

    Highlights: • The recrystallization behavior of cold-rolled Zr–1Nb alloy is investigated. • The times required to complete recrystallization of Zr–1Nb alloy are obtained. • The apparent activation energies for recrystallization of Zr–1Nb alloy are derived. • The recrystallization maps for the Zr–1Nb sheets are provided. - Abstract: The recrystallization behavior of cold-rolled Zr–1Nb alloy was investigated by measuring the micro-Vickers hardness of the specimens annealed for various times. Different deformation reductions and annealing temperatures were coupled to study the effects of deformation and temperature on the recrystallization behavior of Zr–1Nb alloy. The results show that both large deformation reduction and high annealing temperature accelerate the recrystallization process. The microstructural evolution during recrystallization was characterized by optical microscope (OM) and transmission electron microscope (TEM) to correlate with the variation of Vickers hardness. The TEM observation also revealed the distribution of different types of Nb-containing precipitates during recrystallization. The Vickers hardness data were fitted by using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation to derive the activation energies for recrystallization, giving the corresponding recrystallization maps. This study provides useful guidelines for the processing of a broad family of zirconium alloys based on Zr–1Nb.

  5. Recrystallization of Single Crystal Nickel-Based Superalloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing; TAO Chun-hu; LU Xin; LIU Chang-kui; HU Chun-yan; BAI Ming-yuan

    2009-01-01

    A series of experiments of investigating the recrystallization of single crystal DD3 superalloy were carried out. The threshold temperature for recrystallization and the effect of annealing temperature on recrystaUization were studied. The results show that the threshold temperature for recrystallization of the shot-peened DD3 samples is be-tween 1 000 ℃ and 1 050℃ under the condition of annealing for 2 h, and the recrystallization depth increases with the rise of the annealing temperature. Below 1 150 ℃, the recrystallization depth increases slowly with the tempera-ture climbing, while above 1 150 ℃, the recrystallization depth increases quickly with the rise of the temperature. The solution of the γ' phase is a critical factor of the recrystallization behavior of DD3 superalloy. In addition, the ki-netics and microstructural evolution of recrystallization at 1 200 ℃ were also studied. It is found that the recrystalli-zation progresses rapidly at 1 200℃ through the growth of fully developed recrystallized grains, and the recrystalli-zation process on the shot-peened surface is similar to that of wrought materials, including nucleation of reerystalliza-tion, growth of new grains into the matrix, and growth of new grains by swallowing up each other.

  6. DSamala toolbox software for analysing and simulating discrete, continuous, stochastic dynamic systems

    Directory of Open Access Journals (Sweden)

    Angelica María Atehortúa Labrador

    2012-09-01

    Full Text Available This article describes DSamala toolbox, a computational tool for simulating and analysing discrete, continuous, stochastic dynamic systems; It is presented as a MATLAB toolbox. DSamala toolbox makes a significant contribution to studying dynamic systems through the use of information and communication technology (ICT, especially when equations modelling these systems are difficult or impossible to solve analytically.

  7. Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition

    OpenAIRE

    Peter Arcidiacono; Patrick Bayer; Jason R. Blevins; Paul B. Ellickson

    2012-01-01

    This paper develops a dynamic model of retail competition and uses it to study the impact of the expansion of a new national competitor on the structure of urban markets. In order to accommodate substantial heterogeneity (both observed and unobserved) across agents and markets, the paper first develops a general framework for estimating and solving dynamic discrete choice models in continuous time that is computationally light and readily applicable to dynamic games. In the proposed framework...

  8. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    Science.gov (United States)

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  9. Recrystallization of deformed single crystals of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, A.V.; Klotsman, S.M.; Pushin, V.G.; Timofeev, A.N.; Kaigorodov, V.N.; Panfilov, P.Y.; Yurchenko, L.I.

    1999-12-31

    The X-ray diffractometric method was used to analyze crystalline textures that appear during rolling of pure single-Ir and annealing of the said crystals in ultrahigh vacuum (UHV) at successively elevating temperatures. Observing alteration of the texture of the deformed pure single-Ir after UHV annealing, the primary recrystallization temperature T{sub 1recr} of pure Ir was found not to exceed 670 K (0.25 T{sub m}).

  10. Development of discrete aggregates of recrystallization along micro-shear zones in quartz ribbons during multistage ductile evolution of a quartz vein

    Science.gov (United States)

    Ceccato, Alberto; Pennacchioni, Giorgio; Bestmann, Michel

    2016-04-01

    The post-magmatic ductile deformation of the Rieserferner pluton (Eastern Alps) includes localized ductile shear zones exploiting a set of joint-filling quartz veins. These deformed veins show different stages of evolution, from coarse grained vein quartz to the fine grained recrystallized aggregates of ultramylonites, locally recorded in different domains of heterogeneously sheared veins. The microstructural evolution includes, with increasing strain: (i) Development of ribbon mylonites consisting of elongated grains, oblique to the shear zone boundary, derived from different quartz veins crystals. The individual ribbons have different crystallographic orientations and aspect ratios. (ii) Dismantling of ribbons along a fracture-like network of fine grained recrystallized quartz aggregates, that commonly represent micro-shear zones (μSZ). These discrete recrystallization zones are preferentially developed in ribbons whose crystallographic axis is oriented either parallel or normal to ribbon elongation. (iii) Extensive dynamic recrystallization to fine-grained (10-20 μm) aggregates leading to quartz ultramylonites. Typically ultramylonites show a layered texture with bands having different crystallographic preferred orientation (CPO) that probably reflect the original heterogeneity in crystallographic orientations of the vein. Electron backscattered diffraction analysis indicates that the μSZ within quartz ribbons are mainly parallel to {r} or {z} planes of the host grain, and the new grain inside μSZ show a weak CPO with their basal plane parallel to the μSZ boundary. There is no systematic relationships between the Dauphiné twinning and the μSZ. Misorientation analysis suggests that in the host grain dislocation creep is dominant on {m} slip system, whereas it is probably a minor mechanism within μSZ. Subgrains and low-angle boundaries (LAB) are heterogeneously developed at the border of the μSZ, and more commonly occur around the tips of μSZ. LABs are

  11. Dynamic Bayesian estimation of displacement parameters of continuous curve box based on Novozhilov theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; YE Jian-shu; ZHAO Xin-ming

    2007-01-01

    The finite strip controlling equation of pinned curve box was deduced on basis of Novozhilov theory and with flexibility method, and the problem of continuous curve box was resolved. Dynamic Bayesian error function of displacement parameters of continuous curve box was found. The corresponding formulas of dynamic Bayesian expectation and variance were derived. After the method of solving the automatic search of step length was put forward, the optimization estimation computing formulas were also obtained by adapting conjugate gradient method. Then the steps of dynamic Bayesian estimation were given in detail. Through analysis of a classic example, the criterion of judging the precision of the known information is gained as well as some other important conclusions about dynamic Bayesian stochastic estimation of displacement parameters of continuous curve box.

  12. Modeling precipitation and its effect on recrystallization during hot strip rolling of niobium steels

    OpenAIRE

    Lissel, Linda; Engberg, Göran; Borggren, Ulrika

    2008-01-01

    Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on g...

  13. Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models

    Science.gov (United States)

    Mellbin, Y.; Hallberg, H.; Ristinmaa, M.

    2016-10-01

    A multiscale modeling framework, combining a graph-based vertex model of microstructure evolution with a GPU-parallelized crystal plasticity model, was recently proposed by the authors. Considering hot rolling of copper, the full capabilities of the model are demonstrated in the present work. The polycrystal plasticity model captures the plastic response and the texture evolution during materials processing while the vertex model provides central features of grain structure evolution through dynamic recrystallization, such as nucleation and growth of individual crystals. The multiscale model makes it possible to obtain information regarding grain size and texture development throughout the workpiece, capturing the effects of recrystallization and heterogeneous microstructure evolution. Recognizing that recrystallization is a highly temperature dependent phenomenon, simulations are performed at different process temperatures. The results show that the proposed modeling framework is capable of simultaneously capturing central aspects of material behavior at both the meso- and macrolevel. Detailed investigation of the evolution of texture, grain size distribution and plastic deformation during the different processing conditions are performed, using the proposed model. The results show a strong texture development, but almost no recrystallization, for the lower of the investigated temperatures, while at higher temperatures an increased recrystallization is shown to weaken the development of a typical rolling texture. The simulations also show the influence of the shear deformation close to the rolling surface on both texture development and recrystallization.

  14. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.

    Science.gov (United States)

    McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît

    2016-11-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.

  15. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  16. Modeling microstructural evolution of multiple texture components during recrystallization

    DEFF Research Database (Denmark)

    Vandermeer, R.A.; Juul Jensen, D.

    1994-01-01

    using stereological point and lineal measurements of microstructural properties in combination with EBSP analysis for orientation determinations. The potential of the models to describe the observed recrystallization behavior of heavily cold-rolled commercial aluminum was demonstrated. A successful MPM......Models were formulated in an effort to characterize recrystallization in materials with multiple texture components. The models are based on a microstructural path methodology (MPM). Experimentally the microstructural evolution of conmmercial aluminum during recrystallization was characterized...

  17. Solute effects on ice recrystallization: an assessment technique.

    Science.gov (United States)

    Knight, C A; Hallett, J; DeVries, A L

    1988-02-01

    Reliable assessment of the effect of a solute upon ice recrystallization is accomplished with "splat cooling," the impaction of a small solution droplet onto a very cold metal plate. The ice disc has extremely small crystals, and recrystallization can be followed without confusing effects caused by grain nucleation. This method confirms the exceptionally strong recrystallization inhibition effect of antifreeze protein from Antarctic fish and shows that grain growth rate is a sensitive function of both grain size and solute concentration.

  18. The dynamics of coupled atom and field assisted by continuous external pumping

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)

    2006-07-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  19. Solid-State Characterization and Interconversion of Recrystallized Amodiaquine Dihydrochloride in Aliphatic Monohydric Alcohols.

    Science.gov (United States)

    Sirikun, Wiriyaporn; Chatchawalsaisin, Jittima; Sutanthavibul, Narueporn

    2016-04-01

    Amodiaquine dihydrochloride monohydrate (AQ-DM) was obtained by recrystallizing amodiaquine dihydrochloride dihydrate (AQ-DD) in methanol, ethanol, and n-propanol. Solid-state characterization of AQ-DD and AQ-DM was performed using X-ray powder diffractometry, Fourier transform infrared spectroscopy, thermogravimetry, and differential scanning calorimetry. All recrystallized samples were identified as AQ-DM. Crystal habits of AQ-DD and AQ-DM were shown to be needle-like and rhombohedral crystals, respectively. When AQ-DD and AQ-DM were exposed to various relative humidity in dynamic vapor sorption apparatus, no solid-state interconversion was observed. However, AQ-DM showed higher solubility than AQ-DD when exposed to bulk water during solubility study, while excess AQ-DM was directly transformed back to a more stable AQ-DD structure. Heating AQ-DM sample to temperatures ≥190°C induced initial change to metastable amorphous form (AQ-DA) which was rapidly recrystallized to AQ-DD upon ≥80%RH moisture exposure. AQ-DD was able to be recrystallized in alcohols (C1-C3) as AQ-DM solid-state structure. In summary, AQ-DM was shown to have different solubility, moisture and temperature stability, and interconversion pathways when compared to AQ-DD. Thus, when AQ-DM was selected for any pharmaceutical applications, these critical transformation and property differences should be observed and closely monitored.

  20. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    Science.gov (United States)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  1. Effect of zirconium addition on the recrystallization behaviour of a commercial Al–Cu–Mg alloy

    Indian Academy of Sciences (India)

    K T Kashyap

    2001-12-01

    It is well known that the second phase particles have an effect on recrystallization and grain growth behaviour of an alloy. Particularly the bimodal distribution of second phase particles has an effect which is opposite in sense where coarse second phase particles (> 1 m) stimulate nucleation while fine particles exhibit Zener drag. In the literature, the effect of zirconium addition to aluminium alloys has been well documented in order to produce superplasticity by giving ultra fine grain size to the alloy. Addition of zirconium produces Al3Zr particles which pin the grain boundaries during recrystallization and grain growth. In the present work, zirconium was added to a commercial Al–Cu–Mg alloy and by heat treatment Al3Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, i.e. Al3Zr particles and found to be rod shaped and identified to be cubic ordered 12 phase with a lattice parameter of 0.408 nm. Further, it was observed that fine (100 nm) Al3Zr particles promote only continuous recrystallization which is polygonization of subgrains and subgrain growth. It was found that the fine dispersion of Al3Zr particles inhibits both recrystallization and grain growth in the commercial Al–Cu–Mg alloy.

  2. Liquid anti-solvent recrystallization to enhance dissolution of CRS 74, a new antiretroviral drug.

    Science.gov (United States)

    de Paiva Lacerda, Suênia; Espitalier, Fabienne; Hoffart, Valérie; Ré, Maria Inês

    2015-01-01

    This study concerns a new compound named CRS 74 which has the property of inhibiting Human Immunodeficiency Virus (HIV) protease, an essential enzyme involved in HIV replication process. It is proved in this study that the original CRS 74 exhibits poor aqueous solubility and a very low dissolution rate, which can influence its bioavailability and clinical response. In an attempt to improve the dissolution rate, CRS 74 was recrystallized by liquid anti-solvent (LAS) crystallization. Ethanol was chosen as solvent and water as the anti-solvent. Recrystallized solids were compared with the original drug crystals in terms of physical and dissolution properties. Recrystallization without additives did not modify the CRS 74 dissolution profile compared to the original drug. CRS 74 was then recrystallized using different additives to optimize the process and formulate physicochemical properties. Steric stabilizer in organic phase ensured size-controlling effect, whereas electrostatic stabilizer in aqueous phase decreased particle agglomeration. Cationic additives avoided drug adsorption onto stainless steel T-mixer. In general, additive improved drug dissolution rate due to improvement of wetting properties by specific interactions between the drug and the additives, and ensured continuous production of CRS 74 by electrostatic repulsion.

  3. Recrystallized quinolinium ionic liquids for electrochemical analysis

    Science.gov (United States)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  4. The dynamic stiffness matrix of two-dimensional elements: application to Kirchhoff's plate continuous elements

    Science.gov (United States)

    Casimir, J. B.; Kevorkian, S.; Vinh, T.

    2005-10-01

    This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.

  5. Diagnosis and identification of respirometer dynamics and sludge kinetics in continuous-flow respirometers

    NARCIS (Netherlands)

    Lukasse, L.J.S.; Keesman, K.J.; Spanjers, H.; Bloemen, M.

    2000-01-01

    This paper deals with excitation of respiration chamber dynamics in a continuous-flow respirometer with the objective of extracting additional information from its dissolved oxygen (DO) sensor readings. A measurement strategy is proposed from which it is theoretically possible to identify

  6. Chaotic behavior in the dynamical system of a continuous stirred tank reactor

    Science.gov (United States)

    Retzloff, D. G.; Chan, P. C.-H.; Chicone, C.; Offin, D.; Mohamed, R.

    1987-03-01

    The dynamical system describing a continuous stirred tank reactor (CSTR) for the reactions A→B→C and A→C, B→D is considered. A circulating attractor with accompanying circulating orbits is shown to exist when the critical point of the system is unique and unstable. The orbit structure has been numerically found to consist of periodic orbits and chaotic behavior.

  7. Design and implementation of an e-class about continuous dynamical systems

    NARCIS (Netherlands)

    Heck, A.; Houwing, H.; Val, J.; Ekimova, L.; Papageorgiou, G.

    2009-01-01

    In 2008, a small team of university and secondary school teachers in the Netherlands jointly developed an e-class for students in their final pre-university year (age: 17-18 yrs) about continuous dynamical systems. The e-class is an innovative way of teaching and learning mathematics and science by

  8. Dynamics of parabolic equations via the finite element method I. Continuity of the set of equilibria

    Science.gov (United States)

    Figueroa-López, R. N.; Lozada-Cruz, G.

    2016-11-01

    In this paper we study the dynamics of parabolic semilinear differential equations with homogeneous Dirichlet boundary conditions via the discretization of finite element method. We provide an appropriate functional setting to treat this problem and, as a first step, we show the continuity of the set of equilibria and of its linear unstable manifolds.

  9. Effects of widening during rolling on the subsequent recrystallization kinetics of copper

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Leffers, Torben; Juul Jensen, Dorte;

    2013-01-01

    Recrystallization kinetics in copper cold-rolled to 90% reduction, with and without significant widening, was investigated by electron backscatter diffraction. It was found that the recrystallization process was slightly retarded, and the development of the cube recrystallization texture...

  10. Dynamic value assessments in oncology supported by the PACE Continuous Innovation Indicators.

    Science.gov (United States)

    Paddock, Silvia; Goodman, Clifford; Shortenhaus, Scott; Grainger, David; Zummo, Jacqueline; Thomas, Samuel

    2017-07-26

    Several recently developed frameworks aim to assess the value of cancer treatments, but the most appropriate metrics remain uncertain. We use data from the Patient Access to Cancer care Excellence Continuous Innovation Indicators to examine the relationship between hazard ratios (HRs) from clinical trials and dynamic therapeutic value accumulating over time. Our analysis shows that HRs from initial clinical trials poorly predict the eventual therapeutic value of cancer treatments. Relying strongly on HRs from registration trials to predict the long-term success of treatments leaves a lot of the variance unexplained. The Continuous Innovation Indicators offer a complementing, dynamic method to track the therapeutic value of cancer treatments and continuously update value assessments as additional evidence accumulates.

  11. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    Science.gov (United States)

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  12. Absolute Continuity Theorem for Random Dynamical Systems on $R^d$

    CERN Document Server

    Biskamp, Moritz

    2012-01-01

    In this article we provide a proof of the so called absolute continuity theorem for random dynamical systems on $R^d$ which have an invariant probability measure. First we present the construction of local stable manifolds in this case. Then the absolute continuity theorem basically states that for any two transversal manifolds to the family of local stable manifolds the induced Lebesgue measures on these transversal manifolds are absolutely continuous under the map that transports every point on the first manifold along the local stable manifold to the second manifold, the so-called Poincar\\'e map or holonomy map. In contrast to known results, we have to deal with the non-compactness of the state space and the randomness of the random dynamical system.

  13. Hydration index--a better parameter for explaining small molecule hydration in inhibition of ice recrystallization.

    Science.gov (United States)

    Tam, Roger Y; Ferreira, Sandra S; Czechura, Pawel; Chaytor, Jennifer L; Ben, Robert N

    2008-12-24

    Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.

  14. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel Sachs

    2013-01-16

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the

  15. Annealing Twinning and the Nucleation of Recrystallization at Grain Boundaries

    DEFF Research Database (Denmark)

    Jones, A R.

    1981-01-01

    boundaries during recovery might stimulate nucleation of recrystallization in low stacking fault energy materials. The experimental observations also lead to the implication that the density of recrystallization nuclei formed in such materials may be directly related to the strength of the deformation...

  16. Recrystallization at grain boundaries in deformed copper bicrystals

    NARCIS (Netherlands)

    Heller, H.W.F.; Verbraak, C.A.; Kolster, B.H.

    1984-01-01

    The role of specific grain boundaries in the nucleation of recrystallization textures is demonstrated by experiments on copper bicrystals. It is deduced that the major part of the recrystallized grains that have nucleated at the grain boundary can be traced back to having nucleated in {100} <001>, {

  17. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, Michael; Iu, Herbert Ho-Ching [School of Electrical and Electronic Engineering, The University of Western Australia, Crawley WA 6009 (Australia); Small, Michael; Stemler, Thomas [School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 (Australia)

    2015-05-15

    We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate to ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.

  18. Initial Stages of Recrystallization in Aluminum of Commercial Purity

    DEFF Research Database (Denmark)

    Hansen, Niels; Bay, Bent

    1979-01-01

    In commercial aluminum with a purity of 99.4 pct, the formation and growth of recrystallization nuclei were studied by techniques such asin-situ annealing in a high voltage electron microscope, transmission electron microscopy and light microscopy. Sample parameters were the initial grain size (370...... and 19 microns) and the degree of deformation (50 and 90 pct reduction in thickness by cold-rolling). It was found that the initial grain boundaries and high angle boundaries within the original grains are preferential sites for recrystallization nuclei, and that the effect of such sites is enhanced...... temperature decrease is obtained by increasing the degree of deformation. The size of the recrystallization nuclei, the recrystallization temperature and the recrystallized grain size are reported for the four sample states, and finally the structural and kinetic observations are discussed...

  19. Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures

    CERN Document Server

    Avena, L

    2012-01-01

    We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.

  20. Continuous highway pavements deflection measurements using a rolling dynamic deflectometer (RDD)

    Science.gov (United States)

    Bay, James A.; Stokoe, Kenneth H., II; Hudson, W. R.

    1996-11-01

    Nondestructive testing of pavements plays an important role int he management of pavement infrastructure. A new technique for continuous profiling of pavements is under development. This technique involves the Rolling Dynamic Deflectometer (RDD). The RDD is a large truck on which a servo-hydraulic vibrator is mounted. The vibrator is used to apply large vertical dynamic loads to the pavement. The resulting dynamic displacements are sensed with rolling sensor. A description of the RDD and procedures used to analyze RDD data are discussed herein. The results of continuous RDD profiling of rigid pavements are presented. These results show that continuous stiffness profiles of displacement per given load of origin pavements can be used to characterize: 1) the pavement stiffness and its longitudinal variation; 2) the location of transverse cracks and joints; 3) the efficiency of transverse cracks and joints; 4) the efficiency of longitudinal joints; and 5) the lateral variation in average mid-span stiffness. Two significant benefits of continuous RDD profiles which are clearly shown are: 1) softer versus stiffer areas are clearly delineated and 2) the variation in joint efficiency is readily identified.

  1. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  2. Numerical continuation methods for dynamical systems path following and boundary value problems

    CERN Document Server

    Krauskopf, Bernd; Galan-Vioque, Jorge

    2007-01-01

    Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...

  3. Continuous, Dynamic and Comprehensive Article-Level Evaluation of Scientific Literature

    CERN Document Server

    Wang, Xianwen; Yang, Yang

    2014-01-01

    It is time to make changes to the current research evaluation system, which is built on the journal selection. In this study, we propose the idea of continuous, dynamic and comprehensive article-level-evaluation based on article-level-metrics. Different kinds of metrics are integrated into a comprehensive indicator, which could quantify both the academic and societal impact of the article. At different phases after the publication, the weights of different metrics are dynamically adjusted to mediate the long term and short term impact of the paper. Using the sample data, we make empirical study of the article-level-evaluation method.

  4. Interaction between recrystallization and strain-induced precipitation in a high Nb- and N-bearing austenitic stainless steel: Influence of the interpass time

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.B.R., E-mail: marianabdrs@gmail.com [Department of Materials Engineering, UFSCar, Via Washington Luis, Km 235, 13565-905 São Carlos, SP (Brazil); Gallego, J. [Department of Mechanical Engineering, UNESP, Avenida Brasil, 56, 15385-000 Ilha Solteira, SP (Brazil); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, Polytechnic University of Catalunya, Avenida Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Plaza de la Ciencia 2, 08243 Manresa (Spain); Balancin, O. [Department of Materials Engineering, UFSCar, Via Washington Luis, Km 235, 13565-905 São Carlos, SP (Brazil); Jorge, A.M., E-mail: moreira@dema.ufscar.br [Department of Materials Engineering, UFSCar, Via Washington Luis, Km 235, 13565-905 São Carlos, SP (Brazil)

    2015-06-18

    In this work, we studied the influence of the interpass time (20 and 5 s) on the interaction between recrystallization and strain-induced precipitation occurring during multiple passes' deformations under continuous cooling conditions in a high niobium- and nitrogen-bearing austenitic stainless steel (ISO 5832-9). The correlation between microstructure evolution and hot mechanical properties was performed by physical simulation using hot torsion tests. The microstructure evolution was analyzed by optical microscopy, transmission electron microscopy and electron back scattered diffraction (EBSD). This technique indicated that dynamic recrystallization occurred at the first passes promoting an excellent grain refinement. On the other hand, shorter interpass time (5 s) allowed higher volume fraction of smallest precipitates than larger interpass time (20 s). After soaking, only TiNbN precipitates were found, whereas, Z-phase (CrNbN) and NbN were formed during thermomechanical processing. Particles with sizes between 20 and 50 nm were effective to pin grain boundaries and dislocations.

  5. Continuous-discrete model of parasite-host system dynamics: Trigger regime at simplest assumptions

    Directory of Open Access Journals (Sweden)

    L. V. Nedorezov

    2014-09-01

    Full Text Available In paper continuous-discrete model of parasite-host system dynamics is analyzed. Within the framework of model it is assumed that appearance of individuals of new generations of both populations is realized at fixed time moments tk=hk, t0=0, k=1,2,... , h=const>0; it means that several processes are compressed together: producing of eggs by hosts, attack of eggs by parasites (with respective transformation of host's eggs into parasite's eggs, staying of hosts and parasites in phase "egg", and appearance of new individuals. It is also assumed that death process of individuals has a continuous nature, but developments of both populations are realized independently between fixed time moments. Dynamic regimes of model are analyzed. In particular, it was obtained that with simplest assumptions about birth process in host population and numbers of attacked hosts regime with two non-trivial stable attractors in phase space of system can be realized.

  6. Electropulsing Induced Texture Evolution in the Recrystallization of Fe-3 Pct Si Alloy Strip

    Science.gov (United States)

    Hu, Guoliang; Tang, Guoyi; Zhu, Yaohua; Shek, Chanhung

    2011-11-01

    Electropulsing induced texture evolution in the primary recrystallization of a Fe-3 pct Si alloy strip was studied using the electron backscattered diffraction technique. The results revealed that the electropulsing strengthened considerably the recrystallization of a cold-rolled Fe-3Si alloy strip. Various textures with high-energy storages, such as α (100), γ (111), γ (111), and G-texture (110), formed after several seconds of electropulsing treatment (EPT), depending on the intensity of electropulsing. The athermal effect of electropulsing is 319 times stronger than the thermal effect of electropulsing for the formation of the G texture. The mechanism of electopulsing induced texture evolution is discussed from the point of view of Gibbs free energy and dislocation dynamics.

  7. Study of delta phase on static recrystallization behavior of Inconel 718 alloy.

    Science.gov (United States)

    Lee, Hwa-Teng; Hou, Wen-Hsin

    2012-09-01

    The mechanical properties of Inconel 718 alloy depend on its microstructural features. Controlling the grain size during manufacturing is currently achieved through the use of a powerful hot forming process performed at a temperature sufficiently high to induce dynamic recrystallization. The present study proposes an alternative technique to achieve a uniform fine grain structure by using static recrystallization and a proper control of delta precipitation. The results show that a fine structure with an average grain size of ASTM No. 7 can be achieved. And in this study the finest grains yet achievable is ca. 200 nm. As a result, the proposed technique provides a feasible means of controlling the grain size without the need for an energy consumption and technically sophisticated hot forming process.

  8. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres

    Science.gov (United States)

    Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.

    2016-10-01

    Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core.

  9. Quantitative studies of the nucleation of recrystallization in metals utilizing microscopy and X-ray diffraction

    DEFF Research Database (Denmark)

    Larsen, Axel Wright

    is proven to be a good way of determining microstructural parameters, which are important when studying recrystallization dynamics. The nucleation of recrystallizationat triple junctions has been studied by 3 dimensional X-ray diffraction (3DXRD), allowing for the first time the deformed and recrystallized......This thesis covers three main results obtained during the project: A reliable method of performing serial sectioning on metal samples utilizing a Logitech polishing machine has been developed. Serial sectioning has been performed on metal samples in 1 µmsteps utilizing mechanical polishing......, and in 2 µm steps when electrochemical polishing was needed. A method by which reliable EBSP line scans may be performed by scanning three parallel lines has been developed. This method allows lines of the order of 1cm in length to be characterized with a 1 µm or better spatial resolution. The method...

  10. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    Science.gov (United States)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  11. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    Science.gov (United States)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  12. Validation of Continuously Tagged MRI for the Measurement of Dynamic 3D Skeletal Muscle Tissue Deformation

    CERN Document Server

    Moerman, Kevin M; Simms, Ciaran K; Lamerichs, Rolf M; Stoker, Jaap; Nederveen, Aart J

    2016-01-01

    A SPAMM tagged MRI methodology is presented allowing continuous (3.3-3.6 Hz) sampling of 3D dynamic soft tissue deformation using non-segmented 3D acquisitions. The 3D deformation is reconstructed by the combination of 3 mutually orthogonal tagging directions, thus requiring only 3 repeated motion cycles. In addition a fully automatic post-processing framework is presented employing Gabor scale-space and filter-bank analysis for tag extrema segmentation and triangulated surface fitting aided by Gabor filter bank derived surface normals. Deformation is derived following tracking of tag surface triplet triangle intersections. The dynamic deformation measurements were validated using indentation tests (~20 mm deep at 12 mm/s) on a silicone gel soft tissue phantom containing contrasting markers which provide a reference measure of deformation. In addition, the techniques were evaluated in-vivo for dynamic skeletal muscle tissue deformation measurement during indentation of the biceps region of the upper arm in a ...

  13. Dynamic finite element model updating of prestressed concrete continuous box-girder bridge

    Institute of Scientific and Technical Information of China (English)

    Lin Xiankun; Zhang Lingmi; Guo Qintao; Zhang Yufeng

    2009-01-01

    The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge.

  14. Homogenization and Recrystallization of Al-6Mg Alloys with and without Sc and Zr

    Institute of Scientific and Technical Information of China (English)

    姜锋; 尹志民; 黄伯云; 贺跃辉; 陈苏里

    2004-01-01

    Plates of Al-6Mg alloys with and without scandium were prepared by semi-continuous cast, homogenization, hot-rolled, cold-rolled and annealing. Based on studying of effects of temperature and time on hardness and conductivity during homogenization, it was found that homogenization of ingot with Sc and Zr can result in dispersion strengthening. Recrystallization temperature of alloys was studied by hardness method and optical metallographic method. Staring recrystallization temperature of Al-6Mg alloys with Sc and Zr is 375 ℃, increasing by 150 ℃ than Al-6Mg alloys without Sc and Zr. Mechanical properties (σb, σ0.2, δ) of hot-rolled alloy with Sc and Zr are 400 MPa, 280 MPa and 18%; cold-rolled and anneal alloy with Sc and Zr are 420 MPa, 310 MPa and 12% respectively.

  15. Recrystallization of the cold-deformed discontinuous precipitation microstructure in Al-Zn (-Cu) alloys

    Institute of Scientific and Technical Information of China (English)

    DING Hua; REN Yuping; HAO Shiming; WANG Dapeng; ZHAO Gang

    2004-01-01

    Recrystallization of cold-rolled discontinuous precipitation microstructure which has fine laminar structure in an Al-40% Zn (atom fraction) binary alloy is investigated by optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallization mechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be divided into coarsening mainly driven by stored deformation energy at colony boundaries and slip bands and the one mainly driven by boundary energy in the area with little deformation. It is shown that the addition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffraction analysis indicated the metastable phase CuZn4 transformed into equilibrium phase Al4Cu3Zn during the heating process.

  16. High-angle tilt boundary graphene domain recrystallized from mobile hot-wire-assisted chemical vapor deposition system.

    Science.gov (United States)

    Lee, Jinsup; Baek, Jinwook; Ryu, Gyeong Hee; Lee, Mi Jin; Oh, Seran; Hong, Seul Ki; Kim, Bo-Hyun; Lee, Seok-Hee; Cho, Byung Jin; Lee, Zonghoon; Jeon, Seokwoo

    2014-08-13

    Crystallization of materials has attracted research interest for a long time, and its mechanisms in three-dimensional materials have been well studied. However, crystallization of two-dimensional (2D) materials is yet to be challenged. Clarifying the dynamics underlying growth of 2D materials will provide the insight for the potential route to synthesize large and highly crystallized 2D domains with low defects. Here, we present the growth dynamics and recrystallization of 2D material graphene under a mobile hot-wire assisted chemical vapor deposition (MHW-CVD) system. Under local but sequential heating by MHW-CVD system, the initial nucleation of nanocrystalline graphenes, which was not extended into the growth stage due to the insufficient thermal energy, took a recrystallization and converted into a grand single crystal domain. During this process, the stitching-like healing of graphene was also observed. The local but sequential endowing thermal energy to nanocrystalline graphenes enabled us to simultaneously reveal the recrystallization and healing dynamics in graphene growth, which suggests an alternative route to synthesize a highly crystalline and large domain size graphene. Also, this recrystallization and healing of 2D nanocrystalline graphenes offers an interesting insight on the growth mechanism of 2D materials.

  17. Analysis of nonlinear dynamics of a cantilever beam-rigid-body MEMS gyroscope using a continuation method

    CERN Document Server

    Lajimi, Seyed Amir Mousavi

    2014-01-01

    The nonlinear dynamics of a microbeam-rigid body gyroscope are investigated by using a continuation method. To study the nonlinear dynamics of the system, the Lagrangian of the system is discretized and the reduced-order model is obtained. By using the continuation method, the frequency-response curves are computed and the stability of response is determined.

  18. Simulation and visualization of recrystallization microstructure after solution treatment

    Institute of Scientific and Technical Information of China (English)

    LI Ping; XUE Ke-min

    2005-01-01

    Simulation models for heterogeneous and simultaneous nucleation and random growth of nuclei were developed in terms of the mechanism of recrystallization and Monte Carlo stochastic simulation method.Combining deterministic simulation with stochastic simulation,the simulation and visualization of the recrystallization microstructure of Ti-15-3 alloy after hot compression deformation and solution treatment were realized.Comparison of the simulated results with the experimental ones suggests that the size and distribution of the simulated recrystallized grains agree well with the actual ones.This proves that the obtained statistic equivalent microstructure models are effective.This study is helpful for determining reasonable hot forming process and improving the forming quality.

  19. Recrystallization model for hot-rolling of 5182 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A recrystallization model for hot-rolling of 5182 aluminum alloy was presented by means of the fractional softening during double interval deformation. It is found that the recrystallization rate depends on strain rate more sensitively than deformation temperature, and the time for full recrystallization is very short as strain rate is greater than 1 s-1. Using the recrystallization—time—temperature curves, the desirable hot rolled microstructure can be obtained by controlling the rolling speed, temperature and cooling rate before cooling during the last pass in reversing mill.

  20. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  1. Ultrasonic attenuation measurements determine onset, degree, and completion of recrystallization

    Science.gov (United States)

    Generazio, E. R.

    1988-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and volume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  2. Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes

    Science.gov (United States)

    Chen, Yun; Yang, Hui

    2016-06-01

    Many real-world systems are evolving over time and exhibit dynamical behaviors. In order to cope with system complexity, sensing devices are commonly deployed to monitor system dynamics. Online sensing brings the proliferation of big data that are nonlinear and nonstationary. Although there is rich information on nonlinear dynamics, significant challenges remain in realizing the full potential of sensing data for system control. This paper presents a new approach of heterogeneous recurrence analysis for online monitoring and anomaly detection in nonlinear dynamic processes. A partition scheme, named as Q-tree indexing, is firstly introduced to delineate local recurrence regions in the multi-dimensional continuous state space. Further, we design a new fractal representation of state transitions among recurrence regions, and then develop new measures to quantify heterogeneous recurrence patterns. Finally, we develop a multivariate detection method for on-line monitoring and predictive control of process recurrences. Case studies show that the proposed approach not only captures heterogeneous recurrence patterns in the transformed space, but also provides effective online control charts to monitor and detect dynamical transitions in the underlying nonlinear processes.

  3. Texture development during recrystallization of aluminium containing large particles

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Hansen, Niels; Humphreys, F. J.

    1985-01-01

    The recrystallization process in heavily deformed commercially pure aluminium containing large intermetallic particles was studied by in situ neutron diffraction texture measurements and various microscopical techniques including texture measurements in local areas and simultaneous determination...... of size and orientation of individual grains. The formation and growth of recrystallization nuclei at the particles and in the matrix were examined by correlating the measured change in texture to the observed change in microstructure. It was found that prolific nucleation of grains having a wide spread...... of orientations takes place close to larger particles or clusters of particles early in the recrystallization process. The texture of fully recrystallized material, however, contains only a relatively weak random component showing that the randomisation effect of the particles was limited. This was ascribed...

  4. Continuous process tracing and the Iowa Gambling Task: Extending response dynamics to multialternative choice

    Directory of Open Access Journals (Sweden)

    Gregory J. Koop

    2011-12-01

    Full Text Available The history of judgment and decision making is defined by a trend toward increasingly nuanced explanations of the decision making process. Recently, process models have become incredibly sophisticated, yet the tools available to directly test these models have not kept pace. These increasingly complex process models require increasingly complex process data by which they can be adequately tested. We propose a new class of data collection that will facilitate evaluation of sophisticated process models. Tracking mouse paths during a continuous response provides an implicit measure of the growth of preference that produces a choice---rather than the current practice of recording just the button press that indicates that choice itself. Recent research in cognitive science (Spivey and Dale, 2006 has shown that cognitive processing can be revealed in these dynamic motor responses. Unlike current process methodologies, these response dynamics studies can demonstrate continuous competition between choice options and even online preference reversals. Here, in order to demonstrate the mechanics and utility of the methodology, we present an example response dynamics experiment utilizing a common multi-alternative decision task.

  5. Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering

    Science.gov (United States)

    Jones, Alex; Tamtögl, Anton; Calvo-Almazán, Irene; Hansen, Anders

    2016-06-01

    Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy.

  6. Non-Markovian dynamics in pulsed and continuous wave atom lasers

    CERN Document Server

    Breuer, H P; Kappler, B; Petruccione, F

    1999-01-01

    The dynamics of atom lasers with a continuous output coupler based on two-photon Raman transitions is investigated. With the help of the time-convolutionless projection operator technique the quantum master equations for pulsed and continuous wave (cw) atom lasers are derived. In the case of the pulsed atom laser the power of the time-convolutionless projection operator technique is demonstrated through comparison with the exact solution. It is shown that in an intermediate coupling regime where the Born-Markov approximation fails the results of this algorithm agree with the exact solution. To study the dynamics of a continuous wave atom laser a pump mechanism is included in the model. Whereas the pump mechanism is treated within the Born-Markov approximation, the output coupling leads to non-Markovian effects. The solution of the master equation resulting from the time-convolutionless projection operator technique exhibits strong oscillations in the occupation number of the Bose-Einstein condensate. These os...

  7. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    Directory of Open Access Journals (Sweden)

    Cangji Shi

    2014-01-01

    Full Text Available The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150 alloy was studied during hot compression at various temperatures (300 to 450 °C and strain rates (0.001 to 10 s−1. A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates.

  8. Recrystallization and Morphology of Microstructure in Al-Sc Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun; Zhang Zonghua

    2007-01-01

    Minor addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids. The presence of Al3Sc dispersoids is more effective recrystallization inhibitors. Our work established the precipitation of homogeneously distributed Al3Sc dispersoids, which are coherent with the matrix, have the L12 structure. It was also established that the addition of Sc was effective in improving the recrystallization resistance.

  9. Recrystallization microstructure modelling from superimposed deformed microstructure on microstructure model

    Indian Academy of Sciences (India)

    Prantik Mukhopadhyay

    2009-08-01

    The recovered cold rolled microstructure obtained from orientation image microstructure of Al–4%Mg–0.5%Mn alloy (AA5182 alloy) was superimposed on the grid of cellular automata based microstructure model. The Taylor factors of deformed/cold rolled orientations were considered as the driving force for recrystallization. The local development of recrystallized microstructure and texture were simulated with orientation dependent grain boundary mobility and compared with the experimental results.

  10. Early diagenesis and recrystallization of bone

    Science.gov (United States)

    Keenan, Sarah W.; Engel, Annette Summers

    2017-01-01

    One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.

  11. Investigating the principles of recrystallization from glyceride melts.

    Science.gov (United States)

    Windbergs, Maike; Strachan, Clare J; Kleinebudde, Peter

    2009-01-01

    Different lipids were melted and resolidified as model systems to gain deeper insight into the principles of recrystallization processes in lipid-based dosage forms. Solid-state characterization was performed on the samples with differential scanning calorimetry and X-ray powder diffraction. Several recrystallization processes could be identified during storage of the lipid layers. Pure triglycerides that generally crystallize to the metastable alpha-form from the melt followed by a recrystallization process to the stable beta-form with time showed a chain-length-dependent behavior during storage. With increasing chain length, the recrystallization to the stable beta-form was decelerated. Partial glycerides exhibited a more complex recrystallization behavior due to the fact that these substances are less homogenous. Mixtures of a long-chain triglyceride and a partial glyceride showed evidence of some interaction between the two components as the partial glyceride hindered the recrystallization of the triglyceride to the stable beta-form. In addition, the extent of this phenomenon depended on the amount of partial glyceride in the mixture. Based on these results, changes in solid dosage forms based on glycerides during processing and storage can be better understood.

  12. Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization.

    Science.gov (United States)

    Joshi, Prachi; Gorski, Christopher A

    2016-07-19

    When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.

  13. DYNAMIC MODELLING AND ADVANCED PREDICTIVE CONTROL OF A CONTINUOUS PROCESS OF ENZYME PURIFICATION

    Directory of Open Access Journals (Sweden)

    Dechechi E.C.

    1997-01-01

    Full Text Available A dynamic mathematical model, simulation and computer control of a Continuous Affinity Recycle Extraction (CARE process, a protein purification technique based on protein adsorption on solid-phase adsorbents is described in this work. This process, consisting of three reactors, is a multivariable process with considerable time delay in the on-line analyses of the controlled variable. An advanced predictive control configuration, specifically the Dynamic Matrix Control (DMC, was applied. The DMC algorithm was applied in process schemes where the aim was to maintain constant the enzyme concentration in the outlet of the third reactor. The performance of the DMC controller was analyzed in the feed-flow disturbances and the results are presented.

  14. Heterarcical market: Dynamical interplay between time and space in the continuous interaction in a market model

    Science.gov (United States)

    Sasai, Kazuto; Gunji, Yukio-Pegio; Kinoshita, Tetsuo

    2017-07-01

    Multi-agent models of robust open systems such as natural systems are the important theme in the literature of systems science. Heterarchy, which means dynamical hierarchy, is a structural model, which includes the dynamical interplay between different levels. However, it is not easy to build a formal model of a heterarchical system because the interplay between different levels lead a self-referential paradox. In this paper, we propose an continuous double auction model, which includes a formal model of conitnuous transaction. We encode the model into a restriction rule of the order submittion. The proposed model shows a critical behavior of the actual markets, and it can have the relationship with the behaviors of natural systems.

  15. Scaled Group Consensus in Multiagent Systems With First/Second-Order Continuous Dynamics.

    Science.gov (United States)

    Yu, Junyan; Shi, Yang

    2017-08-29

    We investigate scaled group consensus problems of multiagent systems with first/second-order linear continuous dynamics. For a complex network consisting of two subnetworks with different physical quantities or task distributions, it is concerned with this case that the agents' states in one subnetwork converge to a consistent value asymptotically, while the states in the other subnetwork approach another value with a ratio of the former. For the case of the information exchange being directed, novel consensus protocols are designed for both first-order and second-order dynamics to solve the scaled group consensus problems. By utilizing algebra theory, graph theory, and Lyapunov stability theory, several necessary and sufficient conditions are established to guarantee the agents' states reaching the scaled group consensus asymptotically. Finally, several simulation results are presented to demonstrate the effectiveness of the theoretical results.

  16. Experimental Verification of Dynamic Operation of Continuous and Multivessel Batch Distillation

    Energy Technology Data Exchange (ETDEWEB)

    Wittgens, Bernd

    1999-07-01

    This thesis presents a rigorous model based on first principles for dynamic simulation of the composition dynamics of a staged high-purity continuous distillation columns and experiments performed to verify it. The thesis also demonstrates the importance of tray hydraulics to obtain good agreement between simulation and experiment and derives analytic expressions for dynamic time constants for use in simplified and vapour dynamics. A newly developed multivessel batch distillation column consisting of a reboiler, intermediate vessels and a condenser vessel provides a generalization of previously proposed batch distillation schemes. The total reflux operation of this column was presented previously and the present thesis proposes a simple feedback control strategy for its operation based on temperature measurements. The feasibility of this strategy is demonstrated by simulations and verified by laboratory experiments. It is concluded that the multivessel column can be easily operated with simple temperature controllers, where the holdups are only controlled indirectly. For a given set of temperature setpoints, the final product compositions are independent of the initial feed composition. When the multivessel batch distillation column is compared to a conventional batch column, both operated under feedback control, it is found that the energy required to separate a multicomponent mixture into highly pure products is much less for the multivessel system. This system is also the simplest one to operate.

  17. Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation

    Science.gov (United States)

    Chiariotti, P.; Martarelli, M.; Castellini, P.

    2017-03-01

    Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.

  18. From Quantum To Classical Dynamics: A Landau Continuous Phase Transition With Spontaneous Superposition Breaking

    CERN Document Server

    Pankovic, V; Predojevic, M; Krmar, M; Pankovic, Vladan; Hubsch, Tristan; Predojevic, Milan; Krmar, Miodrag

    2004-01-01

    Developing an earlier proposal (Ne'eman, Damnjanovic, etc), we show herein that there is a Landau continuous phase transition from the exact quantum dynamics to the effectively classical one, occurring via spontaneous superposition breaking (effective hiding), as a special case of the corresponding general formalism (Bernstein). Critical values of the order parameters for this transition are determined by Heisenberg's indeterminacy relations, change continuously, and are in excellent agreement with the recent and remarkable experiments with Bose condensation. It is also shown that such a phase transition can sucessfully model self-collapse (self-decoherence), as an effective classical phenomenon, on the measurement device. This then induces a relative collapse (relative decoherence) as an effective quantum phenomenon on the measured quantum object by measurement. We demonstrate this (including the case of Bose-Einstein condensation) in the well-known cases of the Stern-Gerlach spin measurement, Bell's inequal...

  19. Dynamic-accumulative operation policy of continuous distillation for the purification of anisole

    Directory of Open Access Journals (Sweden)

    Wang Zhibo

    2016-03-01

    Full Text Available In the B10 isotope enrichment industry, the purification of anisole mixture makes great sense. A dynamic-accumulative operation policy of continuous distillation (DACD with repeated filling and dumping of the still is proposed for the separation of trace heavy impurities in the recycled anisole. To simulate and optimize the purification process of anisole, a mathematical model of DACD is derived, and the computer codes are developed in the MATLAB environment. Moreover, the experiment is performed in a pilot-scale distillation column. The results show that the experimental date agrees well with simulation results. DACD could solve the difficulty of flow rate control when the bottom flow rate is very small in continuous distillation. The size of the still in this operation mode is also smaller than that in batch distillation. And the yield of anisole is raised to 99.91%. In a word, DACD is especially suitable for separating trace heavy impurities from the recycled anisole.

  20. From discrete to continuous evolution models: a unifying approach to drift-diffusion and replicator dynamics

    CERN Document Server

    Chalub, Fabio A C C

    2008-01-01

    We study the large population limit of the Moran process, assuming weak-selection, and for different scalings. Depending on the particular choice of scalings, we obtain a continuous model that may highlight the genetic-drift (neutral evolution) or natural selection; for one precise scaling, both effects are present. For the scalings that take the genetic-drift into account, the continuous model is given by a singular diffusion equation, together with two conservation laws that are already present at the discrete level. For scalings that take into account only natural selection, we obtain a hyperbolic singular equation that embeds the Replicator Dynamics and satisfies only one conservation law. The derivation is made in two steps: a formal one, where the candidate limit model is obtained, and a rigorous one, where convergence of the probability density is proved. Additional results on the fixation probabilities are also presented.

  1. Automated modal tracking and fatigue assessment of a wind turbine based on continuous dynamic monitoring

    Directory of Open Access Journals (Sweden)

    Oliveira Gustavo

    2015-01-01

    Full Text Available The paper describes the implementation of a dynamic monitoring system at a 2.0 MW onshore wind turbine. The system is composed by two components aiming at the structural integrity and fatigue assessment. The first component enables the continuous tracking of modal characteristics of the wind turbine (natural frequency values, modal damping ratios and mode shapes in order to detect abnormal deviations of these properties, which may be caused by the occurrence of structural damage. On the other hand, the second component allows the estimation of the remaining fatigue lifetime of the structure based on the analysis of the measured cycles of structural vibration.

  2. Consensus of Continuous-Time Multiagent Systems with General Linear Dynamics and Nonuniform Sampling

    Directory of Open Access Journals (Sweden)

    Yanping Gao

    2013-01-01

    Full Text Available This paper studies the consensus problem of multiple agents with general linear continuous-time dynamics. It is assumed that the information transmission among agents is intermittent; namely, each agent can only obtain the information of other agents at some discrete times, where the discrete time intervals may not be equal. Some sufficient conditions for consensus in the cases of state feedback and static output feedback are established, and it is shown that if the controller gain and the upper bound of discrete time intervals satisfy certain linear matrix inequality, then consensus can be reached. Simulations are performed to validate the theoretical results.

  3. On the quasi-controllability of continuous-time dynamic fuzzy control systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yuhu [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)]. E-mail: yhfeng@dhu.edu.cn; Hu Liangjian [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)

    2006-10-15

    This paper gives the controllability analysis of continuous-time dynamic fuzzy control system from the aspect of fuzzy differential equations. The fuzzy state is different from the crisp state, as the counterpart of the controllability concept in the classical control theory, the controllable target state must be restricted within some limits. Hence, the concepts of admissible controllable state subset and quasi-controllability are introduced to describe the controllability property for fuzzy control system. The sufficient and necessary conditions for the fuzzy control system to be quasi-controllable are obtained and some examples are given to demonstrate the problems discussed in this paper.

  4. On-line parameter and delay estimation of continuous-time dynamic systems

    Directory of Open Access Journals (Sweden)

    Kozłowski Janusz

    2015-06-01

    Full Text Available The problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous identification of input delay and spectral parameters of the system models. The performance of the proposed estimation algorithms is verified in an illustrative numerical simulation study.

  5. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection

    Science.gov (United States)

    Hu, Wei-Hua; Moutinho, Carlos; Caetano, Elsa; Magalhães, Filipe; Cunha, Álvaro

    2012-11-01

    This paper aims at analyzing the feasibility of applying a vibration based damage detection approach, based on Principal Components Analysis (PCA), to eliminate environmental effects using the large amount of high quality data continuously collected by the dynamic monitoring system of Pedro e Inês footbridge since 2007. Few works describe real data, regularly collected along several years by reliable continuous dynamic monitoring systems in bridge structures. One main contribution is to show a large difference between making academic research based on numerical simulations or limited experimental samples, and making validity tests of innovative procedures using large high quality databases collected in real structures. The monitoring system, installed with the only initial objective of checking the efficiency of vibration control devices used to mitigate lateral and vertical vibrations, was therefore further developed for research purposes by implementing LabVIEW based automated signal processing and output-only modal identification routines, that enabled the analysis of the correlation of modal estimates with the temperature and the vibration level, as well as the automatic tracking of modal parameters along several years. With the final purpose of detecting potential structural damage at an early stage, the Principal Components Analysis (PCA) was employed to effectively eliminate temperature effects, whereas Novelty Analysis on the residual errors of the PCA model was used to provide a statistical indication of damage. The efficiency of this vibration based damage detection approach was verified using 3 years of measurements at Pedro e Inês footbridge under operational conditions and simulating several realistic damage scenarios affecting the boundary conditions. It is demonstrated that such a dynamic monitoring system, apart from providing relevant instantaneous dynamic information, working as an alert system associated to the verification of vibration

  6. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    Science.gov (United States)

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders.SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  7. Application of titanium-in-quartz thermobarometry to greenschist facies veins and recrystallized quartzites in the Hsüehshan range, Taiwan

    Directory of Open Access Journals (Sweden)

    S. Kidder

    2012-06-01

    Full Text Available The accuracy, reliability and best practices of Ti-in-quartz thermobarometry ("TitaniQ" in greenschist facies rocks have not been established. To address these issues we measured Ti concentrations in rutile-bearing samples of moderately deformed, partially recrystallized quartzite and vein quartz from Taiwan's Hsüehshan range. The spread of Ti concentrations of recrystallized grains in quartzite correlates with recrystallized grain size. Recrystallized quartz (grain size ~300 μm that formed during early deformation within the biotite stability field shows a marked increase in intermediate Ti-concentration grains (~1–10 ppm relative to detrital porphyroclasts (Ti ~0.1–200 ppm. Fine recrystallized quartz (~5% of the samples by area, grain size ~10–20 μm has a further restricted Ti concentration peaking at 0.8–2 ppm. This trend suggests equilibration of Ti in recrystallized quartz with a matrix phase during deformation and cooling. Vein emplacement and quartzite recrystallization are independently shown to have occurred at 250–350 °C and 300–410 °C respectively, lithostatic pressure ~5 kbar, and hydrostatic fluid pressure. Estimates of the accuracy of TitaniQ at these conditions depend on whether lithostatic or fluid pressure is used in the TitaniQ calibration. Using lithostatic pressure, Ti concentrations predicted by the Thomas et al. (2010 TitaniQ calibration are within error of Ti concentrations measured by SIMS. If fluid pressure is used, predicted temperatures are ~30–40 °C too low. TitaniQ has potential to yield accurate PT information for vein emplacement and dynamic recrystallization of quartz at temperatures as low as ~250 °C, however clarification of the relevant pressure term and further tests in rutile-present rocks are warranted.

  8. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    Science.gov (United States)

    Svitova, T F; Wetherbee, M J; Radke, C J

    2003-05-01

    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  9. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    Science.gov (United States)

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  10. Damage Detection for Continuous Bridge Based on Static-Dynamic Condensation and Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2014-01-01

    Full Text Available As an effective and classical method about physical parameter identification, extended Kalman filtering (EKF algorithm is widely used in structural damage identification, but the equations and solutions for the structure with bending deformation are not established based on EKF. The degrees of freedom about rotation can be eliminated by the static condensation method, and the dynamic condensation method considering Rayleigh damping is proposed in order to establish the equivalent and simplified modal based on complex finite element model such as continuous girder bridge. According to the requirement of bridge inspection and health monitoring, the online and convenient damage detection method based on EKF is presented. The impact excitation can be generated only on one location by one hammer actuator, and the signal in free vibration is analyzed. The deficiency that the complex excitation information is needed based on the traditional method is overcome. As a numerical example, a three-span continuous girder bridge is simulated, and the corresponding stiffness, the damage location and degree, and the damping parameter are identified accurately. It is verified that the method is suitable for the dynamic signal with high noise-signal ratio; the convergence speed is fast and this method is feasible for application.

  11. A piecewise continuous Timoshenko beam model for the dynamic analysis of tapered beam-like structures

    Science.gov (United States)

    Shen, Ji Yao; Abu-Saba, Elias G.; Mcginley, William M.; Sharpe, Lonnie, Jr.; Taylor, Lawrence W., Jr.

    1992-01-01

    Distributed parameter modeling offers a viable alternative to the finite element approach for modeling large flexible space structures. The introduction of the transfer matrix method into the continuum modeling process provides a very useful tool to facilitate the distributed parameter model applied to some more complex configurations. A uniform Timoshenko beam model for the estimation of the dynamic properties of beam-like structures has given comparable results. But many aeronautical and aerospace structures are comprised of non-uniform sections or sectional properties, such as aircraft wings and satellite antennas. This paper proposes a piecewise continuous Timoshenko beam model which is used for the dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element analysis, the closed-form solution of the Timoshenko beam equation is used. Application of the transfer matrix method relates all the elements as a whole. By corresponding boundary conditions and compatible conditions a characteristic equation for the global tapered beam has been developed, from which natural frequencies can be derived. A computer simulation is shown in this paper, and compared with the results obtained from the finite element analysis. While piecewise continuous Timoshenko beam model decreases the number of elements significantly; comparable results to the finite element method are obtained.

  12. HEURISTIC MODELING FOR A DYNAMIC AND GOAL PROGRAMMING IN PRODUCTION PLANNING OF CONTINUOUS MANUFACTURING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    JAHAN A; ABDOLSHAH M

    2007-01-01

    At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: ① Minimizing deviation of customer's requirements. ② Maximizing the profit. ③ Minimizing the frequencies of changes in formula production. ④ Minimizing the inventory of final products. ⑤ Balancing the production sections with regard to rate in production. ⑥ Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.

  13. Continuous loudness response to acoustic intensity dynamics in melodies: effects of melodic contour, tempo, and tonality.

    Science.gov (United States)

    Olsen, Kirk N; Stevens, Catherine J; Dean, Roger T; Bailes, Freya

    2014-06-01

    The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4s or 12s. Linear correlation coefficients >.89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, 'indirect' loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics.

  14. Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity.

    Science.gov (United States)

    Eiras, J N; Vu, Q A; Lott, M; Payá, J; Garnier, V; Payan, C

    2016-07-01

    This study demonstrates the feasibility of the dynamic acousto-elastic effect of a continuous high frequency wave for investigating the material nonlinearity upon transient vibration. The approach is demonstrated on a concrete sample measuring 15×15×60cm(3). Two ultrasonic transducers (emitter and receiver) are placed at its middle span. A continuous high frequency wave of 500kHz propagates through the material and is modulated with a hammer blow. The position of the hammer blow on the sample is configured to promote the first bending mode of vibration. The use of a continuous wave allows discrete time extraction of the nonlinear behavior by a short-time Fourier transform approach, through the simultaneous comparison of a reference non-modulated signal and an impact-modulated signal. The hammer blow results in phase shifts and variations of signal amplitude between reference and perturbed signals, which are driven by the resonant frequency of the sample. Finally, a comprehensive analysis of the relaxation mechanisms (modulus and attenuation recovery) is conducted to untangle the coupled fast and slow hysteretic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Structure and dynamics of binary liquid mixtures near their continuous demixing transitions

    Science.gov (United States)

    Roy, Sutapa; Dietrich, S.; Höfling, Felix

    2016-10-01

    The dynamic and static critical behavior of a family of binary Lennard-Jones liquid mixtures, close to their continuous demixing points (belonging to the so-called model H' dynamic universality class), are studied computationally by combining semi-grand canonical Monte Carlo simulations and large-scale molecular dynamics (MD) simulations, accelerated by graphic processing units (GPU). The symmetric binary liquid mixtures considered cover a variety of densities, a wide range of compressibilities, and various interactions between the unlike particles. The static quantities studied here encompass the bulk phase diagram (including both the binodal and the λ-line), the correlation length, and the concentration susceptibility, of the finite-sized systems above the bulk critical temperature Tc, the compressibility and the pressure at Tc. Concerning the collective transport properties, we focus on the Onsager coefficient and the shear viscosity. The critical power-law singularities of these quantities are analyzed in the mixed phase (above Tc) and non-universal critical amplitudes are extracted. Two universal amplitude ratios are calculated. The first one involves static amplitudes only and agrees well with the expectations for the three-dimensional Ising universality class. The second ratio includes also dynamic critical amplitudes and is related to the Einstein-Kawasaki relation for the interdiffusion constant. Precise estimates of this amplitude ratio are difficult to obtain from MD simulations, but within the error bars our results are compatible with theoretical predictions and experimental values for model H'. Evidence is reported for an inverse proportionality of the pressure and the isothermal compressibility at the demixing transition, upon varying either the number density or the repulsion strength between unlike particles.

  16. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  17. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    Science.gov (United States)

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-05

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  18. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    Science.gov (United States)

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  19. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.

    Science.gov (United States)

    Chaytor, Jennifer L; Tokarew, Jacqueline M; Wu, Luke K; Leclère, Mathieu; Tam, Roger Y; Capicciotti, Chantelle J; Guolla, Louise; von Moos, Elisabeth; Findlay, C Scott; Allan, David S; Ben, Robert N

    2012-01-01

    The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.

  20. Incorporation of Eu(III) into Calcite under Recrystallization conditions.

    Science.gov (United States)

    Hellebrandt, S E; Hofmann, S; Jordan, N; Barkleit, A; Schmidt, M

    2016-09-13

    The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu(3+) occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na(+). These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site.

  1. Incorporation of Eu(III) into Calcite under Recrystallization conditions

    Science.gov (United States)

    Hellebrandt, S. E.; Hofmann, S.; Jordan, N.; Barkleit, A.; Schmidt, M.

    2016-09-01

    The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu3+ occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na+. These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site.

  2. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR.

  3. From Walras’ auctioneer to continuous time double auctions: a general dynamic theory of supply and demand

    Science.gov (United States)

    Donier, J.; Bouchaud, J.-P.

    2016-12-01

    In standard Walrasian auctions, the price of a good is defined as the point where the supply and demand curves intersect. Since both curves are generically regular, the response to small perturbations is linearly small. However, a crucial ingredient is absent of the theory, namely transactions themselves. What happens after they occur? To answer the question, we develop a dynamic theory for supply and demand based on agents with heterogeneous beliefs. When the inter-auction time is infinitely long, the Walrasian mechanism is recovered. When transactions are allowed to happen in continuous time, a peculiar property emerges: close to the price, supply and demand vanish quadratically, which we empirically confirm on the Bitcoin. This explains why price impact in financial markets is universally observed to behave as the square root of the excess volume. The consequences are important, as they imply that the very fact of clearing the market makes prices hypersensitive to small fluctuations.

  4. Continuing dynamic assimilation of the inner region data in hydrodynamics modelling: Optimization approach

    CERN Document Server

    Pisnichenko, F I; Martínez, J M; Santos, S A

    2008-01-01

    In meteorological and oceanological studies the classical approach for finding the numerical solution of the regional model consists in formulating and solving the Cauchy-Dirichlet problem. The related boundary conditions are obtained by linear interpolation of data available on a coarse grid (global data), to the boundary of regional model. Errors, in boundary conditions, appearing owing to linear interpolation may lead to increasing errors in numerical solution during integration. The methods developed to reduce these errors deal with continuous dynamic assimilation of known global data available inside the regional domain. Essentially, this assimilation procedure performs a nudging of large-scale component of regional model solution to large-scale global data component by introducing the relaxation forcing terms into the regional model equations. As a result, the obtained solution is not a valid numerical solution of the original regional model. In this work we propose the optimization approach which is fr...

  5. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice, and they ex......Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...

  6. Developing Dynamic Digital Image Techniques with Continuous Parameters to Detect Structural Damage

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2013-01-01

    Full Text Available Several earthquakes with strong magnitude occurred globally at various locations, especially the unforgettable tsunami disaster caused by the earthquake in Indonesia and Japan. If the characteristics of structures can be well understood to implement new technology, the damages caused by most natural disasters can be significantly alleviated. In this research, dynamic digital image correlation method for using continuous parameter is applied for developing a low-cost digital image correlation coefficient method with advanced digital cameras and high-speed computers. The experimental study using cantilever test object with defect control confirms that the vibration mode calculated using this proposed method can highly express the defect locations. This proposed method combined with the sensitivity of Inter-Story Drift Mode Shape, IDMS, can also reveal the damage degree of damage structure. These test and analysis results indicate that this proposed method is high enough for applying to achieve the object of real-time online monitoring of structure.

  7. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    Science.gov (United States)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  8. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    Science.gov (United States)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  9. Monte Carlo modeling of recrystallization processes in α-uranium

    Science.gov (United States)

    Steiner, M. A.; McCabe, R. J.; Garlea, E.; Agnew, S. R.

    2017-08-01

    Starting with electron backscattered diffraction (EBSD) data obtained from a warm clock-rolled α-uranium deformation microstructure, a Potts Monte Carlo model was used to simulate static site-saturated recrystallization and test which recrystallization nucleation conditions within the microstructure are best validated by experimental observations. The simulations support prior observations that recrystallized nuclei within α-uranium form preferentially on non-twin high-angle grain boundary sites at 450 °C. They also demonstrate, in a new finding, that nucleation along these boundaries occurs only at a highly constrained subset of sites possessing the largest degrees of local deformation. Deformation in the EBSD data can be identified by the Kernel Average Misorientation (KAM), which may be considered as a proxy for the local geometrically necessary dislocation (GND) density.

  10. Effect of precipitation on the evolution of cube recrystallization texture

    Energy Technology Data Exchange (ETDEWEB)

    Benum, S. [Hydro Aluminium, Haavik (Norway). R and D Materials Technology; Nes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Metallurgy

    1997-11-01

    A study of the evolution of recrystallized structure and texture in the surface of a cold rolled twin roll cast AlFeSi alloy is presented. Annealing of such alloys often results in an abnormally coarse grained recrystallized surface structure with a strong cube texture. The evolution of this structure depends on the annealing procedures, that is, the precipitation state. Increased amounts of precipitating particles increase the grain size and the fraction of cube texture. The oriented growth theory does not offer any plausible interpretation of this precipitation effect. A recrystallization model that incorporates the differences in Zener drag between different annealing procedures has shown that the evolution of a strong cube texture and coarse grains is the result of a preferential nucleation of cube oriented grains. Precipitation increases the critical nucleation diameter and the resulting grain size. Cube oriented subgrains have a size advantage compared to other potential nucleation sites and are therefore not so affected by precipitation.

  11. Substructure drag effects and recrystallization textures in aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, R. [Univ. of Sheffield (United Kingdom). Dept. of Engineering Materials; Bate, P. [Doncasters plc, Melbourne (United Kingdom)

    1999-03-10

    Many important recrystallization texture components in metals such as aluminium originate from nuclei in which the mobile high-angle boundary exists prior to, or is formed in the early stages of, annealing. Nucleation can then occur by a process known as strain-induced boundary migration (SIBM). It is possible that this process will involve several growing subgrains, and the drag from that substructure can then have a significant effect. A simple model is used to demonstrate how changes in the overall driving force for recrystallization and Zener drag can affect recrystallization textures when SIBM is involved. This is discussed in relation to experimental observations and the evidence for this process is reviewed.

  12. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    Directory of Open Access Journals (Sweden)

    Jan Hahne

    2017-05-01

    Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  13. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    Science.gov (United States)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  14. The dynamics of stock exchange based on the formalism of weak continuous quantum measurement

    Science.gov (United States)

    Melnyk, S.; Tuluzov, I.

    2010-07-01

    The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.

  15. Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution.

    Science.gov (United States)

    Koh, Yang Wei; Sim, Adelene Y L; Lee, Hwee Kuan

    2015-08-01

    We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.

  16. Complex Dynamics of a Continuous Bertrand Duopoly Game Model with Two-Stage Delay

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2016-07-01

    Full Text Available This paper studies a continuous Bertrand duopoly game model with two-stage delay. Our aim is to investigate the influence of delay and weight on the complex dynamic characteristics of the system. We obtain the bifurcation point of the system respect to delay parameter by calculating. In addition, the dynamic properties of the system are simulated by power spectrum, attractor, bifurcation diagram, the largest Lyapunov exponent, 3D surface chart, 4D Cubic Chart, 2D parameter bifurcation diagram, and 3D parameter bifurcation diagram. The results show that the stability of the system depends on the delay and weight, in order to maintain stability of price and ensure the firm profit, the firms must control the parameters in the reasonable region. Otherwise, the system will lose stability, and even into chaos, which will cause fluctuations in prices, the firms cannot be profitable. Finally, the chaos control of the system is carried out by a control strategy of the state variables’ feedback and parameter variation, which effectively avoid the damage of chaos to the economic system. Therefore, the results of this study have an important practical significance to make decisions with multi-stage delay for oligopoly firms.

  17. Dynamic cross-flow filtration: enhanced continuous small-scale solid-liquid separation.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2016-01-01

    In a previous study, a small-scale dynamic filtration device (SFD) was analyzed and the basic mechanisms governing the filtration process were characterized. The present work aims at improving the device's performance in terms of actual production. Various operation modes were tested in order to increase permeate flow and concentration factors (CF), while maintaining a fully continuous production mode. Both, a vacuum-enhanced and a pulsating operation mode, proved to be superior to the currently implemented open-operation mode. For example, for lactose, an increase of the CF could be achieved from 1.7 in open mode to 7.6 in pulsating operation mode. The investigated operation strategy enables process control systems to rapidly react to fluctuating feeds that may occur due to changes in upstream manufacturing steps. As a result, not only filtration performance in terms of permeate rate but also process flexibility can be significantly increased. Overall, vacuum-enhanced operation was shown to be most promising for integration into an industrial environment. The option to elevate achievable concentration factors, ease of flow monitoring as well as the ability to react to changes in the feed conditions allow for effective and efficient continuous small-scale filtration.

  18. The real-time link between person perception and action: brain potential evidence for dynamic continuity.

    Science.gov (United States)

    Freeman, Jonathan B; Ambady, Nalini; Midgley, Katherine J; Holcomb, Phillip J

    2011-01-01

    Using event-related potentials, we investigated how the brain extracts information from another's face and translates it into relevant action in real time. In Study 1, participants made between-hand sex categorizations of sex-typical and sex-atypical faces. Sex-atypical faces evoked negativity between 250 and 550 ms (N300/N400 effects), reflecting the integration of accumulating sex-category knowledge into a coherent sex-category interpretation. Additionally, the lateralized readiness potential revealed that the motor cortex began preparing for a correct hand response while social category knowledge was still gradually evolving in parallel. In Study 2, participants made between-hand eye-color categorizations as part of go/no-go trials that were contingent on a target's sex. On no-go trials, although the hand did not actually move, information about eye color partially prepared the motor cortex to move the hand before perception of sex had finalized. Together, these findings demonstrate the dynamic continuity between person perception and action, such that ongoing results from face processing are immediately and continuously cascaded into the motor system over time. The preparation of action begins based on tentative perceptions of another's face before perceivers have finished interpreting what they just saw.

  19. Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Luo, J.; Yan, J.J.; Li, M.Q., E-mail: honeymli@nwpu.edu.cn

    2015-02-15

    Highlights: • We discussed globularization mechanism in a near β titanium alloy. • We analyzed recrystallization mechanism considering the effect of α grains and recovery. • We made detailed quantitative analysis on the microstructure evolution. • We analyzed the texture evolution during recrystallization. - Abstract: Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression were investigated by employing a high-resolution electron backscatter diffraction technique (EBSD). Quantitative analysis was made in detail for further understanding the microstructure evolution. The results reveal that the dynamic globularization of primary α grains of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy is accomplished by the formation of high-angle boundaries (HABs) and the penetration of the β phase during isothermal compression, and an increase in deformation temperature leads to a more globular microstructure. The main restoration mechanism in the β phase of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression is dynamic recovery (DRC) at a strain rate of 0.01 s{sup -1}, while continuous dynamic recrystallization (CDRX) occurs as the strain rate increases to 1.0 s{sup -1}/5.0 s{sup -1} and the α grains play an important role in recrystallization. The recrystallization in the β phase of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression is promoted with the decreasing of deformation temperature and the increasing of strain rate. A strong 〈0 0 1〉 fiber texture develops where only DRC occurs and the deformation texture is weakened to a large extent after recrystallization of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression.

  20. Incorporation of Eu(III) into calcite under recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HGF Young Investigator Group; Hofmann, S.

    2017-06-01

    The interaction of three calcite powders with Eu(III) under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). Batch contact studies with reaction times from 1 week up to 3 years revealed that the speciation differs from that observed previously in co-precipitation experiments and is dominated by a newly identified species ''γ''. The speed of formation of this species was found to depend greatly on the recrystallization rate of the studied minerals.

  1. Deformation and recrystallization textures in commercially pure aluminum

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    1986-01-01

    The deformation and recrystallization textures of commercially pure aluminum (99.6 pct) containing large intermetallic particles (FeAl3) are measured by neutron diffraction, and the orientation distribution functions (ODF’s) are calculated. Sample parameters are the initial grain size (50 and 350....... Thereby the particles can have a randomizing effect on the textural development during recrystallization. In specimens deformed at medium degrees of deformation the randomizing effect of particles is maximum. At lower and higher degrees of deformation the effect of particles is less as other nucleation...

  2. STATIC RECRYSTALLIZATION AFTER HOT WORKING OF Al-Li ALLOYS

    OpenAIRE

    Gonçalves, M.; Sellars, C

    1987-01-01

    Small slabs of DC cast and homogenised 8090 and 8091 have been hot rolled in an experimental mill at temperatures in the range 300-500°C and subsequently solution treated at 550°C for times up to 48 hrs. Increase in rolling temperature leads to slower recrystallization, but the effect diminishes at long solution treatment times when the rolling temperature is above 400°C. Recrystallized grains are nearly equiaxed after rolling at temperatures below 400°C but are elongated after rolling at hig...

  3. Experimental deformation and recrystallization of olivine – processes and time scales of damage healing during postseismic relaxation at mantle depths

    Directory of Open Access Journals (Sweden)

    C. A. Trepmann

    2013-04-01

    Full Text Available Experiments comprising sequences of deformation (at 300 or 600 °C and annealing at varying temperature (700 to 1100 °C, time (up to 144 h and stress (up to 1.5 GPa were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep after a high-stress deformation event: porphyroclasts (> 100 μm are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm. Areas with smaller recrystallized grains (> 10 μm trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great

  4. Influence of deformation conditions on the development of heterogeneous recrystallization microstructures in experimentally deformed Carrara marble

    NARCIS (Netherlands)

    Valcke, S.L.A.; de Bresser, J.H.P.; Pennock, G.M.; Drury, M.R.

    2015-01-01

    Recrystallized grains are potentially useful as indicators of palaeostress in naturally deformed rocks, providing that well-calibrated relationships (palaeopiezometers) exist between the recrystallized grain size and stress. Rocks can exhibit microstructures that are heterogeneous, that is, containi

  5. On the influence of dispersoids on the particle stimulated nucleation of recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Engler, O.

    1996-12-31

    Recrystallization of Al alloys is controlled by precipitates. Whereas large particles are generally assumed to promote recrystallization by particle stimulated nucleation, finely dispersed precipitates, either already present in the as-deformed state or precipitating during the recrystallization anneal, are known to strongly retard the progress of recrystallization. It was the aim of this study to elucidate these concurring effects of large particles, and small dispersoids as well as of a supersaturation of solutes on recrystallization in a ternary Al-Fe-Si model alloy. Samples were prepared with different pre-annealing treatments to produce different states of precipitation and supersaturation. Evolution of the microstructure and of the crystallographic texture was followed during cold rolling and recrystallization. Conclusions were drawn on the efficiency of recrystallization nucleation at the various nucleation sites and, especially, on the influence of dispersoids on recrystallization.

  6. Dynamic recrystallization and grain growth in olivine rocks

    NARCIS (Netherlands)

    Kellermann Slotemaker, A.

    2006-01-01

    A mechanism based description of the rheology of olivine is essential for modeling of upper mantle geodynamics. Previously, mantle flow has been investigated using flow laws for grain size insensitive (GSI) dislocation creep and/or grain size sensitive (GSS) diffusion creep of olivine. Generally,

  7. Analysis of dynamic recrystallization of ice from EBSD orientation mapping

    Directory of Open Access Journals (Sweden)

    Maurine eMontagnat

    2015-12-01

    Full Text Available We present high resolution observations of microstructure and texture evolution during dynamicrecrystallization (DRX of ice polycrystals deformed in the laboratory at high temperature(≈0.98Tm. Ice possesses a significant viscoplastic anisotropy that induces strong strainheterogeneities, which result in an early occurrence of DRX mechanisms. It is thereforea model material to explore these mechanisms. High resolution c-axis measurements atsample scale by optical techniques and full crystallographic orientation measurements by cryo-Electron Back Scattering Diffraction (EBSD provide a solid database for analyzing the relativeimpact of the macroscopic imposed stress versus the local and internal stress field on DRXmechanisms. Analysis of misorientation gradients in the EBSD data highlights a heterogeneousdislocation distribution, which is quantified by the Nye tensor estimation. Joint analyses of thedislocation density maps and microstructural observations highlight spatial correlation betweenhigh dislocation density sites and the onset of nucleation taking place by grain-boundary bulging,subgrain rotation or by the formation of kink-bands.

  8. Dynamic recrystallization and grain growth in olivine rocks

    NARCIS (Netherlands)

    Kellermann Slotemaker, A.

    2006-01-01

    A mechanism based description of the rheology of olivine is essential for modeling of upper mantle geodynamics. Previously, mantle flow has been investigated using flow laws for grain size insensitive (GSI) dislocation creep and/or grain size sensitive (GSS) diffusion creep of olivine. Generally, fl

  9. The Effects of Aging Precipitation on the Recrystallization of CuNiSiCr Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jingguo; HUANG Jinliang; LIU Ping; JING Xiaotian; ZHAO Dongmei; ZHI Xiao

    2005-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The results show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recrystallization. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in front of grain boundaries following a re-precipitation in the recrystallization area.

  10. Estimating the continuous-time dynamics of energy and fat metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Juen Guo

    2009-09-01

    Full Text Available The mouse has become the most popular organism for investigating molecular mechanisms of body weight regulation. But understanding the physiological context by which a molecule exerts its effect on body weight requires knowledge of energy intake, energy expenditure, and fuel selection. Furthermore, measurements of these variables made at an isolated time point cannot explain why body weight has its present value since body weight is determined by the past history of energy and macronutrient imbalance. While food intake and body weight changes can be frequently measured over several weeks (the relevant time scale for mice, correspondingly frequent measurements of energy expenditure and fuel selection are not currently feasible. To address this issue, we developed a mathematical method based on the law of energy conservation that uses the measured time course of body weight and food intake to estimate the underlying continuous-time dynamics of energy output and net fat oxidation. We applied our methodology to male C57BL/6 mice consuming various ad libitum diets during weight gain and loss over several weeks and present the first continuous-time estimates of energy output and net fat oxidation rates underlying the observed body composition changes. We show that transient energy and fat imbalances in the first several days following a diet switch can account for a significant fraction of the total body weight change. We also discovered a time-invariant curve relating body fat and fat-free masses in male C57BL/6 mice, and the shape of this curve determines how diet, fuel selection, and body composition are interrelated.

  11. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    Science.gov (United States)

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  12. Roughness of grain boundaries in partly recrystallized aluminum

    DEFF Research Database (Denmark)

    Sun, Jun; Zhang, Yubin; Juul Jensen, Dorte

    2017-01-01

    cold rolled aluminum samples. The results show that particle pinning is not the main reason accounting for recrystallization boundary roughness in the present samples. The roughness is however shown to relate to the deformation microstructure and possible effects of migration rate are discussed...

  13. New 3DXRD results on recrystallization and grain growth

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; West, Stine; Poulsen, Stefan Othmar;

    2012-01-01

    New in-situ 3DXRD results obtained since the last Rex&GG conference are presented and discussed. This includes: Documentation of the formation of nuclei with new orientations, determination of apparent activation energies for individual bulk grains during recrystallization and evolution in the 3D...... microstructure during grain growth...

  14. Automatic determination of recrystallization parameters based on EBSD mapping

    DEFF Research Database (Denmark)

    Wu, Guilin; Juul Jensen, Dorte

    2008-01-01

    A new automatic algorithm for determining the recrystallization parameters V-V, S-V and based on EBSD mapping is presented in this paper. The algorithm is validated on aluminium deformed to high strains. The algorithm is also compared with other methods using the exact same sets of samples...

  15. Nonequilibrium antifreeze peptides and the recrystallization of ice.

    Science.gov (United States)

    Knight, C A; Wen, D; Laursen, R A

    1995-02-01

    Evidence is presented that the nonequilibrium antifreeze peptide (AFP) from winter flounder has a special ability to inhibit recrystallization in ice only when an appreciable amount of liquid is present, as is the case when the system contains salts and the temperature is not too low. In this circumstance the AFP binds to the ice surface at the ice-solution interfaces in grain boundaries, preventing migration of the solution and effectively immobilizing the boundaries. In the absence of liquid, recrystallization inhibition appears to be a common property of many peptides. This is consistent with the view that the special effects of AFPs require a structural fit onto ice, and therefore require the AFP molecules to have the mobility to achieve that fit. Since the concentration of salt required to induce the special recrystallization inhibition effects of AFPs is lower (recrystallization. The proposition that mobility is needed for AFP molecules to produce their special influence upon ice growth argues against any special effects of AFPs in devitrification.

  16. In-Situ Investigation of Local Boundary Migration During Recrystallization

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andy; Juul Jensen, Dorte

    2014-01-01

    are analyzed based on calculations of local values for the stored energy of deformation. It is found that the migration of the investigated boundary is very complex with significant spatial and temporal variations in its movement, which cannot directly be explained by the variations in stored energies......, is necessary for the further understanding of recrystallization boundary migration mechanisms....

  17. Microstructure and texture development during recrystallization of rolled molybdenum sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huensche, I.; Oertel, C.G.; Tamm, R.; Skrotzki, W. [Dresden Univ. of Technology, Inst. of Structural Physics (Germany); Knabl, W. [Plansee AG, Technologiezentrum, Reutte/Tyrol (Austria)

    2004-07-01

    Recrystallization is an important tool to adjust the grain size and texture of polycrystalline materials in order to optimize their properties. In the present work recrystallization and the related changes of texture have been studied on rolled molybdenum sheets as a function of temperature and time. The microstructure was investigated by orientation contrast in a scanning electron microscope. The kinetics of recrystallization displayed in a JMAK plot yields avrami coefficients decreasing with temperature from 2.5 to 1.1. The activation energy amounts to 5 eV, which agrees well with the volume self-diffusion coefficient. The textures of the sheet surface and central layer were measured by X-ray diffraction. The rolling texture in the centre of the sheets is characterized by a strong {alpha}-fibre with the rotated cube component {l_brace}100{r_brace}<110> dominating. Besides that, there exists a weak {gamma}-fibre. In contrast, the surface layer is characterized by a weak cube component. During recrystallization changes in texture are insignificant. With long annealing times all texture components tend to degrade. Conclusions regarding the deep-drawability are drawn. (orig.)

  18. Local boundary migration during recrystallization in pure aluminium

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andrew; Juul Jensen, Dorte

    2011-01-01

    than generally appreciated. Locally protrusions/retrusions can provide a driving force comparable in magnitude to the driving force from the stored energy in the deformed matrix. The stop–go motion of the recrystallization boundaries is also discussed and related to the formation of protrusions...

  19. Time Evolution in 3D Metal Microstructures-Recrystallization

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Schmidt, Søren

    2009-01-01

    The three dimensional x-ray diffraction (3DXRD) concept is shortly described and new experimental updates are highlighted. The potentials and limitation of the 3DXRD method are compared to those of other 3D methods. 3DXRD has been used for in-situ studies of recrystallization and new migration ra...

  20. In situ electron backscatter diffraction investigation of recrystallization in a copper wire.

    Science.gov (United States)

    Brisset, François; Helbert, Anne-Laure; Baudin, Thierry

    2013-08-01

    The microstructural evolution of a cold drawn copper wire (reduction area of 38%) during primary recrystallization and grain growth was observed in situ by electron backscatter diffraction. Two thermal treatments were performed, and successive scans were acquired on samples undergoing heating from ambient temperature to a steady state of 200°C or 215°C. During a third in situ annealing, the temperature was continuously increased up to 600°C. Nuclei were observed to grow at the expense of the deformed microstructure. This growth was enhanced by the high stored energy difference between the nuclei and their neighbors (driving energy in recrystallization) and by the presence of high-angle grain boundaries of high mobility. In the early stages of growth, the nuclei twin and the newly created orientations continue to grow to the detriment of the strained copper. At high temperatures, the disappearance of some twins was evidenced by the migration of the incoherent twin boundaries. Thermal grooving of grain boundaries is observed at these high temperatures and affects the high mobile boundaries but tends to preserve the twin boundaries of lower energy. Thus, grooving may contribute to the twin vanishing.

  1. Mass media and heterogeneous bounds of confidence in continuous opinion dynamics

    CERN Document Server

    Pineda, M

    2014-01-01

    This work focus on the effects of an external mass media on continuous opinion dynamics with heterogeneous bounds of confidence. We modified the original Deffuant et al. and Hegselmann and Krause models to incorporate both, an external mass media and a heterogeneous distribution of confidence levels. We analysed two cases, one where only two bounds of confidence are taken into account, and other were each individual of the system has her/his own characteristic level of confidence. We found that, in the absence of mass media, diversity of bounds of confidence can improve the capacity of the systems to reach consensus. We show that the persuasion capacity of the external message is optimal for intermediate levels of heterogeneity. Our simulations also show the existence, for certain parameter values, of a counter-intuitive effect in which the persuasion capacity of the mass media decreases if the mass media intensity is too large. We discuss similarities and differences between the two heterogeneous versions of...

  2. Fluid dynamics simulation of the reheating furnace of the continuous mill line of VBM

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Lis Nunes; Silva, Ricardo Junqueira [V e M do Brasil S.A., Belo Horizonte. MG (Brazil)

    2009-11-01

    V and M do Brazil is an integrated steel mill with the production of seamless steel pipe. The manufacture process comprises heating and reheating fuel fired furnaces within two rolling mills lines. The Continuous Mill line reheating furnace has no baffle between heating and soaking zone that might cause a thermofluidodynamics influence between control zones and consequently an overall unbalance within the furnace. The combustion control mesh is based at the real measured temperature per zone. If the thermocouples of the heating zone are influenced by the heat flux coming from the soaking zone, the mesh might receive a wrong temperature signal and send to the heating zone burners a lower thermal demand than the real needed one. The flux unbalance may cause homogeneity problems and/or early equipment worn out. Using the software FLUENT, it was made a 2D fluid dynamic simulation of the reheating furnace with and without a baffle in order to have a qualitative view of its influence in the hot gas flux inside the furnace. Through the simulation it was possible to check the furnace homogeneity gain potential with the installation of the baffle and its better position. The results of this study supported the company decision to actually invest in a baffle installation in this furnace. Further studies will be done to quantify the results of the process. (author)

  3. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  4. On Grain Dynamics in Debris Discs: Continuous Outward Flows and Embedded Planets

    CERN Document Server

    Jiang, Ing-Guey

    2009-01-01

    This study employed grain dynamic models to examine the density distribution of debris discs, and discussed the effects of the collisional time-intervals of asteroidal bodies, the maximum grain sizes, and the chemical compositions of the dust grains of the models, in order to find out whether a steady out-moving flow with an 1/R profile could be formed. The results showed that a model with new grains every 100 years, a smaller maximum grain size, and a composition C400 has the best fit to the 1/R profile because: (1) the grains have larger values of beta on average,therefore, they can be blown out easily; (2) the new grains are generated frequently enough to replace those have been blown out. With the above two conditions, some other models can have a steady out-moving flow with an approximate 1/R profile. However, those models in which new grains are generated every 1000 years have density distributions far from the profile of a continuous out-moving flow. Moreover, the analysis on the signatures of planets ...

  5. Quality management science in clinical chemistry: a dynamic framework for continuous improvement of quality.

    Science.gov (United States)

    Westgard, J O; Burnett, R W; Bowers, G N

    1990-10-01

    Current quality assurance approaches will not be adequate to satisfy the needs for quality in the next decade. Quality management science (QMS), as evolving in industry today, provides the dynamic framework necessary to provide continuous improvement of quality. QMS emphasizes the importance of defining quality goals based on the needs and expectations (implied needs) of customers. The laboratory can develop customer-friendly goals and measures of quality by recognizing that customers' experiences are represented by a totality of results. Quality goals and measures are best communicated as "total performance" by specifying a limit and percentile of the distribution, rather than a mean and standard deviation. Application of quality goals within the laboratory will usually require partitioning the total performance goal into components and translating those components into specifications to guide the operation and management of production processes. QMS also extends beyond technical processes to people processes and provides guidance for improving the quality of worklife and caring for the laboratory's most essential resource--our people.

  6. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  7. Development of recrystallization texture and microstructure in cold rolled copper

    Energy Technology Data Exchange (ETDEWEB)

    Necker, C.T. [Los Alamos National Lab., NM (United States); Doherty, R.D. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering; Rollett, A.D. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

    1996-12-31

    Oxygen free electronic copper, 99.995% purity, of two initial grain sizes, 50 {mu}m and 100 {mu}m, has been cold rolled to six strains of 1.0, 1.5, 2.0, 2.65, 3.5 and 4.5 (von Mises equivalents). The rolled materials were partially and fully recrystallized to study the development of recrystallization textures as a function of grain size, strain and fraction recrystallized. The initial textures were relatively random and the deformation textures show the classic {beta} fiber development. As strain is increased both materials produce increasingly intense cube recrystallization textures, (100)<001>, as measured both by x-ray diffraction and the electron backscatter pattern (EBSP) techniques. The strong cube recrystallization textures are a product of a higher than random frequency of cube nucleation sites. An additional factor is that cube regions grow larger than non-cube regions. The explanation of the cube frequency advantage is based on the development of large stored energy differences between cube orientations and neighboring orientations due to recovery of cube sites. Of several possible explanations of the cube orientation size advantage, the most plausible one is solute entrapment. At the higher strains the boundaries of cube grains encounter the deformation texture S components, (123)<634>, changing the boundary character to one of 40{degrees}<111>. These boundaries are more resistant to solute accumulation than random high angle boundaries, allowing the boundaries to migrate with less of a solute drag effect than a random high angle boundary.

  8. Effects of High Magnetic Field on Recrystallization Behavior in Fe-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    Ya Xu; H.Ohtsuka; S.Umezawa; K.Anak; S.Miyazaki; H.Wada

    2000-01-01

    Effects of high magnetic field on recrystallization, coarsening after primary recrystallization and texture evolution were studied in non-oriented and oriented 3% silicon steels. The highest applied magnetic field strength was 10 Tesla. It was found that primary recrystallization process and coarsening after primary recrystallization are both retarded by the application of magnetic field during annealing. A difference between primary recrystallization textures annealed with or without a magnetic field was found in both non-oriented and oriented 3% silicon specimens. It was found that the amount of texture component { 111 } increases by the application of magnetic field during annealing.

  9. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, Anthony K.M.; Romanovsky, V.E.

    2011-01-01

    Quantifying changes in thermokarst lake extent is of importance for understanding the permafrost-related carbon budget, including the potential release of carbon via lake expansion or sequestration as peat in drained lake basins. We used high spatial resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, Alaska. The number of water bodies larger than 0.1 ha increased over the entire observation period (666 to 737 or +10.7%); however, total surface area decreased (5,066 ha to 4,312 ha or -14.9%). This pattern can largely be explained by the formation of remnant ponds following partial drainage of larger water bodies. Thus, analysis of large lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, differing from lake changes reported from other continuous permafrost regions. Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 (0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr). However, most lakes that drained did expand as a result of surface permafrost degradation before lateral drainage. Drainage rates over the observation period were stable (2.2 to 2.3 per year). Thus, analysis of decadal-scale, high spatial resolution imagery has shown that lake drainage in this region is triggered by lateral breaching and not subterranean infiltration. Future research should be directed toward better understanding thermokarst lake dynamics at high spatial and temporal resolution as these systems have implications for landscape-scale hydrology and carbon budgets in thermokarst lake-rich regions in the circum-Arctic.

  10. The Effects of Hearing Aid Compression Parameters on the Short-Term Dynamic Range of Continuous Speech

    Science.gov (United States)

    Henning, Rebecca L. Warner; Bentler, Ruth A.

    2008-01-01

    Purpose: The purpose of this study was to evaluate and quantitatively model the independent and interactive effects of compression ratio, number of compression channels, and release time on the dynamic range of continuous speech. Method: A CD of the Rainbow Passage (J. E. Bernthal & N. W. Bankson, 1993) was used. The hearing aid was a…

  11. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  12. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Directory of Open Access Journals (Sweden)

    Ortal Mizrahy

    Full Text Available The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs, present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH, on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  13. Policy choices in dementia care-An exploratory analysis of the Alberta continuing care system (ACCS) using system dynamics.

    Science.gov (United States)

    Cepoiu-Martin, Monica; Bischak, Diane P

    2017-08-01

    The increase in the incidence of dementia in the aging population and the decrease in the availability of informal caregivers put pressure on continuing care systems to care for a growing number of people with disabilities. Policy changes in the continuing care system need to address this shift in the population structure. One of the most effective tools for assessing policies in complex systems is system dynamics. Nevertheless, this method is underused in continuing care capacity planning. A system dynamics model of the Alberta Continuing Care System was developed using stylized data. Sensitivity analyses and policy evaluations were conducted to demonstrate the use of system dynamics modelling in this area of public health planning. We focused our policy exploration on introducing staff/resident benchmarks in both supportive living and long-term care (LTC). The sensitivity analyses presented in this paper help identify leverage points in the system that need to be acknowledged when policy decisions are made. Our policy explorations showed that the deficits of staff increase dramatically when benchmarks are introduced, as expected, but at the end of the simulation period, the difference in deficits of both nurses and health care aids are similar between the 2 scenarios tested. Modifying the benchmarks in LTC only versus in both supportive living and LTC has similar effects on staff deficits in long term, under the assumptions of this particular model. The continuing care system dynamics model can be used to test various policy scenarios, allowing decision makers to visualize the effect of a certain policy choice on different system variables and to compare different policy options. Our exploration illustrates the use of system dynamics models for policy making in complex health care systems. © 2017 John Wiley & Sons, Ltd.

  14. Return Radius and volume of recrystallized material in Ostwald Ripening

    CERN Document Server

    Hausser, Frank

    2012-01-01

    Within the framework of the LSW theory of Ostwald ripening the amount of volume of the second (solid) phase that is newly formed by recrystallization is investigated. It is shown, that in the late stage, the portion of the newly generated volume formed within an interval from time $t_0$ to $t$ is a certain function of $t/t_0$ and an explicit expression of this volume is given. To achieve this, we introduce the notion of the {\\it return radius} $r(t,t_0)$, which is the unique radius of a particle at time $t_0$ such that this particle has -- after growing and shrinking -- the same radius at time $t$. We derive a formula for the return radius which later on is used to obtain the newly formed volume. Moreover, formulas for the growth rate of the return radius and the recrystallized material at time $t_0$ are derived.

  15. Dark field X-ray microscopy for studies of recrystallization

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Jakobsen, Anders Clemen;

    2015-01-01

    We present the recently developed technique of Dark Field X-Ray Microscopy that utilizes the diffraction of hard X-rays from individual grains or subgrains at the (sub)micrometre- scale embedded within mm-sized samples. By magnifying the diffracted signal, 3D mapping of orientations and strains i...... external influences. The capabilities of Dark Field X- Ray Microscopy are illustrated by examples from an ongoing study of recrystallization of 50% cold-rolled Al1050 specimens....

  16. The re-crystallization issue in lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, P. [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Baicchi, E. [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)]. E-mail: elio.baicchi@brasimone.enea.it; Zucchini, A. [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Benamati, G. [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2004-11-01

    Numerical and experimental studies were performed to investigate the behaviour of lead-bismuth eutectic (LBE) after solidification. Re-crystallization of LBE is the main phenomenon to consider; it may lead to serious over-stressing of structural materials. The conditions for the target vessel of MEGAwatt PIlot Experiment (MEGAPIE) were especially considered. Some general recommendations were deduced in order to help avoiding dangerous events.

  17. Simulation of primary static recrystallization with cellular operator model

    OpenAIRE

    Mukhopadhyay, Prantik

    2005-01-01

    1. Based on the modified cellular automata approach of Reher [60] a cellular operator model has been developed that is capable of accounting for spatial and temporal inhomogeneity on a finer scale. For this a scalable subgrid automaton is introduced that allows for a high spatial resolution on demand and still high computational efficiency. The scalable subgrid permits to track the minute changes of growth front during recrystallization owing to local variations of boundary mobility and net d...

  18. Predicting the Soil Phosphorus Dynamics of the Ploughed Layer Under Continuous Cultivation and P Fertilization

    Science.gov (United States)

    Morel, C.; Augusto, L.; Gallet-Budynek, A. S.

    2011-12-01

    One major component of the biogeochemical cycling of phosphorus (P) in soils is the plant-available soil P. Its sound management, to minimize the loss of soil P to surface waters while ensuring enough P to sustain soil fertility, requires being able to predict the long term dynamics of plant-available soil P with the P budget. We examined the ability of a simple model to predict the change in plant-available soil P of the ploughed layer for almost 3 decades of continuous cultivation and P fertilization. We used a process-based assessment of plant-availability that considers both the concentration (Cp) of phosphate ions (Pi) in solution and the time-dependent amount (Pr) of Pi bound to the soil solid phase that can diffuse towards solution that equilibrates with time Pi in solution under the effect of a gradient of concentration. Soil analyses were performed in batch experiment on soil suspensions using a 32Pi-dilution method at steady-state. The modeling considered the difference between P inputs minus P outputs. This annual P budget was partitioned between Cp and Pr for one year. Every year the P budget was calculated as the added P to soil minus the P removed in grain yields and the P that leaves the plough layer by leaching estimated as the simulated Cp value multiplied by the annual volume of drainage water. Other fluxes that can play a role in P cycling such as atmospheric deposit, preferential, subsurface and surface flows were neglected. We analyzed archived soil samples, taken up every 3-4 years from a long-term field experiment (1972-2000) on a sandy soil under temperate climate. It comprised 4 replicates and 3 annual rates of P application as commercial superphosphate: 0, 44 and 96 kg Pha-1 yr-1. The crop was a monoculture of irrigated-maize. Grain yields and their P content were determined every year for all plots. The overall corn grain yield over almost 3 decades was: 11.6 t ha-1 yr-1 (mean P content of grain = 3.0 g P kg¬-1). The starting Cp value in

  19. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.

    Directory of Open Access Journals (Sweden)

    Tadashi Wakayama

    Full Text Available Nasal obstruction is a common problem in continuous positive airway pressure (CPAP therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD, and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction.We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group. Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject's CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine.Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups.This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found.

  20. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors.

    Science.gov (United States)

    Briard, Jennie G; Fernandez, Michael; De Luna, Phil; Woo, Tom K; Ben, Robert N

    2016-05-24

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

  1. Recrystallization-precipitation interaction during austenite hot deformation of a Nb microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Vervynckt, S. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Verbeken, K., E-mail: Kim.Verbeken@UGent.be [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Max-Planck-Institut fur Eisenforschung, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Thibaux, P. [OCAS N.V., ArcelorMittal R and D Industry Ghent, J.F. Kennedylaan 3, B-9060 Zelzate (Belgium); Houbaert, Y. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium)

    2011-06-25

    Highlights: {yields} Recrystallization-precipitation interaction was studied in well-designed HSLA steel. {yields} Recrystallization process was monitored by multiple characterization techniques. {yields} The Zener drag force evolution was determined based on experimental data. {yields} A reasonable estimate of the recrystallization driving force was made. {yields} Correlation between recrystallization and precipitate pinning was demonstrated. - Abstract: The role of Nb during austenite processing of High Strength Low Alloy (HSLA) steels has been the subject of considerable interest and discussion over the past decades. In this work, the precipitation state of a Nb microalloyed steel is studied extensively during the different stages of the process, i.e. after reheating, during cooling, during deformation and during recrystallization. To do so, a combination of experimental methods was applied: Transmission Electron Microscopy in combination with Energy Dispersive X-ray Spectroscopy (TEM-EDX), Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and X-ray Diffraction (XRD). To obtain the best accuracy for these precipitation measurements, a model alloy was designed that showed extensive precipitation. From this experimental study, a correlation between the precipitate pinning and the recrystallization driving force could be made and the precipitation state during recrystallization could be linked to the recrystallization kinetics by comparison of the recrystallization driving force to the Zener pinning force. It was confirmed that recrystallization occurred during the precipitate nucleation and coarsening stage, while it was halted completely during the precipitation growth stage.

  2. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Lipeng An

    2016-07-01

    Full Text Available To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-position” rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long-span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the “general code for design of highway bridges and culverts (China”. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system.

  3. The Dynamic Flux of Continuing Higher Education: Redefining the New Roles, Responsibilities, and Expectations

    Science.gov (United States)

    Braverman, Lisa R.

    2013-01-01

    Continuing higher education has undergone a significant transformation in recent years, illustrated by such innovations as MOOCs, globalization, strategic collaborations with government and industry, and increased entrepreneurship. As a result, continuing education (CE) units have experienced a fundamental shift in the way they conduct business in…

  4. A monolithic homotopy continuation algorithm with application to computational fluid dynamics

    Science.gov (United States)

    Brown, David A.; Zingg, David W.

    2016-09-01

    A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.

  5. Application of titanium-in-quartz thermobarometry to greenschist facies veins and recrystallized quartzites in the Hsüehshan range, Taiwan

    Directory of Open Access Journals (Sweden)

    S. Kidder

    2013-01-01

    Full Text Available The accuracy, reliability and best practises of Ti-in-quartz thermobarometry (TitaniQ in greenschist facies rocks have not been established. To address these issues, we measured Ti concentrations in rutile-bearing samples of moderately deformed, partially recrystallized quartzite and vein quartz from the Hsüehshan range, Taiwan. The spread of Ti concentrations of recrystallized grains in quartzite correlates with recrystallized grain size. Recrystallized quartz (grain size ~100–200 μm that formed during early deformation within the biotite stability field shows a marked increase in intermediate Ti-concentration grains (~1–10 ppm relative to detrital porphyroclasts (Ti ~0.1–200 ppm. Fine recrystallized quartz (~5% of the samples by area, grain size ~10–20 μm has a further restricted Ti concentration peaking at 0.8–2 ppm. This trend suggests equilibration of Ti in recrystallized quartz with a matrix phase during deformation and cooling. Unlike previously documented examples, Ti concentration in the quartzite is inversely correlated with blue cathodoluminescence. Deformation was associated with a minimum grain boundary diffusivity of Ti on the order of 10−22m2 s−1. Vein emplacement and quartzite recrystallization are independently shown to have occurred at 250–350 °C and 300–410 °C, respectively, with lithostatic pressure of 3–4 kbar (assuming a geothermal gradient of 25° km−1, and with hydrostatic fluid pressure. Estimates of the accuracy of TitaniQ at these conditions depend on whether lithostatic or fluid pressure is used in the TitaniQ calibration. Using lithostatic pressure and these temperatures, the Thomas et al. (2010 calibration yields Ti concentrations within error of concentrations measured by SIMS. If fluid pressure is instead used, predicted temperatures are ~30–40 °C too low. TitaniQ has potential to yield accurate PT information for vein emplacement and dynamic recrystallization of quartz at

  6. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from two domains. First, we propose to use numerical parameter...

  7. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  8. Nonlinear dynamics of a friction-limited drive: Application to a chain continuously variable transmission (CVT) system

    Science.gov (United States)

    Srivastava, Nilabh; Haque, Imtiaz

    2009-03-01

    Over the past two decades, extensive research has been conducted on developing vehicle transmissions that meet the goals of reduced exhaust emissions and increased vehicle efficiency. A continuously variable transmission is an emerging automotive transmission technology that offers a continuum of gear ratios between desired limits. A chain CVT is a friction-limited drive whose dynamic performance and torque capacity rely significantly on the friction characteristic of the contact patch between the chain and the pulley. Although a CVT helps to maximize the vehicle fuel economy, its complete potential has not been accomplished in a mass-production vehicle. The present research focuses on developing models to analyze friction-induced nonlinear dynamics of a chain CVT drive and identify possible mechanisms that cause degradation of the overall dynamic performance by inducing chaos and self-sustained vibrations in the system. Two different mathematical models of friction, which characterize different operating or loading conditions, are embedded into a detailed planar multibody model of chain CVT in order to capture the various friction-induced effects in the system. Tools such as stick-slip oscillator dynamics, Lyapunov exponents, phase-space reconstruction, and recurrence plotting are incorporated to characterize the nonlinear dynamics of such a friction-limited system. The mathematical models, the computational scheme, and the results corresponding to different loading scenarios are discussed. The results discuss the influence of friction characteristics on the nonlinear dynamics and torque transmitting capacity of a chain CVT drive.

  9. Recrystallization and superplasticity at 300 C in an aluminum-magnesium alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Mcqueen, H. J.

    1991-01-01

    Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-10Mg-0.1Zr alloy at 300 C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.

  10. Recrystallization and superplasticity at 300 °C in an aluminum-magnesium alloy

    Science.gov (United States)

    Hales, S. J.; McNelley, T. R.; McQueen, H. J.

    1991-05-01

    Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-lOMg-0.1Zr alloy at 300 °C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.

  11. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    Science.gov (United States)

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material.

  12. Static and Metadynamic Recrystallization of Low Carbon Steels During Mechanical Deformation

    Institute of Scientific and Technical Information of China (English)

    沈丙振; 方能炜; 沈厚发; 柳百成

    2004-01-01

    Static and metadynamic recrystallization models were developed with the coefficients determined by multiple nonlinear regression analyses to describe microstructure evolution in low carbon steels. The effects of initial grain size, deformation temperature, strain, and strain rate on the austenitic recrystallized volume fraction and grain size were studied using a Gleeble machine. The results show that deformation reduces the grain size when the recrystallized volume fraction is large. The static recrystallized volume fraction increases with increasing deformation temperature, strain, and strain rate, and decreasing initial grain size. The grain size during metadynamic recrystallization is independent of the deformation strain and the initial grain size. The recrystallized volume fraction, the grain size, and the grown grain size calculated by the correlations are consistent with the measured values.

  13. Capturing recrystallization of metals with a multi-scale materials model

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Hughes; D. J. Bammann; A. Godfrey; V. C. Prantil; E. A. Holm; M. A. Miodownik; D. C. Chrzan; M. T. Lusk

    2000-04-01

    The final report for a Laboratory Directed Research and Development project entitled, ``Capturing Recrystallization of Metals in a Multiscale Materials Model'' is presented. In this project, deformation and recrystallization processes have been followed experimentally and theoretically in order to incorporate essential mechanisms from the defect (dislocation) and grain size length scales. A nonlinear rotational gradient theory has been developed which enables the incorporation of microstructural parameters. The evolution of these parameters during deformation and recrystallization has been characterized qualitatively and quantitatively, applying various electron optic techniques ranging over several length scales. The theoretical and experimental framework developed is general. It has been exemplified by an application to recrystallization in single crystals and bicrystals of aluminum. The recrystallization process has been modeled using a 3-D model for the changes in key structural parameters during recrystallization.

  14. Static and dynamic finite element analysis of 304 stainless steel rod and wire hot continuous rolling process

    Institute of Scientific and Technical Information of China (English)

    Siyu Yuan; Liwen Zhang; Shulun Liao; Mao Li; Min Qi; Yu Zhen; Shuqi Guo

    2008-01-01

    Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit proce-dure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a rough-ing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.

  15. The stream of experience when watching artistic movies. Dynamic aesthetic effects revealed by the continuous evaluation procedure (CEP

    Directory of Open Access Journals (Sweden)

    Claudia eMuth

    2015-03-01

    Full Text Available Research in perception and appreciation is often focused on snapshots, stills of experience. Static approaches allow for multidimensional assessment, but are unable to catch the crucial dynamics of affective and perceptual processes; for instance, aesthetic phenomena such as the ‘Aesthetic-Aha’ (the increase in liking after the sudden detection of Gestalt, effects of expectation, or Berlyne’s idea that ‘disorientation’ with a ‘promise of success’ elicits interest. We conducted empirical studies on indeterminate artistic movies depicting the evolution and metamorphosis of Gestalt and investigated (i the effects of sudden perceptual insights on liking; that is, Aesthetic Aha-effects, (ii the dynamics of interest before moments of insight, and (iii the dynamics of complexity before and after moments of insight. Via the so-called Continuous Evaluation Procedure (CEP enabling analogous evaluation in a continuous way, participants assessed the material on two aesthetic dimensions blockwise either in a gallery or a laboratory. The material’s inherent dynamics were described via assessments of liking, interest, determinacy and surprise along with a computational analysis on the variable complexity. We identified moments of insight as peaks in determinacy and surprise. Statistically significant changes in liking and interest demonstrated that: (i insights increase liking, (ii interest already increases 1,500 ms before such moments of insight, supporting the idea that it is evoked by an expectation of understanding, and (iii insights occur during increasing complexity. We propose a preliminary model of dynamics in liking and interest with regard to complexity and perceptual insight and discuss descriptions of participants’ experiences of insight. Our results point to the importance of systematic analyses of dynamics in art perception and appreciation.

  16. APPLICATION OF PARAMETER CONTINUATION METHOD FOR INVESTIGATION OF VIBROIMPACT SYSTEMS DYNAMIC BEHAVIOUR. PROBLEM STATE. SHORT SURVEY OF WORLD SCIENTIFIC LITERATURE

    Directory of Open Access Journals (Sweden)

    V.A. Bazhenov

    2014-12-01

    Full Text Available Authors in their works study vibroimpact system dynamic behaviour by numerical parametric continuation technique combined with shooting and Newton-Raphson’s methods. The technique is adapted to two-mass two-degree-of-freedom vibroimpact system under periodic excitation. Impact is simulated by nonlinear contact interaction force based on Hertz’s contact theory. Stability or instability of obtained periodic solutions is determined by monodromy matrix eigenvalues (multipliers based on Floquet’s theory. In the present paper we describe the state of problem of parameter continuation method using for nonlinear tasks solution. Also we give the short survey of numerous contemporary literature in English and Russian about parameter continuation method application for nonlinear problems. This method is applied for vibroimpact problem solving more rarely because of the difficulties connected with repeated impacts.

  17. Factors controlling in vitro recrystallization of the Caulobacter crescentus paracrystalline S-layer.

    OpenAIRE

    Nomellini, J F; Kupcu, S; Sleytr, U B; Smit, J.

    1997-01-01

    The S-layer of Caulobacter is a two-dimensional paracrystalline array on the cell surface composed of a single protein, RsaA. We have established conditions for preparation of stable, soluble protein and then efficient in vitro recrystallization of the purified protein. Efficient recrystallization and long range order could not be obtained with pure protein only, though it was apparent that calcium was required for crystallization. Recrystallization was obtained when lipid vesicles were provi...

  18. Boundary Fractal Analysis of Two Cube-oriented Grains in Partly Recrystallized Copper

    DEFF Research Database (Denmark)

    Sun, Jun; Zhang, Yubin; Dahl, Anders Bjorholm;

    2015-01-01

    The protrusions and retrusions observed on the recrystallizing boundaries affect the migration kinetics during recrystallization. Characterization of the boundary roughness is necessary in order to evaluate their effects. This roughness has a structure that can be characterized by fractal analysi......, and in this study the so-called “Minkowski sausage” method is adopted. Hereby, two cube-oriented grains in partly recrystallized microstructures are analyzed and quantitative information regarding the dimensions of protrusions/retrusions is obtained....

  19. A Lyapunov-Based Extension to Particle Swarm Dynamics for Continuous Function Optimization

    Science.gov (United States)

    Bhattacharya, Sayantani; Konar, Amit; Das, Swagatam; Han, Sang Yong

    2009-01-01

    The paper proposes three alternative extensions to the classical global-best particle swarm optimization dynamics, and compares their relative performance with the standard particle swarm algorithm. The first extension, which readily follows from the well-known Lyapunov's stability theorem, provides a mathematical basis of the particle dynamics with a guaranteed convergence at an optimum. The inclusion of local and global attractors to this dynamics leads to faster convergence speed and better accuracy than the classical one. The second extension augments the velocity adaptation equation by a negative randomly weighted positional term of individual particle, while the third extension considers the negative positional term in place of the inertial term. Computer simulations further reveal that the last two extensions outperform both the classical and the first extension in terms of convergence speed and accuracy. PMID:22303158

  20. From fixed-energy MSA to dynamical localization: A continuing quest for elementary proofs

    CERN Document Server

    Chulaevsky, Victor

    2012-01-01

    We review several techniques and ideas initiated by a remarkable work by Spencer [26], used and further developed in numerous subsequent researches. We also describe a relatively short and elementary derivation of the spectral and strong dynamical Anderson localization from the fixed-energy analysis of the Green functions, obtained either by the Multi-Scale Analysis (MSA) or by the Fractional-Moment Method (FMM). This derivation goes in the same direction as the Simon--Wolf criterion [28], but provides quantitative estimates, applies also to multi-particle models and, combined with a simplified variant of the Germinet--Klein argument [20], results in an elementary proof of dynamical localization.

  1. The limitations of discrete-time approaches to continuous-time contagion dynamics

    CERN Document Server

    Fennell, Peter G; Gleeson, James P

    2016-01-01

    Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases, time is discretized into uniform steps and transition rates between states are replaced by transition probabilities. In this paper, we illustrate potential limitations to this approach. We show how discretizing time leads to a restriction on the values of the model parameters that can accurately be studied. We examine numerical simulation schemes employed in the literature, showing how synchronous-type updating schemes can bias discrete-time formalisms when compared against continuous-time formalisms. Event-based simulations, such as the Gillespie algorithm, are proposed as optimal simulation schemes both in terms of replicating the continuous-time process and computational...

  2. Kinetics of individual grains during recrystallization of cold-rolled copper

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Poulsen, S.O.;

    2015-01-01

    The formation of a recrystallization texture is closely related to the nucleation and growth of recrystallizing grains, which may vary from grain to grain. Cube texture is a commonly observed recrystallization texture in face centered cubic metals of medium to high stacking fault energy after heavy...... cold-rolling and annealing. In this work, recrystallization of pure copper cold-rolled to a von Mises strain of 2.7 was investigated in situ using three-dimensional X-ray diffraction. Growth curves of 835 grains were determined, and the curves of cube and non-cube grains were compared. It was found...

  3. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    Science.gov (United States)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Mayo, B.; Levi, D. H.; Kazmerski, L. L.

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 °C and completely recrystallized after the same treatment at 400 °C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  4. Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain

    DEFF Research Database (Denmark)

    Mishin, Oleg; Godfrey, A.; Juul Jensen, Dorte;

    2013-01-01

    Recovery and recrystallization were studied in commercial purity aluminum cold rolled to an ultrahigh strain (εvM=6.4) and isothermally annealed at 300°C. The deformed material consists of three layers with similar fractions of high-angle boundaries (HABs) and similar lamellar boundary spacings......, pronounced recrystallization in the subsurface layers is delayed, and the recrystallized grain size is larger than in the center. It is concluded that the changes taking place during recovery are very significant in determining the subsequent recrystallization behavior in terms of the final grain size...

  5. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L. (National Renewable Energy Laboratory); Mayo, B. (Southern University and A& M College, Baton Rouge, LA)

    1998-10-26

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  6. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L. (National Renewable Energy Laboratory); Mayo, B. (Southern University and A& M College, LA)

    1998-10-29

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  7. Ordering dynamics of microscopic models with nonconserved order parameter of continuous symmetry

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Zuckermann, Martin J.

    1993-01-01

    Numerical Monte Carlo temperature-quenching experiments have been performed on two three-dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model [Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a transition...... from a disordered phase to an orientationally ordered phase of continuous symmetry. The Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic transition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in magnetic...

  8. A "continuity-index" for assessing ice-sheet dynamics from radar-sounded internal layers

    DEFF Research Database (Denmark)

    Karlsson, Nanna Bjørnholt; Rippin, David; Bingham, Robert G.;

    2012-01-01

    Radio-echo sounding (RES) of polar icesheets reveals extensive internal layering. The degree of continuity of internal layering holds critical information about the ice-flow field, but previous analyses of this parameter have been limited to qualitative classifications. Here we present a new...... quantitative method for analyzing internallayercontinuity—named the continuity-index. When applied to data from Pine Island Glacier, West Antarctica, the new method clearly identifies a continuum of discontinuity of internallayers that corresponds with the current ice-velocity field. The analysis provides...

  9. Distributed Hardware-in-the-loop simulator for autonomous continuous dynamical systems with spatially constrained interactions

    NARCIS (Netherlands)

    Verburg, D.J.; Papp, Z.; Dorrepaal, M.

    2003-01-01

    The state-of-the-art intelligent vehicle, autonomous guided vehicle and mobile robotics application domains can be described as collection of interacting highly autonomous complex dynamical systems. Extensive formal analysis of these systems – except special cases – is not feasible, consequently the

  10. Fisher information metric for the Langevin equation and least informative models of continuous stochastic dynamics.

    Science.gov (United States)

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-09-28

    The evaluation of the Fisher information matrix for the probability density of trajectories generated by the over-damped Langevin dynamics at equilibrium is presented. The framework we developed is general and applicable to any arbitrary potential of mean force where the parameter set is now the full space dependent function. Leveraging an innovative Hermitian form of the corresponding Fokker-Planck equation allows for an eigenbasis decomposition of the time propagation probability density. This formulation motivates the use of the square root of the equilibrium probability density as the basis for evaluating the Fisher information of trajectories with the essential advantage that the Fisher information matrix in the specified parameter space is constant. This outcome greatly eases the calculation of information content in the parameter space via a line integral. In the continuum limit, a simple analytical form can be derived to explicitly reveal the physical origin of the information content in equilibrium trajectories. This methodology also allows deduction of least informative dynamics models from known or available observables that are either dynamical or static in nature. The minimum information optimization of dynamics is performed for a set of different constraints to illustrate the generality of the proposed methodology.

  11. Multiparameter Stochastic Dynamics of Ecological Tourism System with Continuous Visitor Education Interventions

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-01-01

    Full Text Available Management of ecological tourism in protected areas faces many challenges, with visitation-related resource degradations and cultural impacts being two of them. To address those issues, several strategies including regulations, site managements, and visitor education programs have been commonly used in China and other countries. This paper presents a multiparameter stochastic differential equation model of an Ecological Tourism System to study how the populations of stakeholders vary in a finite time. The solution of Ordinary Differential Equation of Ecological Tourism System reveals that the system collapses when there is a lack of visitor educational intervention. Hence, the Stochastic Dynamic of Ecological Tourism System is introduced to suppress the explosion of the system. But the simulation results of the Stochastic Dynamic of Ecological Tourism System show that the system is still unstable and chaos in some small time interval. The Multiparameters Stochastic Dynamics of Ecological Tourism System is proposed to improve the performance in this paper. The Multiparameters Stochastic Dynamics of Ecological Tourism System not only suppresses the explosion of the system in a finite time, but also keeps the populations of stakeholders in an acceptable level. In conclusion, the Ecological Tourism System develops steadily and sustainably when land managers employ effective visitor education intervention programs to deal with recreation impacts.

  12. Continuous Dynamic Simulation of Nonlinear Aerodynamics/Nonlinear Structure Interaction (NANSI) for Morphing Vehicles

    Science.gov (United States)

    2010-03-31

    comprised linear structural dynamics (e.g. [7.2]), vibro-acoustics, aeroelasticity (e.g. [7.1]), rotordynamics [7.7] (including the joint simulation...2006. [7.7] Murthy, R., Mignolet, M.P., and El-Shafei, A., "Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamic

  13. Continuous positive airway pressure alters cranial blood flow and cerebrospinal fluid dynamics at the craniovertebral junction

    Directory of Open Access Journals (Sweden)

    Theresia I. Yiallourou

    2015-09-01

    Conclusion: Application of CPAP via a full-fitted mask at 15 cm H2O was found to have a significant effect on intracranial venous outflow and spinal CSF flow at the C2 vertebral level in healthy adult-age awake volunteers. CPAP can be used to non-invasively provoke changes in intracranial and CSF flow dynamics.

  14. Dosimetric properties of an amorphous-silicon EPID used in continuous acquisition mode for application to dynamic and arc IMRT.

    Science.gov (United States)

    McCurdy, B M C; Greer, P B

    2009-07-01

    Dosimetric properties of an amorphous-silicon electronic portal imaging device (EPID) operated in a real-time acquisition mode were investigated. This mode will be essential for time-resolved dose verification of dynamic (sliding window) intensity modulated radiation therapy (IMRT) and intensity modulated arc radiation therapy (arc-IMRT). The EPID was used in continuous acquisition mode (i.e., "cine" mode) where individual sequential image frames are acquired in real time. The properties studied include dose linearity, reproducibility of response, and image stability. Results of using the continuous acquisition mode with several example treatments including dynamic IMRT, arc treatment, and single-arc-IMRT are compared to results using the well-studied integrated acquisition mode (i.e., "frame averaging" or "IMRT" mode). Real-time EPID response was also compared to real-time ion-chamber data for selected points in the deliveries. The example treatment deliveries in both continuous and integrated acquisition modes were converted to arbitrary EPID dose units via a calibration field. The summation of all acquired continuous mode images was compared using percentage dose difference to the single image acquired in the integrated mode using in-field pixels only (defined as those pixels > 10% of maximum, in-field signal). Using the continuous acquisition mode, the EPID response was not linear with dose. It was found that the continuous mode dose response corresponded approximately to dropping one image per acquisition session. Reproducibility of EPID response to low monitor units (MUs) was found to be poor but greatly improved with increasing MU. Open field profiles were found to be stable in the cross-plane direction but required several frames to become stable in the in-plane direction. However, both of these issues are clinically insignificant due to arc-IMRT deliveries requiring relatively large monitor units (> 100 MU). Analysis of the five IMRT, arc, and arc

  15. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Science.gov (United States)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang

    2017-06-01

    In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO2/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm-2) with enhanced Jsc and Voc compared to CB-treated PSC.

  16. Oriented growth during recrystallization revisited in three dimensions

    DEFF Research Database (Denmark)

    Fan, Guohua; Zhang, Yubin; Driver, J. H.;

    2014-01-01

    The two surfaces of a 40% cold-rolled tricrystal of aluminium were scratched to stimulate recrystallization nucleation. Serial sectioning combined with electron backscatter diffraction was used to characterize the nuclei in three dimensions. It was found that the largest nuclei have a 40 degrees ... 1 1 > relationship to the matrix, but there are also many nuclei of this orientation relationship which do not grow to large sizes. It is shown that local variations in the deformation microstructure determine where preferential growth occurs. (C) 2013 The Authors. Published by Elsevier Ltd...

  17. Characterization and influence of deformation microstructure heterogeneity on recrystallization

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg V.; Yu, Tianbo

    2015-01-01

    to investigate the early stages of recrystallization in samples deformed to large strains, by direct comparison of electron backscatter diffraction (EBSD) maps of the same area before and after annealing. Methods for estimation of the stored energy of deformation from EBSD data are also surveyed and the problems...... of each for quantification of the local variation in stored energy are discussed, where it is concluded that a method based on the summation of the contributions from individual boundary segments is considered to be the best suited at present for characterization of the local variation in stored energy...

  18. High frequency, multi-axis dynamic stiffness analysis of a fractionally damped elastomeric isolator using continuous system theory

    Science.gov (United States)

    Fredette, Luke; Singh, Rajendra

    2017-02-01

    A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.

  19. Dynamic probabilistic CCA for analysis of affective behaviour and fusion of continuous annotations

    NARCIS (Netherlands)

    Nicolaou, Mihalis A.; Pavlovic, Vladimir; Pantic, Maja

    2014-01-01

    Fusing multiple continuous expert annotations is a crucial problem in machine learning and computer vision, particularly when dealing with uncertain and subjective tasks related to affective behavior. Inspired by the concept of inferring shared and individual latent spaces in Probabilistic Canonical

  20. Syntectonic fluids redistribution and circulation coupled to quartz recrystallization in the ductile crust (Naxos Island, Cyclades, Greece)

    Science.gov (United States)

    Siebenaller, Luc; Vanderhaeghe, Olivier; Jessell, Mark; Boiron, Marie-Christine; Hibsch, Christian

    2016-11-01

    The presence of external fluids in metamorphic rocks has been shown to have a profound impact on rock rheology as high fluid pressure processes promote embrittlement and favor ductile deformation by recrystallization. Moreover, it has been proposed that brittle deformation guides fluid circulation and that intracrystalline deformation is responsible for fluid redistribution at the grain scale. Nevertheless, the amount of fluid present in the metamorphic ductile crust is debated and the nature of the interaction between fluids and recrystallization processes are not clearly identified. The aim of this study is to document the spatial distribution of fluid inclusions relative to microstructures in quartz grains and aggregates from veins sampled in amphibolite facies metamorphic rocks, exposed in the island of Naxos in the center of the Attic-Cycladic Metamorphic Complex in Greece. The veins, ranging from discordant structures with sharp contacts to totally transposed structures into the metamorphic foliation, display a large variety of microstructures and fluid evidences interpreted as recording exhumation processes through the ductile/brittle transition: (i) remnants of primary quartz grains contain abundant CO2-H2O fluid inclusions, decrepitated for the most part, distributed in clusters and in fluid inclusion trails, (ii) fluid inclusions with a similar composition are less abundant in recrystallized zones and in subgrains but are concentrated along grain boundaries indicating that grain boundary migration is responsible for redistribution of CO2-H2O fluids, (iii) subgrains of the last generation are almost devoid of fluid inclusions and are characterized by thick grain boundaries with abundant metamorphic fluids locally forming a continuous film. CO2-H2O fluid inclusions aligned in parallel, regularly spaced intragranular trails, locally rooted into grain boundaries, are interpreted as reflecting the spatial redistribution of these fluids in quartz slip planes

  1. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.

    Science.gov (United States)

    Tam, Roger Y; Rowley, Christopher N; Petrov, Ivan; Zhang, Tianyi; Afagh, Nicholas A; Woo, Tom K; Ben, Robert N

    2009-11-01

    Antifreeze glycoproteins (AFGPs) are a unique class of proteins that are found in many organisms inhabiting subzero environments and ensure their survival by preventing ice growth in vivo. During the last several years, our laboratory has synthesized functional C-linked AFGP analogues (3 and 5) that possess custom-tailored antifreeze activity suitable for medical, commercial, and industrial applications. These compounds are potent inhibitors of ice recrystallization and do not exhibit thermal hysteresis. The current study explores how changes in the length of the amide-containing side chain between the carbohydrate moiety and the polypeptide backbone in 5 influences ice recrystallization inhibition (IRI) activity. Analogue 5 (n = 3, where n is the number of carbons in the side chain) was a potent inhibitor of ice recrystallization, while 4, 6, and 7 (n = 4, 2, and 1, respectively) exhibited no IRI activity. The solution conformation of the polypeptide backbone in C-linked AFGP analogues 4-7 was examined using circular dichroism (CD) spectroscopy. The results suggested that all of the analogues exhibit a random coil conformation in solution and that the dramatic increase in IRI activity observed with 5 is not due to a change in long-range solution conformation. Variable-temperature (1)H NMR studies on truncated analogues 26-28 failed to elucidate the presence of persistent intramolecular bonds between the amide in the side chain and the peptide backbone. Molecular dynamics simulations performed on these analogues also failed to show persistent intramolecular hydrogen bonds. However, the simulations did indicate that the side chain of IRI-active analogue 26 (n = 3) adopts a unique short-range solution conformation in which it is folded back onto the peptide backbone, orienting the more hydrophilic face of the carbohydrate moiety away from the bulk solvent. In contrast, the solution conformation of IRI-inactive analogues 25, 27, and 28 had fully extended side chains

  2. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  3. From the discrete to the continuous - towards a cylindrically consistent dynamics

    CERN Document Server

    ,

    2012-01-01

    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.

  4. Birth and death in a continuous opinion dynamics model. The consensus case

    Science.gov (United States)

    Carletti, T.; Fanelli, D.; Guarino, A.; Bagnoli, F.; Guazzini, A.

    2008-07-01

    We here discuss the process of opinion formation in an open community where agents are made to interact and consequently update their beliefs. New actors (birth) are assumed to replace individuals that abandon the community (deaths). This dynamics is simulated in the framework of a simplified model that accounts for mutual affinity between agents. A rich phenomenology is presented and discussed with reference to the original (closed group) setting. Numerical findings are supported by analytical calculations.

  5. CONTINUOUS ROBUST TRACKING CONTROLLERS FOR A CLASS OF UNCERTAIN NONLINEAR DYNAMICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    胡剑波; 苏宏业; 柯挺; 褚健; 陈新海

    2001-01-01

    Robust tracking controller for a class of uncertain nonlinear dynamical systems, which are linearizable by input-output feedback with matching uncertainties, was investigated. In this study, uniform ultimate bound or uniformly asymptotic stability of tracking errors were obtained by different choice of the control gain. A simulation to determine the effectiveness of the proposed approach showed that the control performance was better than that of VSC (Variable Structure Control).

  6. Dynamic model of discontinuous and continuous phaseolotoxin production of Pseudomonas syringae pv. phaseolicola.

    Science.gov (United States)

    Guthke, R; Nüske, J; Schorcht, R; Fritsche, W; Knorre, W A

    1984-01-01

    From experimental data of kinetics of growth, glucose consumption and product formation of Pseudomonas syringae pv. phaseolicola the development and parameter estimation of a mathematical model is presented. The model describes the behaviour of both, batch and chemostat culture, as well as for different temperatures. The model is favoured for dynamic optimization studies. Maximal productivity is reached in the chemostat for a dilution rate which is only a little bit smaller than the wash out point.

  7. Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2016-08-31

    In this paper, an event-triggered near optimal control structure is developed for nonlinear continuous-time systems with control constraints. Due to the saturating actuators, a nonquadratic cost function is introduced and the Hamilton-Jacobi-Bellman (HJB) equation for constrained nonlinear continuous-time systems is formulated. In order to solve the HJB equation, an actor-critic framework is presented. The critic network is used to approximate the cost function and the action network is used to estimate the optimal control law. In addition, in the proposed method, the control signal is transmitted in an aperiodic manner to reduce the computational and the transmission cost. Both the networks are only updated at the trigger instants decided by the event-triggered condition. Detailed Lyapunov analysis is provided to guarantee that the closed-loop event-triggered system is ultimately bounded. Three case studies are used to demonstrate the effectiveness of the proposed method.

  8. A dynamic process of health risk assessment for business continuity management during the World Exposition Shanghai, China, 2010.

    Science.gov (United States)

    Sun, Xiaodong; Keim, Mark; Dong, Chen; Mahany, Mollie; Guo, Xiang

    2014-01-01

    Reports of health issues related to mass gatherings around the world have indicated a potential for public health and medical emergencies to occur on a scale that could place a significant impact on business continuity for national and international organisations. This paper describes a risk assessment process for business continuity management that was performed as part of the planning efforts related to the World Expo 2010 Shanghai China (Expo), the world's largest mass gathering to date. Altogether, 73 million visitors attended the Expo, generating over US$2bn of revenue. During 2008 to 2010, the Shanghai Municipal Center for Disease Control and Prevention performed a dynamic series of four disaster risk assessments before and during the Expo. The purpose of this assessment process was to identify, analyse and evaluate risks for public health security during different stages of the Expo. This paper describes an overview of the novel approach for this multiple and dynamic process of assessment of health security risk for ensuring business continuity.

  9. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators

    CERN Document Server

    Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute

    2012-01-01

    We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.

  10. Fast continuous energy scan with dynamic coupling of the monochromator and undulator at the DEIMOS beamline.

    Science.gov (United States)

    Joly, L; Otero, E; Choueikani, F; Marteau, F; Chapuis, L; Ohresser, P

    2014-05-01

    In order to improve the efficiency of X-ray absorption data recording, a fast scan method, the Turboscan, has been developed on the DEIMOS beamline at Synchrotron SOLEIL, consisting of a software-synchronized continuous motion of the monochromator and undulator motors. This process suppresses the time loss when waiting for the motors to reach their target positions, as well as software dead-time, while preserving excellent beam characteristics.

  11. Predication of Recrystallization and Mixed Grains in Q235 Steel Produced by CSP Hot Rolling%CSP热轧Q235钢再结晶与混晶的判定

    Institute of Scientific and Technical Information of China (English)

    张超; 吴润; 宋畅; 谭佳梅; 吴志方

    2011-01-01

    Q235 steel produced by CSP hot rolling was investigated to determine the occurrence condition of dynamic recrystallization and predicate the recrystallization and mixed grains. The results show that the kinetic model of dynanic recrystallization and dynamic recrystallization criterion for Q235 steel were obtained according to the true stress-true strain curves to predicate the recrystalli-zation and mixed grains, the results of model and criterion were different from the practice, because dynamic recrystallization of partial grains occured in the dynamic recovery sample's microstructure during the process of thermal simulation. It was necessary to consideration the factors of the storage and release of deformation work when judged accurately the occurrence of the mixed grain.%以CSP热轧QZ35钢为对象,研究了发生动态再结晶条件,对再结晶与混晶进行判定。结果表明:根据真应力一真应变曲线回归得出的Q235钢动态再结晶的动力学模型和再结晶判据来判断再结晶与混晶,与实际有一定的差别,这是因为热模拟时动态回复的组织中有部分晶粒发生了动态再结晶。要准确判断混晶的发生,还需考虑形变功的储存、释放等因素的干扰。

  12. Recrystallization of InSb Surfaces Induced by Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available Pulsed laser processing of InSb wafers for the application in designing high speed infrared detectors is studied both theoretically and experimentally. The recrystallization of InSb surfaces resulting in restoration of the implanted region to a single crystal state is presented as a reasonable alternative to the conventional thermal heating. In the theoretical part, thermal equilibrium and nonequilibrium models of melting, recrystallization and evaporation are formulated to describe transport phenomena in the material induced by laser irradiation. In the experimental part, InSb samples irradiated by the ruby (694 nm, 80ns FWHM, and ArF (193 nm, 10 ns FWHM lasers are studied using time resolved reflectivity, Auger electron spectroscopy and low energy electron diffraction methods to analyze surface modifications. A comparison of the experimental data with the numerical predictions shows that while for the ruby laser a reasonable agreement in surface melt duration is achieved, the results for the ArF laser differ quite a lot. As a main reason for these differences, the amorphization of the surface is identified.

  13. Recrystallization and Grain Growth of 316L Stainless Steel Wires

    Science.gov (United States)

    Zhao, Xiuyun; Liu, Yong; Wang, Yan; Feng, Ping; Tang, Huiping

    2014-07-01

    Recrystallization and grain growth behaviors of 316L stainless steel wires with a diameter of 12 µm were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction techniques. Heavily cold-drawn wires were isothermally held at temperatures from 1073 K to 1223 K (800 °C to 950 °C) for various holding times. Optical microscopy and TEM observations showed that recrystallization grains have irregular shape and that twins exist. The texture formed during drawing and annealing processes of the wires, as measured by X-ray methods, showed a fiber texture approximated by a and a component. The value of the grain growth exponent n was calculated, and the kinetic rates were plotted using the Arrhenius equation. Results show that the activation energy of the grain growth for 316L stainless steel wire was determined to be 407 kJ/mol, which was much higher than that of the bulk 316L stainless steel. The small wire diameter and the existence of texture played important roles in the increase of the activation energy for grain growth of the wire.

  14. Predictive Event Triggered Control based on Heuristic Dynamic Programming for Nonlinear Continuous Time Systems

    Science.gov (United States)

    2015-08-17

    our best knowledge , this is the first study of using a “predictive” approach through a model network to design the event-triggered ADP. This is the...investigated in the com- munity before, to our best knowledge , this is the first study of using a “predictive” approach through a model network to...programming has been used to solve the optimal control for many years. However, due to the ” curse of di- mensionality” [9], [10], the adaptive dynamic

  15. Fuzzy dynamic output feedback H∞ control for continuous-time T-S fuzzy systems under imperfect premise matching.

    Science.gov (United States)

    Zhao, Tao; Dian, Songyi

    2017-09-01

    This paper addresses a fuzzy dynamic output feedback H∞ control design problem for continuous-time nonlinear systems via T-S fuzzy model. The stability of the fuzzy closed-loop system which is formed by a T-S fuzzy model and a fuzzy dynamic output feedback H∞ controller connected in a closed loop is investigated with Lyapunov stability theory. The proposed fuzzy controller does not share the same membership functions and number of rules with T-S fuzzy systems, which can enhance design flexibility. A line-integral fuzzy Lyapunov function is utilized to derive the stability conditions in the form of linear matrix inequalities (LMIs). The boundary information of membership functions is considered in the stability analysis to reduce the conservativeness of the imperfect premise matching design technique. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A "continuity-index" for assessing ice-sheet dynamics from radar-sounded internal layers

    DEFF Research Database (Denmark)

    Karlsson, Nanna Bjørnholt; Rippin, David; Bingham, Robert G.

    2012-01-01

    Radio-echo sounding (RES) of polar icesheets reveals extensive internal layering. The degree of continuity of internal layering holds critical information about the ice-flow field, but previous analyses of this parameter have been limited to qualitative classifications. Here we present a new...... further support that the main trunk and tributaries are unlikely to have undergone substantial migration since the deposition of the internal layering. Significantly, our new method for analyzing internallayers is readily transferable across RES datasets, offering promise for data-led assessments of past...

  17. Mean field mutation dynamics and the continuous Luria-Delbrück distribution.

    Science.gov (United States)

    Kashdan, Eugene; Pareschi, Lorenzo

    2012-12-01

    The Luria-Delbrück mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they correspond to generalized Fokker-Planck equations for the mutants distribution whose solutions are given by the corresponding Luria-Delbrück distribution. Numerical results confirming the theoretical analysis are also presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mean field mutation dynamics and the continuous Luria-Delbr\\"uck distribution

    CERN Document Server

    Kashdan, Eugene

    2011-01-01

    The Luria-Delbr\\"uck mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they correspond to generalized Fokker-Planck equations for the mutants distribution whose solutions are given by the corresponding Luria-Delbr\\"uck distribution. Numerical results confirming the theoretical analysis are also presented.

  19. Dynamic nonlinear feedback for temperature control of continuous stirred reactor with complex behavior

    Directory of Open Access Journals (Sweden)

    Pablo A. López Pérez

    2009-08-01

    Full Text Available The main objective of this work is to present an alternative methodology for the design of a class of integral high order slidingmodecontroller applied to a class of continuous chemical reactor with complex behavior for temperature tracking purposes.The proposed design is based on the differential geometry framework, where the named reaching trajectory contains a highorder sliding mode term in order to diminish chattering. Considering that the proposed technique is model based, an observerbaseduncertainty estimator is coupled, which provides robustness against model uncertainties and noisy measurements.Numerical simulations are performed in order to show the capacities of the proposed controller, which is compared with othernonlinear methodologies.

  20. Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals

    Science.gov (United States)

    Debelle, A.; Backman, M.; Thomé, L.; Weber, W. J.; Toulemonde, M.; Mylonas, S.; Boulle, A.; Pakarinen, O. H.; Juslin, N.; Djurabekova, F.; Nordlund, K.; Garrido, F.; Chaussende, D.

    2012-09-01

    The healing effect of intense electronic energy deposition arising during swift heavy ion (SHI) irradiation is demonstrated in the case of 3C-SiC damaged by nuclear energy deposition. Experimental (ion channeling experiments) and computational (molecular dynamics simulations) studies provide consistent indications of disorder decrease after SHI irradiation. Furthermore, both methods establish that SHI-induced recrystallization takes place at amorphous-crystalline interfaces. The recovery process is unambiguously accounted for by the thermal spike phenomenon.

  1. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau...

  2. Modeling and dynamics analysis of the fractional-order Buck—Boost converter in continuous conduction mode

    Science.gov (United States)

    Yang, Ning-Ning; Liu, Chong-Xin; Wu, Chao-Jun

    2012-08-01

    In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck—Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck—Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.

  3. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy.

    Science.gov (United States)

    Altenbach, Christian; López, Carlos J; Hideg, Kálmán; Hubbell, Wayne L

    2015-01-01

    Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium.

  4. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    Science.gov (United States)

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  5. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  6. Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    Directory of Open Access Journals (Sweden)

    Lukas Philipp Beyer

    2014-01-01

    Full Text Available Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS measured continuously from the arterial phase to the late phase (3 minutes. Material and Methods. We present a retrospective analysis of 20 patients with malignant (n=13 or benign (n=7 liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak, RBV (regional blood volume, RBF (regional blood flow, and Peak. Results. Statistics revealed a significant difference (P<0.05 between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P=0.07. Receiver operating curves (ROC were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors.

  7. Recrystallization of commercial carbamazepine samples-a strategy to control dissolution variability.

    Science.gov (United States)

    Flicker, Felicia; Eberle, Veronika A; Betz, Gabriele

    2012-01-13

    Physical properties of commercial carbamazepine (CBZ) samples can significantly influence drug release and thereby jeopardize bioequivalence of the final dosage form. The aim of this study was to reduce variability in commercial CBZ samples by recrystallization. CBZ samples of four different suppliers were recrystallized in ethanol solution containing 1% polyvinylpyrrolidone (PVP). CBZ samples were analyzed by disk intrinsic dissolution rate (DIDR), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Recrystallized CBZ samples showed strongly reduced variability in DIDR compared to the untreated CBZ samples. Moreover, transformation process to CBZ dihydrate was inhibited; no dihydrate crystals were visible on compact surfaces after 8 h intrinsic dissolution measurement. Recrystallized CBZ samples showed no change in polymorphic form, however, particle size and shape was inhomogenous. In binary mixtures with microcrystalline cellulose, recrystallized CBZ samples again showed difference in drug release. This difference was associated with the inhomogenous particle size in the recrystallized CBZ samples. The results show that a controlled grinding step is required after recrystallization. We suggest the recrystallization in presence of 1% PVP followed by a controlled grinding step as a strategy to reduce dissolution variability in commercial CBZ samples.

  8. Formation of a random recrystallization texture in heavily cold rolled and annealed Al-1%Si alloy

    DEFF Research Database (Denmark)

    Chen, Y.L.; Huang, T.L.; Gong, X.;

    2013-01-01

    An Al-1%Si alloy cold rolled to a von Mises stain of 4.5 was isothermally annealed at 210°C. A random recrystallization texture was obtained, which was attributed to the effects of particles of different sizes on the nucleation and growth of grains during recrystallization. © (2013) Trans Tech Pu...

  9. EBSD Analysis of Deformed and Partially Recrystallized Microstructures in ECAE-Processed Copper

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bowen, Jacob R.; Godfrey, A.

    2012-01-01

    -uniform distribution of strain imposed by processing. The through-thickness heterogeneity of the deformed microstructure resulted in a different extent of recrystallization in different layers during annealing. Recrystallized grains were also observed in samples that were not annealed, but stored at room temperature...

  10. Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Schmidt, Søren; Fæster Nielsen, Søren

    2006-01-01

    growth kinetics. These results are discussed and compared to previous 3DXRD results for recrystallization of aluminum alloys, and implications of the results on modeling of recrystallization are considered. Finally, a new 3DXRD technique suitable for non-destructive 3D characterization is outlined...

  11. Recrystallization of Commercial Carbamazepine Samples—A Strategy to Control Dissolution Variability

    Directory of Open Access Journals (Sweden)

    Felicia Flicker

    2012-01-01

    Full Text Available Physical properties of commercial carbamazepine (CBZ samples can significantly influence drug release and thereby jeopardize bioequivalence of the final dosage form. The aim of this study was to reduce variability in commercial CBZ samples by recrystallization. CBZ samples of four different suppliers were recrystallized in ethanol solution containing 1% polyvinylpyrrolidone (PVP. CBZ samples were analyzed by disk intrinsic dissolution rate (DIDR, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. Recrystallized CBZ samples showed strongly reduced variability in DIDR compared to the untreated CBZ samples. Moreover, transformation process to CBZ dihydrate was inhibited; no dihydrate crystals were visible on compact surfaces after 8 h intrinsic dissolution measurement. Recrystallized CBZ samples showed no change in polymorphic form, however, particle size and shape was inhomogenous. In binary mixtures with microcrystalline cellulose, recrystallized CBZ samples again showed difference in drug release. This difference was associated with the inhomogenous particle size in the recrystallized CBZ samples. The results show that a controlled grinding step is required after recrystallization. We suggest the recrystallization in presence of 1% PVP followed by a controlled grinding step as a strategy to reduce dissolution variability in commercial CBZ samples.

  12. Influence of Isothermal Deformation Parameters on Recrystallization of Columnar Crystal CuAlBe Alloy%等温变形参数对柱状晶CuAlBe合金再结晶的影响

    Institute of Scientific and Technical Information of China (English)

    赵仙兰; 蔡莲淑; 余业球; 黎沃光

    2012-01-01

    The isothermal compression experiment of columnar crystal CuAlBe wires was carried out with a temperature controlled mould on the universal testing machine to study its dynamic recrystallization and precipitation of γ2 phase in the different temperature,deformation and strain rate. Static recrystallization temperature and precipitation of γ2 phase were investigated by reheating the alloy after deformation. The results indicate that the dynamic recrystallization occurs at 550 ℃ when the deformation forms reach more than 20%. Martensite and crack forms below 450 ℃, the dynamic recrystallization doesn't occur at this temperature. Dynamic recrystallization deformation gradually increases with the decrease of the temperature or the increase of the strain rate in the range of 4501 ~550 ℃. Static recrystallization occurs when temperature is 610 ℃. The content of γ2 phase gradually increases with the increase of the deformation temperature before recrystallization. The content of-γ2 phase decreases along with dynamic recrystallization.%在万能材料试验机上采用控温模具对柱状晶CuAlBe合金进行等温压缩变形试验,研究不同变形温度、变形量和变形速率下发生动态再结晶的行为和析出物含量;对变形后的合金重新加热,研究其发生静态再结晶的温度和析出物含量.结果表明:在550℃等温变形,变形量大于20%都发生动态再结晶,450℃以下变形都不发生动态再结晶,但此温度下易形成马氏体和裂纹;在此温度区间,随着变形温度的降低或变形速率的增加,发生动态再结晶所需的变形量逐渐增大.发生静态再结晶的临界温度为610℃,再结晶前的析出物随变形温度的升高而增加,析出物的含量随动态再结晶的进行而降低.

  13. Two-step memory within Continuous Time Random Walk. Description of double-action market dynamics

    CERN Document Server

    Gubiec, Tomasz

    2013-01-01

    By means of a novel version of the Continuous-Time Random Walk (CTRW) model with memory, we describe, for instance, the stochastic process of a single share price on a double-auction market within the high frequency time scale. The memory present in the model is understood as dependence between successive share price jumps, while waiting times between price changes are considered as i.i.d. random variables. The range of this memory is defined herein by dependence between three successive jumps of the process. This dependence is motivated both empirically, by analysis of empirical two-point histograms, and theoretically, by analysis of the bid-ask bounce mechanism containing some delay. Our model turns out to be analytically solvable, which enables us a direct comparison of its predictions with empirical counterparts, for instance, with so significant and commonly used quantity as velocity autocorrelation function. This work strongly extends the capabilities of the CTRW formalism.

  14. Stochastic Dynamics of Discrete Curves and Exclusion Processes. Part 2: Functional Equations and Continuous Descriptions

    CERN Document Server

    Fayolle, G; Fayolle, Guy; Furtlehner, Cyril

    2006-01-01

    This report deals with continuous limits of several one-dimensional diffusive systems, obtained from stochastic distortions of discrete curves with different kinds of coding. These systems are indeed special cases of reaction-diffusion. A general functional formalism is set up, allowing to grapple with hydrodynamic limits. We also analyse the steady-state regime, not only in the reversible case, so that the invariant measure can have a non Gibbs form. A link is made between recursion properties, which originate matrix solutions, and particle cycles in the state-graph, by introducing loop currents on the analogy with electric circuits. Also, by means of the aforementioned functional approach, a bridge is established between structural constants involved in the recursions at discrete level and the constants which appear in Lotka-Volterra equations describing the fluid limits of stationary states. Finally the Lagrangian for the current fluctuations is obtained from an iterative scheme, and the related Hamilton-J...

  15. Continuous composite finite-time convergent guidance laws with autopilot dynamics compensation.

    Science.gov (United States)

    He, Shaoming; Lin, Defu

    2015-09-01

    This paper has proposed two continuous composite finite-time convergent guidance laws to intercept maneuvering targets in the presence of autopilot lag: one is for hit-to-kill and the other is for zeroing the line-of-sight (LOS) angular rate. More specifically, the nonlinear disturbance observer (NDOB) is used to estimate the lumped uncertainty online while the finite-time control technique is used to fulfill the design goal in finite time. The key feature in derivation of the proposed guidance law is that two integral-type Lyapunov functions are used to avoid analytic differentiation of virtual control law encountered with traditional backstepping. The finite-time stability of the closed-loop nonlinear observer-controller system is established using finite-time bounded (FTB) function and Lyapunov function methods. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.

  16. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  17. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    Energy Technology Data Exchange (ETDEWEB)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  18. Disturbance and climatic effects on red spruce community dynamics at its southern continuous range margin

    Directory of Open Access Journals (Sweden)

    Relena Rose Ribbons

    2014-03-01

    Full Text Available Red spruce (Picea rubens populations experienced a synchronous rangewide decline in growth and vigor starting in the 1960s, likely caused by climate change and a combination of environmental disturbances. However, it is not yet known if populations continue to decline or have recovered. Red spruce growing near its southern range margin in Massachusetts is a species of concern, in light of the vulnerability to climate change. This study uses population data from 17 permanent plots coupled with tree-ring data to examine radial growth rates, determine the growth-climate relationship, and document disturbance events. Red spruce at these plots ranged from 90 to 184 years old, and comprised 15 to 29 m2/ha basal area. Red spruce seedlings and saplings were common at plots with previously high overstory spruce abundance, indicating it could return to a more dominant position under favorable growing conditions. However, permanent plot measures over a 50 year time span did not indicate any consistent trends for changes in basal area or density for red spruce or other woody species. Climate data show that mean annual minimum, maximum, and summer temperatures have increased over the last 100 years. Dendroclimatological analyses indicated that red spruce growth was sensitive to both temperature and precipitation. Prior to the 1960s, spruce at these sites showed a positive response to precipitation; however after a multi-year drought in the 1960s showed an increasingly negative correlation with precipitation. There has been a negative growth response to regional warming, as spruce radial growth was mostly constrained by increasing temperatures, potentially coupled with the associated increasing drought-dress. I suggest the change in climate response is potentially due to a physiological threshold response to increasing temperatures, which may cause spruce to continue to decline or be lost from the lower elevation sites, while the high elevation sites has a

  19. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    Science.gov (United States)

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  20. Static recrystallization behavior of a martensitic heat-resistant stainless steel 403Nb

    Institute of Scientific and Technical Information of China (English)

    Zhouyu ZENG; Liqing CHEN; Fuxian ZHU; Xianghua LIU

    2011-01-01

    A static recrystallization behavior between the rolling passes of a martensitic heatresistant stainless steel 403Nb has been studied by OM,TEM and double-hit thermomechanical simulator to explore the effects of deformation temperature,strain rate,strain and the prior austenite grain size.The results show that increases of deformation temperature and strain rate and strain can promote the static recrystallization of 403Nb steel.Static recrystallization also proceeds faster when the prior austenite grain size is smaller.Microstructural observation indicates that the volume fraction of static recrystallization increases with prolonged interval of the rolling passes.Straininduced precipitation can lead to an appearance of a platform in the kinetic curve of static recrystallization.Different from the conventional micro-alloying steel,the strain-induced precipitates in 403Nb steel during hot rolling are carbides containing Nb and Cr.

  1. Comparative Study on Schizontocidal Activity of Recrystallized or Crude Daphnetin Against Malaria Parasites

    Institute of Scientific and Technical Information of China (English)

    QIN-MEI WANG; YI-CHANG NI; JIAN GUO; JIA-TONG WU; YING-JUN QIAN

    2004-01-01

    To compare the schizontocidal activity of recrystallized or crude daphnetin against malaria parasites in vivo. Methods Schizontocidal activity of recrystallized or crude daphnetin at various dosages was assessed in mice infected with Plasmodium berghei ANKA using a "4-day suppress assay". Results The comparison of the reduction rate of parasitemia caused by either recrystallized or crude dephnetin showed that ED50 of crude daphnetin was 18.36 mg/kg, with 95% confidence limit of 5.96-56.54 mg/kg while ED50 of recrystallized daphnetin was 11.46 mg/kg, with 95% confidence limit of 8.63-15.22 mg/kg. Conclution The results indicate that the efficacy of recrystallized daphnetin is 37.6% higher than that of crude daphnetin.

  2. Comparison of Conventional and Microwave Baked Bread Concerning Recrystallization of Starch Molecules

    Directory of Open Access Journals (Sweden)

    K. Fuckerer

    2015-08-01

    Full Text Available Bread is one of the most important foods in industrial countries and it is at its best when consumed fresh. One of the major problems during storage of baked products is staling. Bread staling incorporates a combination of physical and chemical changes resulting in a decrease of bread quality. The predominant mechanism of staling is the time-dependent recrystallization of starch molecules. Avoiding this recrystallization is one of the most desired topics in science of bread technology but still not solved. Therefore, this study investigates a new possibility by trying to influence the recrystallization of starch with microwave heating. For this, the differences between microwave and conventional baked rye-wheat bread were examined concerning the difference of water activity and firmness of the bread during time. As result, a faster water loss during storage period could be observed in microwave heated bread, which probably implies an even more rapid recrystallization instead the desired avoiding of recrystallization of starch.

  3. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  4. Data-Driven Tracking Control With Adaptive Dynamic Programming for a Class of Continuous-Time Nonlinear Systems.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2016-04-22

    A data-driven adaptive tracking control approach is proposed for a class of continuous-time nonlinear systems using a recent developed goal representation heuristic dynamic programming (GrHDP) architecture. The major focus of this paper is on designing a multivariable tracking scheme, including the filter-based action network (FAN) architecture, and the stability analysis in continuous-time fashion. In this design, the FAN is used to observe the system function, and then generates the corresponding control action together with the reference signals. The goal network will provide an internal reward signal adaptively based on the current system states and the control action. This internal reward signal is assigned as the input for the critic network, which approximates the cost function over time. We demonstrate its improved tracking performance in comparison with the existing heuristic dynamic programming (HDP) approach under the same parameter and environment settings. The simulation results of the multivariable tracking control on two examples have been presented to show that the proposed scheme can achieve better control in terms of learning speed and overall performance.

  5. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    Science.gov (United States)

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  6. Dynamic melting and impurity particle tracking in continuously adjustable AC magnetic field

    Science.gov (United States)

    Bojarevics, V.; Pericleous, K.

    2016-07-01

    The analysis of semi-levitation melting is extended to account for the presence of particles (impurities, broken metal dendrite agglomerates, bubbles) during the full melting cycle simulated numerically using the pseudo-spectral schemes. The AC coil is dynamically moving with the melt front progress, while the generated Joule heat serves to enhance the melting rate. The electromagnetic force is decomposed into the time average and the oscillating parts. The time average effects on the particle transport are investigated previously using approximations derived for a locally uniform magnetic field. This paper presents expressions for the skin-layer type of the AC force containing also the pulsating part which contributes to the particle drag by the ‘history’ and ‘added mass’ contributions. The intense turbulence in the bulk of molten metal additionally contributes to the particle dispersion. The paper attempts to demonstrate the importance of each of the mentioned effects onto the particle transport during the melting until the final pouring stage. The method could be extended to similar AC field controlled melting/solidification processes.

  7. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  8. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning.

    Science.gov (United States)

    Hou, Kai; Wang, Huiyi; Lin, Yunyin; Chen, Shaohua; Yang, Shengyuan; Cheng, Yanhua; Hsiao, Benjamin S; Zhu, Meifang

    2016-10-14

    Hydrogel microfibers have been considered as a potential biomaterial to spatiotemporally biomimic 1D native tissues such as nerves and muscles which are always assembled hierarchically and have anisotropic response to external stimuli. To produce facile hydrogel microfibers in a mathematical manner, a novel dynamic-crosslinking-spinning (DCS) method is demonstrated for direct fabrication of size-controllable fibers from poly(ethylene glycol diacrylate) oligomer in large scale, without microfluidic template and in a biofriendly environment. The diameter of fibers can be precisely controlled by adjusting the spinning parameters. Anisotropic swelling property is also dependent on inhomogeneous structure generated in spinning process. Comparing with bulk hydrogels, the resulting fibers exhibit superior rapid water adsorption property, which can be attributed to the large surface area/volume ratio of fiber. This novel DCS method is one-step technology suitable for large-scale production of anisotropic hydrogel fibers which has a promising application in the area such as biomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spatiotemporal Dynamics of Surface Water Extent from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale

    Science.gov (United States)

    Tulbure, M. G.; Broich, M.; Stehman, Stephen V.

    2016-06-01

    Surface water is a critical resource in semi-arid areas. The Murray-Darling Basin (MDB) of Australia, one of the largest semi-arid basins in the world is aiming to set a worldwide example of how to balance multiple interests (i.e. environment, agriculture and urban use), but has suffered significant water shrinkages during the Millennium Drought (1999-2009), followed by extensive flooding. Baseline information and systematic quantification of surface water (SW) extent and flooding dynamics in space and time are needed for managing SW resources across the basin but are currently lacking. To synoptically quantify changes in SW extent and flooding dynamics over MDB, we used seasonally continuous Landsat TM and ETM+ data (1986 - 2011) and generic machine learning algorithms. We further mapped flooded forest at a riparian forest site that experienced severe tree dieback due to changes in flooding regime. We used a stratified sampling design to assess the accuracy of the SW product across time. Accuracy assessment yielded an overall classification accuracy of 99.94%, with producer's and user's accuracy of SW of 85.4% and 97.3%, respectively. Overall accuracy was the same for Landsat 5 and 7 data but user's and producer's accuracy of water were higher for Landsat 7 than 5 data and stable over time. Our validated results document a rapid loss in SW bodies. The number, size, and total area of SW showed high seasonal variability with highest numbers in winter and lowest numbers in summer. SW extent per season per year showed high interannual and seasonal variability, with low seasonal variability during the Millennium Drought. Examples of current uses of the new dataset will be presented and include (1) assessing ecosystem response to flooding with implications for environmental water releases, one of the largest investment in environment in Australia; (2) quantifying drivers of SW dynamics (e.g. climate, human activity); (3) quantifying changes in SW dynamics and

  10. Non-contact continuous-wave diffuse optical tomographic system to capture vascular dynamics in the foot

    Science.gov (United States)

    Hoi, Jennifer W.; Kim, Hyun K.; Khalil, Michael A.; Fong, Christopher J.; Marone, Alessandro; Shrikhande, Gautam; Hielscher, Andreas H.

    2015-03-01

    Dynamic optical tomographic imaging has shown promise in diagnosing and monitoring peripheral arterial disease (PAD), which affects 8 to 12 million in the United States. PAD is the narrowing of the arteries that supply blood to the lower extremities. Prolonged reduced blood flow to the foot leads to ulcers and gangrene, which makes placement of optical fibers for contact-based optical tomography systems difficult and cumbersome. Since many diabetic PAD patients have foot wounds, a non-contact interface is highly desirable. We present a novel non-contact dynamic continuous-wave optical tomographic imaging system that images the vasculature in the foot for evaluating PAD. The system images at up to 1Hz by delivering 2 wavelengths of light to the top of the foot at up to 20 source positions through collimated source fibers. Transmitted light is collected with an electron multiplying charge couple device (EMCCD) camera. We demonstrate that the system can resolve absorbers at various locations in a phantom study and show the system's first clinical 3D images of total hemoglobin changes in the foot during venous occlusion at the thigh. Our initial results indicate that this system is effective in capturing the vascular dynamics within the foot and can be used to diagnose and monitor treatment of PAD in diabetic patients.

  11. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  12. Recrystallization and grain growth in NiAl

    Science.gov (United States)

    Haff, G. R.; Schulson, E. M.

    1982-01-01

    Aluminide intermetallics, because of their strength, microstructural stability, and oxidation resistance at elevated temperatures, represent potential structural materials for use in advanced energy conversion systems. This inherent potential of the intermetallics can currently not be realized in connection with the general brittleness of the materials under ambient conditions. It is pointed out, however, that brittleness is not an inherent characteristic. Single crystals are ductile and polycrystals may be, too, if their grains are fine enough. The present investigation is concerned with an approach for reducing material brittleness, taking into account thermal-mechanically induced grain refinement in NiAl, a B2 aluminide which melts at 1638 C and which retains complete order to its melting point. Attention is given to the kinetics of recrystallization and grain growth of warm-worked, nickel-rich material.

  13. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  14. Evolution of recrystallization textures in high voltage aluminum capacitor foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 周鸿章; 陈志永; 邓运来; 周卓平

    2001-01-01

    The evolution of recrystallization textures in high voltage aluminum capacitor foils which are produced with a high level of cold reduction was tracked by analysis of microstructure and crystallographic texture. The results show that the deformation textures are mainly composed of S-orientation, Cu-orientation and a little Bs-orientation. During the low temperature stages of final annealing, the iron precipitates first along the sub-grain boundaries, and the Fe concentration in the matrix becomes low. Then, the cube grains nucleate preferably into the sub-grains. At high temperature stages, the cube nuclei can grow preferably because of their 40°〈111〉 orientation relationship to the S orientation, the main component of the rolling texture. Finally, the cube texture is sharply strong and the R orientation is very weak in the foils.

  15. Lead-bismuth eutectic recrystallization studies for the Megapie target

    Energy Technology Data Exchange (ETDEWEB)

    Zucchini, A. [ENEA, FIS/MET, Centro Ricerche ' E.Clementel' , via Don Fiammelli 2, 40128 Bologna (Italy); Agostini, P. [ENEA, FIS/ING, Centro Ricerche Brasimone, 40032 Camugnano, Bologna (Italy); Baicchi, E. [ENEA, FIS/ING, Centro Ricerche Brasimone, 40032 Camugnano (Bologna) (Italy)]. E-mail: elio.baicchi@brasimone.enea.it

    2005-02-01

    The expansion behaviour after freezing of the lead-bismuth eutectic (LBE) with 44.5% lead and 55.5% bismuth is described according to the reported theory. The issue of the vessel structural integrity after LBE recrystallization was dealt with by experimental and numerical studies performed in the frame of the Megapie (Megawatt Pilot Experiment) project. We have identified the important elements which, in the case of LBE solidification inside the Megapie target, play a role in the reduction of the possible vessel over-stressing; among them, the LBE yield strength has been tested under significant experimental conditions. The resulting suggestions can also be related to the design and to the freezing procedures for other LBE technology facilities.

  16. Fish antifreeze protein and the freezing and recrystallization of ice.

    Science.gov (United States)

    Knight, C A; DeVries, A L; Oolman, L D

    Antifreeze glycopeptide and peptides from the blood of polar fishes prevent the growth of ice crystals in water at temperatures down to approximately 1 degree C below freezing point, but do not appreciably influence the equilibrium freezing point. This freezing point hysteresis must be a disequilibrium effect, or it would violate Gibbs' phase rule, but the separate freezing and melting points are experimentally very definite: ice neither melts nor freezes perceptibly within the 'hysteresis gap', for periods of hours or days. We report here unusual crystal faces on ice crystals grown from solutions of very low concentrations of the anti-freeze glycopeptides and peptides. This is a clue to the mechanism of freezing inhibition, and it may be the basis of a simple, very sensitive test for antifreeze material. Very low concentrations of the antifreeze protein are also remarkably effective in preventing the recrystallization of ice.

  17. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.

    Science.gov (United States)

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost

    2015-12-01

    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study.

  18. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Neumann, L.; Scherer, P. [Hochschule fuer Angewandte Wissenschaften, Fakultaet Life Sciences, Lifetec Process Engineering, Hamburg (Germany)

    2008-08-15

    The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH{sub 4}) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Determinations of the non-recrystallization temperature for X52 steel produced by compact slab process combined with direct hot rolling

    Science.gov (United States)

    Zaky, Ahmed Ismail

    2006-12-01

    Deformation comprises not only dimensional accuracy but also the control of the final microstructure and mechanical properties. Deformation below the non-recrystallization temperature ( T nr) is important to design the proper rolling schedule to avoid grain growth in the final stages of rolling. The determination of T nr for Nb-bearing carbon steel with a compact slab process mill log is carried out depending upon the Misaka concept calculation. A comparison among different formulas for predicting the T nr was conducted using Misaka, Bratto, and Jonas equations. The Misaka equation depends on the chemical compositions and deformation parameters including dynamic and metadynamic recrystallization. The Bratto equation considers only the steel chemical composition. The Jonas equation depends only on the accumulated strain. The Bratto equation gives a large value of T nr, while the Misaka equations show a moderate and accurate value in relation to the Jonas results, which depend on torsion tests. The effect of strain accumulation on dynamic recrystallization is investigated to predict the final grain size of ferrite.

  20. Bridging molecular and continuous descriptions: the case of dynamics in clays

    Directory of Open Access Journals (Sweden)

    Jean-François Dufrêche

    2010-03-01

    Full Text Available The theory of transport in porous media such as clays depends on the level of description. On the macroscopic scale,hydrodynamics equations are used. These continuous descriptions are convenient to model the fluid motion in a confined system. Nevertheless, they are valid only if the pores of the material are much larger than the molecular size of the components of the system. Another approach consists in using molecular descriptions. These two methods which correspond to different levels of description are complementary. The link between them can be clarified by using a coarse-graining procedure where the microscopic laws are averaged over fast variables to get the long time macroscopic laws. We present such an approach in the case of clays. Firstly, we detail the various levels of description and the relations among them, by emphasizing the validity domain of the hydrodynamic equations. Secondly, we focus on the case of dehydrated clays where hydrodynamics is not relevant. We show that it is possible to derive a simple model for the motion of the cesium ion based on the difference on time scale between the solvent and the solute particles.A teoria de transporte em meios porosos tais como argilasdepende do nível de descrição. Na escala macroscópica, equações da hidrodinâmica são utilizadas. Tais descrições a níveldo contínuo são convenientes para tratar o movimento do fluido em sistemas confinados. No entanto, tais equações são válidas se os poros do material são muito maiores do que as moléculas das componentes do sistema. Uma outra abordagem consiste em usar descrições moleculares. Esses dois métodos que correspondem a diferentes níveis de descriçãosão complementares. A ligação entre eles pode ser elucidada usando um procedimento de mudança de escala onde são tomadas médias das leis microscópicas sobre as variáveis rápidas para se obter as leis macroscópicas para tempos longos. Apresentamos esta abordagem no

  1. Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate

    Science.gov (United States)

    Zhang, Zhenbo; Zhang, Yubin; Mishin, Oleg V.; Tao, Nairong; Pantleon, Wolfgang; Juul Jensen, Dorte

    2016-09-01

    The evolution of the microstructure and texture during annealing of a modified ferritic/martensitic 9Cr-1Mo steel compressed by dynamic plastic deformation (DPD) to a strain of 2.3 has been investigated using transmission electron microscopy and electron backscatter diffraction. It is found that the duplex + fiber texture formed by DPD is transformed during annealing to a dominant fiber texture, and that crystallites of the component have an advantage during both nucleation and growth. Detailed characterization of the microstructural morphology, and estimation of the stored energies in - and -oriented regions in deformed and annealed samples, as well as investigations of the growth of recrystallizing grains, are used to analyze the annealing behavior. It is concluded that recrystallization in the given material occurs by a combination of oriented nucleation and oriented growth.

  2. Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels.

    Science.gov (United States)

    Ronda, Felicidad; Roos, Yrjö H

    2008-04-07

    Freeze-concentration of starch gels was controlled by temperature and gelatinization with glucose and lactose. The aim of the study was to evaluate the effects of freezing temperature and gel composition on starch recrystallization behaviour of corn and potato starch gels (water content 70%, w/w) in water or glucose or lactose (10%, w/w) solutions. Starch gels were obtained by heating in differential scanning calorimetry (DSC). Samples of starch gels were frozen at -10 degrees C, -20 degrees C and -30 degrees C for 24h and, after thawing, stored at +2 degrees C for 0, 1, 2, 4 and 8 days. The extent of starch recrystallization was taken from the enthalpy of melting of the recrystallized starch by DSC. Freezing temperatures, glucose, lactose and the origin of the starch affected the recrystallization behaviour greatly. The recrystallization of amorphous starch during storage was enhanced by freeze-concentration of gels at temperatures above T'(m). Molecular mobility was enhanced by unfrozen water and consequently molecular rearrangements for nucleation could take place. Further storage at a higher temperature enhanced the growth and the maturation of crystals. In particular, glucose decreased the T'(m) of the gels and consequently lower freezing temperatures were needed to reduce enhanced recrystallization during storage. Freeze-concentration temperatures also showed a significant effect on the size and the perfection of crystals formed in starch recrystallization.

  3. Stable mineral recrystallization in low temperature aqueous systems: A critical review

    Science.gov (United States)

    Gorski, Christopher A.; Fantle, Matthew S.

    2017-02-01

    Minerals may undergo recrystallization reactions in low temperature (chemistries on Earth. The reactions are also significant for modern environments, including engineered systems, as they imply that mineral lattices may be substantially more open to exchanging toxic elements and radionuclides with coexisting solutions than previously thought. To date, observations of stable mineral recrystallization are distributed among several disciplines, and no work has attempted to review their findings comprehensively. Accordingly, this review article presents laboratory evidence for stable mineral recrystallization, describes data collection and interpretation strategies, summarizes similar recrystallization systematics observed in multiple studies, explores the potential occurrence of stable mineral recrystallization in natural systems, and discusses possible mechanisms by which stable mineral recrystallization occurs. The review focuses primarily on carbonates, sulfates, and iron oxides because these minerals have been studied most extensively to date. The review concludes by presenting key questions that should be addressed in this field to further understand and account for stable mineral recrystallization in natural and engineered aqueous systems at low temperatures.

  4. Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels

    Science.gov (United States)

    Tokizane, M.; Matsumura, N.; Tsuzaki, K.; Maki, T.; Tamura, I.

    1982-08-01

    The effect of prior deformation on the processes of tempering and austenitizing of lath martensite was studied by using low carbon steels. The recrystallization of as-quenched lath martensite was not observed on tempering while the deformed lath martensite easily recrystallized. The behavior of austenite formation in deformed specimens was different from that in as-quenched specimens because of the recrystallization of deformed lath martensite. The austenitizing behavior (and thus the austenite grain size) in deformed specimens was controlled by the competition of austenite formation with the recrystallization of lath martensite. In the case of as-quenched (non-deformed) lath martensite, the austenite particles were formed preferentially at prior austenite grain boundaries and then formed within the austenite grains mainly along the packet, block, and lath boundaries. On the other hand, in the case of lightly deformed (30 to 50 pct) lath martensite, the recrystallization of the matrix rapidly progressed prior to the formation of austenite, and the austenite particles were formed mainly at the boundaries of fairly fine recrystallized ferrite grains. When the lath martensite was heavily deformed (75 to 84 pct), the austenite formation proceeded almost simultaneously with the recrystallization of lath martensite. In such a situation, very fine austenite grain structure was obtained most effectively.

  5. Modeling and dynamics analysis of the fractional-order Buck-Boost converter in continuous conduction mode

    Institute of Scientific and Technical Information of China (English)

    Yang Ning-Ning; Liu Chong-Xin; Wu Chao-Jun

    2012-01-01

    In this paper,the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method.Some dynamical properties of the current-mode controlled fractional-order BuckBoost converter are analysed.The simulation is accomplished by using SIMULINK.Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary.At the same time,the simulation results show that the converter goes through different routes to chaos.

  6. Effects of Primary Annealing Condition on Recrystallization Texture in a Grain Oriented Silicon Steel

    Institute of Scientific and Technical Information of China (English)

    Yuhui SHA; Fang ZHANG; Song LI; Xiaoyu GAO; Jiazhen XU; Liang ZUO

    2004-01-01

    The recrystallization texture in grain oriented silicon steel sheets, which were annealed at different primary annealing temperatures with and without an electric field, was investigated. An automated electron backscattered diffraction (EBSD) technique was used to analyze the recrystallization texture. It was found that recovery and application of electric field in primary annealing lead to an increase of {001} component and a decrease of {111} component after annealing at 900℃. The development of recrystallization texture can be explained in terms of the effects of electric field and primary annealing temperature on recovery.

  7. High-quality Silicon Films Prepared by Zone-melting Recrystallization

    Science.gov (United States)

    Chen, C. K.; Geis, M. W.; Tsaur, B. Y.; Fan, J. C. C.

    1984-01-01

    The graphite strip heater zone melting recrystallization (ZMR) technique is described. The material properties of the ZMR films, and SOI device results are reviewed. Although our ZMR work is primarily motivated by integrated circuit applications, this work evolved in part from earlier research on laser crystallization of thick amorphous GaAs and Si films, which was undertaken with the goal of producing low cost photovoltaic materials. The ZMR growth process and its effect on the properties of the recrystallized films may contribute some insight to a general understanding of the rapid recrystallization of Si for solar cells. Adaptation of ZMR for solar cell fabrication is considered.

  8. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution.

    Science.gov (United States)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution. Graphical Abstract ᅟ.

  9. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution

    Science.gov (United States)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  10. A Model for Static Recrystallization with Simultaneous Precipitation and Solute Drag

    Science.gov (United States)

    Buken, Heinrich; Kozeschnik, Ernst

    2017-06-01

    In the present work, we introduce a state parameter-based microstructure evolution model, which incorporates the effect of solute atoms and precipitates on recrystallization kinetics. The model accounts for local precipitate coarsening at grain boundaries, which promotes an average grain boundary movement even if the Zener pinning force exceeds the driving force for recrystallization. The impact of solute drag on the grain boundary mobility as well as simultaneous precipitation is discussed in detail. The model is validated on experimental data on recrystallization in V-micro-alloyed steel, where excellent agreement is achieved.

  11. Local strain distributions in partially recrystallized copper determined by in situ tensile investigation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Ubhi, H.S.; Zhang, Yubin

    2015-01-01

    A partially recrystallized copper sample produced by cold-rolling and annealing was deformed in situ by uniaxial tension in a scanning electron microscope, and electron backscatter diffraction data were collected before and after deformation to certain strains. The local strain distributions...... are quantified using digital image correlation. Distributions of the normal strain along the tensile direction (εxx) are shown in this paper. The recrystallized grains are found to deform more than the remaining unrecrystallized matrix. When εxx is averaged along lines perpendicular to the tensile direction......, significant variation are observed, which may be related to the local recrystallized volume fraction....

  12. Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom

    Directory of Open Access Journals (Sweden)

    Yamashiro T

    2015-09-01

    Full Text Available Tsuneo Yamashiro,1 Maho Tsubakimoto,1 Yukihiro Nagatani,2 Hiroshi Moriya,3 Kotaro Sakuma,3 Shinsuke Tsukagoshi,4 Hiroyasu Inokawa,5 Tatsuya Kimoto,5 Ryuichi Teramoto,6 Sadayuki Murayama1 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa; 2Department of Radiology, Shiga University of Medical Science, Otsu; 3Department of Radiology, Ohara General Hospital, Fukushima; 4CT Systems Division, 5Center for Medical Research and Development, Toshiba Medical Systems Corporation, Otawara; 6Corporate Manufacturing Engineering Center, Toshiba Corporation, Yokohama, Japan Background: The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT and our research software. Methods: A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute. This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%. The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results: It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB. From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of

  13. Model-free optimal controller design for continuous-time nonlinear systems by adaptive dynamic programming based on a precompensator.

    Science.gov (United States)

    Zhang, Jilie; Zhang, Huaguang; Liu, Zhenwei; Wang, Yingchun

    2015-07-01

    In this paper, we consider the problem of developing a controller for continuous-time nonlinear systems where the equations governing the system are unknown. Using the measurements, two new online schemes are presented for synthesizing a controller without building or assuming a model for the system, by two new implementation schemes based on adaptive dynamic programming (ADP). To circumvent the requirement of the prior knowledge for systems, a precompensator is introduced to construct an augmented system. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is solved by adaptive dynamic programming, which consists of the least-squared technique, neural network approximator and policy iteration (PI) algorithm. The main idea of our method is to sample the information of state, state derivative and input to update the weighs of neural network by least-squared technique. The update process is implemented in the framework of PI. In this paper, two new implementation schemes are presented. Finally, several examples are given to illustrate the effectiveness of our schemes.

  14. Online Solution of Two-Player Zero-Sum Games for Continuous-Time Nonlinear Systems With Completely Unknown Dynamics.

    Science.gov (United States)

    Fu, Yue; Chai, Tianyou

    2016-12-01

    Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.

  15. Correlations Between Hysteretic Categorical and Continuous Judgments of Perceptual Stimuli Supporting a Unified Dynamical Systems Approach to Perception.

    Science.gov (United States)

    Kim, S; Frank, T D

    2017-01-01

    We report from two variants of a figure-ground experiment that is known in the literature to involve a bistable perceptual domain. The first variant was conducted as a two-alternative forced-choice experiment and in doing so tested participants on a categorical measurement scale. The second variant involved a Likert scale measure that was considered to represent a continuous measurement scale. The two variants were conducted as a single within-subjects experiment. Measures of bistability operationalized in terms of hysteresis size scores showed significant positive correlations across the two response conditions. The experimental findings are consistent with a dualistic interpretation of self-organizing perceptual systems when they are described on a macrolevel by means of so-called amplitude equations. This is explicitly demonstrated for a Lotka-Volterra-Haken amplitude equation model of task-related brain activity. As a by-product, the proposed dynamical systems perspective also sheds new light on the anchoring problem of producing numerical, continuous judgments.

  16. Effect of recrystallization on tensile behavior, texture, and anisotropy of Ti-3Al-2.5 V cold pilgered tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bayona-Carrillo, Nicolas; Fundenberger, Jean-Jacques; Wagner, Francis [LETAM-Laboratoire d' Etude des Textures et Applications aux Materiaux CNRS FRE 3143 Universite Paul Verlaine de Metz, F57000 Metz (France); Bozzolo, Nathalie [MINES ParisTech, CEMEF - Centre de Mise en Forme des Materiaux CNRS UMR 7635, BP 207 1 rue Claude Daunesse, 06904 Sophia Antipolis Cedex (France); Thomas, Bertrand; Camelin, Patrick; Lenarduzzi, Emmanuel [PFW SPECITUBES Hameau de Letoquoi 1402, rue de Neufchatel, F62830 Samer (France)

    2011-05-15

    The recrystallized volume fraction of Ti 3Al 2.5 V seamless tubes is measured using electron BackScatter diffraction (EBSD) after annealing under various conditions. Standard tensile tests and contractile strain ratio (CSR) measurements are carried out in order to analyze the effect of recrystallization on the tensile behavior and the anisotropy of the tubes. The tensile tests show anomalous yield-point phenomena, which become stronger when the recrystallized fraction is increased. CSR value changes through recrystallization, from 0.8 in the cold worked stress relieved (CWSR) state to 1.1 in the fully recrystallized structure. Orientation distribution functions (ODFs) calculated from X-ray data reveal a decay in the intensity of the crystallographic texture as recrystallization advances. This can explain the tendency toward isotropy when complete recrystallization is achieved. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A microtexture investigation of recrystallization during friction stir processing of as-cast NiAl bronze

    Science.gov (United States)

    Oh-Ishi, Keiichiro; Zhilyaev, Alexander P.; McNelley, Terry R.

    2006-07-01

    As-cast NiAl bronze (NAB) was subjected to friction stir processing (FSP). Orientation imaging microscopy (OIM) methods were used to obtain microtexture data in the stir zone (SZ) and along its periphery. At selected SZ locations, orientation data were obtained by convergent beam electron diffraction (CBED) methods in transmission electron microscopy (TEM). Random α phase textures were apparent in the SZ. The α grains tended to be equiaxed, exhibited annealing twins, and were refined to 1 to 2 µm at the edge of the SZ. The population of subgrain boundaries in α phase grains was highest near the plate surface in contact with the tool and decreased with depth in the SZ, reflecting deformation by the tool shoulder after the passage of the tool pin. Distinct shear texture components were apparent in the thermomechanically affected zone (TMAZ) outside of and along the periphery of the SZ. A texture gradient from the TMAZ into the SZ was apparent and was steeper on the advancing side and under the SZ center than on the retreating side. The apparent shear plane tended to align with the local interface between the SZ and TMAZ, while the shear direction tended to align with the FSP traversing direction. In this material, the SZ-TMAZ interface is a distinct boundary between recrystallized and deformed regions and the α-phase grain refinement reflects dynamic recrystallization and, in locations near the SZ-TMAZ interface, particle-stimulated nucleation (PSN) at undissolved Fe3Al particles.

  18. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. T. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  19. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  20. Effect of Prestraining of Recrystallization Temperature and Mechanical Properties of Commercial, Sintered, Wrought Molybdenum

    Science.gov (United States)

    Dike, Kenneth C; Long, Roger A

    1953-01-01

    Given three presumably identical lots of commercial, sintered, wrought molybdenum, the 1-hour recrystallization temperature of one lot remained above 2900 F by limiting the amount of effective restraining to 35 percent or less. Different recrystallization temperatures were obtained in various atmospheres, the highest in argon and the lowest in hydrogen. Metal thus fabricated and then stress-relieved possessed an ultimate tensile strength at room temperature within 10 percent of metal swaged 99 percent and also possessed equivalent ductility. At 1800 F, equivalent strength and ductility was obtained irrespective of the amount of swaging over the range of 10 to 99 percent. The amount of swaging greatly influenced the recrystallized grain size but the difference in grain size is not the major controlling factor which determines whether recrystallized molybdenum is ductile or brittle at room temperature.

  1. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications.

    Science.gov (United States)

    Ivanova, Irina I; Knyazeva, Elena E

    2013-05-07

    The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed.

  2. Recrystallization and Grain Growth in Austenitic Stainless Steels: a Statistical Approach

    Institute of Scientific and Technical Information of China (English)

    A.Di Schino; G.Abbruzzese; J.M. Kenny

    2003-01-01

    A mathematical model, able to describe the recrystallization and grain growth in metals, has been developed. Taking into account the classical constitutive equations of the Taylor′s theory, the model involves only two free parameters (the dislocation den

  3. Effect of Austenite Recrystallization on Microstructure and Properties of Q345 Steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Fu-xian; LI Yan-mei; LIU Yan-chun; WANG Guo-dong

    2005-01-01

    The Q345 plate steel austenite recrystallization behavior and strain accumulation during rolling were investigated through thermal simulation and rolling. The effect of the recrystallization behavior on the microstructure and properties of the steel was discussed and analyzed. The control principles of the pass reduction in the austenite recrystallization region and partial recrystallization region were established. It is found that to increase the thickness of intermediate billet in the finish temperature interval of 880-820 ℃ is favorable to grain refinement.The result has been applied to the industrial production of the 3 500 mm plate mill of Shougang Group. The average grain size of the steel plate conforms to ASTM No. 10-12, and the grade of band structure has been reduced to below 1.5.

  4. Static Recrystallization Behavior of Hot Deformed Austenite for Micro-Alloyed Steel

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Zhou XU; Xin XING

    2003-01-01

    Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austen

  5. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Mayo, B. [Southern University and AM College, Harding Boulevard, Baton Rouge, Louisiana 70813 (United States)

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350&hthinsp;{degree}C and completely recrystallized after the same treatment at 400&hthinsp;{degree}C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures. {copyright} {ital 1999 American Institute of Physics.}

  6. Fractal Characteristics and Prediction of Ti-15-3 Alloy Recrystallized Microstructure

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Qing ZHANG; Kemin XUE

    2008-01-01

    Grain shape of the hot deforming alloy is an important index to character the microstructure and performance of material.The fractal theory was applied to analyze the recrystallized microstructure of Ti-15-3 alloy after hot deformation and solution treatment.The fractal dimensions of recrystallized grains were calculated by slit island method.The influence of processing parameters on fractal dimension and grain size was studied.It has been shown that the shapes of recrystallized grain boundaries are self-similar,and the fractal dimension varies from 1 to 2.With increasing deformation degree and strain rate or decreasing deformation temperature,the fractal dimension of grain boundaries increased and the grain size decreased.So the fractal dimension could characterize the grain shape and size.A neural network model was trained to predict the fractal dimension of recrystallized microstructure and the result is in excellent agreement with the experimental data.

  7. Recrystallization kinetics of individual bulk grains in 90% cold-rolled aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, E.M.; Poulsen, H.F.; Nielsen, S.F.; Juul Jensen, D

    2003-09-03

    The recrystallization kinetics of a 90% cold-rolled commercial aluminium alloy AA1050 annealed at 270 deg. C has been investigated by use of 3-dimensional X-ray diffraction (3DXRD) microscopy. For the first time growth curves of a large number of individual bulk grains have been measured in situ during recrystallization providing unique information on the nucleation and growth behaviour of the individual grains. From observations of 244 individual growth curves, it is found that each grain has its own growth kinetics. The orientation dependencies of the recrystallization kinetics are investigated by grouping the measured growth curves into cube, rolling and other orientation classes. Based on analysis of the growth curves, distributions of nucleation time, grain size and growth rate has been derived, and are used for a discussion of the recrystallization kinetics of aluminium AA1050.

  8. Recrystallization Behavior of Re-aged Cu-Ni-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jing-guo; LIU Ping; ZHAO Dong-mei; JING Xiao-tian

    2004-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the re-aged Cu-Ni-Si alloy are discussed. The results indicate that the pre-aging process for Cu-Ni-Si alloy was responsible to the significant strengthening effect in re-aging process, and the re-aging strengthening effect with pre-aging at 450℃ for 8h was even more remarkable. Upon aging, a phenomenon of simultaneous in situ and discontinuous recrystallization was observed in the treatment of pre-aging and deformed Cu-Ni-Si alloy. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in the front of grain boundaries following a re-precipitation in the recrystallization area.

  9. Geochemical evidence for repetitive intracrystal recrystallization during the mineralogical stabilization of some biogenic Mg calcites

    Energy Technology Data Exchange (ETDEWEB)

    Budd, D.A. (Univ. of Colorado, Boulder, CO (United States). Dept. of Geological Sciences)

    1992-01-01

    Mineralogical stabilization of porcellaneous foraminifera is unique relative to other types of bioclasts in that these foraminifera is unique relative to other types of bioclasts in that these foraminifera can undergo stabilization to low-Mg calcite without any textural change. Holocene porcellaneous foraminifer from the freshwater diagenetic zone of the Schooner Cays, Bahamas, are in the midst of this alteration and thus provide a rare insight into the stabilization process. These bioclasts exhibit Mg loss and oxygen isotopic changes with no textural alteration at any scale. The mineralogical stabilization, or recrystallization, is a repetitive intracrystal process. Each recrystallization produces a calcite with a slightly lower Mg content than its predecessor. The stabilization rate is dependent on time and hydrologic flux; older phreatic-zone material is the most altered and younger vadose-zone material is the least altered. Numerical modeling of the chemical diagenesis suggests that the molar water:rock ratio of a single recrystallization is about 1:100 and that the resultant precipitate is not in equilibrium with the ambient pore waters. Repetitive recrystallizations, however, eventually yield a mineralogically stable low-Mg calcite that can be in equilibrium with the bulk pore waters. Complete mineralogical stabilization to LMC should occur at cumulative molar water:rock ratios of about 16 and requires hundreds to thousands of recrystallizations, each reducing Mg content by less than 0.01 mole %. The large number of recrystallizations with incrementally small chemical changes per recrystallization makes alteration of these foraminifera significantly different from single-step recrystallization of other types of bioclasts.

  10. Effects of iron and Silicon on Recrystallization Textures of Drawn Aluminium

    OpenAIRE

    Inakazu, N.; Kaneno, Y.; Inoue, H.

    1991-01-01

    The recrystallization textures of cold drawn aluminium alloys were determined by means of the orientation distribution functions (ODFs). The changes in texture with annealing temperature were interpreted by examining the interrelation between recrystallization and precipitation. The drawing textures of all the specimens are mainly composed of the fiber component. In the case of Al-Si, silicon exists in the solid solution at high and medium temperatures (623-723K), therefore, the component i...

  11. Recrystallization of Commercial Carbamazepine Samples—A Strategy to Control Dissolution Variability

    OpenAIRE

    Felicia Flicker; Eberle, Veronika A.; Gabriele Betz

    2012-01-01

    Physical properties of commercial carbamazepine (CBZ) samples can significantly influence drug release and thereby jeopardize bioequivalence of the final dosage form. The aim of this study was to reduce variability in commercial CBZ samples by recrystallization. CBZ samples of four different suppliers were recrystallized in ethanol solution containing 1% polyvinylpyrrolidone (PVP). CBZ samples were analyzed by disk intrinsic dissolution rate (DIDR), X-ray powder diffraction (XRPD), differenti...

  12. Rapid trench initiated recrystallization and stagnation in narrow Cu interconnect lines

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Brendan B.; Rizzolo, Michael; Prestowitz, Luke C.; Dunn, Kathleen A., E-mail: kdunn1@sunypoly.edu [Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203 (United States)

    2015-10-26

    Understanding and ultimately controlling the self-annealing of Cu in narrow interconnect lines has remained a top priority in order to continue down-scaling of back-end of the line interconnects. Recently, it was hypothesized that a bottom-up microstructural transformation process in narrow interconnect features competes with the surface-initiated overburden transformation. Here, a set of transmission electron microscopy images which captures the grain coarsening process in 48 nm lines in a time resolved manner is presented, supporting such a process. Grain size measurements taken from these images have demonstrated that the Cu microstructural transformation in 48 nm interconnect lines stagnates after only 1.5 h at room temperature. This stubborn metastable structure remains stagnant, even after aggressive elevated temperature anneals, suggesting that a limited internal energy source such as dislocation content is driving the transformation. As indicated by the extremely low defect density found in 48 nm trenches, a rapid recrystallization process driven by annihilation of defects in the trenches appears to give way to a metastable microstructure in the trenches.

  13. Secondary recrystallization behavior in a twin-roll cast grain-oriented electrical steel

    Science.gov (United States)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Yin-Ping; Wang, Guo-Dong

    2017-04-01

    The microstructure and texture evolution along the processing was investigated with a particular focus on the secondary recrystallization behavior in a 0.23 mm-thick twin-roll cast grain-oriented electrical steel. A striking feature is that Goss orientation originated during twin-roll casting as a result of shear deformation and it was further enhanced during hot rolling and normalizing. After primary recrystallization annealing, a homogeneous microstructure associated with a sharp γ-fiber texture was produced. During secondary recrystallization annealing, the γ-fiber texture was first strengthened and weakened with increasing temperature prior to the onset of secondary recrystallization. Goss grains always exhibited more 20-45° misoriented boundaries than the matrix. The matrix was quite stable during secondary recrystallization with the aid of dense inhibitors. Finally, a complete secondary recrystallization microstructure consisting of large Goss grains was produced. The grain boundary characteristics distribution indicated that the high energy model was responsible for the abnormal growth of Goss grains under the present conditions.

  14. Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing; Shi, Cangji; Chen, X.-Grant, E-mail: xgrant_chen@uqac.ca

    2014-10-15

    The effects of different V contents (0.01 to 0.19 wt.%) on the recrystallization resistance of 7150 aluminum alloys during post-deformation heat treatment were investigated. The microstructural evolutions at as-cast, as-homogenized conditions and after post-deformation annealing were studied using optical, scanning electron and transmission electron microscopes and using the electron backscattered diffraction technique. The precipitation of Al{sub 21}V{sub 2} dispersoids was observed in alloys containing 0.11 to 0.19 wt.% V after homogenization. The dispersoids were mainly distributed in the dendrite cells, and the precipitate-free zones occurred in the interdendritic regions and near grain boundaries. V addition could significantly enhance the recrystallization resistance during post-deformation annealing, particularly in the presence of a great number of Al{sub 21}V{sub 2} dispersoids. Recrystallized grain growth was effectively restricted because of the dispersoid pinning effect. The alloy containing 0.15 wt.% V exhibited the highest recrystallization resistance amongst all V-containing alloys studied. - Highlights: • Investigated the effect of V level on microstructure and flow stress of 7150 alloys • Characterized microstructures using optical microscopy, SEM, TEM and EBSD • Described the precipitation behavior of V-dispersoids in the dendritic structure • Studied the V effect on recrystallization resistance during post heat treatment • V addition greatly enhanced the recrystallization resistance during annealing.

  15. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.

    Science.gov (United States)

    Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana

    2016-11-08

    Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pKa's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pKa shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.

  16. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  17. The Effect of Buoyancy Force in Computational Fluid Dynamics Simulation of a Two-Dimensional Continuous Ohmic Heating Process

    Directory of Open Access Journals (Sweden)

    Elzubier A. Salih

    2009-01-01

    Full Text Available Problem statement: Earlier research on ohmic heating technique focused on viscous food and foods containing solid particles. In this study, use of ohmic heating on sterilization of guava juice is carried out. Computational fluid dynamics was used to model and simulate the system. Investigate the buoyancy effect on the CFD simulation of continuous ohmic heating systems of fluid foods. Approach: A two-dimensional model describing the flow, temperature and electric field distribution of non-Newtonian power law guava juice fluid in a cylindrical continuous ohmic heating cell was developed. The electrical conductivity, thermo physical and rheological properties of the fluid was temperature dependent. Numerical simulation was carried out using FLUENT 6.1 software package. A user defined functions available in FLUENT 6.1 was employed for the electric field equation. The heating cell used consisted of a cylindrical tube of diameter 0.05 m, height 0.50 m and having three collinear electrodes of 0.02 m width separated by a distance of 0.22 m. The sample was subjected to zero voltage at the top and bottom of electrodes while electrical potential of 90 volts (AC 50-60 Hz was set at the middle electrode. The inlet velocity is 0.003 m sec-1 and the temperature is in the range of 30-90°C. Results: Simulation was carried with and without buoyancy driven force effect. The ohmic heating was successfully simulated using CFD and the results showed that the buoyancy had a strong effect in temperature profiles and flow pattern of the collinear electrodes configuration ohmic heating. A more uniform velocity and temperature profiles were obtained with the buoyancy effect included. Conclusion: For accurate results, the inclusion of buoyancy effect into the CFD simulation is important.

  18. Effect of deformation parameters and reheating temperature on the non-recrystallization temperature in Nb and Nb-Ti microalloyed steels; Efecto de los parametros de deformacion y de la temperatura de precalentamiento sobre la temperatura de no recristalizacion en aceros microaleados con Nb y Nb-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Abad Lera, R.; Fernandez Calvo, A. I.; Lopez Soria, B.

    2001-07-01

    The main objective of the present work has been to determine the non-recrystallization temperature (T{sub n}r) of two Nb-bearing steels and two Nb-Ti microalloyed steels. The T{sub n}r has been obtained performing multipass torsion tests under continuous cooling conditions. The influence of deformation parameters: interpass time t{sub e}p, pass strain, {epsilon}, and strain rate, {epsilon} and reheating temperature, T, on the non-recrystallization temperature has been investigated. In the range of short interpass time (t{sub e}p<20s), recrystallization is retarded by solute drag so the T{sub n}r decreases as interpass time increases. For intermediate interpass time, precipitation takes place leading to an increase in the T{sub n}r However, in the range of long interpass time (t{sub e}p>60 s), precipitated particles coarse loosing its effectiveness as recrystallization retarding agents, which leads again to a decrease in the no-recrystallization temperature. The T{sub n}r decreases with increasing pas strain following this type of relationship: T{sub n}r={beta}. {epsilon}. Moreover, and increase in the strain rate leads to a decrease in the non-recrystallization temperature. By increasing the reheating temperature, the amount of dissolved elements that can precipitate at lower temperatures rises, which results in an increase of the T{sub n}r. (Author) 20 refs.

  19. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method.

    Science.gov (United States)

    Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza

    2015-01-01

    The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method.

  20. Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study.

    Science.gov (United States)

    Kogan, J A; Margoliash, D

    1998-04-01

    The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.

  1. Dynamic microwave-assisted extraction combined with continuous-flow microextraction for determination of pesticides in vegetables.

    Science.gov (United States)

    Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2016-02-01

    A simple, rapid, solventless and cost-effective dynamic microwave-assisted extraction (DMAE) combined with continuous-flow microextraction (CFME) system was firstly assembled and validated for extraction of eight organophosphorus pesticides in vegetables. The method combines the advantages of DMAE and CFME, and extends the application of the single drop microextraction to complex solid samples. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, analytes were first extracted from the vegetables using 3% NaCl solution as extraction solvent, then concentrated into microextraction solvent. After extraction, the microextraction solvent containing the enriched analyte was directly analyzed by GC-MS without any filtration or clean-up process. Several parameters affecting the extraction efficiency were investigated and optimized. Real vegetable samples were analyzed, satisfactory recoveries were obtained in the range of 80.7-106.7%, and relative standard deviations were lower than 8.7%.

  2. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura

    2015-11-01

    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  3. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    Science.gov (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  4. Recrystallization and texture evolution of Mg-3%Al-1%Zn-(0.4-0.8)%Sr alloys during extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Alireza, E-mail: Alireza.sadeghi@mail.mcgill.ca [McGill University, Department of Mining and Materials Science, Montreal, Quebec (Canada); Pekguleryuz, Mihriban [McGill University, Department of Mining and Materials Science, Montreal, Quebec (Canada)

    2011-01-25

    Research highlights: {yields} The deformation behavior of a new magnesium alloy system (Mg-Al-Zn-Sr) have been thoroughly analyzed via hot extrusion tests, texture measurements, hot compression tests and extensive microscopy ranging from OM, SEM and TEM on microstructures. {yields} The effect of Sr on formation of <10.0> deformation texture in the (Mg-Al-Zn-Sr) complex alloy has been determined with X-ray diffraction and verified via EBSD and TEM investigations. {yields} Activation of different dynamic recrystallization micro-mechanisms (grain boundary bulging, particle-stimulated nucleation and twining) at different composition-temperature conditions has been investigated using texture, microstructure and hot compression results. - Abstract: Microstructure and texture evolution during the extrusion of AZ31 magnesium alloy containing 0.4 and 0.8 wt%Sr has been investigated. Following extrusion at 250 deg. C, the microstructure consists of fine recrystallized and large elongated grains along with Al{sub 4}Sr stringer precipitates. Extrusion at 350 deg. C results in larger and more uniform grain size. Grain refinement and nucleation of new grains were associated with sub-grain formation in the elongated grains, grain boundary bulging, and nucleation at the particle interfaces. Texture measurements in the extrusion deformation zone show an increase in the basal ring fiber-texture from the undeformed zone toward the die opening. Compared to AZ31 without Sr, the texture intensity increases with increasing Sr at 250 deg. C, whereas the strength of extrusion fiber texture decreases at 350 deg. C. The Al solubility in the {alpha}-Mg matrix decreases with increasing the Sr and the Al solute atmosphere around the dislocations weakens. Due to the reduction of the solute drag effect, dislocation movement is facilitated and dynamic recrystallization becomes more intensive resulting in strengthening the texture during extrusion at 250 deg. C. The decrease in texture intensity at

  5. Surface morphology and impurity distribution of electron beam recrystallized silicon films on low cost substrates for solar cell absorber

    Institute of Scientific and Technical Information of China (English)

    FU Li; GROMBALL F; MüLLER J

    2006-01-01

    A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, thecapping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.

  6. Effects of continuous positive airway pressure on upper airway inspiratory dynamics in awake patients with sleep-disordered breathing.

    Science.gov (United States)

    Vérin, E; Similowski, T; Sériès, F

    2003-01-01

    Continuous positive airway pressure (CPAP) is the main treatment of the obstructive sleep apnoea syndrome (OSAS). We assessed its effects on the upper airway (UA) dynamics in response to bilateral anterior magnetic phrenic nerve stimulation (BAMPS) in 17 awake untreated OSAS patients (15 males; 52 +/- 7 years) whose effective CPAP (P(eff)) had been determined beforehand by a conventional titration sleep study. All twitch-related inspirations were flow-limited, flow first rising to a maximum (V(Imax)), then decreasing to a minimum (V(Imin)), and then increasing again (M-shaped pattern). Up to V(Imin), the relationship between driving pressure (P(d)) and flow (V) could adequately be fitted to a polynomial regression model (V = k(1)P(d) + k(2)P(d)(2); r(2) = 0.71-0.98, P < 0.0001). At atmospheric pressure V(Imax) was 700 +/- 377 ml s(-1), V(Imin) was 458 +/- 306 ml s(-1), k(1) was 154.5 +/- 63.9 ml s(-1) (cmH(2)O)(-1), and k(2) was 10.7 +/- 7.3 ml s(-1) (cmH(2)O)(-1). CPAP significantly increased V(Imax) and V(Imin) (peak values 1007 +/- 332 ml and 837 +/- 264 ml s(-1), respectively) as well as k(1) and k(2) (peak values 300.9 +/- 178.2 ml s(-1) (cmH(2)O)(-1) and 55.2 +/- 65.3 ml s(-1) (cmH(2)O)(-1), respectively). With increasing CPAP, k(1)/k(2) increased up to a peak value before decreasing. We defined as P(eff,stim) the CPAP value corresponding to the highest k(1)/k(2) value. P(eff,stim) was correlated with P(eff) (P(eff) = 7.0 +/- 2.0; P(eff,stim) = 6.4 +/- 2.6 cmH(2)O; r = 0.886; 95 % CI 0.696-0.960, P < 0.001). We conclude that CPAP improves UA dynamics in OSAS and that the therapeutic CPAP to apply can be predicted during wakefulness using BAMPS.

  7. Microstructure evolution of an Mg-Zn-Nd-Zr magnesium alloy during recrystallization and partial remelting process

    Directory of Open Access Journals (Sweden)

    Tao Jianquan

    2013-07-01

    Full Text Available To obtain a spheroidal microstructure of a semi-solid Mg-Zn-Nd-Zr alloy, which is favorable for the subsequent thixocasting process, the recrystallization and partial remelting (RAP method was used in this study, and the microstructure evolution of the alloy and the mechanism of the shape factor change during the RAP process were invesigated. The as-cast Mg-Zn-Nd-Zr alloy was prepared in a metal mold and then extruded into bars with an extrusion ratio of 16:1. Partial remelting was carried out on the extruded samples at 589 ℃ (at a heating rate of 0.5 ℃·s-1 for different holding times ranging from 0 to 90 min. To examine the effect of heating rate, partial remelting of samples at the heating rate of 2 ℃·s-1 was also performed. Results show that the extruded microstructure rapidly evolutes into recrystallized grains in the semi-solid state; the liquid film initially forms at grain boundaries during the partial remelting, and then gradually changes from continuous into discontinuous state with the increase of holding time; this results in the agglomeration of adjacent grains and the decrease in shape factor. The value of shape factor increases continuously with holding time at first and reaches the maximum 0.62 when holding for 60 min, while decreases rapidly after a prolonged holding time. Moreover, local melting, mainly due to the inhomogeneous deformation during extrusion, becomes more significant and less uniformly distributed at a relatively higher reheating rate. The Mg-Zn-Nd-Zr magnesium alloy components have been thixo-cast successfully using the RAP method, which strongly proves the feasibility of RAP process in Mg-Zn-Nd-Zr alloy.

  8. The influence of microchemistry on the recrystallization texture of cold-rolled Al-Mn-Fe-Si alloys

    OpenAIRE

    Huang, K.; Y. J. Li; Marthinsen, K

    2015-01-01

    The recrystallization textures of a cold-rolled Al-Mn-Fe-Si model alloy with three different microchemistry states after non-isothermal annealing were studied. The microstructure and texture evolution have been characterized by EBSD. It is clearly demonstrated that the actual microchemistry state as determined by the homogenization procedure strongly influence the recrystallized grain size and recrystallization texture after nonisothermal annealing. High Mn content in solid solution promotes ...

  9. Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation.

    Science.gov (United States)

    Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G

    2009-06-01

    A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.

  10. EFFECT OF INITIAL GRAIN SIZE ON STATIC RECRYSTALLIZA-TION SOFTENING IN Cr STEEL USING STRESS RELAXATION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    A.R. Morgridge

    2002-01-01

    Effect of initial grain size (I.G.S.) on static recrystallization softening in Cr steel(0.77wt.% CR) has been investigated through the use of interrupted hot compressiontests and stress relaxation curves from Gleeble 1500. Initial grain sizes were variedbetween 20 and 93 microns. Stress strains curves for Cr steel for different initialgrain sizes and recrystallization times have been highlighted. Similar observation wasmade for metadynamic recrystallization with shorter retardation times. Staticallyrecrystallized grain size also increased as initial grain size increases. It is found thatthe values of initial grain size have significant effects on the mean flow stress andstatic recrystallization kinetics as well as the peak strain values to initiate dynamicrecrystallization.

  11. Influence of Temperature on Typical Texture Distribution in Primary Recrystallization Matrix of 3% Si CGO Silicon Steel

    Directory of Open Access Journals (Sweden)

    Zhi-chao Li

    2016-01-01

    Full Text Available OM (optical microscopy and EBSD (electron backscatter diffraction techniques were used to study microstructure and texture distribution during primary recrystallization under different intermediate annealing temperatures in CGO silicon steels. The effect of intermediate annealing temperature on texture distribution in 3% Si electrical steel was analyzed. The results indicate that the microstructure in primary recrystallization matrix of CGO silicon steel is comprised of equiaxed ferrite grains. Mean grain size of primary recrystallization increases with the rising of intermediate annealing temperature. γ-fiber texture is the dominant component in primary recrystallization matrix. With higher intermediate annealing temperature, 111121 texture and 111110 texture increase and 111121 texture is stronger than 111110 texture. Goss texture was observed to be decreased firstly and then increased. The content of high angle grain boundaries in primary recrystallization matrix are affected by intermediate annealing temperature. When intermediate annealing temperature is increased, high angle grain boundaries are increased firstly and then decreased. Misorientation distribution in primary recrystallized matrix is affected by primary recrystallization annealing temperature either. The content of high angle grain boundaries are increased owing to higher primary recrystallization annealing temperature, which can be a benefit to the abnormal growth of Goss grains in secondary recrystallization.

  12. Surface recrystallization of a Ni_3Al based single crystal superalloy at different annealing temperatures and blasting pressure

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interde...

  13. Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors

    NARCIS (Netherlands)

    Hu, Z.; Lenting, W.; Van der Wal, D.; Bouma, T.J.

    2015-01-01

    Tidal flat morphology is continuously shaped by hydrodynamic forces, resulting in a highly dynamic bed surface. The knowledge of short-term bed-level changes is important both for assessing sediment transport processes as well as for understanding critical ecological processes, such as vegetation

  14. El Chichón crater lake dynamic based on continuous physical data and mass-heat budget

    Science.gov (United States)

    Peiffer, L.; Taran, Y.

    2011-12-01

    The March-April 1982 Plinian eruption of El Chichón volcano destroyed the summit domes system and created a new 200 m deep crater. Since then, a shallow lake (~3 m) with acidic pH (~2.3), and temperature around 30°C appeared in the crater. This lake has never disappeared until now although its volume has suffered important variations from 40,000 m3 to 160,000 m3. Chemical composition of the lake is also highly variable (Cl/SO4 = 0-79 molar ratio), alternating between acid-sulfate and acid-chloride-sulfate composition. These variations can occur very fast within few weeks and are not directly correlated with precipitation. Due to its shallow depth and small volume, El Chichón crater lake is probably one of the most dynamic crater lake on earth. These rapid changes in chemistry and volume reflect the dynamic of one group of geyser-type springs ('Soap Pools springs, SP') located offshore and the input of hydrothermal steam underneath the crater. The SP springs discharge sporadically to the lake neutral waters with Cl content currently around 3000 mg/l, while the condensed steam feeds the lake with Cl-free and SO4-rich acid water. In this study, we present for the first time continuous physical data of the crater lake (temperature, depth, meteoric precipitation, wind velocity, solar radiation, air humidity). These data were registered by a meteorological station and two dataloggers installed inside and outside the lake. Using a mass and heat budget model constrained with these data, we were able to estimate the flux of 'hydrothermal' fluid entering the lake through the sub-lacustrian fumaroles and SP springs. Tracing the variations of the input flux in time can be help to understand the dynamic of the 'crater lake-SP springs-fumaroles' system but also can provide an efficient way of monitoring the volcanic activity. During the observation period, the mean mass flux entering the lake (Min) was respectively of 12 ± 2 kg/s, corresponding to a total heat flux (Ein) of

  15. Study of the recrystallization mechanisms of ultra-high purity iron doped with carbon, manganese and phosphorus; Etude des mecanismes de recristallisation dans le fer de ultra-haute purete dope en carbone, manganese et phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Lesne, L.

    2000-07-04

    High purity steels have the potential to improve deep drawing properties for automotive applications. Understanding the influence of the chemical composition on the recrystallization mechanisms and on texture development should help to improve their properties. We have studied the influence of 10 ppm of carbon, 1000 ppm of manganese and 120 ppm of phosphorus on the recrystallization mechanisms of ultra-high purity iron (UHP iron > 99.997%). For this purpose we used 4 materials: one undoped (UHP), one doped with C, one doped with C, Mn and one doped With C, Mn, P. In order to restrict grain coarsening in the hot strips, hot rolling was performed in the ferritic region, in one pass of 80% thickness reduction. The hot bands were then fully recrystallized but exhibited non-isotropic textures, with in particular an intense Goss [110]<001> component for the doped materials. The hot-bands were subsequently cold rolled down to a thickness of 0.8 mm corresponding to a thickness reduction of 80%, and then continuously annealed at 10 deg. C/s. The recrystallization kinetics are delayed with the addition of doping elements. In particular, the incubation time for nucleation is shifted towards higher temperatures while the recrystallization velocity increases. The textures of the fully recrystallized materials exhibit a strong Goss component prejudicial for deep drawing properties. We have established that this component can only appear if coarse grains and carbon in solid solution were simultaneously present in the material before deformation. Characterisation of the cold deformed state enabled us to evaluate the energy stored during deformation as a function of the material composition and the grain orientation: - the overall stored energy increases with the doping elements content. - the stored energy in the {gamma} fibre grains is greater than in the {alpha} fibre grains: 30 J/mol for the {gamma} fibre instead of 5 J/mol for the {alpha} fibre, in the undoped UHP iron. In the

  16. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    Science.gov (United States)

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  17. Evolution of grain structure in AA2195 Al-Li alloy plate during recrystallization

    Institute of Scientific and Technical Information of China (English)

    DU Yu-xuan; ZHANG Xin-ming; YE Ling-ying; LIU Sheng-dan

    2006-01-01

    The evolution of the grain structures in AA2195 Al-Li alloy plate warm-rolled by 80% reduction during recrystallization annealing at 500 ℃ was investigated by electron backscatter diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the elongated grain structures are caused by the lamellar distribution of recrystallization nucleation sites,being lack of large second phase particles (> 1 μm), and dispersive coherent particles (such as δ'andβ) concentrated in planar bands.The recrystallization process may be separated into three stages: firstly, recrystallization nucleation occurs heterogeneously, and the nuclei are concentrated in some planar zones parallel to rolling plane. Secondly, the grain boundaries interacted with small particles concentrate in planar bands, which is able to result in the elongated grain structures. The rate of the grain growth is controlled by the dissolution of these small particles. Thirdly, after most of small particles are dissolved, their hindrance to migration of the grain boundaries fades away, and the unrecrystallized zones are consumed by adjacent recrystallized grains. The migration of high angle grain boundaries along normal direction leads a gradual transformation from the elongated grains to the nearly equiaxed, which is driven by the tension of the grain boundaries.

  18. Effects of recrystallization annealing on mechanical properties of cold-rolled PdNi5 wires

    Directory of Open Access Journals (Sweden)

    Aleksandra Ivanović

    2016-03-01

    Full Text Available The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.

  19. [Investigation of the recrystallization of trehalose as a good glass-former excipient].

    Science.gov (United States)

    Katona, Gábor; Orsolya, Jójártné Laczkovich; Szabóné, Révész Piroska

    2014-01-01

    An amorphous form of trehalose is easy to prepare by using a solvent method. The recrystallization kinetics can be followed well, which is important because of the occurrence of polymorphic forms of trehalose. This is especially significant in the case of dry powder inhalers. Spray-drying was used as a preparation method this being one of the most efficient technologies with which to obtain an amorphous form. This method can result in the required particle size and a monodisperse distribution with excellent flowability and with moreover considerable amorphization. In our work, trehalose was applied as a technological auxiliary agent, and literature data relating to the spray-drying technology of trehalose were collected. Studies were made of the influence of the spraying process on the amorphization of trehalose and on the recrystallization of amorphous trehalose during storage. Amorphous samples were investigated under 3 different conditions during 3 months. The recrystallization process was followed by differential scanning calorimetry and X-ray powder diffraction. The results demonstrated the perfect amorphization of trehalose during the spray-drying process. The glass transition temperature was well measurable in the samples and proved to be the same as the literature data. Recrystallization under normal conditions was very slow but at high relative humidity the process was accelerated greatly. Amorphous trehalose gave rise to dihydrate forms (gamma- and h-trehaloses) during recrystallization, and beta-trehalose was also identified as an anhydrous form.

  20. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose.