WorldWideScience

Sample records for continuous dna synthesis

  1. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    International Nuclear Information System (INIS)

    Weniger, P.; Klein, W.; Ott, E.; Kocsis, F.; Altmann, H.

    1990-01-01

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of DNA. Usually, in an in vivo - in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation was observed over a long period of time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten time intervals during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose a half-life of some minutes is found - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. (author) 4 figs

  2. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    International Nuclear Information System (INIS)

    Weniger, P.; Klein, W.; Ott, E.; Kocsis, F.; Altmann, H.

    1988-08-01

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of the DNA. Usually, in an in vivo -in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation should be observed for a long time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten points of time during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose you find a half time of some minutes - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. 4 figs. (Author)

  3. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  4. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  5. Effects of inhibitors of DNA synthesis and protein synthesis on the rate of DNA synthesis after exposure of mammalian cells to ultraviolet light

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Dahle, D.B.; Meechan, P.J.; Carpenter, J.G.

    1981-01-01

    Chinese hamster V-79 cells were treated with metabolic inhibitors of DNA or protein synthesis for various intervals of time after exposure of 3.0 or 5.0 J m -2 . After removal of the metabolic block(s) the rate of DNA synthesis was followed by measuring the incorporation of [ 14 C]thymidine into acid-insoluble material. A 2.5 or 5.0h incubation with cycloheximide or hydroxyurea was effective in delaying the onset of the recovery in the rate of DNA synthesis that normally becomes evident several hours after exposure to ultraviolet light. By using concentrations of cycloheximide or hydroxyurea that inhibit DNA synthesis by a similar amount (70%), but protein synthesis by vastly different amounts (95% for cycloheximide; 0% for hydroxyurea), it was apparent that the delay in recovery caused by the treatment of the cells with cycloheximide could be accounted for entirely by its inhibitory effect on DNA synthesis. This suggests that the recovery in DNA synthetic rates following exposure of V-79 cells to ultraviolet light does not appear to require de novo protein synthesis, and therefore does not appear to require the involvement of an inducible DNA repair process. (Auth.)

  6. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells

    International Nuclear Information System (INIS)

    Seki, Shuji; Hosogi, Nobuo; Oda, Takuzo

    1984-01-01

    In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97 % by aphidicolin at 10 μg/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30 % and 90 % depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS) in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90 % at 100 μg/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 μg/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase α and a non-α DNA polymerase (possibly DNA polymerase β), are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase α in UDS favored DNA synthesis in the intranucleosomal region. (author)

  7. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  8. Spontaneous unscheduled DNA synthesis in human lymphocytes

    International Nuclear Information System (INIS)

    Forell, B.; Myers, L.S. Jr.; Norman, A.

    1979-01-01

    The rate of spontaneous unscheduled DNA synthesis in human lymphocytes was estimated from measurements of tritiated thymidine incorporation into double-stranded DNA (ds-DNA) during incubation of cells in vitro. The contribution of scheduled DNA synthesis to the observed incorporation was reduced by inhibiting replication with hydroxyurea and by separating freshly replicated single-stranded DNA (ss-DNA) from repaired ds-DNA by column chromatography. The residual contribution of scheduled DNA synthesis was estimated by observing effects on thymidine incorporation of: (a) increasing the rate of production of apurinic sites, and alternatively, (b) increasing the number of cells in S-phase. Corrections based on estimates of endogenous pool size were also made. The rate of spontaneous unscheduled DNA synthesis is estimated to be 490 +- 120 thymidine molecules incorporated per cell per hour. These results compare favorably with estimates made from rates of depurination and depyrimidination of DNA, measured in molecular systems if we assume thymidine is incorporated by a short patch mechanism which incorporates an average of four bases per lesion

  9. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA

    International Nuclear Information System (INIS)

    Setlow, B.; Hand, A.R.; Setlow, P.

    1991-01-01

    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores

  10. DNA alkylation and tumor induction in regenerating rat liver after cell cycle-related continuous N-nitrosodimethylamine infusion

    Energy Technology Data Exchange (ETDEWEB)

    Rabes, H.M.; Kerler, R.; Wilhelm, R.

    1983-01-01

    Synchronized regenerating rat liver after partial hepatectomy was used to study cell cycle-related DNA base alkylation and liver carcinogenesis. A continuous iv infusion of (/sup 14/C)N-nitrosodimethylamine (DMN) at a dose of 0.5 mg/kg/hour was given to inbred male Wistar Af/Han rats over a period of 8 hours either during the G1 phase, hydroxyurea-synchronized DNA synthesis, or the G2+M-phase of regenerating liver or to untreated rats (G0-phase liver--carcinogen dose, 1.5 mg/kg/hour). Two hours after the end of the infusion, the amount of 7-methylguanine was highest in the G0-phase liver, with a decrease in the G1 phase, the S-phase, and the G2+M-phase. After continuous DMN exposure, the O/sub 6/-methylguanine:7-methylguanine ratio was lower in the S-phase and G2+M-phase livers than in the G0-phase and G1-phase livers, indicating an increased O/sub 6/-methylguanine repair during DNA synthesis and the G2+M-phase. Liver tumors in rats treated by continuous DMN infusion either during the G0 phase or the S-phase developed only after carcinogen exposure during DNA synthesis.

  11. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, M [Sektion Biologie, FG Algemeine Botanik und Pflanzenphysiologie, Universitaet Greifswald (German Democratic Republic)

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of /sup 3/H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds.

  12. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    International Nuclear Information System (INIS)

    Hecker, M.

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of 3 H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds. (author)

  13. Radiation metagenesis and inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Dubinina, L.G.; Sergievskaya, S.P.; Kurashova, Z.I.; Dubinin, N.P.

    1983-01-01

    The study of modification of radiation mutagenesis and inhibition of the DNA synthesis by means of 1-β-D arabinofuranosylcytosine (ara-C) is carried out. It is shown that ara-C-acting on chromosomes in the G 1 phase and G 2 phase does not cause mutations in the C capillaris cells. The modification by means of ara-C radiation effect in the G 1 phase and G 2 phase correlates with duration and time of administering ara-C before and after irradiation. A new form of ara-C DNA synthesis inhibitor interaction with mutation processes has been found out. Protective effect of the DNA synthesis inhibitor (ara-C) from mutageneous radiation effect is stressed. Sensibilization of the radiation mutagenesis during cell treafment by the DNA synthesis inhibitor (ara-C) is shown. It is pointed out that emergence of sensibilization or protective effect, i. e. antimutagenesis phenomenon depends on conditions under which the synthesis inhibitor acted in G 1 and G 2 phases

  14. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  15. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  16. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  17. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases α and δ by butylphenyl deoxyguanosine triphosphate

    International Nuclear Information System (INIS)

    Dreslor, S.L.; Frattini, M.G.

    1987-01-01

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, α and/or δ. They have studied the inhibition of replication and repair synthesis in permeable human cells by N 2 (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase α strongly and polymerase δ weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 μM and, for repair synthesis, 3-4 μM, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase α by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase δ is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase δ were hampered by the finding that the dependence of δ activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase α and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase δ, but some other characteristics of the cellular processes are more similar to those of polymerase α

  18. Inhibition of the synthesis of polyamines and DNA in activated lymphocytes by a combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Morris, D R; Jorstad, C M; Seyfried, C E

    1977-09-01

    The cancer chemotherapeutic drug, methylglyoxal bis(guanylhydrazone), inhibits the synthesis of spermidine and spermine, but allows continued putrescine production in small lymphocytes stimulated by concanavalin A. DNA replication in these cells is inhibited 50% while the synthesis of protein and RNA continues normally. When excess putrescine accumulation in the presence of methylglyoxal bis(guanylhydrazone) was inhibited with alpha-methylornithine, a competitive inhibitor of ornithine decarboxylase, the inhibition of DNA replication was accentuated, with still no effect on protein or RNA synthesis. No inhibition of DNA synthesis by the combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone) was observed when the inhibitors were added after accumulation of cellular polyamines. In addition, inhibition was reversed by exogenous putrescine, spermidine, or spermine. We conclude that putrescine can fulfill in part the role normally played by spermidine and spermine in DNA replication, and that blocking putrescine synthesis in the presence of methylglyoxal bis(guanylhydrazone) amplifies the polyamine requirement. The implications of this with regard to polyamine synthesis as a site of chemotherapy are discussed.

  19. Effects of carcinogen treatment on rat liver DNA synthesis in vivo and on nascent DNA synthesis and elongation in cultured hepatocytes

    International Nuclear Information System (INIS)

    Zurlo, J.; Mignano, J.E.; Eustice, D.C.; Poirier, M.C.; Yager, J.D.

    1986-01-01

    One objective of this study was to determine the effects of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) treatment on DNA synthesis in regenerating rat liver. It was found that N-OH-AAF caused a dose-dependent inhibition of [ 3 H]thymidine incorporation into liver DNA. This inhibition was followed by a gradual, but incomplete recovery. The second objective of the study was to determine the effects of DNA damage on the size distribution and elongation of nascent hepatocyte DNA. Hepatocytes, which have been shown to demonstrate a pattern of inhibition and subsequent recovery of DNA synthesis following UV irradiation similar to that seen in vivo upon treatment with N-OH-AAF were cultured. The size distribution of nascent DNA after UV irradiation was determined by pH step gradient alkaline elution analysis. The results show that UV irradiation caused a dose-dependent decrease in the size distribution of nascent DNA suggesting an inhibition of elongation. The results show that resumption of DNA synthesis and nascent strand elongation occur on damaged templates. These observations along with previous studies support the idea that DNA damage leading to inhibition of DNA synthesis may induce SOS-type processes which if mutagenic may play a role in the initiation of carcinogenesis. (Auth.)

  20. DNA-synthesis inhibition and repair DNA-synthesis in CHO Ade- C cells: An alternative approach to genotoxicity testing

    International Nuclear Information System (INIS)

    Slamenova, D.; Papsova, E.; Gabelova, A.; Dusinska, M.; Collins, A.; Wsolova, L.

    1997-01-01

    We describe an alternative assay to determine genotoxicity. Its main feature is that it combines two measures in a single experiment; the inhibition of replicative DNA synthesis together with the stimulation of DNA repair. We show that, in tests of four different genotoxic agents, the assay gives results that are entirely consistent with what is known about the mode of action of these agents. In addition, we have demonstrated that chemical carcinogens requiring metabolic activation can be examined using a standard procedure of incubation with a microsomal activating fraction. We consider the combined assay for DNA synthesis inhibition and repair synthesis to be a useful way for the rapid pre-screening of chemicals suspected of genotoxic activity on the level of mammalian cells. (author)

  1. Effects of DNA polymerase inhibitors on replicative and repair DNA synthesis in ultraviolet-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Morita, T.; Nakamura, H.; Tsutsui, Y.; Nishiyama, Y.; Yoshida, S.

    1982-01-01

    Aphidicolin specifically inhibits eukaryotic DNA polymerase α, while 2',3'-dideoxythymidine 5'-triphosphate (d 2 TTP) inhibits DNA polymerase ν and ν but not α. 1-ν-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP) inhibits both DNA polymerase α and ν although to a different extent. Here we measured the effects of these inhibitors on repair DNA synthesis of U.V.-irradiated HeLa cells by two different methods. Firstly, aphidicolin, 1-ν-D-arabinofuranosylcytosine (araC, a precursor of araCTP) and 2',3'-dideoxythimidine (d 2 Thd, a precursor of d 2 TTP) were added directly to the culture medium. In this case, aphidicolin and araC strongly inhibited replicative DNA synthesis of HeLa cells, and they also inhibited repair synthesis after U.V.-irradiation but to a much lesser extent. In contrast, high concentrations of d 2 Thd inhibited repair DNA synthesis to a higher extent than replicative DNA synthesis. Secondly, the active form of inhibitor, d 2 TTP, was microinjected directly into cytoplasm or nuclei or U.V.-irradiated HeLa cells. Microinjection of d 2 TTP effectively inhibited repair synthesis. The microinjection of d 2 TTP, into either cytoplasm or nucleus, strongly inhibited replicative synthesis. These results might indicate that multiple DNA polymerases are involved in repair synthesis as well as in replicative synthesis

  2. DNA repair synthesis dependent on the uvrA,B gene products

    International Nuclear Information System (INIS)

    Moses, R.E.; Moody, E.E.M.

    1975-01-01

    Ultraviolet irradiation of toluene-treated Escherichia coli causes an inhibition of replicative DNA synthesis. This is followed by the appearance of nonconservative DNA repair synthesis which does not require either the polymerase or 5' → 3' exonucleolytic activities of DNA polymerase I. The repair synthesis may be catalyzed by DNA polymerase III activity but does not require a functional DNA polymerase II. The ultraviolet-induced synthesis requires ATP and is dependent on a functional uvrA and uvrB gene product. However, other uvr gene products are not required for the synthesis. The recB function is also not required

  3. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  4. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  5. Stimulation of DNA synthesis in bacterial DNA-membrane complexes after low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D K [Hammersmith Hospital, London (UK). M.R.C. Experimental Radiopathology Unit

    1980-09-01

    DNA-membrane complexes from three strains of E. coli were irradiated and changes in the rates of DNA synthesis were observed. Doses from 1-10 krad to complexes from W3110 and pol A1 strains gave up to a 100 per cent increase in DNA synthesis; under the same conditions, no change was observed in Bsub(s-1). The degree of stimulation did not depend on the presence of oxygen during irradiation, and a post-irradiation incubation was necessary to achieve activation. The properties of all three complexes were similar when unirradiated. Irradiation of intact organisms under conditions which produced marked, oxygen-dependent inhibition of the Bsub(s-1) complex had no significant effect on those from W3110 and pol A1. Enhanced DNA synthesis is concluded to be due wholly to repair of pre-existing DNA. It is further postulated that DNA synthesis in untreated complexes (E.coli B's,W3110 and pol A1) is mainly of the repair-type and does not necessarily take place at the site of DNA-membrane attachment.

  6. γ-irradiation induces radioresistant DNA synthesis in HeLa cells

    International Nuclear Information System (INIS)

    Synzynys, B.I.; Aminev, A.G.; Konstantinova, S.A.; Saenko, A.S.

    1987-01-01

    Cells of suspension HeLa culture at the logarithmic phase of growth were exposed to 60 Co-γ-rays (5 Gy), incubated in the nutritious medium, and in 4 h subjected to repeated irradiation: the dose-response function and the dynamics of DNA synthesis inhibition were determined. It was shown that DNA synthesis was inhibited to a lesser extent after preirradiation, in other words, DNA synthesis was radioresistant. A correlation between this synthesis and reproductive cell death is discussed

  7. DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dardalhon-Samsonoff, M; Averbeck, D [Institut du Radium, 75 - Paris (France). Lab. Curie

    1980-07-01

    The DNA-membrane complex in Micrococcus radiodurans was shown to be essentially constituted of proteins, lipids and DNA. The complex was dissociated immediately after X-irradiation of cells and restored during post-incubation in complete medium. In X-irradiated protoplasts some DNA remained associated with the complex. Restoration of the complex during post-incubation was only seen in a medium favouring DNA polymerase and ligase activities. Under this condition no DNA synthesis occurred, suggesting that complex restoration may involve ligase activity. The complex restoration in the wild type and the X-ray sensitive mutant UV17 of M. radiodurans was strictly dependent on the X-ray dose. It was correlated with survival and DNA degradation but always preceded the onset of DNA synthesis after X-irradiation. At the same dose the complex restoration was about 2 fold lower in mutant than in wild type cells indicating that the restoration of the complex is related to repair capacity. The results are consistent with the idea that the complex protects X-irradiated DNA of M. radiodurans from further breakdown and, subsequently, permits DNA synthesis and repair to occur.

  8. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  9. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  10. Action of some drugs on enzymes involved in DNA-repair and semiconservative DNA-synthesis

    International Nuclear Information System (INIS)

    Wawra, E.; Klein, W.; Kocsis, F.; Weniger, P.

    1975-07-01

    Different antirheumatic and cytostatic drugs had been tested by measurement of the thymidine incorporation into DNA of spleen cells under conditions, under which either DNA-synthesis or repair after gamma- or UV-irradiation takes place. There are substances, which inhibit either only the semiconservative DNA-synthesis (vinblastine, isonicotinic acid hydracide) or only DNA-repair after gamma-irradiation (mixture of penicillin-G and procaine-penicillin-G) or both (cyclophosphamide, phenylbutazone, procarbazine, nalidixic acid). Vincristine shows no effect on the thymidine incorporation in DNA, but by density gradient centrifugation it has been found that it influences the ligase reaction. Two DNA polymerases had been isolated from spleen cells, one of the low molecular and one of the high molecular weight type. The influences of the described drugs on these enzymes and on a deoxyribonuclease I from beef pancreas have been tested in ''in vitro'' systems. In all cases, it has been found that there is no effect or only a very small one, compared with the action of well known inhibitors as e.g. ethidium bromide and p-chloromercuribenzoate, and this cannot be responsible for the suppressions found in DNA-repair and semiconservative DNA-synthesis. (author)

  11. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Dorson, J.W.; Moses, R.E.

    1978-01-01

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  12. ATP-independent DNA synthesis in Vaccinia-infected L cells

    International Nuclear Information System (INIS)

    Berger, N.A.; Kauff, R.A.; Sikorski, G.W.

    1978-01-01

    Mouse L cells can be made permeable to exogenous nucleotides by a cold shock in 0.01 M Tris . HCl pH 7.8, 0.25 M sucrose, 1 mM EDTA, 30 mM 2-mercaptoethanol and 4 mM MgCl 2 . DNA synthesis in permeabilized L cells requires ATP whereas DNA synthesis in permeabilized L cells that are infected with Vaccinia virus is ATP-independent. Permeabilized L cells that are infected with ultraviolet-irradiated virus show a marked suppression of DNA synthesis which is not corrected by an excess of deoxynucleoside triphosphates and ATP. The ATP-dependent and ATP-independent processes of DNA synthesis are inhibited to the same extent by Mal-Net, pHMB, ara CTP and phosphonoacetate. Concentrations of daunorubicin and cytembena, which cause marked inhibition of the ATP-dependent enzymes, only cause partial inhibition of the ATP-independent enzymes. (Auth.)

  13. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  14. Second-strand cDNA synthesis: classical method

    International Nuclear Information System (INIS)

    Gubler, U.

    1987-01-01

    The classical scheme for the synthesis of double-stranded cDNA as it was reported in 1976 is described. Reverse transcription of mRNA with oligo(dT) as the primer generates first strands with a small loop at the 3' end of the cDNA (the end that corresponds to the 5' end of the mRNA). Subsequent removal of the mRNA by alkaline hydrolysis leaves single-stranded cDNA molecules again with a small 3' loop. This loop can be used by either reverse transcriptase or Klenow fragment of DNA polymerase I as a primer for second-strand synthesis. The resulting products are double-stranded cDNA molecules that are covalently closed at the end corresponding to the 5' end of the original mRNA. Subsequent cleavage of the short piece of single-stranded cDNA within the loop with the single-strand-specific S 1 nuclease generate open double-stranded molecules that can be used for molecular cloning in plasmids or in phage. Useful variations of this scheme have been described

  15. Radioresistant DNA synthesis in fibroblasts of a patient with Down's syndrome

    International Nuclear Information System (INIS)

    Barenfel'd, L.S.; Bil'din, V.N.; Pleskach, N.M.; Prokof'eva, V.V.

    1985-01-01

    Ionizing radiation effect on DNA replication on fibroblasts of a healthy donor and a patient with Down's syndrome either by direct 3 H-thymidine inclusion into DNA, or by analysis of the sizes of daughter DNA moleculs at the state of stable distribution in acid saccharose, gradients was studied. Gamma-radiation doses (5-10 Gy) suppressing DNA synthesis in normal fibroblasts practically had no effect on DNA synthesisin fibroblasts of a patient with Down's syndrome. Radioresistant DNA synthesis in Down's syndrome is conditioned by a far less supression of replicon initiation as compared with the one in normal cells. So, it is stated that in Down's disease there is no delay in DNA synthesis by ionizing radiation that enables the normal cells to repair DNA damages before replication renewal

  16. Radiation-induced depression of DNA synthesis in cultured mammalian cells

    International Nuclear Information System (INIS)

    Povirk, L.F.

    1977-01-01

    A 313-nm light source was constructed in order to study the mechanisms by which ultraviolet and ionizing radiations inhibit DNA synthesis. It was found that in CHO, MDBK and HeLa cells, grown for one generation in the DNA sensitizer bromodeoxyuridine (BrdUrd), 313-nm light inhibited DNA synthesis with a pattern similar to that of the effect of x-rays on normal cells. A biphasic dose response curve for inhibition of total synthesis was observed, with a sensitive component representing depression of initiation of new replicons and a resistant component representing interference with elongation of replicons already growing at the time of irradiation. Since the BrdUrd plus 313-nm light treatment produces DNA lesions similar to those produced by x-rays (base damage, strand breaks, crosslinks) these results suggest that the effect of x-rays on DNA synthesis is mediated by DNA damage. In experiments with synchronized cells, it was found that in cells in which about half the chromosomes had incorporated BrdUrd, 313-nm light inhibited replication of the BrdUrd-containing DNA, but had no effect on the replication of the unsubstituted DNA in the same cell. Thus the information that DNA is damaged appears to be propagated along the DNA molecule from the sites of damage to the replication initiation sites as some kind of conformational change, possibly a relaxation of superhelical tension. Target theory calculations suggest that a single DNA lesion prevents the initiation of several adjacent replicons

  17. Inhibition and recovery of semiconservative DNA synthesis in normal and solar UV sensitive ICR 2A frog cell lines following the induction of non-dimer DNA damage by sunlamp UV > 315 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rosenstein, B.S. (Brown Univ., Providence, RI (USA). Dept. of Radiation Medicine)

    1989-08-01

    Cultures of solar UV-sensitive cell lines DRP 36 and DRP 153, and of the parental ICR 2A cell line, were exposed to 150 kJ/m{sup 2} of sunlamp UV>315nm plus photoreactivating light, resulting in the induction primarily of non-dimer DNA damage. Following either 0, 3, 6, 12 or 24 h incubation, cultures were pulse-labelled with ({sup 3}H) thymidine, and the synthesis of different size classes of replicon intermediates measured using alkaline step elution assay. For all three cell lines tested, an immediate depression of low molecular weight DNA synthesis was observed, followed by inhibition of all size classes of replicon intermediates. Within 12 h following irradiation, recovery of DNA synthesis was observed, generally most apparent for low molecular weight DNA. The ICR 2A cells exhibited a nearly full recovery in all size classes of DNA synthesized by 24 h. A much smaller recovery of continued inhibition was primarily in the synthesis of full replicon size DNA, and most pronounced for DRP 36 cells. (author).

  18. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  19. 67Ga-citrate incorporation and DNA synthesis in tumors

    International Nuclear Information System (INIS)

    Hammersley, P.A.G.; Taylor, D.M.

    1975-01-01

    The results obtained in these studies suggest that in the tumors studied there is some form of relationship between 67 Ga uptake and the rate of DNA synthesis. However, the observations in the HP melanoma, in which small tumors showed a negative correlation between 67 Ga uptake and rate of DNA synthesis and larger tumors showed a positive correlation, coupled with the virtually constant uptake of 67 Ga over a wide range of rates of DNA synthesis in the drug- and radiation-treated tumors, suggest that the uptake of the radionuclide is not simply related to the rate of DNA synthesis per se. Studies in embryonic mouse tissues suggested that 67 Ga uptake was not related to the rate of DNA synthesis and regenerating liver does not show a greater 67 Ga uptake than normal liver. Phytohemagglutinin-treated human lymphocytes show increased 67 Ga uptake compared to unstimulated lymphocytes, and it has been suggested that this is related to the stimulus to divide rather than to events occurring in a specific phase of the cell cycle. This suggests that proliferating cells may exhibit membrane changes which either result in increased transport of 67 Ga into the cell or permit a greater degree of binding of the radionuclide to the cell membrane than can occur in resting cells. The membrane-binding hypothesis is supported by the observations on phytohemagglutinin-stimulated lymphocytes but not by observations of the subcellular distribution of 67 Ga in these tumors which confirm the suggestion that the radionuclide is concentrated in lysosomes. Thus it appears that although in tumor cells, at least, there is some correlation between 67 Ga uptake and the rate of DNA synthesis and hence by implication of cell proliferation, the nature of this link remains obscure, and more detailed studies are needed to increase our understanding of the relationship

  20. Correspondence: chromosomal localization of uv-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Berliner, J.; Mello, R.S.; Norman, A.

    1976-01-01

    We have measured the grain density - the number of grains per unit length - over the centromere and noncentromere regions of metaphase chromosomes in autoradiographs of human lymphocytes. When the chromosomes were labeled in G 0 by uv-induced unscheduled DNA synthesis, the grain density was two to four times larger over the centromere than over the noncentromere regions. When the labeling was done by scheduled DNA synthesis in S or unscheduled synthesis in M, the grain densities were approximately equal over both regions

  1. Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates.

    Science.gov (United States)

    Stengel, Gudrun; Kuchta, Robert D

    2011-01-01

    The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (∼0.2 to 0.6 kb) were significantly shorter than leading strand products (∼2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not

  2. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps...... into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early...... mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  3. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    Science.gov (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  4. Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin

    International Nuclear Information System (INIS)

    Bowden, G.T.; Trosko, J.E.; Shapas, B.G.; Boutwell, R.K.

    1975-01-01

    Pyrimidine dimer production and excision in epidermal DNA were studied at five different dose levels of ultraviolet light in the skin of intact mice. Dimer production increased with dose up to 50,400 ergs/sq mm. Approximately 30 percent of the thymine-containing dimers were excised by 24 hr after irradiation at three lower dose levels of ultraviolet light. Nonsemiconservative DNA replication in ultraviolet-irradiated mouse skin was shown to continue for at least 18 hr. The rate of nonsemiconservative replication decreased with time, but did so slowly. The initial rates of nonsemiconservative replication increased with ultraviolet light dose levels up to about 4200 ergs/sq mm, after which the initial rates were decreased. Semiconservative epidermal DNA synthesis was shown to be inhibited by hydroxyurea, but hydroxyurea had no effect on ultraviolet light-induced nonsemiconservative DNA replication. The observed pyrimidine dimer excision and nonsemiconservative DNA replication suggest that in the intact mouse the cells of the epidermis are capable of DNA excision repair after ultraviolet irradiation of mouse skin

  5. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  6. Induction of unscheduled DNA synthesis on the nuclear matrix of rat hepatocytes after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Bezlepkin, V.G.; Malinovskij, Yu.Yu.; Kuznetsova, E.A.; Namvar, R.A.; Gaziev, A.I.

    1986-01-01

    DNA synthesis in hepatocytes was studied by incorporation of [ 3 H]thymidine administered of portal vein of γ-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one (''aberrant'' DNA synthesis) accounts for a considerable fraction of γ-radiation-induced synthesis of DNA at the nuclear matrix

  7. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  8. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  9. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilizati...

  10. Stimulatory effect of low dose radionuclide on DNA synthesis and UDS in splenic lymphocytes

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Yang Zhanshan

    1999-12-01

    To study the stimulatory effect on DNA synthesis and unscheduled DNA synthesis (UDS) in splenic lymphocytes induced by low dose enriched uranium 235 U. By using 3 H-TdR incorporation assay technique, the DNA replicative synthesis in PHA and LPS stimulated splenic lymphocytes was observed. By using DNA synthesis inhibitor such as hydroxyurea, the UV-induced unscheduled DNA synthesis in splenic lymphocytes occurred. When the injected low dose of enriched uranium 235 u was 0.1 μg/kg body weight, the transformation capacity was elevated for splenic T lymphocytes, simultaneously the stimulative index increased. The UDS of splenic lymphocytes induced by ultra-violate revealed a statistically significant increase by low dose of enriched uranium 235 U at the range of 0.1-20 μg/kg body weight. A stimulatory action of low dose enriched uranium 235 U on DNA replicative synthesis as well as on UV-induced UDS in splenic lymphocytes was detected

  11. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  12. Unscheduled DNA synthesis and elimination of DNA damage in liver cells of. gamma. -irradiated senescent mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A.I.; Malakhova, L.V. (AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki)

    1982-10-01

    The level of 'spontaneous' and ..gamma..-radiation-induced DNA synthesis which is not inhibited with hydroxyurea (unscheduled synthesis) is considerably lower in hepatocytes of 18-22-month-old mice than that of 1.5-2-month-old mice. The dose-dependent increase (10-300 Gy) of unscheduled DNA synthesis (UDS) in hepatocytes of senescent mice is higher than in young animals. The elimination of damage in DNA of ..gamma..-irradiated hepatocytes (100 Gy) was examined by using an enzyme system (M. luteus extract and DNA-polymerase I of E. coli). It was found that the rate of elimination of the DNA damage in hepatocytes of 20-month-old mice is lower than that of 2-month-old mice although the activities of DNA-polymerase ..beta.. and apurinic endonuclease remain equal in the liver of both senescent and young mice. However, the nucleoids from ..gamma..-irradiated liver nuclei of 2-month-old mice are relaxed to a greater extent (as judged by the criterion of ethidium-binding capacity) than those of 20-month-old mice. The results suggest that there are limitations in the functioning of repair enzymes and in their access to damaged DNA sites in the chromatin of senescent mouse liver cells.

  13. Radioresistant DNA synthesis in cells of patients showing increased chromosomal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Barenfeld, L.S.; Pleskach, N.M.; Bildin, V.N.; Prokofjeva, V.V.; Mikhelson, V.M.

    1986-01-01

    The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [ 3 H]DNA in alkaline sucrose gradients or by direct assay of the amount of [ 3 H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations. (orig.)

  14. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    International Nuclear Information System (INIS)

    Ching, A.S.L.; Berger, J.D.

    1986-01-01

    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions

  15. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  16. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  17. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.

    Science.gov (United States)

    Gan, Haiyun; Yu, Chuanhe; Devbhandari, Sujan; Sharma, Sushma; Han, Junhong; Chabes, Andrei; Remus, Dirk; Zhang, Zhiguo

    2017-10-19

    The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids. 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of.

  19. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  20. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  1. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  2. Potency of carcinogens derived from covalent DNA binding and stimulation of DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Lutz, W.K.; Buesser, M.T.; Sagelsdorff, P.

    1984-01-01

    In order to investigate the role of the stimulation of cell division for the initiation (and possibly promotion) of liver tumors by chemical carcinogens, the incorporation of radiolabelled thymidine into liver DNA was determined in male rats. Single doses of various levels of aflatoxin B1, benzidine and carbon tetrachloride (all known to be genotoxic via DNA binding) did not affect cell division, whereas several hepatocarcinogens known not to bind to DNA (alpha-HCH, clofibrate, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) gave rise to a dose-dependent stimulation of liver DNA synthesis within 24 h. An equation combining the influences of mitotic stimulation, expressed as dose required to double the control level of DNA synthesis, and DNA binding potency, expressed as the Covalent Binding Index, correlated well with the carcinogenic potency for both classes of hepatocarcinogens

  3. In vivo effects of T-2 mycotoxin on synthesis of proteins and DNA in rat tissues

    International Nuclear Information System (INIS)

    Thompson, W.L.; Wannemacher, R.W. Jr.

    1990-01-01

    Rats were given an ip injection of T-2 mycotoxin (T-2), the T-2 metabolite, T-2 tetraol (tetraol), or cycloheximide. Serum, liver, heart, kidney, spleen, muscle, and intestine were collected at 3, 6, and 9 hr postinjection after a 2-hr pulse at each time with [14C]leucine and [3H]thymidine. Protein and DNA synthesis levels in rats were determined by dual-label counting of the acid-precipitable fraction of tissue homogenates. Rats given a lethal dose of T-2, tetraol, or cycloheximide died between 14 and 20 hr. Maximum inhibition of protein synthesis at the earliest time period was observed in additional rats given the same lethal dose of the three treatments and continued for the duration of the study (9 hr). With sublethal doses of T-2 or tetraol, the same early decrease in protein synthesis was observed but, in most of the tissues, recovery was seen with time. In the T-2-treated rats. DNA synthesis in the six tissues studied was also suppressed, although to a lesser degree. With sublethal doses, complete recovery of DNA synthesis took place in four of the six tissues by 9 hr after toxin exposure. The appearance of newly translated serum proteins did not occur in the animals treated with T-2 mycotoxin or cycloheximide, as evidenced by total and PCA-soluble serum levels of labeled leucine. An increase in tissue-pool levels of free leucine and thymidine in response to T-2 mycotoxin was also noted. T-2 mycotoxin, its metabolite, T-2 tetraol, and cycloheximide cause a rapid inhibition of protein and DNA synthesis in all tissue types studied. These results are compared with the responses seen in in vitro studies

  4. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  5. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  6. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  7. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  8. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  9. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  10. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  11. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  12. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    Science.gov (United States)

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  13. Survey of current trends in DNA synthesis core facilities.

    Science.gov (United States)

    Hager, K M; Fox, J W; Gunthorpe, M; Lilley, K S; Yeung, A

    1999-12-01

    The Nucleic Acids Research Group of the Association of Biomolecular Resource Facilities (ABRF) last surveyed DNA synthesis core facilities in April 1995. Because of the introduction of new technologies and dramatic changes in the market, we sought to update survey information and to determine how academic facilities responded to the challenge presented by commercial counterparts. The online survey was opened in January 1999 by notifying members and subscribers to the ABRF electronic discussion group. The survey consisted of five parts: general facility information, oligonucleotide production profile, oligonucleotide charges, synthesis protocols, and trends in DNA synthesis (including individual comments). All submitted data were anonymously coded. Respondents from DNA synthesis facilities were primarily from the academic category and were established between 1984 and 1991. Typically, a facility provides additional services such as DNA sequencing and has upgraded to electronic ordering. There is stability in staffing profiles for these facilities in that the total number of employees is relatively unchanged, the tenure for staff averages 5.9 years, and experience is extensive. On average, academic facilities annually produce approximately 1/16 the number of oligonucleotides produced by the average commercial facilities, but all facilities report an increase in demand. Charges for standard oligonucleotides from academic facilities are relatively higher than from commercial companies; however, the opposite is true for modified phosphoramidites. Subsidized facilities charge less than nonsubsidized facilities. Synthesis protocols and reagents are standard across the categories. Most facilities offer typical modifications such as biotinylation. Despite the competition by large commercial facilities that have reduced costs dramatically, academic facilities remain a stable entity. Academic facilities enhance the quality of service by focusing on nonstandard

  14. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo

    2004-09-01

    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  15. Semi-conservative synthesis of DNA in UV-sensitive mutant cells of Chinese hamster after UV-irradiation

    International Nuclear Information System (INIS)

    Vikhanskaya, F.L.; Khrebtukova, I.A.; Manuilova, E.S.

    1985-01-01

    A study was made of the rate of semi-conservative DNA synthesis in asynchronous UV-resistant (clone V79) and UV-sensitive clones (VII and XII) of Chinese hamster cells after UV-irradiation. In all 3 clones studied, UV-irradiation (5-30 J/m 2 ) induced a decrease in the rate of DNA synthesis during the subsequent 1-2 h. In the resistant clone (V79) recovery of DNA synthesis rate started after the first 2 h post-irradiation (5 J/m 2 ) and by the 3rd hour reached its maximum value, which constituted 70% of that observed in control, non-irradiated cells. The UV-sensitive mutant clones VII and XII showed no recovery in the rate of DNA synthesis during 6-7 h post-irradiation. The results obtained show that the survival of cells is correlated with the ability of DNA synthesis to recover after UV-irradiation in 3 clones studied. The observed recovery of UV-inhibited DNA synthesis in mutant clones may be due to certain defects in DNA repair. (orig.)

  16. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  17. Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli

    International Nuclear Information System (INIS)

    Rosen, H.; Orman, J.; Rakita, R.M.; Michel, B.R.; VanDevanter, D.R.

    1990-01-01

    Neutrophils and monocytes employ a diverse array of antimicrobial effector systems to support their host defense functions. The mechanisms of action of most of these systems are incompletely understood. The present report indicates that microbicidal activity by a neutrophil-derived antimicrobial system, consisting of myeloperoxidase, enzymatically generated hydrogen peroxide, and chloride ion, is accompanied by prompt cessation of DNA synthesis in Escherichia coli, as determined by markedly reduced incorporation of [ 3 H]thymidine into trichloracetic acid-precipitable material. Simultaneously, the myeloperoxidase system mediates a decline in the ability of E. coli membranes to bind hemimethylated DNA sequences containing the E. coli chromosomal origin of replication (oriC). Binding of oriC to the E. coli membrane is an essential element of orderly chromosomal DNA replication. Comparable early changes in DNA synthesis and DNA-membrane interactions were not observed with alternative oxidant or antibiotic-mediated microbicidal systems. It is proposed that oxidants generated by the myeloperoxidase system modify the E. coli membrane in such a fashion that oriC binding is markedly impaired. As a consequence chromosomal DNA replication is impaired and organisms can no longer replicate

  18. Synthesis of CdS nanoparticles based on DNA network templates

    International Nuclear Information System (INIS)

    Yao Yong; Song Yonghai; Wang Li

    2008-01-01

    CdS nanoparticles have been successfully synthesized by using DNA networks as templates. The synthesis was carried out by first dropping a mixture of cadmium acetate and DNA on a mica surface for the formation of the DNA network template and then transferring the sample into a heated thiourea solution. The Cd 2+ reacted with thiourea at high temperature and formed CdS nanoparticles on the DNA network template. UV-vis spectroscopy, photoluminescence, x-ray diffraction and atomic force microscopy (AFM) were used to characterize the CdS nanoparticles in detail. AFM results showed that the resulted CdS nanoparticles were directly aligned on the DNA network templates and that the synthesis and assembly of CdS nanoparticles was realized in one step. CdS nanoparticles fabricated with this method were smaller than those directly synthesized in a thiourea solution and were uniformly aligned on the DNA networks. By adjusting the density of the DNA networks and the concentration of Cd 2+ , the size and density of the CdS nanoparticles could be effectively controlled and CdS nanoparticles could grow along the DNA chains into nanowires. The possible growth mechanism has also been discussed in detail

  19. Use of scintillometric quantitation of unscheduled DNA synthesis in isolated rat hepatocytes for the screening of genotoxic agents

    International Nuclear Information System (INIS)

    Hsia, M.T.

    1987-01-01

    The induction of unscheduled DNA synthesis has been considered as a suitable endpoint for the screening of genotoxic agents. Experimentally, unscheduled DNA synthesis is most frequently measured by autoradiography. The purpose of this report was to examine the usefulness of the liquid scintillation counting technique in measuring unscheduled DNA synthesis response in isolated rat hepatocytes. The various liquid scintillation counting-based unscheduled DNA synthesis assay procedures were examined according to the following groupings: (1) procedures based on the acid precipitation of cellular macromolecules, (2) procedures based on isopycnic gradient centrifugation of solubilized cells, (3) procedures based on nuclei isolation in conjunction with other DNA purification methods, and (4) procedures based on the selective retention of hepatocellular DNA. Limited cases in which test chemicals gave positive unscheduled DNA synthesis response in liquid scintillation counting-based assays and negative unscheduled DNA synthesis response in autoradiography-based assays are presented. It is concluded that liquid scintillation counting-based unscheduled DNA synthesis assays represent an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs

  20. Relative ultraviolet radiation sensitivity of certain functions of polyoma virus. Stimulation of cell DNA synthesis

    International Nuclear Information System (INIS)

    Barra, Yves; Imbert, Jean; Planche, Jacqueline; Meyer, Georges.

    1977-01-01

    Peritoneal Mouse macrophages were used to study the stimulation of cell DNA synthesis by polyoma virus. Using ultraviolet-irradiated polyoma virus, it was possible to show a difference between the inactivation of infectivity and of induction of DNA synthesis. By statistical analysis of these two phenomena it was found that 39% of the viral genome is necessary for the induction of cell DNA synthesis [fr

  1. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DNA-Compatible Nitro Reduction and Synthesis of Benzimidazoles.

    Science.gov (United States)

    Du, Huang-Chi; Huang, Hongbing

    2017-10-18

    DNA-encoded chemical libraries have emerged as a cost-effective alternative to high-throughput screening (HTS) for hit identification in drug discovery. A key factor for productive DNA-encoded libraries is the chemical diversity of the small molecule moiety attached to an encoding DNA oligomer. The library structure diversity is often limited to DNA-compatible chemical reactions in aqueous media. Herein, we describe a facile process for reducing aryl nitro groups to aryl amines. The new protocol offers simple operation and circumvents the pyrophoric potential of the conventional method (Raney nickel). The reaction is performed in aqueous solution and does not compromise DNA structural integrity. The utility of this method is demonstrated by the versatile synthesis of benzimidazoles on DNA.

  3. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  4. Semiconservative and unscheduled DNA-synthesis of rat thymocytes under the influence of some radioprotecting and radiosensitizing agents

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Wulffius-Kock, M.; Winkle, J.; Schmerold, I.

    1982-02-01

    The effects of aminoethylisothiuroniumbromide (AET), cysteamine (CY-A), cysteine (CY-E), glutathione (GLU), mercaptoethanol (MA), mercaptopropionylglycine (MPG), N-ethylmaleimide (NEM), metronidazole (MNA), nitroacetophenone (NAP), nitrofurazone (NFA), arabinofuranosylcytosine (araC), fluorouracil (FU), adriamycin (AM), ethidiumbromide (E), bleomycin (BM), and diethyldithiocarbamate (DDC) on the semiconservative and unscheduled incorporation of /sup 3/H-thymidine into the DNA were tested on rat thymocytes in vitro. DNA damage has been measured using the hydroxylapatite system. Unscheduled DNA synthesis was induced by UV-light and/or X-irradiation. The semiconservative DNA synthesis was inhibited by the above substances-with exception of MA and MPG. Aminothioles, NAP, NFA, and BM enhanced, araC, FU, AM, E, and DDC diminished unscheduled DNA synthesis. After alkaline unwinding, the duplex form of DNA decreased under the influence of CY-A, CY-E, GLU, MPG, NEM, NAP, NFA, araC, FU, AM, E, and BM. It is suggested that stimulation of unscheduled DNA synthesis combined with a transient decrease of semiconservative DNA synthesis will amplify the DNA repair capacity of thymocytes, whereas radiation damage may be intensified by araC, FU, AM,E, and DDC - at least partly, through inhibition of unscheduled DNA synthesis. With respect to the action of NAP, NFA, and BM, DNA repair may be concerned in a more indirect manner.

  5. Semiconservative and unscheduled DNA-synthesis of rat thymocytes under the influence of some radioprotecting and radiosensitizing agents

    International Nuclear Information System (INIS)

    Tempel, K.; Wulffius-Kock, M.; Winkle, J.; Schmerold, I.

    1982-01-01

    The effects of aminoethylisothiuroniumbromide (AET), cysteamine (CY-A), cysteine (CY-E), glutathione (GLU), mercaptoethanol (MA), mercaptopropionylglycine (MPG), N-ethylmaleimide (NEM), metronidazole (MNA), nitroacetophenone (NAP), nitrofurazone (NFA), arabinofuranosylcytosine (araC), fluorouracil (FU), adriamycin (AM), ethidiumbromide (E), bleomycin (BM), and diethyldithiocarbamate (DDC) on the semiconservative and unscheduled incorporation of 3 H-thymidine into the DNA were tested on rat thymocytes in vitro. DNA damage has been measured using the hydroxylapatite system. Unscheduled DNA synthesis was induced by UV-light and/or X-irradiation. The semiconservative DNA synthesis was inhibited by the above subtrances-with exception of MA and MPG. Aminothioles, NAP, NFA, and BM enhanced, araC, FU, AM, E, and DDC diminished unscheduled DNA synthesis. After alkaline unwinding, the duplex form of DNA decreased under the influence of CY-A, CY-E, GLU, MPG, NEM, NAP, NFA, araC, FU, AM, E, and BM. It is suggested that stimulation of unscheduled DNA synthesis combined with a transient decrease of semiconservative DNA synthesis will amplify the DNA repair capacity of thymocytes, whereas radiation damage may be intensified by araC, FU, AM,E, and DDC - at least partly, through inhibition of unscheduled DNA synthesis. With respect to the action of NAP, NFA, and BM, DNA repair may be concerned in a more indirect manner. (orig.) [de

  6. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    International Nuclear Information System (INIS)

    Lee, E.W.; Johnson, J.T.; Garner, C.D.

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [ 3 H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [ 3 H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  7. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    -Tdr incorporation. However, long-term exposure to IBMX did not result in increased DNA content of the islets. Inhibition of the DNA synthesis by 5 mM hydroxyurea resulted in a marked reduction in DNA content of the islets but no decrease in either insulin release or insulin content when expressed per ng DNA...

  8. DNA synthesis during development and proliferation of glial cells in organotypic rat cerebellar culture

    International Nuclear Information System (INIS)

    Renkawek, K.

    1977-01-01

    DNA synthesis was investigated in glial cells in vitro with 3 H thymidine in concentration 1 μCi/ml medium. Incorporation of isotope into the glial nuclei has been found both in the explant (7-21%) and in the outgrowth (22-56%). DNA synthesis was dependent on the age of culture and due to the contact inhibition in the outgrowth. Results point out that marked DNA synthesis is a characteristic feature of glia differentiation and of reactive character of glial cells in vitro. (author)

  9. The proofreading 3'→5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis

    International Nuclear Information System (INIS)

    Khare, Vineeta; Eckert, Kristin A.

    2002-01-01

    The 3'→5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'→5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity

  10. DNA synthesis and uv resistance in Escherichia coli K12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Slezarikova, V [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    The influence was studied of preirradiation inhibition of proteosynthesis by amino acids starvation on survival and DNA synthesis in E. coli K 12 cells, which differ by their genetic features with regard to a certain type of repair. The surviving fraction was studied by appropriate dilution of cell suspension and spreading on agar plates. DNA synthesis was investigated by the incorporation of thymine-2-/sup 14/C. In our conditions a correlation was found between cell survival and the resistance of DNA replication to UV radiation in cells proficient in excision and post-replication repair. This correlation was not found in the excision deficient strain. It is concluded that enhanced resistance of DNA replication is not a sufficient condition for enhanced cell resistance.

  11. The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to X-irradiation

    International Nuclear Information System (INIS)

    Wit, J. de; Bootsma, D.; Jaspers, N.G.J.; Rijksverdedigingsorganisatie TNO, Rijswijk

    1981-01-01

    The rate of DNA synthesis was studied in normal cell strains and in strains from patients suffering from the inherited disorder ataxia telangiectasia (AT). After exposure to relatively low doses of oxic X-rays (0- 4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an excision-deficient and an excision-proficient strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray-sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad. These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis. (orig.)

  12. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. DNA synthesis in the pituitary gland of the rat: effect of sulpiride and clomiphene.

    Science.gov (United States)

    Burdman, J A; Szijan, I; Jahn, G A; Machiavelli, G; Kalbermann, L E

    1979-09-15

    Sulpiride administration to rats releases prolactin and increases DNA replication in the anterior pituitary gland. Clomiphene prevents the stimulation of DNA synthesis produced by sulpiride, but does not affect prolactin release from the gland. These findings suggest that the intracellular prolactin content of the anterior pituitary gland plays a role in the regulation of DNA synthesis through a mechanism mediated by oestrogens.

  14. Age-related variation in the DNA-repair synthesis after UV-C irradiation in unstimulated lymphocytes of healthy blood donors

    International Nuclear Information System (INIS)

    Kovacs, E.; Weber, W.; Mueller, H.

    1984-01-01

    UV-C light-induced DNA-repair synthesis was studied in unstimulated lymphocytes of 51 healthy blood donors aged between 17 and 74 years. The evaluation included (1) the spontaneous DNA-synthesis in unirradiated lymphocytes with and without hydroxyurea, (2) the DNA-repair synthesis in lymphocytes irradiated with UV-light. The interindividual variation was significantly higher than the methodological variation ascertained in 24 persons in whom 2 determinations were carried out. In blood donors aged between 17 and 39 years, the spontaneous DNA synthesis, both with and without hydroxyurea, was significantly lower than in older individuals. The DNA-repair synthesis was dependent on the dose of UV-C light between 2 and 16 J/m 2 . There were no significant differences in DNA-repair synthesis in the age range 17-74 years. The variations in rate of DNA-repair synthesis were wider in older (44-74 years), than in younger individuals. (orig.)

  15. Herpes virus and viral DNA synthesis in ultraviolet light-irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Coppey, J; Nocentini, S [Institut du Radium, 75 - Paris (France). Lab. Curie

    1976-07-01

    The rate of virus DNA synthesis and the production of infectious virus are impaired in stationary monkey kidney CV-I cells irradiated with u.v. before infection with herpes simplex virus (HSV). The inhibition of HSV multiplication is due to u.v.-induced damage in cell DNA. CV-I cells recover their capacity to support HSV growth during the 40 to 48 h after irradiation, and the final virus yield is enhanced by factor of 10. The time course of the recovery is similar to that of the excision repair process occurring in u.v.-irradiated mammalian cells. Caffeine, hydroxyurea and cycloheximide inhibit the recovery. Fluorodeoxyuridine is without effect. A small but significant amount of labelled dThd coming from irradiated cell DNA is incorporated into virus DNA. HSV specified thymidine kinase seems to be more effective for virus DNA synthesis in irradiated than in control cells.

  16. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  17. Desoxyribonucleic acid (DNA) synthesis in vitro by thymus and spleen cells of the rat after hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Spath, A.

    1988-03-01

    The inhibition of the semiconservative and restorative DNA synthesis caused by hyperthermia (30 to 60 min, 43/sup 0/C) was significantly higher in spleen cells than in thymus cells. The DNA repair synthesis of thymus cells measured at 37/sup 0/C was increased by about two times the initial value after a pre-incubation of 30 to 90 min and 30 to 60 min, respectively, with 37 and 43/sup 0/C, respectively. Under the same conditions, the /sup 3/H-thymidine incorporation into the DNA of spleen cells diminished proportionally to the pre-incubation time after a pre-incubation of 30 and 45 min, respectively, with 43 and 37/sup 0/C, respectively. When hyperthermia and inhibitors of DNA synthesis or DNA repair (hydroxyurea, 1-..beta..-D-arabinofuranosylcytosine, 3', 5'-didesoxythymidine, and 3-aminobenzamide) were combined, overadditive effects - without cellspecific particularities - were seen only in the case of 3-aminobenzamide. Only in thymus cells, the inhibitor of DNA topoisomerase II novobiocin caused an overadditive reinforcement of the inhibition induced by hyperthermia of the semiconservative DNA synthesis. The stimulation of DNA repair synthesis in thymus cells caused by novobiocin with the aid of DNA polymerase ..beta.. could be compensated by hyperthermia. The sedimentation of thymus and spleen cell nucleoids was increased after hyperthermia. The results suggest a special importance of DNA topology and of the DNA polymerase ..beta.. activity for the cellular effect of hyperthermia.

  18. DNA synthesis in permeabilized WI38 and MRC5 cells

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.

    1980-01-01

    DNA synthesis was examined in cultures of growing WI38 and MRC5 cells made permeable to deoxyribonucleotides. Cells from late passage cultures showed a reduced rate of deoxythymidine triphosphate (dTTP) uptake as compared to cells from early- to mid-passage cultures. This reduction became evident earlier in WI38 cultures (passage 33) than in MRC5 cultures (passage 41). Although this reduced rate of incorporation appeared to be primarily due to a reduced percentage of replicating (S phase) cells in later passage cultures, some effect on the rate of DNA synthesis in replicating cells was also evident

  19. Postirradiation DNA synthesis is inversely related to cell survival

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1987-01-01

    Postirradiation (PI) events which might lead to cellular reproductive death or survival were studied in L5178Y-S (LY-S) cells. PI incubation at 25 0 C protects LY-S cells against the PLD fixation which takes place at 37 0 C. An optimal condition for the repair of PLD is 1h at 37 0 C followed by 4h holding at 25 0 C prior to the second half of a split dose, or 5L holding at 25 0 C without a 37 0 C incubation. Longer incubations at 37 0 C resulted in progressively decreased survivals. Postirradiation inhibition of DNA synthesis at 37 0 C was observed only during the first 30 min; thereafter, /sup 3/H-dThd incorporation was higher than in unirradiated controls. This excess synthesis effect was removed by shifting irradiated cells to 25 0 C holding. The inhibition observed at 25 0 C was reversed by shifting to 37 0 C. Thus the degree of postirradiation DNA synthesis is inversely related to PLD/SLD repair. DNA filter elution shows complete SSB repair by 3h at both temperatures (with faster kinetics at 37 0 C), and DSB repair plateaus at 80% (37 0 C) and 60% (25 0 C) after 90 min

  20. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  1. The influence of some prostaglandins on DNA synthesis and DNA excision repair in mouse spleen cells ''in vitro''

    International Nuclear Information System (INIS)

    Klein, W.; Altmann, H.; Kocsis, F.; Egg, D.; Guenther, R.

    1978-03-01

    ''In vitro'' experiments were performed on mouse spleen cells to establish possible influences of some naturally occurring prostaglandins on DNA synthesis and DNA excision repair. The prostaglandins A 1 , B 1 , E 1 , E 2 and Fsub(2α) were tested in concentrations of 10 pg, 5 ng and 2,5μg per ml cell suspension. DNA synthesis was significantly increased by PgFsub(2α) in all the three concentrations tested, while the other tested prostaglandins were essentially ineffective. DNA excision repair was significantly inhibited by PgE 1 and PgE 2 at 5 ng/ml and at 2,5 μg/ml but increased by PgFsub(2α) in the two lower concentrations. The rejoining of DNA-strand breaks after gamma-irradiation was slightly reduced by PgE 1 , PgE 2 and PgF 2 at 2,5 μg/ml. (author)

  2. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  3. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    International Nuclear Information System (INIS)

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  4. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  5. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    International Nuclear Information System (INIS)

    Burkovics, Peter; Sebesta, Marek; Kolesar, Peter; Sisakova, Alexandra; Marini, Victoria; Plault, Nicolas; Szukacsov, Valeria; Pinter, Lajos; Haracska, Lajos; Robert, Thomas; Kolesar, Peter; Gangloff, Serge; Krejci, Lumir

    2013-01-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. (authors)

  6. On DNA synthesis during C14O2 assimilation by peas seedlings

    International Nuclear Information System (INIS)

    Karimov, Kh.Kh.; Nikolaeva, M.I.

    1976-01-01

    In this article authors try to determine how much p articipate t hephotosynthesis in the new formation of DNA seedlings, depends this processfrom the light and realize at this the synthesis DNA in chloroplasts

  7. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  8. [Expression and purification of a novel thermophilic bacterial single-stranded DNA-binding protein and enhancement the synthesis of DNA and cDNA].

    Science.gov (United States)

    Jia, Xiao-Wei; Zhang, Guo-Hui; Shi, Hai-Yan

    2012-12-01

    Express a novel species of single-stranded DNA-binding protein (SSB) derived from Thermococcus kodakarensis KOD1, abbreviated kod-ssb. And evaluate the effect of kod-ssb on PCR-based DNA amplification and reverse transcription. We express kod-ssb with the Transrtta (DE3), and kod-ssb was purified by affinity chromatography on a Ni2+ Sepharose column, detected by SDS-PAGE. To evaluate the effect of kod-ssb on PCR-based DNA amplification, the human beta globin gene was used as template to amplify a 5-kb, 9-kb and 13-kb. And to detect the effect of kod-ssb on reverse transcription, we used RNA from flu cell culture supernatant extraction as templates to implement qRT-PCR reaction. The plasmid pET11a-kod was transformed into Transetta (DE3) and the recombinant strain Transetta (pET11 a-kod) was obtained. The kod-ssb was highly expressed when the recombinant strain Transetta(pET11a-kod) was induced by IPTG. The specific protein was detected by SDS-PAGE. To confirm that kod-ssb can enhance target DNA synthesis and reduce PCR by-products, 5-, 9-, and 13-kb human beta globin gene fragments were used as templates for PCR. When PCR reactions did not include SSB proteins, the specific PCR product was contaminated with non-specific products. When kod -ssb was added, kod-ssb significantly enhanced amplification of the 5-, 9-and 13-kb target product and minimised the non-specific PCR products. To confirm that kod-ssb can enhance target cDNA synthesis, RNA from flu cell culture supernatant extraction was used as templates for qRT-PCR reaction. The results was that when kod-ssb was added, kod-ssb significantly enhanced the synthesis of cDNA, average Ct value is 19.42, and the average Ct value without kod-ssb is 22.15. kod-ssb may in future be used to enhance DNA and cDNA amplification.

  9. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.

    Science.gov (United States)

    Zinchenko, Anatoly; Miwa, Yasuyuki; Lopatina, Larisa I; Sergeyev, Vladimir G; Murata, Shizuaki

    2014-03-12

    DNA cross-linked hydrogel was used as a matrix for synthesis of gold nanoparticles. DNA possesses a strong affinity to transition metals such as gold, which allows for the concentration of Au precursor inside a hydrogel. Further reduction of HAuCl4 inside DNA hydrogel yields well dispersed, non-aggregated spherical Au nanoparticles of 2-3 nm size. The average size of these Au nanoparticles synthesized in DNA hydrogel is the smallest reported so far for in-gel metal nanoparticles synthesis. DNA hybrid hydrogel containing gold nanoparticles showed high catalytic activity in the hydrogenation reaction of nitrophenol to aminophenol. The proposed soft hybrid material is promising as environmentally friendly and sustainable material for catalytic applications.

  10. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  11. DNA synthesis in HeLa cells and isolated nuclei after treatment with an inhibitor of spermidine synthesis, methyl glyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Krokan, H; Eriksen, A

    1977-02-01

    Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.

  12. Bronchoalveolar lavage fluid from normal rats stimulates DNA synthesis in rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Mason, R.J.

    1989-01-01

    Proliferation of alveolar type II cells after lung injury is important for the restoration of the alveolar epithelium. Bronchoalveolar lavage fluid (BALF) may represent an important source of growth factors for alveolar type II cells. To test this possibility, BALF fluid was collected from normal rats, concentrated 10-fold by Amicon filtration, and tested for its ability to stimulate DNA synthesis in rat alveolar type II cells in primary culture. BALF induced a dose-dependent increase in type II cell DNA synthesis resulting in a 6-fold increase in [3H]thymidine incorporation. Similar doses also stimulated [3H]thymidine incorporation into rat lung fibroblasts by 6- to 8-fold. Removal of pulmonary surface active material by centrifugation did not significantly reduce the stimulatory activity of BALF for type II cells. The stimulation of type II cell DNA synthesis by BALF was reduced by 100% after heating at 100 degrees C for 10 min, and by approximately 80% after reduction with dithiothreitol, and after trypsin treatment. Dialysis of BALF against 1 N acetic acid resulted in a 27% reduction in stimulatory activity. The effect of BALF in promoting type II cell DNA synthesis was more pronounced when tested in the presence of serum, although serum itself has very little effect on type II cell DNA synthesis. When BALF was tested in combination with other substances that stimulate type II cell DNA synthesis (cholera toxin, insulin, epidermal growth factor, and acidic fibroblast growth factor), additive effects or greater were observed. When BALF was chromatographed over Sephadex G150, the activity eluted with an apparent molecular weight of 100 kDa

  13. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  14. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  15. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  16. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    International Nuclear Information System (INIS)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of [3H]thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity

  17. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  18. Influence of vinyl chloride monomer and vinyl chloride monomer derivatives on hepatic DNA synthesis

    International Nuclear Information System (INIS)

    Brenner, E.A.

    1982-01-01

    Vinyl chloride monomer (VCM) is used extensively in the chemical industry, mainly in the production of polyvinyl chloride. It has recently been found to cause hepatic angiosarcoma. As VCM has also been shown to be mutagenic after metabolic activation the effect of VCM on DNA synthesis was investigated. [ 3 H]Thymidine incorporation into DNA was used to measure the rate of DNA synthesis in regenerating rat liver. A possible direct toxic effect of VCM or its metabolites on liver cell metabolism was examined by two unrelated techniques, viz. the measurement of adenine nucleotide concentrations in regenerating livers and the influence on transmembrane potentials in hepatocytes. The distribution of radioactivity in subcellular fractions following [ 14 C]VCM administration suggested microsomal conversion of VCM to an active form which was selectively retained in the nuclear fraction. Measurement of the activities of thymidine kinase and DNA polymerase in regenerating liver indicated that the induction of these enzymes which normally occurs after partial hepatectomy was not prevented by VCM treatment. Three techniques were used to test the hypothesis that the retardation in DNA synthesis was due to DNA damage: the prophage lambda induction test for DNA damage, autoradiographic detection of unscheduled thymidine incorporation into DNA, and detection of DNA strand breaks in alkaline sucrose gradients. All three provided evidence of DNA damage and led to the development of a novel technique to confirm these findings. This involved centrifugation in neutral sucrose gradients on intact double-stranded DNA contained in hepatocyte nucleoids and showed conclusively that VCM administration causes DNA strand breaks. Subsequent repair of DNA was also assessed by this technique. The site of the VCM/metabolite: DNA reaction was characterized by DNA thermal denaturation and renaturation studies

  19. Typical xeroderma pigmentosum complementation group A fibroblasts have detectable ultraviolet light-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Petinga, R.A.; Andrews, A.D.; Robbins, J.H.; Tarone, R.E.

    1977-01-01

    Ultraviolet-induced nuclear uptake of tritiated thymidine [ 3 H]dThd demonstrable by autoradiography in non-synthesis phases of the cell cycle is known as unscheduled DNA synthesis and reflects repair replication of ultraviolet-damaged DNA. We have reported that the rate of any such unscheduled DNA synthesis in typical group A xeroderma pigmentosum fibroblasts, if present, is less than 2% of the normal rate. We have now performed experiments to determine whether these fibroblasts have any unscheduled DNA synthesis. Fibroblast coverslip cultures of four xeroderma pigmentosum group A strains were prepared. Irradiated (254 nm ultraviolet light) and unirradiated cultures from each strain were incubated with [ 3 H]dThd at 37degC, and autoradiograms were prepared using NTB-3 emulsion. A nuclear grain count was made of 100 consecutive nuclei of non-S-phase irradiated and unirradiated cells. A slide background grain count was simultaneously made from an acellular area adjacent to each cell analyzed. When a strain's irradiated and unirradiated autoradiograms having similar slide background grain count averages were compared, the nuclear grain count average of the irradiated cells was always higher than that of the unirradiated cells. This ultraviolet-induced increase in the mean nuclear grain count ranged from 0.4 to 1.3% of that given by normal non-xeroderma pigmentosum fibroblasts and was not reduced by 10 -2 M hydroxyurea. Planimetric studies showed that the ultraviolet-induced increase in nuclear grain count is not due to an increased nuclear area in irradiated cells. We conclude that these typical group A xeroderma pigmentosum strains perform very low, but detectable, ultraviolet-induced unscheduled DNA synthesis which probably reflects repair replication. We cannot, however, determine if there are significantly different rates of ultraviolet-induced unscheduled DNA synthesis among these ultraviolet strains

  20. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  1. Histoautoradiographic and liquid scintillometric studies on DNA synthesis in the liver, kidneys, spleen and tongue after bilateral adrenalectomy in rats

    International Nuclear Information System (INIS)

    Schneider, A.

    1981-01-01

    Historadiographies and liquid scintillometries were carried out in 163 male Wistar rats in order to determine the effects of bilateral adrenalectomy on DNA synthesis in the liver, kidneys, spleen, and tongue. Both DNA synthesis and mitotic index are significantly increased from the 1st day p.o. onwards, with broad synthesis peaks between the 2nd and the 4th day. The intensity of DNA synthesis shows a gradual decrease with increasing duration of the experiment. In contrast to the adrenalectonized animals, the synthesis rate and mitotic index in the organs of sham-operated animals were significantly lower, although enhanced proliferation was observed after surgery. The enhanced DNA synthesis after bilateral adrenalectomy is interpreted in terms of a disinhibition; corticosteroids are assumed to play a key role. The effects of bilateral adrenalectromy on untreated organs are not organ-specific. The highest synthesis rate was observed in the tubular epithelia of the convoluted main parts, while the DNA synthesis in the tongue. The findings of autoradiography and liquid scintillometry are well correlated. (orig./MG) [de

  2. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  3. Design and synthesis of DNA four-helix bundles

    International Nuclear Information System (INIS)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-01-01

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  4. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  5. DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yaofeng Li

    2015-03-01

    Full Text Available Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K/Akt, the target of rapamycin (TOR and the extracellular signal-regulated kinase (ERK pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  6. Radiation effect and response of DNA synthesis in lymphocytes induced by low dose irradiation

    International Nuclear Information System (INIS)

    Zhao Yujie; Su Liaoyuan; Zou Huawei; Kong Xiangrong

    1999-01-01

    The ability of DNA synthesis in lymphocytes were measured by using 3 H-TdR incorporation method. This method was used to observe the damage of lymphocytes irradiated by several challenge doses (0.5-0.8 Gy) and adaptive response induced by previous low dose irradiation. The results show that DNA synthesis was inhibited by challenge dose of radiation and was adapted by previous 0.048 Gy irradiation

  7. On the recovery of the DNA-synthesis after X-irradiation in the spleen of mice and its modification by the NAD-metabolism

    International Nuclear Information System (INIS)

    Streffer, C.

    1974-01-01

    The incorporation of tritium-labelled thymidine into the DNA of mice spleen cells after whole body irradiation with X-rays was measured in order to study the decrease of DNA synthesis is decreased for several hours after irradiation with low doses. Recovery effects become operative after six hours. The radiation effect on the NAD metabolism, known to be related to DNA synthesis, was also investigated. The rate of NAD synthesis is influenced via the extremely radiosensitive metabolic process in the nucleus. Conversely, inhibition of DNA synthesis by injection of NAD enhances the recovery of DNA synthesis after irradiaton. (G.G.)

  8. DNA synthesis in toluene-treated bacteriophage-infected minicells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Amann, E.; Reeve, J.N.

    1978-01-01

    Bateriophage (phi29, SPP1, or SP01)-infected, toluene-treated minicells of Bacillus subtilis are capable of limited amounts of non-replicative DNA synthesis as measured by incorporation of [ 3 H]dTTP into a trichloroacetic acid-precipitable form. The [ 3 H]dTTP is covalently incorporated into small DNA fragments which result from the degradation of a small percentage of the infecting phage genomes (molecular weights in the range of 2.10 5 ). Short exposure of the DNA molecules containing the incorporated [ 3 H]dTMP to Escherichia coli exonuclease III results in over 90% of the [ 3 H]dTMP being converted to a trichloroacetic acid-soluble form. The synthesis is totally dependent on host-cell enzymes and is not inhibited by the addition of chloramphenicol, rifampicin, nalidixic acid and mitomycin C and only slightly (approx. 20%) inhibited by the addition of 6-(p-hydroxyphenylazo)-uracil. (Auth.)

  9. DNA synthesis and degradation in UV-irradiated toluene treated cells of E. coli K12: the role of polynucleotide ligase

    International Nuclear Information System (INIS)

    Strike, P.

    1977-01-01

    Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step. (orig.) [de

  10. Correlation between survival, ability to rejoin DNA and stability of DNA after preirradiation inhibition of protein synthesis in a rec- mutant of Escherichia coli K12

    International Nuclear Information System (INIS)

    Pirsel, M.; Slezarikova, V.

    1977-01-01

    A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA - ) or by chloramphenicol (CAP) treatment prior to UV irradiation (2.5 J m -2 ) increased more than tenfold the resistance of the strain Escherichia coli K12 SR19 to UV radiation. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. In Escherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation, and a higher stability of both parental and newly synthesized DNAs could be demonstrated. (author)

  11. Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome

    International Nuclear Information System (INIS)

    Ringborg, U.; Lambert, B.; Landergen, J.; Lewensohn, R.

    1981-01-01

    The uv-induced DNA repair synthesis in peripheral leukocytes from 7 patients with the nevoid basal cell carcinoma syndrome was compared to that in peripheral leukocytes from 5 patients with basal cell carcinomas and 39 healthy subjects. A dose response curve was established for each individual, and maximum DNA repair synthesis was used as a measure of the capacity for DNA repair. The patients with the nevoid basal cell carcinoma syndrome had about 25% lower level of maximum DNA repair synthesis as compared to the patients with basal cell carcinomas and control individuals. The possibility that DNA repair mechanisms may be involved in the etiology to the nevoid basal cell carcinoma syndrome is discussed

  12. Effects of gamma- and UV-radiation on DNA synthesis in permeable cells of Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    Trofimenko, A.F.; Vorob'eva, A.M.; Gaziev, A.I.

    1981-01-01

    It was shown that the most of the DNA synthesis is repaired in permeable cells of Bacillus stearothermophilus not affected by injurious agents. γ-irradiation stimulates the reparative synthesis and degradation of DNA whereas UV-radiation decreases the activity of these processes. The reason for such an unusual response of thermophiles to irradiation lies perhaps in high temperatures at which the cells exist

  13. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  14. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    Science.gov (United States)

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  15. Action of cytochalasin D on DNA synthesis in cells in culture

    International Nuclear Information System (INIS)

    Glushankova, N.A.

    1986-01-01

    To solve the problem of the effect of changes in the actin cytoskeleton on DNA replication during the action of cytochalasins, the effect of long-term incubation of normal cells with cytochalasin D (CCD), which selectively destroys the microfilament system but does not affect transport of sugars, was investigated. Incorporation of labeled thymidine into mononuclear and binuclear cells in the presence of CCD and after its removal by rinsing also was studied separately. To investigate DNA synthesis the method of autoradiography with 3 H-thymidine was used. A culture of mouse fibroblasts of the BALB/3T3 line and a secondary culture of fibroblasts obtained by trypsinization of mouse embryos (MEF) were used. On incubation of MEF and 3T3 cells, gradual inhibition of DNA synthesis is observed. The results obtained indicate that structural changes in the active cytoskeleton can abruptly and reversibly disturb passage of the normal cell through the cycle

  16. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. (Kobe Univ. (Japan). School of Medicine)

    1983-12-01

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested.

  17. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    Science.gov (United States)

    Hocek, Michal

    2014-11-07

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  18. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    Science.gov (United States)

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  19. Inhibition and recovery of DNA synthesis in human cells after exposure to ultraviolet light

    International Nuclear Information System (INIS)

    Painter, R.B.

    1985-01-01

    The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion. (orig.)

  20. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  1. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  2. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.

    1975-01-01

    Fluences (21 to 32 kJ/m 2 ) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA. (author)

  3. Escape from X-ray-induced arrest for lens cells stimulated from quiescence: time relationship to RNA, protein, and DNA synthesis

    International Nuclear Information System (INIS)

    Lindgren, A.L.; Miller, R.C.; Guernsey, D.L.; Riley, E.F.

    1988-01-01

    Quiescent cells of the central zone region of the rat lens epithelium were stimulated to enter the proliferation cycle by wounding. RNA synthesis and a corresponding increase in poly(A)+/total RNA reached a peak by Hour 4. Cells progressed into the G1B compartment by Hour 10. A rise in protein synthesis began at Hour 8, and onset of DNA synthesis occurred by Hour 14. The timing of cell cycle progression that allowed escape from a dose of X irradiation that completely inhibited DNA synthesis was investigated. A growth-arrest point was identified at Hour 9 where 10 GY of X irradiation given before, but not after, completely inhibited earliest responding cells from entering DNA synthesis on schedule. Increased quantities of cells entered DNA synthesis on schedule as timing of the X irradiation was moved closer to the end of G1. Based on time relationships, the rise in protein synthesis is correlated with the sufficient event for the escape

  4. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin

    International Nuclear Information System (INIS)

    Smerdon, M.J.; Tlsty, T.D.; Lieberman, M.W.

    1978-01-01

    The distribution of ultraviolet radiation (uv) induced DNA repair synthesis within chromatin was examined in cultured human diploid fibroblasts (IMR-90). Measurement of the time course of repair synthesis yielded two distinct phases: An initial rapid phase (fast repair) which occurs during the first 2 to 3 h after damage and a slower phase (slow repair) associated with a tenfold decrease in the rate of nucleotide incorporation, which persists for at least 35 h after damage. Staphylococcal nuclease digests of nuclei from cells damaged with uv and labeled during the fast-repair phase revealed a marked preference of fast-repair synthesis for the nuclease-sensitive regions. A new method was developed to analyze the digestion data and showed that approximately 50% of the nucleotides incorporated during the fast-repair phase are located in staphylococcal nuclease-sensitive regions, which comprise about 30% of the genome. Calculations from these data indicate that in the staphylococcal nuclease-sensitive regions the number of newly inserted nucleotides per unit DNA is about twice that of resistant regions. These results were supported by electrophoresis studies which demonstrated a decreased representation of fast-repair synthesis in core particle DNA. In contrast, the distribution within chromatin of nucleotides incorporated during the slow-repair phase was found to be much more homogeneous with about 30% of the repair sites located in 25% of the genome. Digestion studieswith DNase I indicated a slight preference of repair synthesis for regions sensitive to this enzyme; however, no marked difference between the distributions of fast- and slow-repair synthesis was observed. This study provides evidence that the structural constraints placed upon DNA in chromatin also place constraints upon uv-induced DNA repair synthesis in human cells

  5. Intestinal DNA concentration and protein synthesis in response to ...

    African Journals Online (AJOL)

    Performance, protein synthesis and mucosal DNA in small intestine of Leghorn hens may be affected by low quality feedstuff. An experiment was conducted in completely randomized design (CRD) in 2 × 2 factorial arrangement. Main factors included diets containing 20 and 40 % barley and black and blue strains of leghorn ...

  6. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Termination of DNA synthesis in vitro at apurinic sites but not at ethyl adducts of the template

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, M.L.; Deutsch, J.F.; Yamaura, I.; Cavalieri, L.F.; Rosenberg, B.H.

    1982-01-01

    The effects of DNA lesions produced by the carcinogenic alkylating agents ethylnitrosourea and diethylsulfate on the extent of DNA synthesis have been studied in a system utilizing circular single-stranded phi X174 DNA as template and a 392-base restriction fragment as primer with E. coli polymerase I (Klenow fragment). Apurinic sites produced by loss of unstable ethylated bases from the template terminate DNA synthesis at the first such site encountered, but ethyl adducts at most, if not all, locations permit readthrough. 22 references, 3 figures, 1 table.

  9. The assembly and use of continuous flow systems for chemical synthesis.

    Science.gov (United States)

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  10. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  11. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  12. Multistep Continuous-Flow Synthesis in Medicinal Chemistry

    DEFF Research Database (Denmark)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia Cwarzko

    2013-01-01

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained i...... studies in medicinal chemistry....

  13. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    Science.gov (United States)

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  14. Recovery of DNA synthesis from inhibition by ultraviolet light in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, A M; Ortega, J M; Schumacher, R I; Meneghini, R

    1987-01-01

    In general mammalian cells recover from DNA synthesis inhibition by ultraviolet light (u.v.) before most of the pyrimidine dimers have been removed from the genome. Using metabolic inhibitors, it has been shown that (1) even the low repair rate exhibited by V79 cells is important for recovery; although most of the dimers remain in the V79 genome after recovery of DNA synthesis, either the removal of lesions from some important region of chromatin or the activity of the repair process itself is important for the recovery; (2) the recovery mechanism is induced and depends on RNA synthesis and the production of specific factors. Finally, we have observed that cells previously treated with fluorodeoxyuridine become more resistant to inhibition by u.v. Since it has been shown that this drug activates unused origins of replication in Chinese hamster cells, reducing the average replicon size, we assume that the acquired resistance has to do with the operation of a larger number of small replicons.

  15. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  16. Sister chromatid exchanges in X-ray irradiated blood lymphocytes from patients with hereditary diseases with radioresistant DNA synthesis

    International Nuclear Information System (INIS)

    Pleskach, N.M.; Andriadze, M.I.; Mikhel'son, V.M.; Zhestyanikov, V.D.

    1988-01-01

    X-ray irradiation induced sister chromatid exchanges (SCE) in blood lymphocytes from patient with Down's syndrome and adult progeria (in both the cases radioresistant DNA synthesis takes place). In normal lymphocytes (in which ionizing radiation inhibits the replicative synthesis of DNA) the rate of SCE rises with the rise of radiation dose. Thus, the rate of SCE in X-ray irradiated lymphocytes is in reverse dependence with radioresistance of replicative synthesis of DNA. The data obtained are explained in accordance with the replicative hypothesis of the SCE nature (Painter, 1980a): in cells of patients with Down's syndrome, xeroderma pigmentosum from 2 and progeria of adults the time of existence of partly replicated clusters of replicons is decreased due to radioresistant replicative synthesis of DNA, but the presence of partly replicated clusters of replicons in necessary for SCE formation. Therefore the rate of SCF in X-irradiated cells of these patients decreases

  17. Influence of metronidazole on the survival rate of whole-body irradiated mice and on the DNA repair synthesis of lymphocytes

    International Nuclear Information System (INIS)

    Magdon, E.; Schroeder, E.

    1978-01-01

    With reference to literature reports the effect of Metronidazole [1-(hydroxyethyl)-5-nitro-2-methyl-imidazole] on the survival rate of C 3 H inbred mice following whole-body doses ranging from 5 to 15 Gy was determined under oxic and hypoxic conditions. Ehrlich ascites tumor cells were used to study the influence of Metronidazole on radiation-induced alterations of the DNA sedimentation behavior in the alkaline sucrose gradient under oxic conditions in vitro. The effect of Metronidazole on the semiconservative DNA synthesis was investigated under oxic and hypoxic conditions in Ehrlich ascites carcinoma cells and L5178Y lymphoma cells. Furthermore, it was examined whether the radiation-induced inhibition of semiconservative DNA synthesis in L5178Y lymphoma cells and the radiation-induced repair synthesis in lymphocytes is influenced by Metronidazole. From the values of the LDsub(50/30) after whole-body irradiation a sensitilization factor of 1.3 was derived for Metronidazole under hypoxic conditions. Under atmospheric conditions an increase of the radiation effect by a factor of 1.1 was obtained. The protective factor of hypoxia was 1.6 and thus greater than the radiosensibilization caused by Metronidazole. The DNA synthesis was slightly inhibited by Metronidazole under both hypoxic and euoxic conditions. The studies revealed no significant influence of Metronidazole on radiation-induced changes of the DNA sedimentation behavior and of the DNA repair synthesis as well as on the radiation induced inhibition of semiconservative DNA synthesis. (author)

  18. Recovery from DNA synthesis in V 79 chinese hamster cells irradiated with UV light

    International Nuclear Information System (INIS)

    Ventura, A.M.

    1987-01-01

    Mammalian cells recover from DNA synthesis inhibition by UV light before most of the pyrimidine dimers have been removed from the genome. Most of the rodent cells show a deficient dimer excision repair compared with normal human fibroblasts. Despite this fact they recover efficiently from DNA synthesis inhibition after UV. In Chinese hamster V 79 cells was found that this recovery takes place in the absence of a significant excision repair, and it seems to be directly coupled to a recovery in the rate of movement of the replication fork. 120 refs, 31 figs. (author)

  19. Inhibition and recovery of the rate of DNA synthesis in V79 Chinese hamster cells following ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Ventura, A.M.; Meneghini, R.

    1984-01-01

    Chinese hamster fibroblasts (V79 cell line) exhibit the phenomenon of recovery of DNA synthesis from the initial inhibition observed after ultraviolet light irradiation, in the absence of significant excision of pyrimidine dimers. In an attempt to determine whether the initial inhibition and subsequent recovery can be accounted for by parallel variations in the rate of movement of the replication fork, the cells were pulse-labeled with radioactive bromodeoxyuridine at different times following irradiation and their DNA centrifuged in neutral CsCl density gradients. When DNA synthesis inhibition was at a maximum, an accumulation of DNA, of density intermediate between hybrid and nonsubstituted DNA, was noticed in the density-distribution profiles. The density distribution of DNA along the gradient can provide an estimate of the rate of movement of the replication fork, and the results indicate that most of the variation in the overall rate of DNA synthesis can be accounted for by a parallel variation in the rate of fork movement. (Auth.)

  20. Dynamic changes of peripheral blood T-lymphocyte DNA-Synthesis in rabbits after fractionated and single exposure to 60Co-γ rays

    International Nuclear Information System (INIS)

    Wang Zongwu; Chen Tiehe; Yu Zhijie; Han Ling; Pan Yusha; Su Fuqiang

    1988-01-01

    The experiments in 59 rabbits γ-irradiated with doses of 0, 0.5, 1.0, 2.0, and 3.0 Gy in fractional and single exposure to 60 Co-γ rays were reported, respectively · Dynamics of the changes of DNA-Synthesis in T-lymphocytes of peripheral blood was obserced during 29 days after γ-irradiation. Marked inhibition in DNA-synthesis was found on 1st day after irradiation. Recovery was observed in 3rd day after irradiation. The levels of DNA-synthesis before irradiation was recovered on 7th day after exposure for all groups. For fractionated irradiation, however, an increase, rather than a decrese, of DNA-synthesis was in the group of 1.0 Gy

  1. Immediate effects of grenz rays on epidermal DNA synthesis in the flanks of guinea pigs

    International Nuclear Information System (INIS)

    Daikeler, G.

    1976-01-01

    The following findings were obtained by autoradiography: 1) Labelling index (number of labelled cell nuclei per 1,000 based cells): Significant decrease immediately after exposure to grenz rays. 2) Silver grain index (number of silver cells as a function of the labelled basal cells): Significant decrease after irradiation. 3) DNA synthesis index (product of labelling index and silver grain index): Sifnificant decrease of the actual DNA synthesis rate of the reproductive cell cluster after exposure to grenz rays. (orig./AJ) [de

  2. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    Science.gov (United States)

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  3. The impact of cofactors and inhibitors on DNA repair synthesis after γ-irradiation in semi-permeable Escherichia coli cells

    International Nuclear Information System (INIS)

    Gaertner, C.

    1981-01-01

    The DNA-repair synthesis in tuluol-permeable E. coli cells after γ-irradiation has been investigated in dependence on the co-facotrs. ATB and NAD by means of enzyme kinetics. A partly repair-deficient mutants were taken into consideration which are well characterized in view of molecular biology; they showed which enzyme functions participate in the γ-induced DNA repair synthesis. The inhibition of the DNA-repair synthesis by the intercalary substances Adriamycin and Proflavin has been described and compared with the survival rates after irradiation and after combined treatment by irradiation and intercalary agents. (orig./AJ) [de

  4. Scheduled and unscheduled DNA synthesis in chick embryo liver following X-irradiation and treatment with DNA repair inhibitors in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stammberger, I.; Tempel, K. (Muenchen Univ. (Germany, F.R.). Inst. fuer Pharmakologie und Toxikologie); Schmahl, W. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Pathologie)

    1989-09-01

    Three hours following X-irradiation of chick embryos with doses of 4 and 8 Gy the in vitro incorporation of tritiated thymidine (({sup 3}H)dT) into DNA (scheduled DNA synthesis, ss) of hepatocytes was reduced to about one-third. Within 24 h after the exposure, ss returned to control values. The return of ss to a normal rate could be strongly inhibited by 2', 3'-dideoxythymidine (ddT), and to a lesser extent by 1-beta-D-arabinofuranosylcytosine (araC). In strong contrast to ss, the hydroxyurea (hu)-resistant ({sup 3)H}dT incorporation (unscheduled DNA synthesis, us) showed a highly significant increase 24 h after treatment of the embryos with araC and/or X-irradiation. Autoradiographic studies revealed no change of total ({sup 3}H)dT labelling frequency in the whole chick embryo liver 24 h after treatment with araC and/or X-irradiation, but a persistent depression of ss and a simultaneous increase of us. (author).

  5. Sensitization of human cells by inhibitors of DNA synthesis following the action of DNA-damaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, M.V.; Noskin, L.A. (Leningrad Inst. of Nuclear Physics, Gatchina (USSR))

    1983-08-01

    Inhibitors of DNA synthesis 1-..beta..-arabinofuranosylcytosine (Ac) and hydroxyurea (Hu) taken together drastically sensitized human cells to the killing effect of DNA-damaging agents. For UV-irradiation this sensitization depended on the cells' ability for excision repair. By using viscoelastometric methods of measurement of double-strand breaks (DSB) in the genome, it was established that the first DSB were generated after incubation of the damaged cells in the mixture of inhibitors at about the same dose when sensitization appeared. A scheme is proposed to describe molecular events associated with the phenomenon studied. 35 refs.

  6. A chemoselective and continuous synthesis of m-sulfamoylbenzamide analogues

    Directory of Open Access Journals (Sweden)

    Arno Verlee

    2017-02-01

    Full Text Available For the synthesis of m-sulfamoylbenzamide analogues, small molecules which are known for their bioactivity, a chemoselective procedure has been developed starting from m-(chlorosulfonylbenzoyl chloride. Although a chemoselective process in batch was already reported, a continuous-flow process reveals an increased selectivity at higher temperatures and without catalysts. In total, 15 analogues were synthesized, using similar conditions, with yields ranging between 65 and 99%. This is the first automated and chemoselective synthesis of m-sulfamoylbenzamide analogues.

  7. Effects of low doses of gamma radiation on DNA synthesis in the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.

    1983-01-01

    Rats of one or ten days of age were irradiated with low doses of gamma radiation, and synthesis of DNA was examined by the incorporation of 3 H-thymidine in the cerebellum and the rest of the brain in vivo. DNA synthesis was depressed in both parts of the brain but the effects were larger in cerebellum. A minimum was found about 10 hours after irradiation in the older rats and later (18 h) in the younger ones. The dose response in 10 day-old rats, was biphasic and showed that cerebellum was more affected. Autoradiographs showed that fewer cells entered the cycle and those synthesizing showed a depressed rate of synthesis. These findings are discussed in relation to induction of cell death. (Auth.)

  8. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  9. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    Science.gov (United States)

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. H3-THYMIDINE DERIVATIVE POOLS IN RELATION TO MACRONUCLEAR DNA SYNTHESIS IN TETRAHYMENA PYRIFORMIS

    Science.gov (United States)

    Stone, G. E.; Miller, O. L.; Prescott, D. M.

    1965-01-01

    The formation of a soluble H3-thymidine derivative pool has been examined in Tetrahymena pyriformis as a function of macronuclear DNA synthesis during the cell life cycle. An autoradiographic technique which allows the detection of water-soluble materials within a cell has shown that these cells do not take up and retain exogenous H3-thymidine during G1 or G2. Uptake of H3-thymidine is restricted to the S period of the cell cycle. Additional autoradiographic experiments show, however, that a soluble pool of H3-thymidine derivatives persists from the end of one DNA synthesis period to the beginning of the next synthesis period in the subsequent cell cycle. Since this persisting pool cannot be labeled with H3-thymidine, the pool does not turn over during non-S periods. PMID:19866660

  11. Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine.

    Science.gov (United States)

    Bédard, Anne-Catherine; Longstreet, Ashley R; Britton, Joshua; Wang, Yuran; Moriguchi, Hideki; Hicklin, Robert W; Green, William H; Jamison, Timothy F

    2017-12-01

    Minimizing the waste stream associated with the synthesis of active pharmaceutical ingredients (APIs) and commodity chemicals is of high interest within the chemical industry from an economic and environmental perspective. In exploring solutions to this area, we herein report a highly optimized and environmentally conscious continuous-flow synthesis of two APIs identified as essential medicines by the World Health Organization, namely diazepam and atropine. Notably, these approaches significantly reduced the E-factor of previously published routes through the combination of continuous-flow chemistry techniques, computational calculations and solvent minimization. The E-factor associated with the synthesis of atropine was reduced by 94-fold (about two orders of magnitude), from 2245 to 24, while the E-factor for the synthesis of diazepam was reduced by 4-fold, from 36 to 9. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Opportunities for measuring DNA synthesis time by quantitative autoradiography

    International Nuclear Information System (INIS)

    Vasileva, D.

    1980-01-01

    DNA sysntesis time (Tsub(s)) in cells of the canine erythropoiesis and myelopoiesis pools was determined by quantitative autoradiography according to Doermer. In contrast to mitosis labelling for Tsub(s) estimation as so far applied, this technique uses well-differentiated cells. After blocking endogeneous DNA synthesis with 5-fluorodeoxyuridine, its further course becomes dependent on exogeneous supply of thymidine, in the form of 14 C-thymidine. From incroporation of the latter into the individual cell within a definite time span (3-7 min) and taking into account its total amount, Tsub(s) may be calculated. The data thus obtained were found to agree with Tsub(s) values as estimated from the labelled mitosis curve

  13. Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Kibitel, J.T.; Green, L.A.; Spinowitz, A.

    1991-01-01

    Epidermal keratinocytes cultured from explants of skin cancer patients, including biopsies from xeroderma pigmentosum patients, were ultraviolet light-irradiated and DNA repair synthesis was measured. Repair capacity was much lower in xeroderma pigmentosum patients than in normal patients. The extent of DNA repair replication did not decline with the age of the normal patient. Treatment with T4N5 liposomes containing a DNA repair enzyme enhanced repair synthesis in both normal and xeroderma pigmentosum keratinocytes in an irradiation- and liposome-dose dependent manner. These results provide no evidence that aging people or skin cancer patients are predisposed to cutaneous malignancy by a DNA repair deficiency, but do demonstrate that T4N5 liposomes enhance DNA repair in the keratinocytes of the susceptible xeroderma pigmentosum and skin cancer population

  14. Effect of haloperidol on the synthesis of DNA in the pituitary gland of the rat.

    Science.gov (United States)

    Machiavelli, G A; Jahn, G A; Kalbermann, L E; Szijan, I; Alonso, G E; Burdman, J A

    1982-03-01

    The administration of haloperidol increased serum prolactin and decreased the pituitary concentration of prolactin 15 min after its administration. Concomitantly there was a stimulation in the synthesis of DNA and the activity of DNA polymerase alpha in the anterior pituitary gland that was greater in oestrogenized than in non-oestrogenized male rats. Both these effects were greatly reduced by clomiphene in the oestrogenized male rats, although it did not affect the release of prolactin produced by haloperidol. In non-oestrogenized animals clomiphene abolished the stimulatory effect of haloperidol on the synthesis of DNA. These results suggest that the reduction in the intracellular levels of prolactin are a primary event in the oestrogen mediated stimulation of cell proliferation by prolactin releasing agents.

  15. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  16. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.

    Science.gov (United States)

    O'Reilly, Rachel K; Turberfield, Andrew J; Wilks, Thomas R

    2017-10-17

    Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify "successful" structures. The largest libraries made by conventional synthesis are currently of the order of 10 8 distinct molecules. To put this in context, there are 10 13 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a

  17. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  18. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression

    International Nuclear Information System (INIS)

    Kim, Sunyoung; Baltimore, D.; Byrn, R.; Groopman, J.

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. The authors have established a single-cycle growth condition for HIV in H9 cells, a human CD4 + lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes

  19. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  20. The acute effects of ionizing radiation on DNA synthesis and the development of antibody-producing cells

    International Nuclear Information System (INIS)

    Harris, G.; Olsen, I.; Cramp, W.A.

    1981-01-01

    Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of ( 3 H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of ( 3 H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study. (orig.)

  1. Novel pattern of post-γ ray de novo DNA synthesis in a radioresistant human strain

    International Nuclear Information System (INIS)

    Mirzayans, R.; Gentner, N.E.; Paterson, M.C.

    1985-01-01

    Enhanced resistance to radiation cytotoxicity in a fibroblast strain from an afflicted member of a Li-Fraumeni syndrome family may be largely ascribable to a change in the pattern of DNA replicative synthesis following γ ray exposure. That is, the extent of the initial radiogenic inhibition of replicative synthesis and the time interval before its subsequent recovery were both found to be greater in radioresistant (RR) compared to normal cells. In addition, the post-recovery replication rates in the RR cells were both higher and longer lasting than those in the control cells. A similar differential pattern was also seen following treatment with 4NQO, another DNA-damaging agent to which this RR strain displays enhanced resistance. Moreover, several conventional DNA repair assays indicated that the RR cells repair radiogenic damage at normal rates. The authors therefore suggest that the increased inhibition and prolonged lag in resumption of replicative synthesis seen in the RR strain upon exposure to certain genotoxic agents may enhance cellular recovery by ''buying additional time'' for processing of potentially lethal lesions

  2. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    Science.gov (United States)

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  3. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.J.; Abergel, R.P.; Meeker, C.; Dwyer, R.M.; Lesavoy, M.A.; Uitto, J.

    1983-09-01

    Human skin fibroblasts were subjected to treatment with a Neodymium:YAG laser at 1060 nm with varying levels of energy determined by a reproducible method of dosimetry. DNA synthesis in the cells was measured by the incorporation of (3H)thymidine, and collagen production was monitored by the synthesis of nondialyzable (3H)hydroxyproline after incubation of cells with (3H)proline. Using energy levels equal to 1.7 X 10(3) J/cm2, a significant reduction in DNA synthesis was noted, while the cells remained viable as tested by the trypan blue exclusion test. With energy levels higher or equal to 2.3 X 10(3) J/cm2, the suppression of DNA synthesis was accompanied by cell nonviability. The collagen production, when measured immediately following the treatment with 1.7 X 10(3) J/cm2, was markedly reduced, and similar effects were observed with higher energy levels. However, when the cells were tested for collagen production at 20 hours following laser treatment, there was a significant decrease in collagen production at energy levels as low as 1.1 X 10(3) J/cm2, a dose that did not affect DNA synthesis or cell viability. Thus, the results indicate that the Nd:YAG laser can selectively suppress collagen production without affecting cell proliferation. These observations suggest that laser treatment could potentially be used to reduce collagen deposition in conditions such as keloids and hypertrophic scars.

  4. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  5. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function

    International Nuclear Information System (INIS)

    Minor, P.D.; Dimmock, N.J.

    1977-01-01

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and α-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at high concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent

  6. Simple Laboratory methods to measure cell proliferation using DNA synthesis property

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2007-01-01

    Full Text Available This is a mini-review on the techniques to measure proliferation of cells by estimation of DNA synthesis. This is not an exhaustive review of literature, but a bird’s eye view of a few selected articles which may provide the technical details to the readers.The nucleus of a cell occupies about 10-30% of the cells space, depends on the type of genetic material (DNA -DeoxyriboNucleic Acid. DNA is a long, double-stranded, helical molecule which carries the genetic information. Duplication of the DNA takes place by the phenomena of replication. One copy of double-stranded DNA molecule forms two double-stranded DNA molecules. DNA replication is the fundamental process used in all living organisms as it is the basis for biological inheritance. This process is known also as Mitosis in somatic cells. In Mitosis, the duplication process results in two genetically identical "daughter" cells from a single "parent" cell. The resulting double-stranded DNA molecules are identical; proof reading and error-checking mechanisms exist to ensure near perfect pair. Mitosis is divided into six phases: prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis.

  7. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  8. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  9. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r. Implications for growth delay

    Energy Technology Data Exchange (ETDEWEB)

    Ramabhadran, T V [Texas Univ., Dallas (USA). Inst. for Molecular Biology

    1975-09-01

    Fluences (21 to 32 kJ/m/sup 2/) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA.

  10. Effect of different BNCT protocols on DNA synthesis in precancerous and normal tissues in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Aromando, Romina; Trivillin, Veronica A.; Itoiz, Maria E.; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.

    2006-01-01

    We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue. We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by BPA, GB-10 or BPA + GB-10 employing incorporation of bromo-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors in precancerous tissue was monitored. A drastic, statistically significant reduction in DNA synthesis occurred in pacancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time points until 30 days post-BNCT for all protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed. BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would contribute to optimize therapeutic efficacy in the treatment of field-cancerized areas. (author)

  11. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nuclear DNA synthesis rate and labelling index: effects of carcinogenic and non-carcinogenic chemicals on its behaviour in the organism of growing CBA mice

    International Nuclear Information System (INIS)

    Amlacher, E.; Rudolph, C.

    1978-01-01

    Well known bioassays have been compared with the author's thymidine incorporation-screening system and other assays based on biochemical quantification of DNA synthesis as a possibility of identification of carcinogens. The partial inhibition of the whole DNA synthesis in a proliferating cell population after treatment with toxic and carcinogenic chemicals is an early common response especially in hepatectomized animal, livers caused by the effects of those substances. However, by quantitative evaluation of the nuclear DNA synthesis rate as a basic parameter, using autoradiographs of kidney and liver of juvenile growing CBA mice, it is possible to differentiate carcinogenic from non-carcinogenic chemicals by means of silver grain counting after 3 H-TdR incorporation. On the contrary, the whole DNA synthesis, expressed by the 3 H-labelling index (in per cent) of kidney and liver, did not permit such a differentiation in the experimental arrangement used. It could be demonstrated that carcinogenic compounds of different chemical classes partially inhibit the nuclear DNA synthesis rate significantly over a period of more than 24 hours. The tested non-carcinogenic compounds did not show this suppressive effect on the nuclear DNA synthesis rate. (author)

  13. DNA synthesis time in germinating rice and pattern of diethylsulphate induced mutations in pre-soaked seeds

    International Nuclear Information System (INIS)

    Narahari, P.

    1978-01-01

    DNA synthesis pattern in germinating rice seeds, pre-soaked in water for varying periods upto 48 hr, was determined by following the pulse incorporation of 3 H-thymidine into the TCA-insoluble nucleoprotein. Synthesis of DNA commenced at 24 hr, progressively increased to a first peak at about 38 hr, thereafter showed a 1/3rd drop and subsequently increased to a 2nd and still higher peak at 46 to 48 hr of pre-soaking. Treatments of diethylsulphate (dES) at a low concentration (0.2%-2hr) administered at various progressing stages of DNA synthesis resulted in decrease in seedling height and survival, and increase in mutation frequency at 45 hr. pre-soaking, maximum mutation frequencies of 20, 10 and 2% on M 1 plants, M 1 spikes and M 2 seedling bases, respectively were observed. Higher dES concentration (0.3%-2hr) given at later periods of pre-soaking showed near lethal effects and consequently decreased mutation frequencies. Treatments of sodium fluoride given singly or in combination with dES did not show any substantially different results as compared to those of the respective controls. Mutation spectra observed after dES treatments to germinating seeds, at different pre-soaking periods, were quite dissimilar. Specific mutations of economic importance like semi-dwarf mutants were isolated from the treatment of germinating seeds pre-soaked for 37.5 hr or more when shoot apex cells were undergoing DNA synthesis. (author)

  14. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  15. Murine scid cells complement ataxia-telangiectasia cells and show a normal port-irradiation response of DNA synthesis

    International Nuclear Information System (INIS)

    Komatsu, K.; Yoshida, M.; Okumura, Y.

    1993-01-01

    The murine severe combined immunodeficient mutation (scid) is characterized by a lack of both B and T cells, due to a deficit in lymphoid variable-(diversity)-joining (V(D)J) rearrangement. Scid cells are highly sensitive to both radiation-induced killing and chromosomal aberrations. Significantly reduced D 0 and n values were demonstrated in scid cells and were similar to ataxia-telangiectasia (AT) cells (a unique human disease conferring whole body radiosensitivity). However, the kinetics of DNA synthesis after irradiation were different between the two cell types. In contrast with the radioresistant DNA synthesis of AT cells, DNA synthesis of scid cells was markedly inhibited after irradiation. The existence of different mutations was also supported by evidence of complementation in somatic cell hybrids between scid cells and AT cells. Results indicate that the radiobiological character of scid is similar to AT but is presumably caused by different mechanisms. (author)

  16. Possible roles of HIV-1 nucleocapsid protein in the specificity of proviral DNA synthesis and in its variability.

    Science.gov (United States)

    Lapadat-Tapolsky, M; Gabus, C; Rau, M; Darlix, J L

    1997-05-02

    Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it coats the dimeric RNA genome. Due to its nucleic acid binding and annealing activities, NC protein directs the annealing of the tRNA primer to the primer binding site and greatly facilitates minus strand DNA elongation and transfer while protecting the nucleic acids against nuclease degradation. To understand the role of NCp7 in viral DNA synthesis, we examined the influence of NCp7 on self-primed versus primer-specific reverse transcription. The results show that HIV-1 NCp7 can extensively inhibit self-primed reverse transcription of viral and cellular RNAs while promoting primer-specific synthesis of proviral DNA. The role of NCp7 vis-a-vis the presence of mutations in the viral DNA during minus strand elongation was examined. NCp7 maximized the annealing between a cDNA(-) primer containing one to five consecutive errors and an RNA representing the 3' end of the genome. The ability of reverse transcriptase (RT) in the presence of NCp7 to subsequently extend the mutated primers depended upon the position of the mismatch within the primer:template complex. When the mutations were at the polymerisation site, primer extension by RT in the presence of NCp7 was very high, about 40% for one mismatch and 3% for five consecutive mismatches. Mutations within the DNA primer or at its 5' end had little effect on the extension of viral DNA by RT. Taken together these results indicate that NCp7 plays major roles in proviral DNA synthesis within the virion core due to its ability to promote prime-specific proviral DNA synthesis while concurrently inhibiting non-specific reverse transcription of viral and cellular RNAs. Moreover, the observation that NCp7 enhances the incorporation of mutations during minus strand DNA elongation favours the notion that NCp7 is a factor contributing to the high mutation rate of HIV-1.

  17. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  18. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.

    Science.gov (United States)

    Fillingame, R H; Jorstad, C M; Morris, D R

    1975-01-01

    There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087

  19. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  20. In vitro Assays for Eukaryotic Leading/Lagging Strand DNA Replication.

    Science.gov (United States)

    Schauer, Grant; Finkelstein, Jeff; O'Donnell, Mike

    2017-09-20

    The eukaryotic replisome is a multiprotein complex that duplicates DNA. The replisome is sculpted to couple continuous leading strand synthesis with discontinuous lagging strand synthesis, primarily carried out by DNA polymerases ε and δ, respectively, along with helicases, polymerase α-primase, DNA sliding clamps, clamp loaders and many other proteins. We have previously established the mechanisms by which the polymerases ε and δ are targeted to their 'correct' strands, as well as quality control mechanisms that evict polymerases when they associate with an 'incorrect' strand. Here, we provide a practical guide to differentially assay leading and lagging strand replication in vitro using pure proteins.

  1. Unscheduled DNA synthesis after β-irradiation of mouse skin in situ

    International Nuclear Information System (INIS)

    Ootsuyama, Akira; Tanooka, Hiroshi

    1986-01-01

    The skin of ICR mouse was irradiated with β-rays from 90 Sr- 90 Y with surface doses up to 30 krad. Unscheduled DNA synthesis (UDS) was measured by autoradiography after labeling the skin with radioactive thymidine using the forceps-clamping method. The level of UDS in epithelial cells of the skin was detected as an increasing function of radiation dose. Fibroblastic cells, compared with epithelial cells and hair follicle cells at the same depth of the skin, showed a lower level of UDS, indicating a lower DNA repair activity in fibroblasts. Cancer risk of the skin was discussed. (Auth.)

  2. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  3. Cell growth state determines susceptibility of repair DNA synthesis to inhibition by hydroxyurea and 1-beta-D-arabinofuranosylcytosine

    International Nuclear Information System (INIS)

    Mullinger, A.M.; Collins, A.R.; Johnson, R.T.

    1983-01-01

    The effects of inhibitors of replicative DNA synthesis on repair DNA synthesis have been examined by autoradiography in several different cell types and in cells in different growth states. Hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), administered together, influence unscheduled DNA synthesis (UDS) in a manner which is independent of the status of the cell culture (normal or transformed) and of the species, but which is strongly affected by whether the cells are proliferating or quiescent. In proliferating human, Chinese hamster and Microtus cell cultures, UDS is not inhibited by HU and ara C, and may even appear to be stimulated. In quiescent cultures of these cells UDS is reduced by HU and ara C. In cells reseeded from a confluent culture and followed during proliferation and back to quiescence the effect of inhibitors parallels the growth pattern. The results are interpreted in terms of changes in the sizes of endogenous DNA precursor pools; they underline the potential problems associated with quantitating UDS in the presence of inhibitors

  4. Influence of some radioprotective and radiosensitizing compounds on the replicative and repair induced DNA synthesis of rats spleen cells in vitro

    International Nuclear Information System (INIS)

    Goette, A.

    1982-01-01

    The effect of cysteine, dithiothreitol, N-ethylmaleimide, cytosinearabinoside, ethidiumbromide, bleomycine and diethyldithiocarbamate on the replicative and repair induced DNA synthesis in vitro was tested by using rats spleen cells. Besides the incorporation of a labeled DNA precursor (TdR- 3 H) the sedimentation of DNA in sucrose gradients was inquired. With respect to the DNA synthesis an uniform mechanism of action for the radioprotective substances can't be seen. Thymocytes and spleen cells seem to possess different systems of repair; this may be an explanation for their different sensibility against ionizing radiation. (orig./MG) [de

  5. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    Science.gov (United States)

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  6. Autoradiographic study of gamma-ray induced unscheduled DNA synthesis in bean root meristem cells

    International Nuclear Information System (INIS)

    Liu Zhenshen; Qiu Quanfa; Chen Dongli

    1989-01-01

    The gamma-ray induced unscheduled DNA synthesis in root meristem cells of Vica faba was studied autoradiographically by calculating the number of cells with different 3H-thymidine labelling degree. It was found that the level of unscheduled synthesis in cells with intermediate dose (500 R) irradiation was higher than that in cells with lower dose (250 R) irradiation; however, higher dose (1000 R) irradiation would inhibit the reparative replication

  7. Effects of far-ultraviolet radiation and oxygen on macromolecular synthesis and protein induction in Bacteroides fragilis BF-2

    International Nuclear Information System (INIS)

    Schumann, J.P.

    1983-11-01

    The study deals with the effects of far-UV radiation, oxygen and hydrogen peroxide on macromolecular synthesis and viability in the obligate anaerobe, Bacteroides fragilis, as well as the specific proteins induced in this organism by these different DNA damaging agents. Irradiation of Bacteroides fragilis cells with far-UV light (254 nm) under anaerobic conditions resulted in the immediate, rapid and extensive degradation of DNA which continued for 40 to 60 min after irradiation. DNA degradation after irradiation was inhibited by chloramphenicol and caffeine. RNA and protein synthesis were decreased by UV irradiation and the degree of inhibition was proportional to the UV dose. Colony formation was not affected immediately by UV irradiation and continued for a dose-dependent period prior to inhibition. The relationship between the DNA damage-induced proteins, macromolecular synthesis in damaged B. fragilis cells and the observed physiological responses and inducible repair phenomena after the different DNA damaging treatments in this anaerobe are discussed

  8. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    OpenAIRE

    Dunne, Peter W.; Starkey, Christopher L.; Gimeno-Fabra, Miquel; Lester, Edward

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe₍₁₋ᵪ₎S and Bi₂S₃, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth d...

  9. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  10. Increased levels of unscheduled DNA synthesis in UV-irradiated human fibroblasts pretreated with sodium butyrate

    International Nuclear Information System (INIS)

    Williams, J.I.; Friedberg, E.C.

    1982-01-01

    Pretreatment of growing normal and xeroderma pigmentosum (XP) human fibroblasts with sodium butyrate at concentrations of 5-20 mM results in increased levels of DNA repair synthesis measured by autoradiography after exposure of the cells to 254 nm UV radiation in the fluence range 0-25 J/m 2 . The phenomenon manifests as an increased extent and an increased initial rate of unscheduled DNA synthesis (UDS). This experimental result is not due to an artifact of autoradiography related to cell size. Xeroderma pigmentosum cells from complementation groups A, C, D and E and XP variant cells all exhibit increases in the levels of UV-induced UDS in response to sodium butyrate proportional to those observed with normal cells. These UDS increases associated with butyrate pretreatment correlate with demonstrable changes in intracellular thymidine pool size and suggest that sodium butyrate enhances uptake of exogenous radiolabeled thymidine during UV-induced repair synthesis by reducing endogenous levels of thymidine. (author)

  11. Recovery of subchromosomal DNA synthesis in synchronous V-79 Chinese hamster cells after ultraviolet light exposure

    International Nuclear Information System (INIS)

    Meechan, P.J.; Carpenter, J.G.

    1986-01-01

    Previous work obtained from Chinese hamster V-79 cells indicated that, immediately following exposure, UV-induced lesions acted as blocks to elongation of nascent strands, but gradually lost that ability over a 10 h period after exposure to 10 J/m 2 . The work reported herein attempted to examine possible cell cycle mediated alterations in the recovery of DNA synthesis. Kinetic incorporation of radiolabeled thymidine studies indicated that there may have been a more rapid recover of DNA synthesis in cells irradiated in G 1 or G 2 vs cells irradiated in S phase. DNA fiber autoradiograms prepared from synchronous cells indicated that after irradiation in any phase of the cell cycle, the length of newly synthesized DNA was equal to control lengths 1 h after exposure to 5.0Jm 2 (or 1 h after entering S phase for cells irradiated in G 1 or G 2 ). This observed recovery was not solely due to an excision process. No cell cycle mediated difference in the number of dimers induced or removed as a function of cell cycle position was observed. These results appear to be consistent with a continuum of effects, with initiation effects dominating the response at low fluences, gapped synthesis at intermediate fluences and elongation inhibition at high fluences. The fluences at which each event dominates may be cell-line specific. (author)

  12. Labelling of Cells Engaged in DNA Synthesis: Autoradiography and BrdU Staining

    DEFF Research Database (Denmark)

    Madsen, Peder Søndergaard

    2010-01-01

    The cell cycle is divided in four phases: G1 phase, S phase (DNA-synthesis), G2 phase (together termed interphase) and M phase (mitosis). Cells that have ceased proliferation enter a state of quiescence called G0. M phase is itself composed of two tightly coupled processes: mitosis, in which...

  13. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  14. Inhibition of hydrogenase synthesis by DNA gyrase inhibitors in Bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Novak, P.D.; Maier, R.J.

    1987-01-01

    Derepression of an uptake hydrogenase in Bradyrhizobium japonicum is dependent on a microaerophilic environment. Addition of DNA gyrase inhibitors during derepression of hydrogenase specifically prevented expression of the hydrogenase enzyme. Antibodies to individual hydrogenase subunits failed to detect the protein after derepression in the presence of inhibitors, although there was no general inhibition of protein synthesis. The general pattern of proteins synthesized from 14 C-labeled amino acids during derepression was no significantly different whether proteins were labeled in the presence or in the absence of gyrase inhibitors. In contrast, if transcription or translation was inhibited by addition of inhibitors of those functions, virtually no proteins were labeled during derepression. This indicated that most of the 14 C-labeled proteins were synthesized de novo during derepression, synthesis of most proteins was unaffected by gyrase inhibitors, and the dependence of hydrogenase synthesis on gyrase activity was a specific one

  15. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    International Nuclear Information System (INIS)

    Ulrich, F.

    1988-01-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [ 3 H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA

  16. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors.

    Science.gov (United States)

    Cotman, Andrej E; Trampuž, Marko; Brvar, Matjaž; Kikelj, Danijel; Ilaš, Janez; Peterlin-Mašič, Lucija; Montalvão, Sofia; Tammela, Päivi; Frlan, Rok

    2017-08-01

    The discovery and synthesis of new tyrosine-based inhibitors of DNA gyrase B (GyrB), which target its ATPase subunit, is reported. Twenty-four compounds were synthesized and evaluated for activity against DNA gyrase and DNA topoisomerase IV. The antibacterial properties of selected GyrB inhibitors were demonstrated by their activity against Staphylococcus aureus and Enterococcus faecalis in the low micromolar range. The most promising compounds, 8a and 13e, inhibited Escherichia coli and S. aureus GyrB with IC 50 values of 40 and 30 µM. The same compound also inhibited the growth of S. aureus and E. faecalis with minimal inhibitory concentrations (MIC 90 ) of 14 and 28 µg/mL, respectively. © 2017 Deutsche Pharmazeutische Gesellschaft.

  17. Extracellular calcium alters the effects of retinoic acid on DNA synthesis in cultured murine keratinocytes

    International Nuclear Information System (INIS)

    Tong, P.; Mayes, D.; Wheeler, L.

    1986-01-01

    The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca ++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca ++ medium (0.09 mM) as measured by incorporation of [ 3 H] thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC 50 of about 10 μM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 μM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number of control at 10 μM. These results are of importance since they suggest Ca ++ may influence the effect of retinoids on keratinocytes

  18. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Weinberger, Florian; Mehrkens, Dennis; Starbatty, Jutta; Nicol, Philipp; Eschenhagen, Thomas

    2015-01-01

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1 + ) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1 + cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ( 3 H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3 H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1 + cells. Whereas Islet − non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1 + cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  19. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  20. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  1. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  2. The effect of purine phosphonomethoxyalkyl derivatives on DNA synthesis in Cho Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Stetina, R [Institute of Experimental Medicine, Laboratory of Developmental Toxicology, Academy of Sciences of Czech Republic, 51783 Olesnice v Orlickych horach (Czech Republic); Votruba, I; Holy, A; Merta, A [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic (Czech Republic)

    1994-12-31

    The inhibition of incorporation of {sup 3}H-thymidine and the changes of the rate of nascent DNA chain elongation were investigated in Cho Chinese hamster cells treated with (S)-(3-hydroxy-2-phosphonomethoxypropyl) (HPMP) and N-(2-phosphonomethoxyethyl) (PME) derivatives of adenine (A), guanine (G) and 2,6-diaminopurine (DAP). No direct correlation was observed in PME and HPMP derivatives between cytotoxicity, inhibition of {sup 3}H-thymidine incorporation and inhibition of nascent DNA chain elongation. The highest cytotoxicity and inhibition of DNA synthesis were caused by PMEG. The limited extent of inhibition of DNA elongation was encountered in the case of HPMPG and HPMPA. With PMEA, weak inhibition of elongation of DNA was observed only after a prolonged exposure (6 h). None of the investigated drugs induced DNA breaks. (author) 4 figs., 23 refs.

  3. Effect of inhibition of DNA synthesis on recovery of X-irradiated L5178Y-S cells. I

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1989-01-01

    Irradiated L5178Y-S cells (LY-S) were characterized by an exponential survival curve and the potentiation effect of split -dose irradiation. Previously it was found that in LY-S cells the reduction of DNA replicative synthesis rate affected the balance between the fixation and repair of sublethal damage (SLD) and of potentially lethal damage (PLD) in favor of repair. It was found now that a block of DNA synthesis by aphidicolin (APC), an inhibitor of DNA polymerase alpha, was sufficient to protect LY-S cells from fixation of PLD and SLD induced by X-rays. Treatment with APC 0.5 μg/ml for 2 h, efficiently inhibited DNA replication (95%) with minimal effect on survival. Inhibition of DNA synthesis by combined irradiation and APC was not significantly different from APC treatment alone. The level of protection by APC was dependent on the length of time between irradiation and APC application. An opposite effect was observed when the drug treatment had preceded irradiation: The killing effect of X-ray increased. The effect of aphidicolin treatment remained even after removal of APC and was dependent on the drug concentration and time between drug removal and irradiaton. These results are interpreted as indicating that X-ray damage was fixed in LY-S cells, because of their lack of ability to maintain the nucleotide pool balance, and that fixation took place during progression through the cell cycle. (author). 6 figs., 22 refs

  4. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)

    1997-03-01

    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  5. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  6. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    Directory of Open Access Journals (Sweden)

    Daniel Klevebring

    2009-01-01

    Full Text Available Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. Results. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. Conclusions. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  8. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.

    Science.gov (United States)

    Zhu, Yali; Song, Liping; Stroud, Jason; Parris, Deborah S

    2008-01-01

    Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function. Virtually all of the WT pol was bound at the exo site to AP-containing primer-templates (P/Ts) at equilibrium, and the pre-steady-state rate of excision by WT pol was higher on AP-containing than on matched DNA. However, several factors influencing polymerization work synergistically with exo activity to prevent HSV-1 pol from engaging in TLS. Although the pre-steady-state catalytic rate constant for insertion of dATP opposite a T or AP site was similar, ground-state-binding affinity of dATP for insertion opposite an AP site was reduced 3-9-fold. Single-turnover running-start experiments demonstrated a reduced proportion of P/Ts extended to the AP site compared to the preceding site during processive synthesis by WT or exo- pol. Only the exo- pol engaged in TLS, though inefficiently and without burst kinetics, suggesting a much slower rate-limiting step for extension beyond the AP site.

  9. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    International Nuclear Information System (INIS)

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-01-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were 14 C-protein hydrolysate, ( 14 C)uridine, and ( 14 C) thymidine. Stimulation was determined by measuring incorporation of ( 14 C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules

  10. Inhibition of DNA synthesis and radiosensitization effects of thalidomide on esophageal carcinoma TE1 cells

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Suping; Sun Zhiqiang; Sun Meiling; Liu Fenju

    2010-01-01

    Objective: To explore the radiosensitization effect of thalidomide combined with X-ray on esophageal carcinoma TE1 cells. Methods: Cell scratch assay was used to detect the inhibition ability of different concentration of Thalidomide on cell invasion and metastasis. H 3 -TdR incorporation assay was used to investigate the inhibition of DNA synthesis in TE1 cells by treated with Thalidomide singly or combination with X-rays. The colony formation assay was used to analyze the radiosensitization of Thalidomide effect on TE1 cells. Results: Thalidomide had obvious inhibition effect on TE1 cell metastasis, DNA synthesis and colony formation, which were correlated with drug concentration. The values D 0 , D q and SF 2 in TE1 cells were gradually decreased with thalidomide concentration increased. When the concentration of thalidomide was 100μg/ml, the SER D 0 and SER D 0 and SER D q were (1.4±0.2) and (1.5±0.1), respectively, While the concentration of thalidomide was 150 μg/ml, the SER D 0 and SER D q were (1.5±0.2) and (1.8±0.2), respectively. Conclusions: Thalidomide could inhibit TE1 cell invasion, metastasis, DNA synthesis, and significantly enhance the radiosensitizing effect on esophageal carcinoma TE1 cells. (authors)

  11. Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konze-Thomas, B.; Hazard, R.M.; Maher, V.M.; McCormick, J.J. (Michigan State Univ., East Lansing (USA). Carcinogenesis Lab.)

    1982-01-01

    Excision repair-proficient diploid fibroblasts from normal persons (NF) and repair-deficient cells from a xeroderma pigmentosum patient (XP12BE, group A) were grown to confluence and allowed to enter the G/sub 0/ state. Autoradiography studies of cells released from G/sub 0/ after 72 h and replated at lower densities (3-9 x 10/sup 3/ cells/cm/sup 2/) in fresh medium showed that semiconservative DNA synthesis (S phase) began approx. equal to 24 h after the replating. The task was to determine whether the time available for DNA excision repair between ultraviolet irradiation (254 nm) and the onset of DNA synthesis was critical in determining the cytotoxic and/or mutagenic effect of UV in human fibroblasts.

  12. Changes in the synthesis of DNA, RNA and protein during somatic embryogenesis in wheat (triticum aestivum L.)

    International Nuclear Information System (INIS)

    Cui Kairong; Wang Xiaozhe; Chen Xiong; Wang Yafu

    1997-01-01

    Embryogenic and non-embryogenic callus formed from immature embryo of wheat (Triticum aestivum L.) in N 6 B 5 MS medium I supplemented with 2,4-D 2 mg/L, KT 0.5 mg/L, LH300 mg/L, sucrose 3% were sub-cultured and transferred respectively to N 6 B 5 MS medium II (2,4-D was decreased to 0.5 mg/L and 4 mol/L proline was added). Somatic embryos obtained from embryogenic callus, and plantlet formed from non-embryogenic callus through organogenesis respectively. By incorporation of 3 H-thymidine, 3 H-uridine and 3 H-leucine into DNA, RNA and protein respectively, the rate of synthesis of DNA, RNA and protein during somatic embryogenesis were measured. A large amount of RNA and protein synthesized during the early somatic embryogenesis. The activities of RNA and protein synthesis reached the peak on the 4th and the 8th day respectively, then decreased a little, but kept a high level. The synthesis of DNA increased apparently during the early stage. No apparent change occurred when the embryogenic cell masses formed. The synthesis rate of RNA and protein in non-embryogenic callus were much less than that in embryogenic callus. Actinomycin and cycloheximide inhibited not only the synthesis of nucleic acid and protein, but also the growth of embryogenic callus and somatic embryogenesis. The earlier the inhibitors were added, the greater the influence was caused. The results indicate that the active expression of corresponding genes of wheat is the molecular base of somatic embryogenesis

  13. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    Science.gov (United States)

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  14. Synthesis of allyl amine on glass by continuous plasma

    International Nuclear Information System (INIS)

    Morales, J.; Olayo, R.; Vasquez, M.; OLayo, M.G.; Cruz, G.

    2003-01-01

    In this work the synthesis by plasma of thin films of polyallyl amine under continuous plasma conditions for possible use in biomaterials is presented. It is shown that the thickness of the film depends so much of the time of synthesis like of the used power. The polymers were analyzed by X-ray photoelectron spectroscopy (XPS) and angle of contact before and after of being immersed in distilled water by 10 days. The allylamine shows lost of nitrogen and an increase in the content of oxygen with the immersion time due to the interaction among the water and the polymer. The angle of contact shows an increase of approximately 10 degrees, what indicates a change in the surface energy of the polymer. (Author)

  15. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  16. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    DEFF Research Database (Denmark)

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  17. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  18. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  19. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-07-14

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.

  20. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-01-01

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase η, the POLH gene product. A deficiency in DNA polymerase η due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase ζ cooperates with DNA polymerases κ and ι to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases ζ and κ, but not ι, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load. PMID:19564618

  1. Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis

    International Nuclear Information System (INIS)

    Eluri, Ravi; Paul, Brian

    2012-01-01

    The continuous synthesis of nickel nanoparticles (NiNPs) in a static microchannel T-mixer by the reduction of NiCl 2 ·6H 2 O in the presence of ethylene glycol without a stabilizing/capping agent was investigated. The nanoparticles were formed in accordance with the modified polyol process with hydrazine used as a reducing agent and NaOH as a catalyst for nanoparticle formation. The reaction mechanism for NiNP formation was investigated in batch with the help of Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques. Parameters were found for reducing reaction times from 60 to 1 min. The effects of temperature (60–120 °C) and NaOH concentration (0.1 and 0.5 M) on batch-processed particle characteristics were also studied using XRD, transmission electron microscope and electron microprobe analysis. Average particle size was reduced from 9.2 ± 2.9 to 5.4 ± 0.9 nm at higher temperature and NaOH concentration. Adaptation of this chemistry to a static microchannel T-mixer for continuous synthesis resulted in smooth, spherical particles. Increases in the reaction temperature from 120 to 130 °C resulted in a narrow size distribution of 5.3 ± 1 nm and also resulted in magnetic properties of 5.1 emu/g (saturation magnetization), 1.1 emu/g (remanent magnetization), and 62 Oe (coercivity).

  2. Age-dependence of the x-ray-induced deficiency in DNA synthesis in HeLa S3 cells during generation 1

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Tolmach, L.J.

    1975-01-01

    The radiation-induced deficiency in DNA synthesis in Generation 1 was studied as a function of the age of HeLa S3 cells at the time of exposure to 220 kV x rays in the previous generation (Generation 0). The amount of DNA synthesized is dependent on the stage in the generation cycle at which cells are irradiated. The smallest deficiency (20 to 35 percent after a dose of 500 rad) is observed in cells irradiated in early G1 or early G2, while the greatest deficiency (55 to 70 percent after 500 rad) is found in cells irradiated at mitosis or at the G1/S transition. The high sensitivity of cells at G1/S is also manifested by a steeper dose-response curve. Cells irradiated in late G2, past the point where their progression is temporarily blocked by x rays, synthesize a normal amount of DNA in Generation 1, while cells that are held up in the G2 block exhibit deficient synthesis in the next generation. The extent of the deficiency in early G1 cells can be enhanced by treatment with 1 mM hydroxyurea for several hours immediately following irradiation. The possibility that deficient DNA synthesis is related to cell killing, and the relation between the G2 block and deficient synthesis, are discussed

  3. DNA-synthesis of lymphocytes in hyperthyroid and enthyroid subjects. Effect of 131I therapy on hyperthyroidism

    International Nuclear Information System (INIS)

    Lundell, G.; Wasserman, J.; Einhorn, N.; Granberg, P.-O.

    1976-01-01

    The DNA-synthesis of human lymphoid cells as estimated by the measurement of thymidine incorporation in vitro was investigated in healthy controls and in patients with various thyroid disorders before and after therapy. Hyperthyroid patients treated with 131 I and surgery (euthyroid at initial blood sampling before surgery), patients with atoxic nodular goitre treated by surgery and healthy untreated control individuals comprised the material. The synthesis of DNA in lymphocytes was higher in hyperthyroid patients in comparison with euthyroid individuals, and decreased subsequent to 131 I therapy in the hyperthyroid patients. No decrease was recorded in the other groups of patients. No evidence suggesting a change in the lymphocyte reactivity to thyroglobulin was found in any of the patient groups. (author)

  4. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  5. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  6. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  7. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  8. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to

  9. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA

    International Nuclear Information System (INIS)

    Kastan, M.B.; Gowans, B.J.; Lieberman, M.W.

    1982-01-01

    Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6- 3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approximately 2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of approximately 2.7% in 10-20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites

  10. DNA synthesis and cell survival after X-irradiation of mammalian cells treated with caffeine or adenine

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.; Dahle, D.B.

    1978-01-01

    The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation could be postponed by a post-irradiation treatment with 1.0 to 2.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibited depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis had no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiated X-ray-induced cell killing, this reduction in survival was due primarily to effects on cells not in S-phase. (author)

  11. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression.

    Directory of Open Access Journals (Sweden)

    Dongsha Wang

    Full Text Available The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET measures of brain serotonin (5-HT synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC. Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25 who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20 where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.

  12. Some new methyl-8-methoxypsoralens: synthesis, photobinding to DNA, photobiological properties and molecular modelling.

    Science.gov (United States)

    Gia, O; Anselmo, A; Pozzan, A; Antonello, C; Magno, S M; Uriarte, E

    1997-01-01

    The tricyclic structure of known natural photochemotherapeutic drugs such as 8-methoxypsoralen and 5-methoxypsoralen is often taken as a model in the search of new photosensitizer agents with less phototoxic and mutagenic effects. This paper describes the synthesis, characterization, photobinding to DNA, photobiological properties and computational chemistry of some 8-methoxypsoralen derivatives bearing two or three methyl groups at the key positions of the two photoactive double bonds. Results showed that photoreactivity and photobiological behaviour depend on the pattern of methyl substitutions. Antiproliferative activity in cell lines shows good correlation with DNA interaction data.

  13. Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

    Science.gov (United States)

    Pham, Phuong; Seitz, Erica M; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2002-08-20

    SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD'(2)C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are "nonfilamentous". That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3' primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3' filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis.

  14. Comparative investigations about the DNA synthesis by thymus and spleen cells of rats in vitro under the influence of X-rays, UV radiation and radiomimetic substances

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Schmerold, I.; Pfahler, W.; Goette, A.

    1984-06-01

    In order to further characterize the different repairing behavior of thymus and spleen cells of rats in vitro under the influence of X-rays, UV radiation and methylmethanesulfonate (MMS), the effect of bleomycine (BM), L-cysteine (CY-E), N-ethylmaleimide (NEM), I-..beta..-D-arabinofuranosylcytosine (araC), dideoxythymidine (ddT), and novobiocine (NB) on the semiconservative and restorative DNA synthesis as well as on the behavior of DNA under the alkaline elution was studied. The semiconservative DNA synthesis was inhibited by all examined agents except ddT, the restorative DNA synthesis only by NEM, araC, and NB. The stimulation of the restorative DNA synthesis was increased by UV radiation and MMS in spleen cells and by X-rays, BM and CY-E in thymus cells. Under the conditions of alkaline elution, there was a more sensitive reaction of spleen cells than of thymus cells to X-rays, BM and CY-E. The results show that thymus cells are especially qualified for the repair of short chains and spleen cells for the repair of long chains.

  15. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  16. C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein Is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA*

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.

    2009-01-01

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688

  17. Differential responses of nascent DNA synthesis and chain elongation in V79 and V79/79 cells exposed to U.V. light and chemical mutagens

    International Nuclear Information System (INIS)

    Fox, M.; Bloomfield, M.E.; Hopkins, J.; Boyle, J.M.

    1983-01-01

    DNA repair after u.v., N-methyl-N-nitrosourea (MNU) and ethylmethane sulphonate (EMS) in Chinese hamster V79 cells and the mutagen sensitive derivative V79/79 was investigated by measurement of five parameters: production of strand breaks in template DNA, incorporation of [ 3 H]TdR, semi-conservative and repair synthesis, molecular weights of pulse labelled DNA after mutagen exposure (nascent synthesis) and molecular weights of DNA pulse labelled and chased after mutagen exposure (elongation and ligation). Equal template strand breakage was evident in both cell lines immediately after MNU and EMS exposure and by 4-5 h after MNU the extent of fragmentation was greater in V79/79 cells. After u.v. irradiation template fragmentation was evident in V79/79 but not in V79 cells, even though V79/79 cells failed to excise cyclobutane dimers and repair synthesis was demonstrable in V79 cells but not in V79/79 cells after exposure to all three mutagens. The rate of incorporation of [ 3 H]TdR during semi-conservative DNA synthesis was inhibited equally in a dose dependent manner after u.v. and MNU exposure; incorporation by V79/79 cells was inhibited to a greater extent than by V79 cells after EMS exposure. Nascent DNA synthesis was suppressed more in V79/79 cells than in V79 cells after u.v. but to similar extents in both cell lines after MNU and EMS treatment. Pulse chase experiments indicated a lower rate of elongation of nascent DNA in V79/79 cells after MNU and u.v. exposure but little difference was detectable after EMS

  18. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  19. Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

    Directory of Open Access Journals (Sweden)

    Quentin Lefebvre

    2013-09-01

    Full Text Available A continuous flow oxidative photocyclization of stilbene derivatives has been developed which allows the scalable synthesis of backbone functionalized phenanthrenes and helicenes of various sizes in good yields.

  20. Analysis of translesion DNA synthesis activity of the human REV1 protein, which is a key player in radiation-induced mutagenesis

    International Nuclear Information System (INIS)

    Masuda, Yuji; Kamiya, Kenji

    2003-01-01

    Ionizing radiation frequently causes oxidative DNA damage in cells. It has been suggested that functions of the REV1 gene are induction of mutations and prevention of cell death caused by ionizing radiation through the damage bypass DNA replication. The gene product possesses a deoxycytidyl transferase activity, which is required for translesion DNA synthesis of a variety of damaged bases and an abasic site. To elucidate molecular mechanisms of the mutagenesis and translesion DNA synthesis, it is important to characterize the enzymatic properties of the REV1 protein. Here, we describe a novel method for purifying the recombinant human REV1 protein and the anzymatic properties of the protein. We established an efficient system for induction of the recombinant human REV1 protein in Escherichia coli cells. The REV1 protein was purified to homogeneity using nickel-chelating sepharose, heparin sepharose and superdex 200 chromatography. When purified by this method, REV1 protein is free of endo-, exonuclease and DNA polymerase activities. The purified REV1 protein is suitable for enzymological studies, and we used this to biochemical characterization. The REV1 protein inserts dCMP opposite templates G, A, T, C and an abasic site and inserts dGMP and dTMP opposite template G. Kinetic analysis provided evidence for high efficiency for dCMP insertion opposite template G and an abasic site, suggesting that the REV1 protein play a role in translesion DNA synthesis of an abasic site. (author)

  1. Mutagenic DNA repair in Escherichia coli. VII

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.

    1978-01-01

    Incubation of E. coli WP2 in the presence of chloramphenicol (CAP) for 90 min before and 60 min after γ-irradiation had no effect on the induction of Trp + mutations. Bacteria that had been treated with CAP for 90 min prior to UV irradiation showed normal or near normal yields of induced mutations to streptomycin or colicin E2 resistance. Most of these mutations lost their photoreversibility (indicating 'fixation') during continued incubation with CAP for a further 60 min after irradiation, during which time neither protein nor DNA synthesis was detectable. It is suggested that CAP-sensitive protein synthesis is not required for mutagenic (error-prone) repair of lesions in pre-existing DNA, arguing against an inducible component in this repair. In contrast the frequency of UV-induced mutations to Trp + (largely at suppressor loci) was drastically reduced by CAP pretreatment, confirming the need for an active replication fork for UV-mutagenesis at these loci. It is known from the work of others that CAP given after UV abolishes mutagenesis at these loci. It is concluded that CAP-sensitive protein synthesis (consistent with a requirement for an inducible function) is necessary for mutagenic repair only in newly-replicated DNA (presumably at daughter strand gaps) and not in pre-existing DNA. The data are consistent with but do not prove the hypothesis that CAP-sensitive and insensitive modes of mutagenesis reflect minor differences in the operation of a single basic mutagenic repair system. (Auth.)

  2. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-01-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [ 3 H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [ 3 H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [ 3 H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone

  3. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Nakajima, Fumie [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa (Japan); Fukumori, Nobutaka [Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Hyakuninchou, Shinjyuku (Japan)

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes. (orig.) (orig.) With 7 figs., 31 refs.

  4. Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures

    DEFF Research Database (Denmark)

    Manuguerra, Ilenia; Croce, Stefano; El-Sagheer, Afaf H.

    2018-01-01

    Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA...

  5. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  6. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  7. Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA

    International Nuclear Information System (INIS)

    De Wyngaert, M.A.; Hinkle, D.C.

    1979-01-01

    Growth of bacteriophage T7 is inhibited by the antibiotic coumermycin A 1 , an inhibitor of the Escherichia coli DNA gyrase. Since growth of the phage is insensitive to the antibiotic in strains containing a coumermycin-resistent DNA gyrase, this enzyme appears to be required for phage growth. We have investigated the effect of coumermycin on the kinetics of DNA, RNA, and protein synthesis during T7 infection. DNA synthesis is completely inhibited by the antibiotic. In addition, coumermycin significantly inhibits transcription of late but not early genes. Thus, E. coli DNA gyrase may play an important role in transcription as well as in replication of T7 DNA

  8. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  9. Doxazosin blocks the angiotensin II-induced smooth muscle cell DNA synthesis in the media, but not in the neointima of the rat carotid artery after balloon injury

    NARCIS (Netherlands)

    van Kleef, E. M.; Smits, J. F.; Schwartz, S. M.; Daemen, M. J.

    1996-01-01

    Infusion of angiotensin II (AngII) during the third and fourth week after balloon injury of the left common carotid artery of the rat induces smooth muscle cell (SMC) DNA synthesis. In this study we wanted to investigate whether alpha 1-adrenoreceptors are involved in AngII-induced SMC DNA synthesis

  10. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  11. Repair of Clustered Damage and DNA Polymerase Iota.

    Science.gov (United States)

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  12. Recovery of DNA synthesis after ultraviolet irradiation of xeroderma pigmentosum cells depends on excision repair and is blocked by caffeine

    International Nuclear Information System (INIS)

    Park, S.D.; Cleaver, J.E.

    1979-01-01

    Normal human and xeroderma pigmentosum (XP, excision-defective group A) cells (both SV40-transformed) pulse-labeled with [ 3 H] thymidine at various times after irradiation with ultraviolet light showed a decline and recovery of both the molecular weights of newly synthesized DNA and the rated of synthesis per cell. At the same ultraviolet dose, both molecular weights and rates of synthesis were inhibited more in XP than in normal cells. This indicates that excision repair plays a role in minimizing the inhibition of chain growth, possibly by excision of dimers ahead of the growing point. The ability to synthesize normal-sized DNA recovered more rapidly than rates of synthesis in normal cells, but both parameters recovered in phase in XP cells. During recovery in normal cells there are therefore fewer actively replicating clusters of replicons because the single-strand breaks involved in the excision of dimers inhibit replicon initiation. XP cells have few excision repair events and therefore fewer breaks to interfere with initiation, but chain growth is blocked by unexcised dimers. In both cell types recovery of the ability to synthesize normal-sized DNA was prevented by growing cells in caffeine after irradiation, possibly because of competition between the DNA binding properties of caffeine and replication proteins. These observations imply that excision repair and semiconservative replication interact strongly in irradiated cells to produce a complex spectrum of changes in DNA replication which may be confused with parts of alternative systems such as post-replication repair. (author)

  13. Non-transcriptional Function of FOXO1/DAF-16 Contributes to Translesion DNA Synthesis.

    Science.gov (United States)

    Daitoku, Hiroaki; Kaneko, Yuta; Yoshimochi, Kenji; Matsumoto, Kaori; Araoi, Sho; Sakamaki, Jun-Ichi; Takahashi, Yuta; Fukamizu, Akiyoshi

    2016-08-22

    Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Relationship between DNA replication and DNA repair in human lymphocytes proliferating in vitro in the presence and in absence of mutagen

    International Nuclear Information System (INIS)

    Szyfter, K.; Wielgosz, M.Sz.; Kujawski, M.; Jaloszynski, P.; Zajaczek, S.

    1995-01-01

    The effects of mutagens on DNA replication and DNA repair were studied in peripheral blood lymphocytes (PBL) obtained from 21 healthy subjects, 2 samples from healthy heterozygote of ''Xeroderma pigmentosum'' (XP) and 2 samples from patient with clinically recognised XP. Inter-individual variations were found in DNA replication and in the level of spontaneous DNA repair measured under standard culture condition. Exposure of human PBL proliferating in vitro to B(a)P was followed by a partial inhibition of replicative DNA synthesis in all subjects and by an induction of DNA repair in healthy subjects. In XP patients DNA repair synthesis remained at the level attributed to spontaneous DNA repair. The response to mutagen varied individually. Results were analysed statistically. It was established that the studied indices of DNA synthesis correlate well with each other. The highest correlation was found between the levels of spontaneous and B(a)P-induced DNA repair. It is concluded that the level of spontaneous DNA repair is predictive for an estimation of cells ability to repair DNA damage. Inter-individual variations in the inhibition of DNA replication and in DNA repair synthesis are also dependent on the type of mutagen as shown by effects of other mutagens. Different effects of mutagen exposure on the inhibition of DNA replicative synthesis and induction of DNA repair can be explained by genetically controlled differences in the activity of enzymes responsible for mutagen processing and lesion removal. (author). 37 refs, 2 figs, 2 tabs

  15. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  16. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    Science.gov (United States)

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  17. Repair of abasic sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, Grigory L.; Sleeth, Kate M.; Dianova, Irina I.; Allinson, Sarah L

    2003-10-29

    Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase {beta} adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase {delta}/{epsilon} and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase {delta}/{epsilon} is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.

  18. Chromatin Constrains the Initiation and Elongation of DNA Replication.

    Science.gov (United States)

    Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk

    2017-01-05

    Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  20. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  1. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  2. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis.

    Science.gov (United States)

    Beltz, Hervé; Clauss, Céline; Piémont, Etienne; Ficheux, Damien; Gorelick, Robert J; Roques, Bernard; Gabus, Caroline; Darlix, Jean-Luc; de Rocquigny, Hugues; Mély, Yves

    2005-05-20

    The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is formed of two highly conserved CCHC zinc fingers flanked by small basic domains. NC is required for the two obligatory strand transfers in viral DNA synthesis through its nucleic acid chaperoning properties. The first DNA strand transfer relies on NC's ability to bind and destabilize the secondary structure of complementary transactivation response region (cTAR) DNA, to inhibit self-priming, and to promote the annealing of cTAR to TAR RNA. To further investigate NC chaperone properties, our aim was to identify by fluorescence spectroscopy and gel electrophoresis, the NC structural determinants for cTAR binding and destabilization, and for the inhibition of self-primed DNA synthesis on a model system using a series of NC mutants and HIV-1 reverse transcriptase. NC destabilization and self-priming inhibition properties were found to be supported by the two fingers in their proper context and the basic (29)RAPRKKG(35) linker. The strict requirement of the native proximal finger suggests that its hydrophobic platform (Val13, Phe16, Thr24 and Ala25) is crucial for binding, destabilization and inhibition of self-priming. In contrast, only partial folding of the distal finger is required, probably for presenting the Trp37 residue in an appropriate orientation. Also, Trp37 and the hydrophobic residues of the proximal finger appear to be essential for the propagation of the melting from the cTAR ends up to the middle of the stem. Finally, both N-terminal and C-terminal basic domains contribute to cTAR binding but not to its destabilization.

  4. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the

  5. Effect of irradiation on unscheduled DNA synthesis induced by 4-nitroquinoline in tracheal epithelium of rats

    International Nuclear Information System (INIS)

    Hahn, F.F.; Kennedy, R.; Brooks, A.L.

    1986-01-01

    Unscheduled DNA synthesis (UDS) was determined in rat epithelium by autoradiographic techniques to determine the influence of prior irradiation on the ability of the cells to repair mutagenic damage induced by 4-nitroquionoline (4NQO). UDS was stimulated by in vitro exposure to 4NPO. However, prior whole-body irradiation of rats with either 50 or 300 rad did not alter the UDS induced by 4NQO. The results of this study do not support the hypothesis that irradiation can induce DNA repair enzymes in respiratory tract epithelium. 5 references, 3 figures

  6. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  7. On the effect of small radiation doses: Desoxyribonucleic acid (DNA) synthesis and DNA repair of thymus, spleen, and bone marrow cells in the rat after fractionated total body X-ray irradiation. Zur Wirkung kleiner Strahlendosen: Desoxyribonukleinsaeure-(DNA-)Synthese und DNA-Reparatur von Thymus-, Milz- und Knochenmarkszellen der Ratte nach fraktionierter Ganzkoerperroentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Ehling, G. (Muenchen Univ. (Germany, F.R.). Inst. fuer Pharmakologie, Toxikologie und Pharmazie)

    1989-09-01

    After three to seven days following to fractionated total body X-ray irradiation (TBI) (four expositions with doses of 0.3 to 5.0 cGy per fraction at intervals of 24 hours), a maximum 50 percent stimulation of the semiconservative DNA synthesis (SDS) of spleen cells was measured in vitro. This was not dependent of the fact if an acute high-dose (400 and/or 800 cGy) unique irradiation was applied after the fractionated TBI at the moment of stimulation. A significant increase of {sup 3}H-thymidine incorporation into the DNA of bone marrow and thymus cells was only found when doses of 1.25 cGy per fraction had been used. After fractionated TBI with doses of {ge}5 cGy per fraction, an increase of DNA synthesis resistant to hydroxyurea ('unprogrammed' DNA synthesis, UDS) was demonstrated in spleen cells. The UV-simulated UDS decreased proportionately. The sedimentation of thymus, spleen, and bone marrow nucleoids in a neutral saccharose gradient gave no evidence of an increased DNA repair capacity after fractionated TBI. Whereas the SDS stimulation by fractionated TBI with small doses can be explained by a modified proliferation behavior of exposed cells, the UDS behavior of spleen cells after considerably higher radiation doses suggests regenerative processes correlated with an increased number of cells resistant to hydroxyurea and cells presenting an UV repair deficiency. These findings can be considered to be a further proof of the assumed immune-stimulating effect of small radiation doses. (orig.).

  8. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  9. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  10. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs

    Science.gov (United States)

    Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine leu infusion can be used to enhance protein synthes...

  11. Controlled synthesis of poly(3-hexylthiophene in continuous flow

    Directory of Open Access Journals (Sweden)

    Helga Seyler

    2013-07-01

    Full Text Available There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene, P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  12. Inhibition of DNA and protein synthesis in UV-irradiated mouse skin by 2-difluoromethylornithine, methylglyoxal bis(guanylhydrazone), and their combination

    Energy Technology Data Exchange (ETDEWEB)

    Kaepyaho, K.; Lauharanta, J.; Jaenne, J.

    1983-08-01

    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: (/sup 3/H)thymidine incorporation decreased by 80% and (/sup 14/C)leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of (/sup 3/H)histidine/(/sup 14/C)leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine.

  13. Inhibition of DNA and protein synthesis in UV-irradiated mouse skin by 2-difluoromethylornithine, methylglyoxal bis(guanylhydrazone), and their combination

    International Nuclear Information System (INIS)

    Kaepyaho, K.; Lauharanta, J.; Jaenne, J.

    1983-01-01

    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: [ 3 H]thymidine incorporation decreased by 80% and [ 14 C]leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of [ 3 H]histidine/[ 14 C]leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine

  14. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  15. Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology

    NARCIS (Netherlands)

    Flegler, A.; Schneider, M.; Prieschl, J.; Stevens, R.; Vinnay, T.; Mandel, K.

    2016-01-01

    Here, we report a continuous flow synthesis of nano LDH, comprising a continuous precipitation process using static mixers and followed by an immediate cleaning process via a semi-continuous centrifuge to obtain the final product in one-go. Via this synthesis setup, it is possible to independently

  16. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    International Nuclear Information System (INIS)

    Siew, E.L.; Habraken, Yvette; Ludlum, D.B.

    1991-01-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-[ 3 H-ethyl)-N'-cyclohexyl-N-nitrosourea ([ 3 H]-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author)

  17. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    Science.gov (United States)

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  18. Timing, coordination, and rhythm: Acrobatics at the DNA replication fork

    KAUST Repository

    Hamdan, Samir

    2010-04-09

    In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field. 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Timing, coordination, and rhythm: Acrobatics at the DNA replication fork

    KAUST Repository

    Hamdan, Samir; van Oijen, Antoine M.

    2010-01-01

    In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field. 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Abnormal levels of UV-induced unscheduled DNA synthesis in ataxia telangiectasia cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Jaspers, N.G.J.; Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Rijswijk. Medical Biological Lab.); Bootsma, D.

    1982-01-01

    In cultured cells from normal individuals and from patients having ataxia telangiectasia (AT) the rate of unscheduled DNA synthesis (UDS) induced by UV light was investigated by autoradiography. The number of grains in 6 different AT cell strains was similar to that observed in normal cells. Exposure of normal cells to doses of X-rays up to 20 krad had no influence on the rate of UV-induced UDS. In contrast, the UV-induced UDS was significantly modified in AT cells by treatment with X-rays. In AT cell strains that were reported to have reduced levels of γ-ray-induced repair DNA synthesis ('excision-deficient' AT cells) the effect of X-rays on UV-induced UDS was inhibitory, whereas UV-induced UDS was stimulated by X-ray exposure in 'excision-proficient' AT cell strains. Different UV and X-ray dose-response relationships were seen in the two categories of AT cell strains. (orig./AJ)

  1. Effect of γ-irradiated DNA on the activity of DNA polymerase

    International Nuclear Information System (INIS)

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  2. Synthesis of a Hoechst 32258 Analogue Amino Acid Building Block for Direct Incorporation of a Fluorescent High-Affinity DNA Binding Motif into Peptides

    DEFF Research Database (Denmark)

    Harrit, Niels; Behrens, Carsten; Nielsen, P. E.

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  3. A Traceless Aryl-Triazene Linker for DNA-Directed Chemistry

    DEFF Research Database (Denmark)

    Hejesen, Christian; Pedersen, Lars Kolster; Gothelf, Kurt Vesterager

    2013-01-01

    DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block...... is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of 10 aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block...

  4. Synthesis and Molecular Modeling of Thermally Stable DNA G-Quadruplexes with Anthraquinone Insertions

    DEFF Research Database (Denmark)

    Gouda, Alaa S.; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    Two new phosphoramidite building blocks for DNA synthesis were synthesized from 1,5- and 2,6-dihydroxyanthraquinones through alkylation with 3-bromo-1-propanol followed by DMT-protection. The novel synthesized 1,5- and 2,6-disubstituted anthraquinone monomers H15 and H26 are incorporated into a G...... anthraquinone-modified quadruplexes revealed no change of the antiparallel structure when compared with the wild type under potassium buffer conditions. The significantly increased thermostabilities were interpreted by molecular modeling of anthraquinone-modified G-quadruplexes....

  5. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  6. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  7. Effects of benzo[a]pyrene-DNA adducts on a reconstituted replication system

    International Nuclear Information System (INIS)

    Brown, W.C.; Romano, L.J.

    1991-01-01

    The authors have used a partially reconstituted replication system consisting of T7 DNA polymerase and T7 gene 4 protein to examine the effect of benzo[a]pyrene (B[a]P) adducts on DNA synthesis and gene 4 protein activities. The gene 4 protein is required for T7 DNA replication because of its ability to act as both a primase and helicase. They show here that total synthesis decreases as the level of adducts per molecule of DNA increases, suggesting that the B[a]P adducts are blocking an aspect of the replication process. By challenging synthesis on oligonucleotide-primed B[a]P-modified DNA with unmodified DNA, they present evidence that the T7 DNA polymerase freely dissociates after encountering an adduct. Prior studies have shown that the gene 4 protein alone does not dissociate from the template during translocation upon encountering an adduct. However, when gene 4 protein primed DNA synthesis is challenged, they observe an increase in synthesis but to a lesser extent than observed on oligonucleotide-primed synthesis. Finally, they have examined DNA synthesis on duplex templates and show the B[a]P adducts inhibit synthesis by the T7 DNA polymerase and gene 4 protein to the same extent regardless of whether the adducts are positioned in the leading or lagging strand, while synthesis by the polymerase alone is inhibited only when the adducts are in the template strand

  8. Correlation between LH secretion in castrated rats with cellular proliferation and synthesis of DNA in the anterior pituitary gland.

    Science.gov (United States)

    Romano, M I; Machiavelli, G A; Pérez, R L; Carricarte, V; Burdman, J A

    1984-07-01

    The relationship between the release of LH and the synthesis of DNA was studied in the anterior pituitary gland of castrated rats. Cell types were characterized immunocytochemically. Castration significantly (P less than 0.01) increased the concentration of LH in serum (1326%) and the incorporation of [3H]thymidine into pituitary DNA (72%). This was accompanied by an increment in the activity of the enzyme DNA polymerase-alpha (58%) and in the number of mitoses (from 2 +/- 0.1/mm2 in intact rats to 21 +/- 0.8/mm2 15 days after castration). Only 20% of the mitoses found in the pituitary gland of castrated rats were positively stained with the antiserum against the beta-subunit of LH. The other 80% did not stain either with LH antiserum or with antisera against the other pituitary hormones. There was a significant (P less than 0.01) increase in the number of LH cells in castrated rats (48%). All the changes produced in the anterior pituitary gland after castration were prevented by the administration of dihydrotestosterone. The results demonstrate that a stimulation of LH release is followed by an increase of DNA synthesis and cell proliferation of gonadotrophs in the anterior pituitary gland.

  9. Normal inhibition of DNA synthesis following γ-irradiation of radiosensitive cell lines from patients with Down's syndrome and Alzheimer's disease

    International Nuclear Information System (INIS)

    Lavin, M.F.; Le poidevin, P.; Chen, P.C.; Bates, P.

    1989-01-01

    Inhibition of DNA synthesis was studied in γ-iradiated lymphoblastoid cells from patients with Alzheimer's disease and Down's syndrome. A normal biphasic pattern of inhibition was observed over a dose range of 0-4 krad of γ-rays in all of the cell lines 3 out of 4 Down's and all the Alzheimer's cell lines were shown to be hypersensitive to ionizing radiation based on induced chromosomal aberrations. Increased G2 phase delay, comparable to that occurring in ataxia-telangiectasia cells, was observed for some of the cell lines, after exposure to γ-rays. Contrary to other data in the literature these results demonstrate that radioresistand DNA synthesis is not an intrinsic feature of all disorders characterized by radiosensitivitey. (author).; 25 refs.; 2 figs.; 1 tab

  10. Laser-UV-microirradiation of Chinese hamster cells: the influence of the distribution of photolesions on unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Cremer, C.; Jabbur, G.

    1981-01-01

    Fibroblastoid Chinese hamster cells synchronized by mitotic selection were microirradiated in G1, using a low power laser-UV-microbeam (lambda = 257 nm). The incident energy was either concentrated on a small part of the nucleus (mode 1) or distributed over the whole nucleus (mode 11). Using the same incident UV energy, the local UV fluences were estimated to differ by two orders of magnitude. Following microirradiation the cells were incubated with [ 3 H]-thymidine for 2 h and thereafter processed for autoradiography. Silver grains were concentrated over the microirradiated part after mode 1 and distributed over the whole nucleus after mode 11 irradiation. To quantify the amount of unscheduled DNA synthesis, the number of grains per nucleus was determined. It increased with the total incident energy, but was not or only slightly affected by the mode of microirradiation, if appropriate autoradiographic conditions were used. The findings suggest that within the investigated range of energy densities (2.7-1000 J/m 2 ), the total amount of unscheduled DNA synthesis depends on the total number of pyrimidine dimers but not on their distribution in nuclear DNA. (author)

  11. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System.

    Science.gov (United States)

    Velasco-Lozano, Susana; da Silva, Eunice S; Llop, Jordi; López-Gallego, Fernando

    2018-02-16

    The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    Energy Technology Data Exchange (ETDEWEB)

    Siew, E.L. (State Univ. of New York, Albany, NY (USA). Dept. of Chemistry); Habraken, Yvette; Ludlum, D.B. (Massachusetts Univ., Worcester, MA (USA). Medical School)

    1991-02-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-{sup 3}H-ethyl)-N'-cyclohexyl-N-nitrosourea ({sup 3}H-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author).

  13. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  14. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  15. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  16. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  17. Defective recovery of semi-conservative DNA synthesis in xeroderma pigmentosum cells following split-dose ultraviolet irradiation

    International Nuclear Information System (INIS)

    Moustacchi, E.; Ehmann, U.K.; Friedberg, E.C.

    1979-01-01

    In normal human fibroblasts the authors observe an enhancement of the recovery of the rate of semi-conservative DNA synthesis after split-dose UV-irradation relative to a single total UV dose. The enhanced recovery is totally absent in both a xeroderma pigmentosum variant line and two xeroderma pigmentosum lines belonging to complementation groups A and C. (Auth.)

  18. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  19. Synthesis of oligonucleotide phosphorodithioates

    DEFF Research Database (Denmark)

    Beaton, G.; Brill, W. K D; Grandas, A.

    1991-01-01

    The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described.......The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described....

  20. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  1. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kelley N. Newton

    2012-01-01

    Full Text Available UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.

  2. Involvement of sulfoquinovosyl diacylglycerol in DNA synthesis in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Aoki Motohide

    2012-02-01

    Full Text Available Abstract Background Sulfoquinovosyl diacylglycerol (SQDG is present in the membranes of cyanobacteria and their postulated progeny, plastids, in plants. A cyanobacterium, Synechocystis sp. PCC 6803, requires SQDG for growth: its mutant (SD1 with the sqdB gene for SQDG synthesis disrupted can grow with external supplementation of SQDG. However, upon removal of SQDG from the medium, its growth is retarded, with a decrease in the cellular content of SQDG throughout cell division, and finally ceases. Concomitantly with the decrease in SQDG, the maximal activity of photosynthesis at high-light intensity is repressed by 40%. Findings We investigated effects of SQDG-defect on physiological aspects in Synechocystis with the use of SD1. SD1 cells defective in SQDG exhibited normal photosynthesis at low-light intensity as on culturing. Meanwhile, SD1 cells defective in SQDG were impaired in light-activated heterotrophic growth as well as in photoautotrophic growth. Flow cytometric analysis of the photoautotrophically growing cells gave similar cell size histograms for the wild type and SD1 supplemented with SQDG. However, the profile of SD1 defective in SQDG changed such that large part of the cell population was increased in size. Of particular interest was the microscopic observation that the mitotic index, i.e., population of dumbbell-like cells with a septum, increased from 14 to 29% in the SD1 culture without SQDG. Flow cytometric analysis also showed that the enlarged cells of SD1 defective in SQDG contained high levels of Chl, however, the DNA content was low. Conclusions Our experiments strongly support the idea that photosynthesis is not the limiting factor for the growth of SD1 defective in SQDG, and that SQDG is responsible for some physiologically fundamental process common to both photoautotrophic and light-activated heterotrophic growth. Our findings suggest that the SQDG-defect allows construction of the photosynthetic machinery at an

  3. Effects of an extract from the sea squirt Ecteinascidia turbinata on DNA synthesis and excision repair in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, W.C.; Carrier, W.L.; Regan, J.D.

    1982-01-01

    An aqueous ethanol extract from the marine tunicate species Ecteinascidia turbinata was studied to determine its effect on semiconservative DNA synthesis in human skin fibroblast cultures as measured by (/sup 3/H) thymidine uptake in acid-insoluble cell fractions. In addition, the effect of this extract on DNA excision repair in ultraviolet light (254 nm) irradiated fibroblasts was measured by the bromodeoxyuridine photolysis assay, thymine dimer chromatography, and DNA single-strand break analysis on alkaline sucrose gradients. Repair inhibition was accompanied by an accumulation of single-strand DNA breaks which was enhanced by the addtion of 2 mM hydroxyurea. These results are discussed with respect to a mechanism of action of the marine tunicate extract at the level of DNA polymerases and are contrasted with previously studied inhibitory mechanisms of arabinofuranosyl nucleosides.

  4. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an......, and reacted further with an alkylating agent....

  5. Continuous Hydrothermal Flow Synthesis of LaCrO3 in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Xu, Yu; Pirou, Stéven; Zielke, Philipp

    2018-01-01

    The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation of this p......The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation...

  6. DNA endoreduplication, RNA and protein synthesis during growth and development of the antheridial basal cell in Chara vulgaris L

    International Nuclear Information System (INIS)

    Malinowski, S.; Maszewski, J.

    1994-01-01

    Cytophotometric measurements of nuclear DNA contents and morphometric analyses indicate that the level of endo polyploidy plays an important role in determining the maximum size, transcriptional and translational activity that the antheridial basal cell attains during successive stages of spermatogenesis in Chara vulgaris. During the proliferative period of antheridial development, the metabolic activity of basal cell, expressed as the total incorporation of radioactive uridine and leucine was found to increase gradually with the increasing DNA C-values, yet both the synthesis of RNA and then the synthesis of proteins become reduced at the stage preceding spermiogenesis. In accordance with some earlier data, the obtained results seem to support the hypothesis that regulatory mechanisms of symplasmic connections between the antheridium and a thallus participate in the regulation of morphogenesis of the male sex organs in Chara. (author). 15 refs, 13 figs

  7. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G.; Okuno, Yasuyoshi

    2009-01-01

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 μM MTF and 100-500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver

  8. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes.

    Science.gov (United States)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G; Okuno, Yasuyoshi

    2009-04-05

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 microM MTF and 50 microM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 microM MTF and 100-500 microM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.

  9. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  10. Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators

    NARCIS (Netherlands)

    Bin Abu Ghazali, Yusuf; van Ulden, Wouter; van de Bovenkamp, Hendrik; Teddy, T; Picchioni, Francesco; Manurung, Robert; Heeres, Hero J.

    The synthesis of fatty acid methyl esters (FAME) from sunflower oil and methanol was studied in a continuous centrifugal contactor separator (CCCS) using sodium methoxide as the catalyst. The effect of relevant process variables like oil and methanol flow rate, rotational speed and catalyst

  11. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  12. Theoretical, clinical and pharmacokinetic aspects of cancer chemotherapy administered by continuous infusion

    International Nuclear Information System (INIS)

    Sikic, B.I.

    1986-01-01

    This chapter reviews some of the theoretical and empirical aspects of the administration of anti-cancer drugs by continuous intravenous infusion in conjunction with radiation therapy. The variables contributing to schedule dependence of anti-cancer drugs are discussed. A table shows the improved therapeutic index of Bleomycin by continuous infusion in mice. The use of Cytarabine, a pyrimidine anti-metabolite which kills cells during S-phase or DNA synthesis, is examined. Fluorouracil and Doxorubicin are examined and several other drugs including vincristine, vinblastine, etoposide, and cisplatin are discussed

  13. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-01

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser 79 and Raptor at Ser 792 , was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α 1 and α 2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  14. Estimation of pre-meiotic DNA synthesis period in the dog spermatozoa

    International Nuclear Information System (INIS)

    Ghosal, S.K.; Bandyopadhyay, T.; De, S.; Beauregard, L.J.

    1976-01-01

    About 10 μCi of 3 H-thymidine was injected into each of 4 arbitarary sites in each testis of 6 dogs. Biopsies were taken at 4-hour intervals coverning a period from 20.0 to 22.2 days post-injection. Kinetics of labelled spermatocytes was followed employing Kodak NTB-3 emulsion to conventionally prepared air-dried slides. The technique for calculating pre-meiosis DNA synthesis duration is same as that for estimating S period in mitotic cells. Current investigation suggests that the mean duration of pre-meiotic S period of Canine spermatocytes is 20.4 hrs as compared to 29 and 40 hrs in spermatocytes of mouse and golden hamster respectively. (author)

  15. Method and apparatus for synthesis of arrays of DNA probes

    Science.gov (United States)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  16. Modification of radiation induced genetic damage and impaired DNA synthesis by thiourea treatment in Solanum incanum L

    International Nuclear Information System (INIS)

    Kumar, Girish

    1991-01-01

    Modification of induced genetic damage after exposure to LD 50 and LD 90 doses of 60 Co gamma-irradiation on dormant seeds of Solanum incanum L. by pre- and post-treatments of thiourea was investigated. Thiourea pre-treatment reduced cellular lesions, growth injury and the death of seedlings, while post-treatment increased lethality. Incorporation of 3 H-tymidine into DNA fraction gradually increased with 10 -4 to 10 -2 M thiourea treatment when applied before irradiation. Post-treatment of the thiourea, on the other hand, not only showed poor labelling of DNA but also delayed its synthesis. (author)

  17. Variations in DNA synthesis and mitotic indices in hepatocytes and sinusoid litoral cells of adult intact male mouse along a circadian time span.

    Science.gov (United States)

    Surur, J M; Moreno, F R; Badrán, A F; Llanos, J M

    1985-01-01

    Variations of DNA synthesis (DNAS) and mitotic indices along a circadian time span are described in the hepatocyte and sinusoid litoral cell populations of adult intact male mouse liver. Standardized (light from 0600 to 1800) mice were killed in groups of six to nine animals, every 2-4 hr along a circadian time span. Hepatocytes show significant peaks in the synthesis of DNA and the mitotic activity at 0200 and 1400, respectively. These results correspond to those previously described by us in young immature liver, regenerating liver and hepatomas. The phase differences between these peaks and the differences between their absolute values are discussed. Also considered are the practical consequences of our findings for experimental design. The curve of DNA synthesis of sinusoid litoral cells show a peak at 0200. The mitotic index show a bimodal waveform with peaks at 0800 and 2000. The existence of four different cell populations composing the so called sinusoid litoral cells and also the migration into and out of the liver of some macrophages considered as litoral (Kupffer) cells in our counts, makes interpretation of the curves somewhat complicated and deserves further analysis.

  18. Functional roles of DNA polymerases β and γ

    International Nuclear Information System (INIS)

    Huebscher, U.; Kuenzle, C.C.; Spadari, S.

    1979-01-01

    The physiological functions of DNA polymerases (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC2.7.7.7)β and γ were investigated by using neuronal nuclei and synaptosomes isolated from rat brain. uv irradiation of neuronal nuclei from 60-day-old rats resulted in a 7- to 10-fold stimulation of DNA repair synthesis attributable to DNA polymerase β which, at this developmental stage, is virtually the only DNA polymerase present in the nuclei. No repair synthesis could be elicited by treating the nuclei with N-methyl-N-nitrosourea, but this was probably due to the inability of brain tissue to excise alkylated bases from DNA. The role of DNA polymerase γ was studied in synaptosomes by using a system mimicking in vivo mitochondrial DNA synthesis. By showing that under these conditions, DNA replication occurs in miatochondria, and exploiting the fact that DNA polymerase γ is the only DNA polymerase present in mitochondria, evidence was obtained for a role of DNA polymerase γ in mitochondrial DNA replication. Based on these results and on the wealth of literature on DNA polymerase α, we conclude that DNA polymerase α is mainly responsible for DNA replication in nuclei, DNA polymerase β is involved in nuclear DNA repair, and DNA polymerase γ is the mitochondrial replicating enzyme. However, minor roles for DNA polymerase α in DNA repair or for DNA polymerase β in DNA replication cannot be excluded

  19. DNA repair synthesis in rat retinal ganglion cells treated with chemical carcinogens or ultraviolet light in vitro, with special reference to aging and repair level

    International Nuclear Information System (INIS)

    Ishikawa, T.; Takayama, S.; Kitagawa, T.

    1978-01-01

    A system in which the retinal tissues of noninbred Wistar rats were used in combination with autoradiography was developed for measurement of DNA repair synthesis in ganglion cells of the central nervous system. Retinal tissues in short-term organ culture were treated with various carcinogens plus tritiated thymidine ([methyl -3 H]dThd) or were irradiated with uv light and then treated with [methyl -3 H]dThd. Preliminary study with retinal tissues from rats at various ages revealed no age-associated changes in the levels of unscheduled DNA synthesis in ganglion cells

  20. Autoradiographic evidence for reutilization of DNA catabolites by granulocytopoiesis in the rat

    International Nuclear Information System (INIS)

    Gerecke, D.; Gross, R.

    1976-01-01

    The proliferating granulocyte precursor pool of rat bone marrow was labelled during DNA synthesis by continuous infusion and by single injection of 3 H-thymidine ( 3 H-TdR), as well as by single injection of 125 I-iododeoxyuridine ( 125 I-UdR). The appearance of neutrophilic granulocytes in the blood stream after these various labelling procedures was studied by autoradiography. Labelling patterns of blood neutrophils were identical during continuous infusion and after single injection of 3 H-TdR, and 100 percent labelling of the blood compartment was achieved. This result indicated reutilization of DNA catabolites to occur in granulocytopoiesis leading to continuous availability of 3 H-labelled DNA precursors even after a single injection of 3 H-TdR. Attempts to suppress reutilization of label by infusion of cold thymidine 1 h after injection of 3 H-TdR were unsuccessful. However, a change in the labelling pattern of blood neutrophils was seen after single injection of 125 I-UdR, a DNA precursor poorly reutilized in comparison to 3 H-TdR. This result provided further evidence for reutilization of DNA catabolites by the cell system investigated. A comprehensive discussion of the results indicates that thymidinemonophosphate is the biochemical level of reutilization in granulocytopoiesis. (author)

  1. A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.

    Science.gov (United States)

    Hasegawa, Mayu; Iwai, Shigenori; Kuraoka, Isao

    2010-06-17

    Individuals with inherited xeroderma pigmentosum (XP) disorder and Cockayne syndrome (CS) are deficient in nucleotide excision repair and experience hypersensitivity to sunlight. Although there are several diagnostic assays for these disorders, the recovery of RNA synthesis (RRS) assay that can discriminate between XP cells and CS cells is very laborious. Here, we report on a novel non-radioisotope RRS assay that uses bromouridine (a uridine analog) as an alternative to (3)H-uridine. This assay can easily detect RNA polymerase I transcription in nucleoli and RNA polymerase II transcription in nuclei. The non-RI RSS assay also can rapidly detect normal RRS activity in HeLa cells. Thus, this assay is useful as a novel and easy technique for CS diagnosis. Because RRS is thought to be related to transcription-coupled DNA repair, which is triggered by the blockage of transcriptional machinery by DNA lesions, this assay may be of use for analysis of DNA repair, transcription, and/or genetic toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  2. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Progress report, September 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Brewer, E.N.; Nygaard, O.F.; Kuncio, G.

    1978-01-01

    Isolated nuclei and intact plasmodia of Physarum contain a heat-stable stimulator of nuclear DNA replication. This substance has been purified extensively and found to contain both protein and carbohydrate. The molecular weight, estimated by gel filtration, is ca. 30,000 d. The purified material does not exhibit DNA polymerase or DNase activity, and does not stimulate DNA polymerase activity per se. In the presence of the stimulatory factor, DNA chain elongation occurs at an elevated rate, and continues for a longer time than in its absence, but G 2 nuclei are not stimulated to initiate DNA synthesis. Double-strand breaks in nuclear DNA of irradiated plasmodia are repaired in vitro to a greater extent following nuclear isolation during G 2 , and the DNA of unirradiated plasmodia is less susceptible to double-strand breakage during cell-free nuclear incubation, than is the DNA of S-phase nuclei. This correlation suggests a common basis for both observations, for example an increase in deoxyribonuclease activity or a decrease in DNA ligase activity during the S period. This, in turn, may account for the cell cycle-dependent sensitivity of this organism, in terms of mitotic delay, to ionizing radiation

  3. Continuity of care’: a critical interpretive synthesis of how the concept was elaborated by a national research programme

    Directory of Open Access Journals (Sweden)

    Janet Heaton

    2012-04-01

    Full Text Available Introduction: A Continuity of Care Research Programme was undertaken in England in 2000-9. The Programme was informed by a conceptual framework proposed by Freeman and colleagues in an earlier scoping study. At the end of the Programme, a conceptual synthesis was carried out in order to confirm or refine the 'Freeman model' of continuity of care.Methods: A conceptual synthesis of the outputs of the Programme, using Critical Interpretive Synthesis.Results: The conceptual framework underpinning the Freeman model of continuity of care, which prioritises the perspectives of service users and carers, was variously utilised in the Programme. Analysis revealed indications of an emerging shift from the patient and carer 'perspectivist' paradigm of the Freeman model towards a new 'partnership' paradigm where continuity is recognised to be co-constructed by patients, families and professionals, all of whom have an active part to play in its accomplishment.Conclusions: The projects in the Programme have advanced understanding of patients' perspectives on continuity of care and on the complex nature of this concept. At the same time, they have raised issues and reported findings which may be indicative of an emergent paradigm shift in this area of research, towards a more dynamic partnership model.

  4. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  5. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuya, E-mail: suzukite@hiroshima-u.ac.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Grúz, Petr; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Adachi, Noritaka [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Nohmi, Takehiko [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2016-09-15

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  6. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    International Nuclear Information System (INIS)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-01-01

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  7. DNA replication and repair of Tilapia cells: Pt. 2

    International Nuclear Information System (INIS)

    Chen, J.D.; Yew, F.H.

    1988-01-01

    TO-2 is a fish cell line derived from the Tilapia ovary. It grows over a wide range of temperature (15-34 0 C). We report the effects of temperature on DNA replication and u.v. repair in TO-2 cells. When the cells were moved from 31 0 C to the sublethal high temperature of 37 0 C, the rate of DNA synthesis first decreased to 60%, then speedy recovery soon set in, and after 8h at 37 0 C the rate of DNA synthesis overshot the 31 0 C control level by 180%. When moved to low temperature (18 0 C) Tilapia cells also showed an initial suppression of DNA synthesis before settling at 30% of the control level. U.V. reduced but could not block DNA synthesis completely. The inhibition was overcome in 3h at 37, 31 and 25 0 C, but not at 18 0 C. Initiation of nascent DNA synthesis was blocked at 4Jm -2 in TO-2 cells compared with ≤ 1Jm -2 in mammalian cells. After 9Jm -2 u.v. irradiation, low molecular weight DNA replication intermediates started to accumulate. TO-2 cells showed low levels of u.v.-induced excision repair. (author)

  8. Effect of UV on DNA synthesis in UV-resistant insect cells

    International Nuclear Information System (INIS)

    Styer, S.C.; Meechan, P.J.; Griffiths, T.D.

    1987-01-01

    Insect cells are most resistant to killing by 254 nm ultraviolet light (UV) than mammalian cells. Because they have an active photolyase, it may be possible to generate a higher number of [6-4] PyC lesions per genome, allowing the possibility to distinguish between the effects of [5-6] pyrimidine lesions and the nonphotoreactable [6-4] lesions on DNA replication. IAL-PID2 cells, derived from imaginal wing discs of the Indian meal moth were exposed to UV followed by photoreactivating light (PR) or sham treatment and then analyzed by measuring the incorporation of [/sup 3/H]-thymidine into acid precipitable form. As expected, there was a fluence-dependent decrease in the amount of thymidine incorporated after exposure to UV. The response was similar to that observed in wild type CHO cells (AAS) except that the rate of decline was more rapid. When PR followed UV, there was less of a decline in thymidine incorporation and a more rapid recovery. However, thymidine incorporation did not return to control levels as rapidly as expected if [5-6] lesions were the only lesions involved in the disruption of DNA synthesis after exposure to UV

  9. Test of models for replication of SV40 DNA following UV irradiation

    International Nuclear Information System (INIS)

    Barnett, S.W.

    1983-01-01

    The replication of SV40 DNA immediately after irradiation of infected monkey cells has been examined. SV40 DNA synthesis is inhibited in a UV fluence-dependent fashion, and the synthesis of completely replicated (Form I) SV40 molecules is more severely inhibited than is total SV40 DNA synthesis. Two models for DNA replication-inhibition have been tested. Experimental results have been compared to those predicted by mathematical models derived to describe two possible molecular mechanisms of replication inhibition. No effect of UV irradiation on the uptake and phosphorylation of 3 H-thymidine nor on the size of the intracellular deoxythymidine triphosphate pool of SV40-infected cells have been observed, validating the use of 3 H-thymidine incorporation as a measure of DNA synthesis in this system. In vitro studies have been performed to further investigate the mechanism of dimer-specific inhibition of completion of SV40 DNA synthesis observed in in vivo. The results of these studies are consistent with a mechanism of discontinuous synthesis past dimer sites, but it is equally possible that the mechanism of DNA replication of UV-damaged DNA in the in vitro system is different from that which occurs in vivo

  10. Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s.

    Science.gov (United States)

    Hafner, Andreas; Meisenbach, Mark; Sedelmeier, Joerg

    2016-08-05

    The benefits and limitations of a simple continuous flow setup for handling and performing of organolithium chemistry on the multigram scale is described. The developed metalation platform embodies a valuable complement to existing methodologies, as it combines the benefits of Flash Chemistry (chemical synthesis on a time scale of <1 s) with remarkable throughput (g/min) while mitigating the risk of blockages.

  11. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  12. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; van Ulden, Wouter; Kalpoe, Vijay; van de Bovenkamp, Hendrik H.; Manurung, Robert; Heeres, Hero J.

    The synthesis of fatty acid ethyl esters (FAEE) from Jatropha curcas L. oil was studied in a batch reactor and a continuous centrifugal contactor separator (CCCS) using sodium ethoxide as the catalyst. The effect of relevant process variables like rotational speed, temperature, catalyst

  13. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine

    Directory of Open Access Journals (Sweden)

    Guo Jingsheng

    2012-12-01

    Full Text Available Abstract Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI, especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA and p-Akt (Ser473, as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR, respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473 and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats

  14. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys......Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined...... for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production...

  15. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, P.; De Waal-Malefyt, R.; Dang, M.N.; Johnson, K.E.; Kastelein, R.; Fiorentino, D.F.; DeVries, J.E.; Roncarolo, M.G.; Mosmann, T.R.; Moore, K.W. (DNAX Research Inst. of Molecular and Cellular Biology, Palo Alto, CA (United States))

    1991-02-15

    The authors demonstrated the existence of human cytokine synthesis inhibitory factor (DSIF) (interleukin 10 (IL-10)). cDNA clones encoding human IL-10 (hIL-10) were isolated from a tetanus toxin-specific human T-cell clone. Like mouse IL-10, hIL-10 exhibits strong DNA and amino acid sequence homology to an open reading frame in the Epstein-Barr virus, BDRFL. hIL-10 and the BCRFI product inhibit cytokine synthesis by activated human peripheral blood mononuclear cells and by a mouse Th1 clone. Both hIL-10 and mouse IL-10 sustain the viability of a mouse mast cell line in culture, but BCRFI lacks comparable activity in this way, suggesting that BCRFI may have conserved only a subset of hIL-10 activities.

  16. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI

    International Nuclear Information System (INIS)

    Vieira, P.; De Waal-Malefyt, R.; Dang, M.N.; Johnson, K.E.; Kastelein, R.; Fiorentino, D.F.; DeVries, J.E.; Roncarolo, M.G.; Mosmann, T.R.; Moore, K.W.

    1991-01-01

    The authors demonstrated the existence of human cytokine synthesis inhibitory factor (DSIF) [interleukin 10 (IL-10)]. cDNA clones encoding human IL-10 (hIL-10) were isolated from a tetanus toxin-specific human T-cell clone. Like mouse IL-10, hIL-10 exhibits strong DNA and amino acid sequence homology to an open reading frame in the Epstein-Barr virus, BDRFL. hIL-10 and the BCRFI product inhibit cytokine synthesis by activated human peripheral blood mononuclear cells and by a mouse Th1 clone. Both hIL-10 and mouse IL-10 sustain the viability of a mouse mast cell line in culture, but BCRFI lacks comparable activity in this way, suggesting that BCRFI may have conserved only a subset of hIL-10 activities

  17. DNA replication and repair of Tilapia cells: Pt. 2. Effects of temperature on DNA replication and ultraviolet repair in Tilapia ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.D.; Yew, F.H.

    1988-02-01

    TO-2 is a fish cell line derived from the Tilapia ovary. It grows over a wide range of temperature (15-34/sup 0/C). We report the effects of temperature on DNA replication and u.v. repair in TO-2 cells. When the cells were moved from 31/sup 0/C to the sublethal high temperature of 37/sup 0/C, the rate of DNA synthesis first decreased to 60%, then speedy recovery soon set in, and after 8h at 37/sup 0/C the rate of DNA synthesis overshot the 31/sup 0/C control level by 180%. When moved to low temperature (18/sup 0/C) Tilapia cells also showed an initial suppression of DNA synthesis before settling at 30% of the control level. U.V. reduced but could not block DNA synthesis completely. The inhibition was overcome in 3h at 37, 31 and 25/sup 0/C, but not at 18/sup 0/C. Initiation of nascent DNA synthesis was blocked at 4Jm/sup -2/ in TO-2 cells compared with less than or equal to 1Jm/sup -2/ in mammalian cells. After 9Jm/sup -2/ u.v. irradiation, low molecular weight DNA replication intermediates started to accumulate. TO-2 cells showed low levels of u.v.-induced excision repair.

  18. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  19. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  20. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Science.gov (United States)

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  1. Fibre autoradiography of repair and replication in DNA from single cells: the effect of DNA synthesis inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Ockey, C.H.

    1982-04-01

    DNA fibre autoradiography, after incorporation of high specific activity /sup 3/H-thymidine and /sup 3/H-deoxycytidine, has been used to investigate repair in DNA fibres from single cells following UV, or methyl-methane sulphonate (MMS) treatment. Asynchronously growing human fibroblasts, leucocytes, and HeLa cells at different phases of the cell cycle have been investigated. Isotope incorporation in repair could be differentiated from that involved in replication by the distribution and density of silver grains along the DNA fibres. Grain distribution due to repair was continuous over long stretches of the fibres and was at a low density, occasionally interspersed with short slightly denser segments. Replication labelling on the other hand, was dense and usually in short tandem segments. Repair labelling was of a similar overall density in fibres from a single cell, but differed in intensity from cell to cell. In mutagen treated Go (leucocytes) of G/sub 1/ (HeLa cells), repair labelling was not increased by the presence of the DNA inhibitors, hydroxyurea (HU) or 5-fluorodeoxyuridine (FUdR). Repair was not detectable in S cells however without the use of these inhibitors to reduce endogenous nucleoside production. FUdR enhanced the repair labelling in S cells only slightly, while HU increased it beyond that observed in UV irradiated, HU treated, G/sub 1/ cells. The intensity of repair labelling in fibres from mutagen treated S cells appears to be proportional to the degree of reduction of DNA chain elongation in replicons.

  2. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  3. Modelling and synthesis of pharmaceutical processes: moving from batch to continuous

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    and to investigate/evaluate opportunities for continuous operation. To achieve the mentioned objectives the use of an integrated framework based on systematic model-based methods and tools is proposed. Computer-aided methods and tools are used to generate process knowledge and to evaluate different operational...... optimization studies are performed by defining optimization target based on the process analysis. The application of the developed integrated framework is highlighted through four case studies. In the first case study, the overall use of the framework is highlighted using the synthesis of ibuprofen...

  4. Repair of DNA in xeroderma pigmentosum conjunctiva

    International Nuclear Information System (INIS)

    Newsome, D.A.; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease with tumor formation on sun-exposed areas of the skin and eyes. Cells from most XP patients are deficient in repairing DNA damaged by ultraviolet (uv) light as shown by a reduced rate of tritiated thymidine (3HTdR) incorporation during their DNA repair synthesis. We have studied such repair synthesis in conjunctival cells from an XP patient with a conjunctival epithelioma and from normal cadaver conjunctiva. Cultured conjunctival cells were irradiated with uv light and then incubated with 3HTdR. Autoradiograms were prepared and showed that uv radiation induced a considerably slower rate of DNA repair synthesis in the XP cells than in normal cells. Many of the ocular abnormalities of XP, including tumor formation, may be the result of this defective DNA repair process

  5. Effects of ionizing radiations on DNA replication in cultured mammalian cells

    International Nuclear Information System (INIS)

    Makino, F.; Okada, S.

    1975-01-01

    The dose-response curve of [ 3 H] thymidine incorporation into the acid-insoluble fraction of cultured mammalian cells, grown in the presence of 10 -4 M cold thymidine, is different from that of incorporation in the absence of cold thymidine. For quantitative estimation of net DNA synthesis in nonirradiated and irradiated cells, two methods were used: isolation of newly synthesized BUdR-labeled DNA by CsCl gradient centrifugation and a fluorometric estimation of DNA content in the synchronized population. Both methods showed that the depression of [ 3 H]thymidine incorporation in the presence of cold thymidine reflected a depression of net DNA synthesis. Radiosensitive steps in DNA synthesis were examined by the use of alkaline sucrose gradient centrifugation. The rate of replication along the DNA strands was inhibited to a lesser extent than that of over-all DNA synthesis. The labeling patterns of DNA exposed to [ 3 H]thymidine for 20 min indicated that ionizing radiation preferentially interfered with the formation of small-size 3 H-labeled DNA pieces. These results suggest that the initiation of DNA replication is more radiosensitive than the elongation of DNA strands whose replication has already been initiated. (U.S.)

  6. An autoradiographic study of the synthesis of nucleic acids and protein during the cell cycle of synchronously dividing antheridial filaments in Chara vulgaris L

    Energy Technology Data Exchange (ETDEWEB)

    Olszewska, M J; Godlewski, M [Lodz Univ. (Poland)

    1972-01-01

    The synthesis of DNA, RNA, and protein in successive mitotic cycles of the synchronously dividing antheridial filaments of Chara vulgaris was studied autoradiographically. In all the generations examined, which enter the next mitosis, i.e., in the 4-, 8-, 16-, and 32-cell generations, the synthesis of DNA begins as early as telephase and continues into the early stages of interphase. The telephase cells of the 32-cell filaments do not incorporate //sup 3/H/thymidine, because the cells which arise from them do not divide but are transformed into spermatozoa. The DNA synthesis is accompanied by intense synthesis of RNA. The intensity of radioactivity calculated for 100 ..mu../sup 2/ of the area of the nucleus and cytoplasm is similar in all the generations, whereas the radioactivity induced by the incorporation of /8-/sup 14/C/adenine and//sup 3/H/phenylalanine calculated for one cell decreases proportionally to the reduction of the volume of the cytoplasm and nucleus in successive generations. (auth)

  7. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  8. Glucocorticoid suppression of human lymphocyte DNA synthesis. Influence of phytohemagglutinin concentration

    International Nuclear Information System (INIS)

    Segel, G.B.; Lukacher, A.; Gordon, B.R.; Lichtman, M.A.

    1980-01-01

    Glucocorticoids have been shown to suppress lectin-stimulated lymphocyte DNA synthesis in some studies, whereas in other studies, the hormones have had little effect. We have found that the position on the PHA dose-response curve that is studied is the most important determinant of whether cortisol inhibits 3 H-thymidine incorporation into lymphocyte DNA. The proportion of monocytes in culture also influenced the cortisol effect, but it was quantitatively less important than PHA concentration. Cortisol (5 nM to 100 μM) had little effect on blastogenesis or thymidine incorporation into DNA in cultures that contained both a high concentration (14% +- 2 (S.E.)) of monocytes and a concentration of PHA (0.6 to 1.2 μg/ml) that produced maximal stimulation of mitogenesis. When monocytes were reduced from 14 to 1.4%, cortisol (5 μM) caused a 30% reduction in thymidine incorporation in cultures stimulated by 0.6 to 1.2 μg/ml PHA. Much greater cortisol suppression of thymidine incorporation occurred if the concentration of PHA was reduced. For example, reduction of the PHA concentration from 1.2 to 0.075 μg/ml resulted in an increase in suppression by 5 μM cortisol from 5 to 90% even in the presence of 14% monocytes. These data indicate that the suppressive effects of glucocorticoids on blastogenesis and thymidine incorporation in vitro depend principally on the concentration of PHA used to stimulate blastogenesis and secondarily on the proportion of monocytes in the culture system

  9. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R115

    International Nuclear Information System (INIS)

    Auda, H.; Khalef, Z.

    1982-01-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R 11 5 labeled with thymidine-methyl- 3 H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region. (author)

  10. Autoradiographic evidence for reutilization of DNA catabolites by granulocytopoiesis in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Gerecke, D; Gross, R [Koeln Univ. (Germany, F.R.). Medizinische Klinik

    1976-01-01

    The proliferating granulocyte precursor pool of rat bone marrow was labelled during DNA synthesis by continuous infusion and by single injection of /sup 3/H-thymidine (/sup 3/H-TdR), as well as by single injection of /sup 125/I-iododeoxyuridine (/sup 125/I-UdR). The appearance of neutrophilic granulocytes in the blood stream after these various labelling procedures was studied by autoradiography. Labelling patterns of blood neutrophils were identical during continuous infusion and after single injection of /sup 3/H-TdR, and 100 percent labelling of the blood compartment was achieved. This result indicated reutilization of DNA catabolites to occur in granulocytopoiesis leading to continuous availability of /sup 3/H-labelled DNA precursors even after a single injection of /sup 3/H-TdR. Attempts to suppress reutilization of label by infusion of cold thymidine 1 h after injection of /sup 3/H-TdR were unsuccessful. However, a change in the labelling pattern of blood neutrophils was seen after single injection of /sup 125/I-UdR, a DNA precursor poorly reutilized in comparison to /sup 3/H-TdR. This result provided further evidence for reutilization of DNA catabolites by the cell system investigated. A comprehensive discussion of the results indicates that thymidinemonophosphate is the biochemical level of reutilization in granulocytopoiesis.

  11. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  12. Differential response of nascent DNA synthesis and chain elongation in V79 and V79/79 cells exposed to u.v. light and chemical mutagens

    International Nuclear Information System (INIS)

    Fox, M.; Bloomfield, M.E.; Hopkins, J.; Boyle, J.M.

    1983-01-01

    DNA repair after u.v., N-methyl-N-nitrosourea (MNU) and ethylmethane sulphonate (EMS) in Chinese hamster V79 cells and the mutagen sensitive derivative V79/79 was investigated. Equal template strand breakage was evident in both cell lines immediately after MNU and EMS exposure and by 4-5 h after MNU the extent of fragmentation was greater in V79/79 cells. After u.v. irradiation template fragmentation was evident in V79/79 but not in V79 cells, even though V79/79 cells failed to excise cyclobutane dimers and repair synthesis was demonstrable in V79 cells but not in V79/79 cells after exposure to all three mutagens. The rate of incorporation of [ 3 H]TdR during semi-conservative DNA synthesis was inhibited equally in a dose dependent manner after u.v. and MNU exposure; incorporation by V79/79 cells was inhibited to a greater extent than by V79 cells after EMS exposure. Nascent DNA synthesis was suppressed more in V79/79 cells than in V79 cells after u.v. but to similar extents in both cell lines after MNU and EMS treatment. Pulse chase experiments indicated a lower rate of elongation of nascent DNA in V79/79 cells after MNU and u.v. exposure but little difference was detectable after EMS. (author)

  13. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  14. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    Science.gov (United States)

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  16. Comparison of the effects of nafenopin, methyl clofenapate, WY-14,643 and clofibric acid on peroxisome proliferation and replicative DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Price, R.J.; Evans, J.G.; Lake, B.G.; Gangolli, S.D.

    1991-01-01

    A wide variety of chemicals have been shown to produce hepatic peroxisome proliferation (PP) in the rat and certain of these compounds are also hepatocarcinogens. In this study the authors have investigated the relationship between PP and cell replication in the rat liver. Male Sprague-Dawley rats were fed control diet or diet containing either 0.0125 and 0.05% nafenopin (NAF), 0.05% methyl clofenapate (MC), 0.025% Wy-14,643 (WY) or 0.5% clofibric acid (CA) for 1 and 15 wk. All four compounds produced marked liver enlargement and a sustained induction of peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidizing enzyme activities. Enzyme induction was less marked with 0.0125% NAF than with 0.05% NAF which was similar to that produced by the other three compounds. Replicative DNA synthesis was studied by implanting 7 day Alzet osmotic pumps containing [ 3 H]thymidine during wk 0-1 and 14-15. After 1 wk replicative DNA synthesis (assessed as radioactivity incorporated into homogenate DNA by scintillation counting) was increased in all treatment groups to 170-325% of control levels. Hepatocyte Labelling Index (determined by autoradiography of liver sections) was increased in all treated groups. After 15 wk hepatic DNA radioactivity levels were 155 and 200% of control in MC and WY treated rats, respectively, whereas NAF and CA had no effect. These results demonstrate that the relationship between the magnitude of PP and induction of cell replication depends on the compound being studied and that some peroxisome proliferators produce sustained stimulation of replicative DNA synthesis in the rat

  17. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.

    Science.gov (United States)

    Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro; Tamaki, Keiji

    2017-01-01

    In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software "Kongoh" for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1-4 persons' contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI's contribution in true contributors and non-contributors by using 2-4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI's contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.

  18. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.

    Directory of Open Access Journals (Sweden)

    Sho Manabe

    Full Text Available In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI from these samples are challenging. In this study, we developed a new open-source software "Kongoh" for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1-4 persons' contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR of a POI's contribution in true contributors and non-contributors by using 2-4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI's contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.

  19. Quantification of histoautoradiographic evidence of DNA repair synthesis in the liver

    International Nuclear Information System (INIS)

    Hochmann, J.; Stambergova, H.

    1988-01-01

    Histoautoradiography was used to detect dimethylnitrosamine-induced 3 H-thymidine incorporation in vivo into G phase hepatocytes. The description of the standard procedure for counting the grains and the mode of mathematical evaluation are presented. The results exhibited higher sensitivity than those in the investigation of the DNA repair synthesis by means of a scintillation counter using the method of detecting hydroxyurea-resistant incorporation of 3 H-thymidine. Thus, it was possible to simplify the investigation by lowering the number of evaluated cells. A suitable compromise between precision and laboriousness will probably be achieved by counting 20 hepatocytes per animal. In case of striking differences between the experimental and the control groups a qualitative conclusion may be drawn even without counting the grains. (author). 5 tabs., 10 refs

  20. The synthesis of active pharmaceutical ingredients (APIs using continuous flow chemistry

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2015-07-01

    Full Text Available The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  1. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.

    Science.gov (United States)

    Baumann, Marcus; Baxendale, Ian R

    2015-01-01

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  2. Investigating the continuous synthesis of a nicotinonitrile precursor to nevirapine

    Directory of Open Access Journals (Sweden)

    Ashley R. Longstreet

    2013-11-01

    Full Text Available 2-Chloro-3-amino-4-picoline (CAPIC is a strategic building block for the preparation of nevirapine, a widely-prescribed non-nucleosidic reverse transcriptase inhibitor for the treatment of HIV-infected patients. A continuous synthesis to the bromo derivative of a CAPIC intermediate, 2-bromo-4-methylnicotinonitrile, that terminates in a dead-end crystallization is described. The route uses inexpensive, acyclic commodity-based raw materials and has the potential to enable lower cost production of nevirapine as well as other value added structures that contain complex pyridines. The route terminates in a batch crystallization yielding high purity CAPIC. This outcome is expected to facilitate regulatory implementation of the overall process.

  3. Programme DNA Lattices: Design, Synthesis and Applications

    National Research Council Canada - National Science Library

    Reif, John

    2006-01-01

    .... Self-assembled DNA nanostructures provide a methodology for bottom-up nanoscale construction of highly patterned systems, utilizing macromolecular DNA tiles" composed of branched DNA, self-assembled...

  4. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  5. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-11-27

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development.

  6. Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development

    International Nuclear Information System (INIS)

    Kim, Jung Min; Yamada, Masayuki; Masai, Hisao

    2003-01-01

    Cdc7 kinase plays an essential role in firing of replication origins by phosphorylating components of the replication complexes. Cdc7 kinase has also been implicated in S phase checkpoint signaling downstream of the ATR and Chk1 kinases. Inactivation of Cdc7 in yeast results in arrest of cell growth with 1C DNA content after completion of the ongoing DNA replication. In contrast, conditional inactivation of Cdc7 in undifferentiated mouse embryonic stem (ES) cells leads to growth arrest with rapid cessation of DNA synthesis, suggesting requirement of Cdc7 functions for continuation of ongoing DNA synthesis. Furthermore, loss of Cdc7 function induces recombinational repair (nuclear Rad51 foci) and G2/M checkpoint responses (inhibition of Cdc2 kinase). Eventually, p53 becomes highly activated and the cells undergo massive p53-dependent apoptosis. Thus, defective origin activation in mammalian cells can generate DNA replication checkpoint signals. Efficient removal of those cells in which replication has been perturbed, through cell death, may be beneficial to maintain the highest level of genetic integrity in totipotent stem cells. Partial, rather than total, loss of Cdc7 kinase expression results in retarded growth at both cellular and whole body levels, with especially profound impairment of germ cell development

  7. Synthesis of in vitro Co1E1 transcripts with 5'-terminal ribonucleotides that exhibit noncomplementarity with the DNA template

    International Nuclear Information System (INIS)

    Parker, R.C.

    1986-01-01

    A region that forms the S1 nuclease site in Co1E1 DNA is shown to code for an in vitro transcript, called S1 RNA-B, which contains a 5'-terminal GTP residue that exhibits noncomplementarity with the template's DNA sequence. The synthesis of S1 RNA-B initiates four bases upstream from the start point for S1 RNA-C. The initial four bases in S1 RNA-B and S1 RNA-C are identical. The relative synthesis of S1 RNA-B to S1 RNA-C is sensitive to the concentration of GTP, a substrate that is required for elongation past the +4 position in S1 RNA-C. Dinucleotides that are expected to only initiate synthesis of S1 RNA-C yield two transcripts that appear to initiate from the S1 RNA-C and S1 RNA-B start sites. In vitro studies involving other Co1E1 transcripts, RNA-B and RNA-C, provide similar observations concerning the noncomplementary initiation phenomenon. A model involving transcriptional slippage is suggested to explain the noncomplementary initiation phenomenon. The model proposes that the cycling reaction of Escherichia coli RNA polymerase produces tetranucleotides that are transposed to nearby upstream sequences for priming transcription

  8. Stwl modifies chromatin compaction and is required to maintain DNA integrity in the presence of perturbed DNA replication

    NARCIS (Netherlands)

    Yi, X.; Vries, de H.I.; Siudeja, K.; Rana, A.; Lemstra, W.; Brunsting, J.F.; Kok, R.J.M.; Smulders, Y.M.; Schaefer, M.; Dijk, F.; Shang, Y.F.; Eggen, B.J.L.; Kampinga, H.H.; Sibon, O.C.M.

    2009-01-01

    Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent

  9. Stwl Modifies Chromatin Compaction and Is Required to Maintain DNA Integrity in the Presence of Perturbed DNA Replication

    NARCIS (Netherlands)

    Yi, Xia; Vries, Hilda I. de; Siudeja, Katarzyna; Rana, Anil; Lemstra, Willy; Brunsting, Jeanette F.; Kok, Rob M.; Smulders, Yvo M.; Schaefer, Matthias; Dijk, Freark; Shang, Yongfeng; Eggen, Bart J.L.; Kampinga, Harm H.; Sibon, Ody C.M.

    Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent

  10. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis

    International Nuclear Information System (INIS)

    Laskey, J.; Webb, I.; Schulman, H.M.; Ponka, P.

    1988-01-01

    Transferrin is essential for cell proliferation and it was suggested that it may trigger a proliferative response following its interaction with receptors, serving as a growth factor. However, since the only clearly defined function of transferrin is iron transport, it may merely serve as an iron donor. To further clarify this issue, the authors took advantage of an iron chelate, ferric salicylaldehyde isonicotinoyl hydrazone (Fe-SIH), which they developed and previously demonstrated to efficiently supply iron to cells without using physiological transferrin receptor pathway. As expected, they observed that blocking monoclonal antibodies against transferrin receptors inhibited proliferation of both Raji and murine erythroleukemia cells. This inhibited cell growth was rescued upon the addition of Fe-SIH which was also shown to deliver iron to Raji cells in the presence of blocking anti-transferrin receptor antibodies. Moreover, blocking anti-transferrin receptor antibodies inhibited [ 3 H]thymidine incorporation into DNA and this inhibition could be overcome by added Fe-SIH. In addition, Fe-SIH slightly stimulated, while SIH (an iron chelator) significantly inhibited, DNA synthesis in phytohemagglutinin-stimulated peripheral blood lymphocytes. Taken together, these results indicate that the only function of transferrin supporting cell proliferation is to supply cells with iron

  11. Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts.

    Directory of Open Access Journals (Sweden)

    Parvathi Chary

    Full Text Available To aid in the characterization of the relationship of structure and function for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT, this investigation utilized DNAs containing benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-modified primers and templates as a probe of the architecture of this complex. BPDE lesions that differed in their stereochemistry around the C10 position were covalently linked to N (6-adenine and positioned in either the primer or template strand of a duplex template-primer. HIV-1 RT exhibited a stereoisomer-specific and strand-specific difference in replication when the BPDE-lesion was placed in the template versus the primer strand. When the C10 R-BPDE adduct was positioned in the primer strand in duplex DNA, 5 nucleotides from the 3΄ end of the primer terminus, HIV-1 RT could not fully replicate the template, producing truncated products; this block to further synthesis did not affect rates of dissociation or DNA binding affinity. Additionally, when the adducts were in the same relative position, but located in the template strand, similar truncated products were observed with both the C10 R and C10 S BPDE adducts. These data suggest that the presence of covalently-linked intercalative DNA adducts distant from the active site can lead to termination of DNA synthesis catalyzed by HIV-1 RT.

  12. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  13. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M

    1997-01-01

    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  14. In vitro test systems for the identification of gentoxic chemicals in the human environment: The proof of DNA repair synthesis in liver cells

    International Nuclear Information System (INIS)

    Rossberger, S.

    1986-01-01

    This work examines the possibilities of proving a DNA repair by gentoxic chemicals in primary hepatozytes and 2sFou liver cells of rates. Two different processes used for the in vitro mutagenic testing of alien substances for determining the DNA repair synthesis in primary hepatozytes, in the autoradiographic method and the gradient centrifuging method, are compared regarding their reliability and sensitivity. The rat hepatom cell line 2sFou was examined for its suitability for proving chemically induced DNA repair, instead of primary hepatozytes. (orig./MG) [de

  15. An assay system for factors involved in mammalian DNA replication

    International Nuclear Information System (INIS)

    Reinhard, P.; Maillart, P.; Schluchter, M.; Gautschi, J.R.; Schindler, R.

    1979-01-01

    An assay for cellular factors stimulating DNA synthesis by partially lysed CHO cells is presented. The assay is based on the observation that in highly lysed cells, DNA synthesis, as determined by [ 3 H]dTTP incorporation, was only 2-5% of that in gently lysed cells, and that this low level of DNA synthesis could be increased by a factor of approx. 50 by the addition of CHO cell extract (i.e. supernatant of a cell homogenate subjected to high-speed centrifugation.) (Auth.)

  16. Synthesis, characterization and use of Ru-Fc intercalation complex as an electrochemical label for the detection of pathogen-DNA

    International Nuclear Information System (INIS)

    Díaz-Serrano, M; Rosado, A; Guadalupe, A R; Santana, D; Vega, E Z

    2013-01-01

    This report describes the synthesis of [Ru(Fe-Phen) 2 dppz](PF 6 ) 2 (Ru-Fe complex) for a label-free approach to detect DNA hybridization. The Ru-Fe complex showed oxidation signals at +608 mV and +1192 mV corresponding to the RuII/III and FeII/III centers, respectively. We used the Ru-Fe complex and the Ferrocene covalently attached to the target to monitor the hybridization event of a 70-mer oligo immobilized in 10.3KD NHS-PS-NHS. The lowest target detectable concentration for the DNA fragment was around 0.4 μM.

  17. Nucleic acids synthesis of nuclear polyhedrosis virus in cultured embryonic cells of silkworm

    International Nuclear Information System (INIS)

    Himeno, Michio; Kimura, Yukio; Hayashiya, Keizo.

    1976-01-01

    Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32 P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affected the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C. (auth.)

  18. Investigations on the mechanism of DNA excision repair in tissue culture cells

    International Nuclear Information System (INIS)

    Wawra, E.; Dolejs, I.; Ott, E.

    1976-12-01

    Semiconservative DNA- synthesis and repair- synthesis was measured in HeLa cells and spleen cells under different conditions (i.e. different temperatures, addition of p-chloromercuribenzoate or cytosine-arabinoside). In order to obtain more information about the enzymatic background of these steps of DNA metabolism, parallel in vitro experiments were done with two different types of DNA polymerase, which had been isolated from pig spleen. At least the experiments at different temperatures are showing some correlations of α-polymerase with semiconservative synthesis and of β-polymerase with repair synthesis. (author)

  19. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  20. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  1. Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    Science.gov (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  2. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo; Zhu, Bin; Hamdan, Samir; Richardson, Charles C.

    2010-01-01

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical

  3. Impact of DNA3'pp5'G capping on repair reactions at DNA 3' ends.

    Science.gov (United States)

    Das, Ushati; Chauleau, Mathieu; Ordonez, Heather; Shuman, Stewart

    2014-08-05

    Many biological scenarios generate "dirty" DNA 3'-PO4 ends that cannot be sealed by classic DNA ligases or extended by DNA polymerases. The noncanonical ligase RtcB can "cap" these ends via a unique chemical mechanism entailing transfer of GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form DNA3'pp5'G. Here, we show that capping protects DNA 3' ends from resection by Escherichia coli exonucleases I and III and from end-healing by T4 polynucleotide 3' phosphatase. By contrast, the cap is an effective primer for DNA synthesis. E. coli DNA polymerase I and Mycobacterium DinB1 extend the DNAppG primer to form an alkali-labile DNApp(rG)pDNA product. The addition of dNTP depends on pairing of the cap guanine with an opposing cytosine in the template strand. Aprataxin, an enzyme implicated in repair of A5'pp5'DNA ends formed during abortive ligation by classic ligases, is highly effective as a DNA 3' decapping enzyme, converting DNAppG to DNA3'p and GMP. We conclude that the biochemical impact of DNA capping is to prevent resection and healing of a 3'-PO4 end, while permitting DNA synthesis, at the price of embedding a ribonucleotide and a pyrophosphate linkage in the repaired strand. Aprataxin affords a means to counter the impact of DNA capping.

  4. Inhibition of polymerases-alpha and -beta completely blocks DNA repair induced by UV irradiation in cultured mouse neuronal cells

    International Nuclear Information System (INIS)

    Licastro, F.; Sarafian, T.; Verity, A.M.; Walford, R.L.

    1985-01-01

    The effects of hydroxyurea, aphidicolin and dideoxythymidine on UV-induced DNA repair of mouse neuronal granular cells were studied. Aphidicolin, which is considered a specific inhibitor of polymerase-alpha, decreased spontaneous DNA synthesis by 93% and totally suppressed DNA repair. Dideoxythymidine, an inhibitor of polymerase-beta, was more potent in decreasing scheduled DNA synthesis than aphidicolin, and also completely blocked the UV-induced DNA repair. Hydroxyurea, a specific inhibitor of ribonucleotide reductase, inhibited scheduled DNA synthesis, but unscheduled DNA synthesis after UV irradiation was always well detectable. Our data suggest that in neuronal cells from 5 to 10 days old mice both polymerases-alpha and -beta are required for both DNA synthesis and repair. These two enzymes may act jointly in filling up the gaps along the DNA molecule and elongating the DNA chain

  5. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.

    Science.gov (United States)

    Ulvatne, Hilde; Samuelsen, Ørjan; Haukland, Hanne H; Krämer, Manuela; Vorland, Lars H

    2004-08-15

    Most antimicrobial peptides have an amphipathic, cationic structure, and an effect on the cytoplasmic membrane of susceptible bacteria has been postulated as the main mode of action. Other mechanisms have been reported, including inhibition of cellular functions by binding to DNA, RNA and proteins, and the inhibition of DNA and/or protein synthesis. Lactoferricin B (Lfcin B), a cationic peptide derived from bovine lactoferrin, exerts slow inhibitory and bactericidal activity and does not lyse susceptible bacteria, indicating a possible intracellular target. In the present study incorporation of radioactive precursors into DNA, RNA and proteins was used to demonstrate effects of Lfcin B on macromolecular synthesis in bacteria. In Escherichia coli UC 6782, Lfcin B induces an initial increase in protein and RNA synthesis and a decrease in DNA synthesis. After 10 min, the DNA-synthesis increases while protein and RNA-synthesis decreases significantly. In Bacillus subtilis, however, all synthesis of macromolecules is inhibited for at least 20 min. After 20 min RNA-synthesis increases. The results presented here show that Lfcin B at concentrations not sufficient to kill bacterial cells inhibits incorporation of radioactive precursors into macromolecules in both Gram-positive and Gram-negative bacteria.

  6. Dependence of u.v.-induced DNA excision repair on deoxyribonucleoside triphosphate concentrations in permeable human fibroblasts: a model for the inhibition of repair by hydroxyurea

    International Nuclear Information System (INIS)

    Hunting, D.J.; Dresler, S.L.

    1985-01-01

    We have tested the hypothesis that the inhibition by hydroxyurea of repair patch ligation and chromatin rearrangement during u.v.-induced DNA excision repair results from a reduction in cellular deoxyribonucleotide concentrations and not from a direct effect of hydroxyurea on the repair process. Using permeable human fibroblasts, we have shown that hydroxyurea has no direct effect on either repair synthesis or repair patch ligation. We also have shown that by reducing the deoxyribonucleoside triphosphate concentrations in the permeable cell reaction mixture, we can mimic the inhibition of repair patch ligation and chromatin rearrangement seen when u.v.-damaged intact confluent fibroblasts are treated with hydroxyurea. Our results are consistent with the concept that hydroxyurea inhibits DNA repair in intact cells by inhibiting deoxyribonucleotide synthesis through its effect on ribonucleotide reductase and, conversely, that continued deoxyribonucleotide synthesis is required for the excision repair of u.v.-induced DNA damage even in resting cells

  7. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    International Nuclear Information System (INIS)

    Pollard, P.C.; Moriarty, D.J.W.

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA

  8. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  9. Inhibition of DNA replication and repair by anthralin or danthron in cultured human cells

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1982-01-01

    The comparative effects of the tumor promoter anthralin and its analog, danthron, on semiconservative DNA replication and DNA repair synthesis were studied in cultured human cells. Bromodeoxyuridine was used as density label together with 3 H-thymidine to distinguish replication from repair synthesis in isopycnic CsCl gradients. Anthralin at 1.1 microgram inhibited replication in T98G cells by 50%. In cells treated with 0.4 or 1.3 microM anthralin and additive effect was observed on the inhibition of replication by ultraviolet light (254 nm). In cells irradiated with 20 J/m2, 2.3 microM anthralin was required to inhibit repair synthesis by 50%. Thus there was no selective inhibitory effect of anthralin on repair synthesis. Danthron exhibited no detectable effect on either semiconservative replication or repair synthesis at concentrations below about 5.0 microM. Neither compound stimulated repair synthesis in the absence of ultraviolet irradiation. Thus, anthralin and danthron do not appear to react with DNA to form adducts that are subject to excision repair. Although both compounds appear to intercalate into supercoiled DNA in vitro to a limited extent, the degree of unwinding introduced by the respective drugs does not correlate with their relative effects on DNA synthesis in vivo. Therefore the inhibitory effect of anthralin on DNA replication and repair synthesis in T98G cells does not appear to result from the direct interaction of the drug with DNA

  10. Synthesis of Macroporous Silica Particles by Continuous Generation of Droplets for Insulating Materials.

    Science.gov (United States)

    Cho, Young-Sang; Lee, Dokyoung

    2018-09-01

    We report on the synthesis of porous silica particles by self-assembly routes in a continuous manner for application to thermal insulators. A continuous process was employed to produce tiny droplets containing precursor materials such as silica and organic templates for self-organization to fabricate particles with well defined pores. A rotating cylinder system or a spray drying process was adopted to form emulsions or aerosol droplets as micro-reactors for self-assembly, and the physical properties including the thermal conductivity of the resulting porous particles were compared between the two methods. The porous particles could be coated as a thick film by solution dripping, and the fluorination treatment using a silane coupling agent was performed to produce superhydrophobic surfaces of insulating layers by a lotus effect.

  11. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R/sub 11/5

    Energy Technology Data Exchange (ETDEWEB)

    Auda, H; Khalef, Z [Nuclear Centre Tuwaitha, Baghdad (Iraq)

    1982-06-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R/sub 11/5 labeled with thymidine-methyl-/sup 3/H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region.

  12. Measurement of the capability of DNA synthesis of human fetal liver cells by the assay of 3H-TdR incorporation

    International Nuclear Information System (INIS)

    Wang Tao; Ma Xiangrui; Wang Hongyun; Cao Xia

    1987-01-01

    The fetal liver is one of the major sites of hematopoiesis during gestation. Under erythropoietin (EPO) stimulation, in erythroid precusor cells of fetal liver, proliferation and differentiation occurred and function of metabolism was enhanced. The technique of 3 H-TdR incorporation was used to measure the function of fetal liver cellular DNA synthesis. As EPO concentration at the range of approximately 20 ∼ 100 mU/ml, the counts of 3 H-TdR incorporation into fetal liver cells increased. As the concentration of EPO increased, however, its incorporation counts are lower than that in bone marrow of either the fetal or the adult. It suggested that precusors of erythrocyte of fetal liver has differentiated to later phases with the progressive accumulation of mature cells, therefore, both proliferation and function of metabolism are more or less decreased respectively. Under EPO stimulation, however, precusor of erythroid of fetal liver can greatly increase potential effects on DNA synthesis

  13. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression

    Science.gov (United States)

    Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J.; Schmidt, Kristina H.

    2016-01-01

    In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. PMID:27923055

  14. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression.

    Science.gov (United States)

    Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J; Schmidt, Kristina H

    2016-12-01

    In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186-212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks.

  15. A Short Review on the Synthetic Strategies of Duocarmycin Analogs that are Powerful DNA Alkylating Agents.

    Science.gov (United States)

    Patil, Pravin C; Satam, Vijay; Lee, Moses

    2015-01-01

    The duocarmycins and CC-1065 are members of a class of DNA minor groove, AT-sequence selective, and adenine-N3 alkylating agents, isolated from Streptomyces sp. that exhibit extremely potent cytotoxicity against the growth of cancer cells grown in culture. Initial synthesis and structural modification of the cyclopropa[c] pyrrolo[3,2-e]indole (CPI) DNA-alkylating motif as well as the indole non-covalent binding region in the 1980s have led to several compounds that entered clinical trials as potential anticancer drugs. However, due to significant systemic toxicity none of the analogs have passed clinical evaluation. As a result, the intensity in the design, synthesis, and development of novel analogs of the duocarmycins has continued. Accordingly, in this review, which covers a period from the 1990s through the present time, the design and synthesis of duocarmycin SA are described along with the synthesis of novel and highly cytotoxic analogs that lack the chiral center. Examples of achiral analogs of duocarmycin SA described in this review include seco-DUMSA (39 and 40), seco-amino-CBI-TMI (13, Centanamycin), and seco-hydroxy-CBI-TMI (14). In addition, another novel class of biologically active duocarmycin SA analogs that contained the seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) DNA alkylating submit was also designed and synthesized. The synthesis of seco-iso-CFI-TMI (10, Tafuramycin A) and seco-CFQ-TMI (11, Tafuramycin B) is included in this review.

  16. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  17. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    Science.gov (United States)

    1987-11-23

    unrepaired 3-methyladenine in DNA 29 2.4.1 Cytotoxic effects of persisting m3A in DNA 30 2.4.2 Mutagenic bypass synthesis of depurinat ,d DNA 30 3 CONCLUDING...induced by a single exposure to the ca’rcinogen N- methyl-N- nitrosourea (MNU) due to activation of the malignant Ha-ras-i locus. Analysis of the induced...ing CO:A uolymerase I for repair synthesis . Since DNA polymerase I would be required to complete repair after the in~uial activity of TagII, we tested

  18. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA

    International Nuclear Information System (INIS)

    Church, K.M.; Wurdeman, R.L.; Zhang, Yi; Chen, Faxian; Gold, B.

    1990-01-01

    The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32 P-end-labeled restriction fragments with methidiumpropyl-EDTA·Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32 P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. Linking the Cl-ENU moiety to minor groove binders is a viable strategy to qualitatively and quantitatively control the delivery and release of the ultimate DNA alkylating agent in a sequence-dependent fashion

  19. A biochemical defect in the repair of alkylated DNA in cells from an immunodeficient patient (46BR)

    International Nuclear Information System (INIS)

    Teo, I.A.; Broughton, B.C.; Day, R.S.; James, M.R.; Karran, P.; Mayne, L.V.; Lehmann, A.R.

    1983-01-01

    The fibroblast cell strain 46BR, derived from an immunodeficient individual, is hypersensitive to the lethal effects of a variety of DNA-damaging agents, this effect being particularly marked for monofunctional methylating agents. After U.V. irradiation 46BR cells show normal unscheduled DNA synthesis, daughter strand repair, and recovery of DNA and RNA synthesis. The inhibition of DNA replicative synthesis by U.V. is slightly less than that of normal cells. After gamma-irradiation the rejoining of strand breaks is normal as are the kinetics of replicative DNA synthesis. Following treatment with dimethylsulphate, replicative DNA synthesis is affected in a similar way to normal cells, unscheduled DNA synthesis may be increased relative to normal cells, but more strand breaks persist in 46BR than in normal cells. In addition 46BR cells are hypersensitive to the toxic effects of 3-aminobenzamide, an inhibitor of ADP-ribosyl transferase. This enzyme is involved in the ligation step of repair of alkylation damage. A hypothesis is presented suggesting that 46BR may be defective in DNA ligase I

  20. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  1. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  2. Analysis of the distribution of DNA repair patches in the DNA-nuclear matrix complex from human cells

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.

    1983-01-01

    The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after iiradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S 1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop. (Auth.)

  3. Analysis of the distribution of DNA repair patches in the DNA-nuclear matrix complex from human cells

    Energy Technology Data Exchange (ETDEWEB)

    Mullenders, L.H.F. (Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese); Zeeland, A.A. van; Natarajan, A.T. (Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1983-09-09

    The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S/sub 1/ of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.

  4. Repair of DNA damage in light sensitive human skin diseases

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, I.; Varga, L.; Tam' asi P., Gundy, S.

    1978-12-01

    Repair of uv-light induced DNA damage and changes in the semiconservative DNA synthesis were studied by in vitro autoradiography in the skin of patients with lightdermatoses (polymorphous light eruption, porphyria cutanea tarda, erythropoietic protoporphyria) and xeroderma pigmentosum as well as in that of healthy controls. In polymorphous light eruption the semiconservative DNA replication rate was more intensive in the area of the skin lesions and in the repeated phototest site, the excision repair synthesis appeared to be unaltered. In cutaneous prophyrias a decreased rate of the repair incorporation could be detected. Xeroderma pigmentosum was characterized by a strongly reduced repair synthesis.

  5. DNA-Controlled Assembly of Soft Nanoparticles

    DEFF Research Database (Denmark)

    Vogel, Stefan

    2015-01-01

    This book covers the emerging topic of DNA nanotechnology and DNA supramolecular chemistry in its broader sense. By taking DNA out of its biological role, this biomolecule has become a very versatile building block in materials chemistry, supramolecular chemistry and bio-nanotechnology. Many nove......-covalent systems, DNA origami, DNA based switches, DNA machines, and alternative structures and templates. This broad coverage is very appealing since it combines both the synthesis of modified DNA as well as designer concepts to successfully plan and make DNA nanostructures....

  6. The application of psoralens to the study of DNA structure, function and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Peter Hans [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1991-04-01

    A series of six nitroxide spin-labeled psoralens were designed, synthesized and tested as probes for DNA dynamics. The synthesis of these spin-labeled psoralen derivatives and their photoreactivity with double-stranded DNA fragments is described. The spin labels (nitroxides) were demonstrated to survive the uv irradiation required to bind the probe to the target DNA. EPR spectra of the photobound spin-labels indicate that they do not wobble with respect to the DNA on the time-scales investigated. The author has used psoralen modified DNA as a model for the study of DNA repair enzyme systems in human cell free extracts. He has shown that damage-induced DNA synthesis is associated with removal of psoralen adducts and therefore is "repair synthesis" and not an aberrant DNA synthesis reaction potentiated by deformation of the DNA by adducts. He has found that all DNA synthesis induced by psoralen monoadducts is the consequence of removal of these adducts. By the same approach he has obtained evidence that this in vitro system is capable of removing psoralen cross-links as well. Reported here are synthetic methods that make use of high intensity lasers coupled with HPLC purification to make homogeneous and very pure micromole quantities of furan-side monoadducted, cross-linked, and pyrone-side monoadducted DNA oligonucleotide. These molecules are currently being studied by NMR and X-ray crystallography. The application of the site-specifically psoralen modified oligonucleotide synthesized by these methods to the construction of substrates for the investigation of DNA repair is also discussed.

  7. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA

    Directory of Open Access Journals (Sweden)

    Dixon Melissa

    2005-07-01

    Full Text Available Abstract Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.

  8. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  9. Simple synthesis of carbon-11-labeled chromen-4-one derivatives as new potential PET agents for imaging of DNA-dependent protein kinase (DNA-PK) in cancer

    International Nuclear Information System (INIS)

    Gao, Mingzhang; Wang, Min; Miller, Kathy D.; Zheng, Qi-Huang

    2012-01-01

    Carbon-11-labeled chromen-4-one derivatives were synthesized as new potential PET agents for imaging of DNA repair enzyme DNA-dependent protein kinase (DNA-PK) in cancer. The target tracers, X-[ 11 C]methoxy-2-morpholino-4H-chromen-4-ones (X=8, 7, 6, 5; [ 11 C]4a–d), were prepared from their corresponding precursors, X-hydroxy-2-morpholino-4H-chromen-4-ones (X=8, 7, 6, 5; 5a–d), with [ 11 C]CH 3 OTf through O-[ 11 C]methylation and isolated by a simplified solid-phase extraction (SPE) method using a C-18 Sep-Pak Plus cartridge. The radiochemical yields decay corrected to end of bombardment (EOB), from [ 11 C]CO 2 , were 40–60%. The specific activity at end of synthesis (EOS) was 185–370 GBq/μmol. - Highlights: ► New chromen-4-one derivatives were synthesized. ► New carbon-11-labeled chromen-4-one derivatives were synthesized. ► Simple solid-phase extraction (SPE) method was employed in radiosynthesis.

  10. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  11. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    Science.gov (United States)

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Mutagenic DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Chao Ho; Woodgate, R.

    1991-01-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium u mu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umuDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention

  13. Deficient repair of chemical adducts in alpha DNA of monkey cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Cortopassi, G.A.; Smith, C.A.; Hanawalt, P.C.

    1982-01-01

    Researchers have examined excision repair of DNA damage in the highly repeated alpha DNA sequence of cultured African green monkey cells. Irradiation of cells with 254 nm ultraviolet light resulted in the same frequency of pyrimidine dimers in alpha DNA and the bulk of the DNA. The rate and extent of pyrimidine dimer removal, as judged by measurement of repair synthesis, was also similar for alpha DNA and bulk DNA. In cells treated with furocoumarins and long-wave-length ultraviolet light, however, repair synthesis in alpha DNA was only 30% of that in bulk DNA, although it followed the same time course. Researchers found that this reduced repair was not caused by different initial amounts of furocoumarin damage or by different sizes of repair patches, as researchers found these to be similar in the two DNA species. Direct quantification demonstrated that fewer furocoumarin adducts were removed from alpha DNA than from bulk DNA. In cells treated with another chemical DNA-damaging agent, N-acetoxy-2-acetylaminofluorene, repair synthesis in alpha DNA was 60% of that in bulk DNA. These results show that the repair of different kinds of DNA damage can be affected to different extents by some property of this tandemly repeated heterochromatic DNA. To our knowledge, this is the first demonstration in primate cells of differential repair of cellular DNA sequences

  14. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  16. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    Science.gov (United States)

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  17. Adeno-associated virus rep protein synthesis during productive infection

    International Nuclear Information System (INIS)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-01-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [ 35 S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased

  18. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...... recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits...

  19. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    International Nuclear Information System (INIS)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A.; Mason, William S.; Litwin, Samuel; Jilbert, Allison R.

    2013-01-01

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10 5 -fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis

  20. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  1. The fidelity of reverse transcription differs in reactions primed with RNA versus DNA primers

    NARCIS (Netherlands)

    Oude Essink, B. B.; Berkhout, B.

    1999-01-01

    Reverse transcriptase enzymes (RT) convert single-stranded retroviral RNA genomes into double-stranded DNA. The RT enzyme can use both RNA and DNA primers, the former being used exclusively during initiation of minus- and plus-strand synthesis. Initiation of minus-strand DNA synthesis occurs by

  2. Cytometry of DNA Replication and RNA Synthesis: Historical Perspective and Recent Advances Based on “Click Chemistry”

    OpenAIRE

    Darzynkiewicz, Zbigniew; Traganos, Frank; Zhao, Hong; Halicka, H. Dorota; Li, Jiangwei

    2011-01-01

    This review covers progress in the development of cytometric methodologies designed to assess DNA replication and RNA synthesis. The early approaches utilizing autoradiography to detect incorporation of 3H- or 14C-labeled thymidine were able to identify the four fundamental phases of the cell cycle G1, S, G2, and M, and by analysis of the fraction of labeled mitosis (FLM), to precisely define the kinetics of cell progression through these phases. Analysis of 3H-uridine incorporation and RNA c...

  3. DNA repair in mutagen-injured higher plants

    International Nuclear Information System (INIS)

    Veleminsky, J.; Gichner, T.

    1978-01-01

    Data are summarized proving the occurrence of photoreactivation of UV-induced pyrimidine dimers in cells of Nicotiana tabucum, Gingko and carrot, the excision of dimers in cells of Nicotiana tabacum, Gingko and carrot, the excision of dimers in protoplasts of carrot and in embryos of Lathyrus sativus, and the repair of DNA single-strand breaks induced in carrot protoplasts and barley embryonic cells by ionizing radiation. In irradiated barley embryos the unscheduled DNA synthesis and higher accessibility of induced primers to DNA polymerase I of E. coli were observed preferentially in G 1 cells with diffused chromatin. These reactions were inhibited by caffeine and EDTA. Unscheduled DNA synthesis was also observed in synchronized irradiated root cuttings of Vicia faba and in barley embryos treated with 4-nitroquinoline oxide, the latter being inhibited by caffeine and hydroxyurea. Repair synthesis was also established in barley embryos treated with mutagenic N-methyl-N-nitrosourea under conditions that postponed the onset of germination after the treatment. The same conditions enhanced the repair of DNA single-strand breaks induced by this mutagen and several other monofunctional alkylating compounds. From tissues of barley and of Phaseolus multiflorus, endonucleases for apurinic sites were isolated and characterized. Some of them are located in chromatin, others in chloroplasts. The relation between DNA repair and genetic effects of mutagens in higher plants is also discussed. (Auth.)

  4. DNA replication and repair in Tilapia cells

    International Nuclear Information System (INIS)

    Yew, F.H.; Chang, L.M.

    1984-01-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-β-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor. (author)

  5. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  6. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  7. Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

    Science.gov (United States)

    Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.

    1995-10-01

    Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.

  8. UVA phototransduction drives early melanin synthesis in human melanocytes.

    Science.gov (United States)

    Wicks, Nadine L; Chan, Jason W; Najera, Julia A; Ciriello, Jonathan M; Oancea, Elena

    2011-11-22

    Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    International Nuclear Information System (INIS)

    Bahrami, Behnam; Khodadadi, Abasali; Mortazavi, Yadollah; Esmaieli, Mohamad

    2011-01-01

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I G /I D Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  10. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Behnam, E-mail: bahrami@email.sc.edu [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Esmaieli, Mohamad [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-09-15

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I{sub G}/I{sub D} Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  11. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  12. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  13. Next-generation digital information storage in DNA.

    Science.gov (United States)

    Church, George M; Gao, Yuan; Kosuri, Sriram

    2012-09-28

    Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.

  14. Modifying action of DNA synthesis precursors on Aspergillus nidulans conidium irradiated by ultraviolet and X-rays

    International Nuclear Information System (INIS)

    Muronets, E.M.; Kameneva, S.V.

    1975-01-01

    Modification of inactivation action of radiation on conidia Aspergillus nidulans, UVS + and UVS strains, by desoxynucleosides, purine and pyrimidine bases is shown. The modification manifested in increased conidia survival is revealed when the precursor of DNA synthesis is added to the suspension before exposure to ultraviolet or X-rays. In the case of postradiation application of the substance no modification is observed. The modifying effect of different precursors becomes equally apparent with equimolar solutions and increases at higher concentration of the latter. An increase in thymidine endogenic pool in the exposed conidia does not affect their survival. When conidia are exposed to ultraviolet rays through a thymidine filter the survival rate increases to the same extent as in the case when they are exposed to irradiation in thymidine solution. The authors suggest that modification of the inactivating radiation action by DNA precursors at exposure of conidia Aspergillus nidulans is caused by the radioprotective effect of precursors not related to reparation [ru

  15. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1976-01-01

    Toluene-treated Escherichia coli mutants have been used to study the roles of deoxyribonucleic acid (DNA) polymerases I, II, and III, and of DNA ligase in repair synthesis and strand rejoining following X-irradiation. In cells possessing all three DNA polymerases, both a greater amount of repair synthesis (''exaggerated'' repair synthesis) and failure of ligation are observed when DNA ligase activity is inhibited. In a mutant lacking the polymerizing activity of DNA polymerase I, exaggerated repair synthesis is not observed, and strand rejoining does not occur even if DNA ligase is fully activated. In a mutant possessing the polymerizing activity of DNA polymerase I but lacking its 5' → 3' exonuclease activity, exaggerated repair synthesis is minimal. After irradiation, DNA polymerases II and III are capable of carrying out an adenosine 5'-triphosphate-dependent repair synthesis, but rejoining of strand breaks does not occur and exaggerated synthesis is not seen whether DNA ligase is active or not. These results suggest that DNA polymerase I and DNA ligase act together to limit repair synthesis after X irradiation and that both are necessary in toluene-treated cells for strand rejoining. DNA polymerases II and III apparently cannot complete chain elongation and gap filling, and therefore repair carried out by these enzymes does not respond to ligase action

  16. Determination of radioinduced delay in DNA synthesis in two-garlic-clones cells (Allium Sativum L.)

    International Nuclear Information System (INIS)

    Perez Lezcano, A.; Perez Talavera, S.

    1989-01-01

    To contribute to tech improvement of the use of ionizing radiations as an auxiliary tool in the fitoimprovement, dose-effect curves for the 'Martinez' and 'Sancti Spiritus-3' clones were stablished by using as effect the delay induced by radiations in DNA synthesis determined by the 'Martinez' clone which induces a delay of 50% in reference to the control is approximately 11 Gy, while the dose value for the 'Sancti Spiritus-3' clone is 18 Gy, thus the 'Martinez' clones has a higher sensitivity to radiations than the other clone, therefore it coincides with what we found for these clones other indexes are used as radiosensitivity criteria

  17. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    Science.gov (United States)

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Psoralen plus ultraviolet radiation-induced inhibition of DNA synthesis and viability in human lymphoid cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K H; Waters, H L [National Cancer Inst., Bethesda, MD (USA); Ellingson, O L; Tarone, R E

    1979-08-01

    The present study investigated whether conditions of 8-methoxypsoralen (8-MOP) concentration and of exposure to high intensity long wavelength ultraviolet radiation (UV-A) during psoriasis and mycosis fungoides therapy might be sufficient to result directly in decreased lymphoid cell DNA synthesis and viability in vitro. Tritiated thymidine (/sup 3/HtdR) incorporation and cell growth following UV-A exposure alone or with 8-MOP was examined in peripheral blood lymphocytes and in Ebstein-Barr virus transformed human lymphoblastoid cell lines. UV-A exposure alone induced a dose-dependent inhibition of /sup 3/HTdR incorporation in both types of lymphoid cells. Pre-incubation with 0.1 ..mu..g/ml 8-MOP before UV-A exposure induced a significantly greater inhibition of /sup 3/HTdr incorporation. Further inhibition of /sup 3/HTdR incorporation was observed by preincubation of the lymphoblastoid cells with 1.0 ..mu..g/ml 8-MOP but not in the lymphocytes. The concentration of viable lymphoblastoid cells did not decrease below the original concentration after the highest dose of UV-A alone (29,00 J/m/sup 2/) but preincubation with 0.1 ..mu..g/ml 8-MOP resulted in 40% and 0.6% survival respectively after 3000 J/m/sup 2/. This study suggested that the low doses of 8-MOP and UV-A received by patients' lymphocytes may be sufficient to explain the decreased DNA synthesis found in their circulating leucocytes. (author).

  19. Synthesis and biological properties of 5-azido-2'-deoxyuridine 5'-triphosphate, a photoactive nucleotide suitable for making light-sensitive DNA

    International Nuclear Information System (INIS)

    Evans, R.K.; Haley, B.E.

    1987-01-01

    A photoactive nucleotide analogue of dUTP, 5-azido-2'-deoxyuridine 5'-triphosphate (5-N 3 dUTP), was synthesized from dUMP in five steps. The key reaction in the synthesis of 5-N 3 dUTP is the nitration of dUMP in 98% yield in 5 min at 25 0 C using an excess of nitrosonium tetrafluoroborate in anhydrous dimethylformamide. Reduction of the resulting 5-nitro compound with zinc and 20 mM HCl gave 5-aminodeoxyuridine monophosphate (5-NH 2 dUMP). Diazotization of 5-NH 2 dUMP with HNO 2 followed by the addition NaN 3 to the acidic diazonium salt solution gave a photoactive nucleotide derivative in 80-90% yield. The monophosphate product was identified as 5-N 3 dUMP by proton NMR, UV, IR, and chromatographic analysis as well as by the mode of synthesis and its photosensitivity. After formation of 5-N 3 dUTP through a chemical coupling of pyrophosphate to 5-N 3 dUMP, the triphosphate form of the nucleotide was found to support DNA synthesis by Escherichia coli DNA polymerase I at a rate indistinguishable from that supported by dTTP. When UMP was used as the starting compound, 5-N 3 UTP was formed in an analogous fashion with similar yields and produced a photoactive nucleotide which is a substrate for E. coli RNA polymerase. To prepare [γ- 32 P]-5-N 3 dUTP for use as an active-site-directed photoaffinity labeling reagent, a simple method of preparing γ- 32 P-labeled pyrimidine nucleotides was developed. [γ- 32 P]-5-N 3 dUTP is an effective photoaffinity labeling reagent for DNA polymerase I and was found to bind to the active site with a 2-fold higher affinity than dTTP. The photoactivity of 5-N 3 dUMP is stable to extremes of pH, and [γ- 32 P]-5-N 3 dUTP was an effective photolabeling reagent even in the presence of 10 mM dithiothreitol

  20. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  1. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  2. The single-biopsy approach in determining protein synthesis in human slow-turning-over tissue: use of flood-primed, continuous infusion of amino acid tracer

    DEFF Research Database (Denmark)

    Holm, Lars; Reitelseder, Søren; Dideriksen, Kasper

    2014-01-01

    Muscle protein synthesis (MPS) rate is determined conventionally by obtaining two or more tissue biopsies during a primed, continuous infusion of a stable isotopically labeled amino acid. The purpose of the present study was to test whether tracer priming given as a flooding dose, thereby securing....... In conclusion, the flood-primed, continuous infusion protocol using phenylalanine as tracer can validly be used to measure the protein synthesis rate in human in vivo experiments by obtaining only a single tissue biopsy after a prolonged infusion period....

  3. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Zuo Guifu; Wan Yizao; Meng Xianguang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao Qing [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Ren Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Jia Shiru [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, 29, 13th Street, TEDA, Tianjin 300457 (China); Wang Jiehua, E-mail: gfzuo@tju.edu.cn [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2011-04-15

    Research highlights: {yields} A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. {yields} Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. {yields} The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  5. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    International Nuclear Information System (INIS)

    Zuo Guifu; Wan Yizao; Meng Xianguang; Zhao Qing; Ren Kaijing; Jia Shiru; Wang Jiehua

    2011-01-01

    Research highlights: → A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. → Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. → The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  6. Experimental and modelling studies on continuous synthesis and refining of biodiesel in a dedicated bench scale unit using centrifugal contactor separator technology

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Martinez, Alberto Fernandez; Kloekhorst, Arjan; Manurung, Robert; Heeres, Hero J.

    Continuous synthesis and refining of biodiesel (FAME) using a laboratory scale bench scale unit was explored. The unit consists of three major parts: (i) a continuous centrifugal contactor separator (CCCS) to perform the reaction between sunflower oil and methanol; (ii) a washing unit for the crude

  7. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  8. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Ichihashi, M.; Kano, Y.; Goto, K.; Shimizu, K.

    1981-01-01

    A non-sensitive, 8-yr-old male patient (termed UV81KO) with only acute recurrent sunburns and without any other physical or neuromental retardations was studied. The patient's skin exhibited lowered minimal erythema doses between 280 and 300 nm monochromatic wavelengths without delayed peaking of erythema. UV81KO skin fibroblasts in culture was 5-fold more sensitive to 254 nm UV killing than normal cells, though the response of obligatory heterozygotes was normal. UV81KO cells were also more sensitive to killings by fluorescent sunlamp (295-300 nm UV-B) radiation, 4-nitroquinoline-1-oxide, and N-hydroxy-acetyl aminofluorene, but not by monofunctional decarbamoyl mitomycin C, bifunctional mitomycin C, and alkylating agents (methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N-nitrosourea). Assays for unscheduled DNA synthesis, T4 endonuclease V-susceptible sites (pyrimidine dimers), endogenous excision-break accumulation by arabinofuranosyl cytosine-plus-hydroxyurea, single-strand-break rejoining, and molecular-weight increase of pulse-chased DNA in irradiated cells indicated no apparently detectable defects in nucleotide-excision repair processes and in replicative bypass in UV81KO cells. Despite the repair proficiency as such, UV81KO cells showed the defective recovery of DNA synthesis after 254 nm UV irradiation with 1 and 5 J/m2, at which dose the recovery occurred in normal cells. The base line level of sister-chromatid exchanges (SCEs) was higher in UV81KO cells (10-12 SCEs/cell) than in normal cells (5 SCEs/cell), although the induction rate of SCEs by 254 nm UV in UV81KO cells was the same as in normal cells. Such clinical, cellular and molecular characteristics and comparison to those in the other photodermatoses (xeroderma pigmentosum, Cockayne's syndrome, the 11961 disorder, Bloom's syndrome) can make a clear distinction of UV81KO from the others

  9. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Ichihashi, M.; Kano, Y.; Goto, K.; Shimizu, K.

    1981-09-01

    A non-sensitive, 8-yr-old male patient (termed UV81KO) with only acute recurrent sunburns and without any other physical or neuromental retardations was studied. The patient's skin exhibited lowered minimal erythema doses between 280 and 300 nm monochromatic wavelengths without delayed peaking of erythema. UV81KO skin fibroblasts in culture was 5-fold more sensitive to 254 nm UV killing than normal cells, though the response of obligatory heterozygotes was normal. UV81KO cells were also more sensitive to killings by fluorescent sunlamp (295-300 nm UV-B) radiation, 4-nitroquinoline-1-oxide, and N-hydroxy-acetyl aminofluorene, but not by monofunctional decarbamoyl mitomycin C, bifunctional mitomycin C, and alkylating agents (methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N-nitrosourea). Assays for unscheduled DNA synthesis, T4 endonuclease V-susceptible sites (pyrimidine dimers), endogenous excision-break accumulation by arabinofuranosyl cytosine-plus-hydroxyurea, single-strand-break rejoining, and molecular-weight increase of pulse-chased DNA in irradiated cells indicated no apparently detectable defects in nucleotide-excision repair processes and in replicative bypass in UV81KO cells. Despite the repair proficiency as such, UV81KO cells showed the defective recovery of DNA synthesis after 254 nm UV irradiation with 1 and 5 J/m2, at which dose the recovery occurred in normal cells. The base line level of sister-chromatid exchanges (SCEs) was higher in UV81KO cells (10-12 SCEs/cell) than in normal cells (5 SCEs/cell), although the induction rate of SCEs by 254 nm UV in UV81KO cells was the same as in normal cells. Such clinical, cellular and molecular characteristics and comparison to those in the other photodermatoses (xeroderma pigmentosum, Cockayne's syndrome, the 11961 disorder, Bloom's syndrome) can make a clear distinction of UV81KO from the others.

  10. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Depression of DNA synthesis rate following hyperthermia, gamma irradiation, cyclotron neutrons and mixed modalities

    International Nuclear Information System (INIS)

    Weber, H.J.; Muehlensiepen, H.; Porschen, W.; Feinendegen, L.E.; Dietzel, F.

    1978-01-01

    The incorporation of the thymidine analogue I-UdR is proportional to the activity of DNA synthesis. The maximum depression of 125-I-UdR incorporation occurs approximately 4 hours after all kinds of treatment. The increase which follow reflects cell processes like reoxygeneration, recovery, recycling and recruitment (although a direct relation is not yet demonstrable). The degree of depression 4 hours after treatment and the time required needs to reach control level is dependent on dose and radiation quaility but no such dependence could be clearly seen for the times of hyperthermia treatment we used. Neutron irradiation and the combination gamma irradiation + hyperthermia show a higher depression and a slower return to normal than gamma irradiation at the same dose. (orig.) [de

  12. Critical considerations for the application of environmental DNA methods to detect aquatic species

    Science.gov (United States)

    Goldberg, Caren S.; Turner, Cameron R.; Deiner, Kristy; Klymus, Katy E.; Thomsen, Philip Francis; Murphy, Melanie A.; Spear, Stephen F.; McKee, Anna; Oyler-McCance, Sara J.; Cornman, Robert S.; Laramie, Matthew B.; Mahon, Andrew R.; Lance, Richard F.; Pilliod, David S.; Strickler, Katherine M.; Waits, Lisette P.; Fremier, Alexander K.; Takahara, Teruhiko; Herder, Jelger E.; Taberlet, Pierre

    2016-01-01

    Species detection using environmental DNA (eDNA) has tremendous potential for contributing to the understanding of the ecology and conservation of aquatic species. Detecting species using eDNA methods, rather than directly sampling the organisms, can reduce impacts on sensitive species and increase the power of field surveys for rare and elusive species. The sensitivity of eDNA methods, however, requires a heightened awareness and attention to quality assurance and quality control protocols. Additionally, the interpretation of eDNA data demands careful consideration of multiple factors. As eDNA methods have grown in application, diverse approaches have been implemented to address these issues. With interest in eDNA continuing to expand, supportive guidelines for undertaking eDNA studies are greatly needed.Environmental DNA researchers from around the world have collaborated to produce this set of guidelines and considerations for implementing eDNA methods to detect aquatic macroorganisms.Critical considerations for study design include preventing contamination in the field and the laboratory, choosing appropriate sample analysis methods, validating assays, testing for sample inhibition and following minimum reporting guidelines. Critical considerations for inference include temporal and spatial processes, limits of correlation of eDNA with abundance, uncertainty of positive and negative results, and potential sources of allochthonous DNA.We present a synthesis of knowledge at this stage for application of this new and powerful detection method.

  13. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  14. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  16. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2

    Science.gov (United States)

    Tsabar, Michael; Eapen, Vinay V.; Mason, Jennifer M.; Memisoglu, Gonen; Waterman, David P.; Long, Marcus J.; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5′ to 3′ end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5′ to 3′ resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  17. Enhancement of DNA polymerase activity in potato tuber slices

    International Nuclear Information System (INIS)

    Watanabe, Akira; Imaseki, Hidemasa

    1977-01-01

    DNA polymerase was extracted from potato (Soleum tuberosum L.) tuber discs and the temporal correlation of its activity change to DNA synthesis in vivo was examined during aging of the discs. Most of the DNA polymerase was recovered as a bound form in the 18,000 x g precipitate. Reaction with the bound-form enzyme was dependent on the presence of four deoxynucleoside triphosphates, Mg 2+ , and a template. ''Activated'' DNA and heat-denatured DNA, but not native DNA, were utilized as templates. The polymerase activity was sensitive to SH reagents. Fresh discs, which do not synthesize DNA in vivo, contained a significant amount of DNA polymerase and its activity increased linearly with time until 48 hr after slicing and became four times that of fresh discs after 72 hr, whereas the activity of DNA synthesis in vivo increased with time and decreased after reaching a maximum at 30 hr. Cycloheximide inhibited the enhancement of polymerase activity. DNA polymerase from aged and fresh discs had identical requirements for deoxynucleotides and a template in their reactions, sensitivity to SH reagent, and affinity to thymidine triphosphate. (auth.)

  18. Separation of DNA-dependent polymerate activities in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Kitayama, S.; Matsuyama, A.

    1977-01-01

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by γ-radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans

  19. Separation of DNA-dependent polymerase activities in Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S; Matsuyama, A [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1977-03-02

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by ..gamma.. radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans.

  20. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  1. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  2. Maintenance of DNA repair capacity in differentiating rat muscle cells in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Kaufman, S.J.

    1981-01-01

    Unscheduled DNA synthesis was measured at several times during the differentiation of cultured rat skeletal muscle cells in response to exposures to 254 nm UV light. There was no change in the amount of repair DNA synthesis as the cells fuse and differentiate from postmitotic prefusion myoblasts to multinucleated contracting myotubes. (author)

  3. Scintillometric determination of DNA repair in human cell lines. A critical appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, V.; Zantedeschi, A.; Levis, A.G. (Padua Univ. (Italy). Ist. di Biologica Animale); Nuzzo, F.; Stefanini, M. (Consiglio Nazionale delle Ricerche, Pavia (Italy). Ist. di Genetica Biochimica ed Evoluzionistica); Abbondandolo, A.; Bonatti, S.; Fiorio, R.; Mazzaccaro, A. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Mutagenesi e Differenziamento); Capelli, E. (Pavia Univ. (Italy). Ist. di Genetica)

    1982-04-01

    The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with (/sup 3/H)thymidine, the radioactivity incorporated into DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (Csub(HU), Tsub(HU)). The ratios Tsub(HU)/Csub(HU) and Tsub(HU)/T:Csub(HU)/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation.

  4. Assay for Epstein--Barr virus based on stimulation of DNA systhesis in mixed leukocytes from human umbilical cord blood

    International Nuclear Information System (INIS)

    Robinson, J.; Miller, G.

    1975-01-01

    Relationships between the rate of DNA synthesis in cultured human umbilical cord leukocytes and the multiplicity of added Epstein-Barr virus (EBV) were studied. At low multiplicities of approximately 0.1 transforming units/cell (approximately 10 physical particles/cell), inoculated cultures demonstrated increased rates of DNA synthesis, by comparison to uninoculated cultures, 3 days after inoculation. Stimulation of DNA synthesis was evident at progressively longer intervals after inoculations of 10-fold dilutions of virus. The rate of DNA synthesis, determined by short [ 3 H]thymidine pulses, reflected as small as twofold changes in multiplicity and thus can serve as a quantitative assay for the virus. Changes in the rate of DNA synthesis were evident before increases in cell number or alteration in morphology. Stimulation of DNA synthesis in umbilical cord leukocytes was inhibited by treatment of EBV with antibody and also in graded fashion, by progressive doses of uv irradiation to the virus. Induction of DNA synthesis by EBV was serum dependent. Estimates of the number of cells transformed were obtained by extrapolation from a standard curve relating known numbers of transformed cells to [ 3 H]thymidine incorporation and also by cloning cells after exposure to virus. At the low multiplicities of infection used in these experiments approximately 0.04 to 0.002 of the total cellular population was transformed. The high efficiency of cell transformation by EBV by comparison to other DNA tumor viruses is emphasized

  5. Elucidation of the mechanism of X-ray induced DNA duplication observed in human Gorlin cells

    International Nuclear Information System (INIS)

    Nomura, J.; Suzuki, N.; Kita, K.; Sugaya, S.

    2004-01-01

    A phenomenon in which DNA synthesis level increases rapidly after x-ray irradiation has found out in the cells which originate in Gorlin patients. A gene, by which an expression level changes after x-ray irradiation, is searched in the human Gorlin cells by the mRNA differential display method. The DNA synthesis level decreases in normal human cell after x-ray irradiation of 2 Gy dose, but increases twice in the Gorlin cell. Expression levels of gene SMT3A, however decrease clearly in the Gorlin cells after the irradiation. The relations between expression levels of gene SMT3M, a protein like ubichitin, and DNA synthesis levels are searched. DNA synthesis activity in normal human cells, which are treated by antisese oligonucleotide and suppressed expression of the genes SMT3A, increases after x-ray irradiation. An increase of the DNA synthesis level after the irradiation is not a phenomenon in particular cells, but indicates the possibility of general phenomena in normal human cells. It is reported that the gene SMT3A combines with a glycosylase which operates in DNA repairing process. The protein modification of gene SMT3A indicates a possibility for controlling of stress protection mechanism in the cells. (M. Suetake)

  6. Synthesis of allyl amine on glass by continuous plasma; Sintesis de alilamina sobre vidrio por plasma continuo

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico); Vasquez, M.; OLayo, M.G.; Cruz, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    In this work the synthesis by plasma of thin films of polyallyl amine under continuous plasma conditions for possible use in biomaterials is presented. It is shown that the thickness of the film depends so much of the time of synthesis like of the used power. The polymers were analyzed by X-ray photoelectron spectroscopy (XPS) and angle of contact before and after of being immersed in distilled water by 10 days. The allylamine shows lost of nitrogen and an increase in the content of oxygen with the immersion time due to the interaction among the water and the polymer. The angle of contact shows an increase of approximately 10 degrees, what indicates a change in the surface energy of the polymer. (Author)

  7. Effects of lithium chloride as a potential radioprotective agent on radiation response of DNA synthesis in mouse germinal cells.

    Science.gov (United States)

    Bhattacharjee, D; Rajan, R; Krishnamoorthy, L; Singh, B B

    1997-06-01

    Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to gamma-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05-0.25 Gy, whereas at doses of 0.5-6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia.

  8. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization

    International Nuclear Information System (INIS)

    Demirci, Serkan; Caykara, Tuncer

    2013-01-01

    The synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was achieved via reversible addition-fragmentation chain transfer (RAFT) polymerization and used for quantitative DNA immobilization. Initially, silicon surfaces were modified with RAFT chain transfer agent by utilizing an amide reaction involving a silicon wafer modified with allylamine and 4-cyanopentanoic acid dithiobenzoate (CPAD). Poly(VBTAC) brushes were then prepared via RAFT-mediated polymerization from the surface immobilized CPAD. Various characterization techniques including ellipsometry, X-ray photoelectron spectroscopy, grazing angle-Fourier transform infrared spectroscopy, atomic force microscopy and contact-angle goniometer were used to characterize the immobilization of CPAD on the silicon wafer and the subsequent polymer formation. The addition of free CPAD was required for the formation of well-defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Moreover, from atomic force microscopy and ellipsometry measurements, it was also determined that the density of immobilized DNA on the cationic poly(VBTAC) brushes can be quantitatively controlled by adjusting the solution concentration. Highlights: ► The cationic poly(VBTAC) brushes were prepared by RAFT polymerization. ► Grafting density of cationic poly(VBTAC) brushes was as high as 0.76 chains/nm 2 . ► The cationic poly(VBTAC) brushes were used for quantitative DNA immobilization.

  9. Structure and mechanism of human DNA polymerase [eta

    Energy Technology Data Exchange (ETDEWEB)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei (Sussex); (NIH); (Gakushuin); (Osaka)

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  10. DNA-repair and mutations in immuncompetent cells from patients with rheumatic diseases and corresponding animal models

    International Nuclear Information System (INIS)

    Altmann, H.

    1977-01-01

    Unscheduled DNA synthesis was investigated in lymphocytes of patients with different inflammatory rheumatic diseases. After γ-irradiation H 3 -thymidin incorporation in DNA and DNA rejoining was reduced. After UV-irradiation the first step (90 min) of unscheduled DNA synthesis was above the controls. Some animal models for human diseases showed the same trend. An infectious ethiology was discussed for some of these diseases. (author)

  11. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  12. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  13. Synthesis of modified oligonucleotides for repair and replication studies of single and double radio-induced DNA lesions

    International Nuclear Information System (INIS)

    Muller, E.

    2002-01-01

    Several oxidative processes induce the formation of DNA lesions. In order to evaluate the biological and structural significance of such damage, several DNA lesions were inserted into synthetic oligonucleotides at defined sites. The research work aimed at describing the preparation of oligonucleotides t hat contained DNA damage and the evaluation of the biological properties of the lesions. A first part described the incorporation of radiation-induced lesions, namely (5'S,6S)-5',6-cyclo-5,6-dihydro-2'-deoxyuridine and (5'S,5S,6S)-5',6-cyclo-5-hydroxy-5,6-dihydro-2'-desoxyuridine into oligonucleotides. The modified DNA fragments were characterised by several spectroscopic and biochemical analyses including ESI MS, MALDI-TOF MS, CLHP and enzymatic digestions. During in vitro DNA synthesis by Taq DNA polymerase and Klenow exo fragment, the pyrimidine cyclo-nucleosides were found to block the progression of the enzymes. Then, repair studies by ADN N glycosylases, operating in the base excision repair pathway, have shown that the anhydro-nucleoside lesions were not recognised nor excised by Fpg, endo III, endo VIII, yNtg1 yNtg2 and yOgg1. Interestingly, the Latococcus lactis Fpg protein recognises (formation of a non covalent complex) but do not excise the damage. The incorporation into oligonucleotides of the (5R*) and (5S*) diastereoisomers of 1-[2-deoxy-β-D-erythro-pentofuranosyl]-5-hydroxy-hydantoin, generated by several oxidative processes was then described. In vitro DNA replication assays using modified oligonucleotides matrix showed a lethal potential of the latter base damage. Repair studies by ADN N-glycosylases showed that the damage was substrate for Fpg, endo III, endo VIII, Ntg1, Ntg2 and Fpg-L1. The rates of excision as inferred from the determination of the Michaelis kinetics constants were found to be affected by the presence of the damage. MALDI-TOF MS was used in order to gain insights into mechanistic aspects of oligonucleotides cleavage by the

  14. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials

    OpenAIRE

    Ma, CY; Liu, JJ; Zhang, Y; Wang, XZ

    2015-01-01

    Reactor performance of confined jet mixers for continuous hydrothermal flow synthesis of nanomaterials is investigated for the purpose of scale-up from laboratory scale to pilot-plant scale. Computational fluid dynamics (CFD) models were applied to simulate hydrothermal fluid flow, mixing and heat transfer behaviours in the reactors at different volumetric scale-up ratios (up to 26 times). The distributions of flow and heat transfer variables were obtained using ANSYS Fluent with the tracer c...

  15. Faulty DNA repair following ultraviolet irradiation in Fanconi's anemia

    International Nuclear Information System (INIS)

    Poon, P.K.; Parker, J.W.; O'Brien, R.L.

    1975-01-01

    Fibroblasts from a patient with Fanconi's anemia were deficient in their ability to excise uv-induced pyrimidine dimers from their DNA but were capable of single-strand break production and unscheduled DNA synthesis

  16. Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts

    International Nuclear Information System (INIS)

    Rude, J.M.; Friedberg, E.C.

    1977-01-01

    Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to UV radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a UV fluence of 5 J/m 2 . At this same UV fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the UV fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in UV-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semiconservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity

  17. Alternative end-joining of DNA breaks

    NARCIS (Netherlands)

    Schendel, Robin van

    2016-01-01

    DNA is arguably the most important molecule found in any organism, as it contains all information to perform cellular functions and enables continuity of species. It is continuously exposed to DNA-damaging agents both from endogenous and exogenous sources. To protect DNA against these sources of DNA

  18. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy.

    Science.gov (United States)

    Mou, Quanbing; Ma, Yuan; Pan, Gaifang; Xue, Bai; Yan, Deyue; Zhang, Chuan; Zhu, Xinyuan

    2017-10-02

    Based on their structural similarity to natural nucleobases, nucleoside analogue therapeutics were integrated into DNA strands through conventional solid-phase synthesis. By elaborately designing their sequences, floxuridine-integrated DNA strands were synthesized and self-assembled into well-defined DNA polyhedra with definite drug-loading ratios as well as tunable size and morphology. As a novel drug delivery system, these drug-containing DNA polyhedra could ideally mimic the Trojan Horse to deliver chemotherapeutics into tumor cells and fight against cancer. Both in vitro and in vivo results demonstrate that the DNA Trojan horse with buckyball architecture exhibits superior anticancer capability over the free drug and other formulations. With precise control over the drug-loading ratio and structure of the nanocarriers, the DNA Trojan horse may play an important role in anticancer treatment and exhibit great potential in translational nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single molecular biology: coming of age in DNA replication.

    Science.gov (United States)

    Liu, Xiao-Jing; Lou, Hui-Qiang

    2017-09-20

    DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.

  20. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.