Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber
Energy Technology Data Exchange (ETDEWEB)
Acciarri, R.; Adams, C.; Asaadi, J.; Danaher, J.; Fleming, B. T.; Gardner, R.; Gollapinni, S.; Grosso, R.; Guenette, R.; Littlejohn, B. R.; Lockwitz, S.; Raaf, J. L.; Soderberg, M.; John, J. St.; Strauss, T.; Szelc, A. M.; Yu, B.
2017-03-01
In this paper we describe how the readout planes for the MicroBooNE Time Projection Chamber were constructed, assembled and installed. We present the individual wire preparation using semi-automatic winding machines and the assembly of wire carrier boards. The details of the wire installation on the detector frame and the tensioning of the wires are given. A strict quality assurance plan ensured the integrity of the readout planes. The different tests performed at all stages of construction and installation provided crucial information to achieve the successful realization of the MicroBooNE wire planes.
Plane strain forging of a niobium micro-alloyed steel
International Nuclear Information System (INIS)
Balancin, O.; Ferran L, G.; Rio de Janeiro Univ.
1984-01-01
Various termomechanical treatments were carried out on a niobium micro-alloyed steel and a low carbon steel as reference material, using an apparatus for hot phane strain forging. Control of processing variables and the presence of niobium strongly modify the austenite microstructure, which upon decomposition produces various phases such as polygonal and acicular ferrite and martensite, alone or together in variable proportions. Corresponding to this diversity of structures there is a wide variation in mechanical properties at room temperature: the initial yield point varies from 310 to 650 MPa and the reduction of area in uniaxial tension from 82 to 57% for the niobium steel. These results show that hot forging a niobium micro-alloyed steel may be a suitable manufacturing process for satisfying a wide range of specifications in a final product with low equivalent carbon. (Author) [pt
Graphene-based in-plane micro-supercapacitors with high power and energy densities
Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088
Graphene-based in-plane micro-supercapacitors with high power and energy densities.
Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.
Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity
Directory of Open Access Journals (Sweden)
Panigrahi U.K.
2003-01-01
Full Text Available In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Einstein's theory as the coupling parameter λ →>• 0 in micro (i.e. quantum level in general.
Upgrade of the TAMU MDM-focal plane detector with MicroMegas technology
Energy Technology Data Exchange (ETDEWEB)
Spiridon, A., E-mail: aspiridon@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Pollacco, E. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Roeder, B.T.; Saastamoinen, A.; Chyzh, R.; Dag, M.; Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Trache, L.; Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele RO-077125 (Romania); De Oliveira, R. [CERN, Geneva (Switzerland)
2016-06-01
A gridded ionization chamber used as a focal plane detector at the back of the TAMU-MDM spectrometer was modified to use MicroMegas technology for the purpose of improving energy resolution and particle identification. The upgraded system was tested in experimental conditions with several heavy-ion beams at 12 MeV/u and found to achieve resolutions between 3.2% and 4.8%. This is a significant improvement over the previous performance of 10–15% obtained using the existing, conventional ionization chambers.
Upgrade of the TAMU MDM-focal plane detector with MicroMegas technology
International Nuclear Information System (INIS)
Spiridon, A.; Pollacco, E.; Roeder, B.T.; Saastamoinen, A.; Chyzh, R.; Dag, M.; Tribble, R.E.; Trache, L.; Pascovici, G.; De Oliveira, R.
2016-01-01
A gridded ionization chamber used as a focal plane detector at the back of the TAMU-MDM spectrometer was modified to use MicroMegas technology for the purpose of improving energy resolution and particle identification. The upgraded system was tested in experimental conditions with several heavy-ion beams at 12 MeV/u and found to achieve resolutions between 3.2% and 4.8%. This is a significant improvement over the previous performance of 10–15% obtained using the existing, conventional ionization chambers.
Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
Liu, Nishuang; Gao, Yihua
2017-12-01
Due to the boom of miniaturized electronic devices in the last decade, there are great demands for ultrathin and flexible on-chip rechargeable energy storage microdevices. Supercapacitor, as one of the most hopeful appearing energy storage devices, can provide a wonderful alternative to batteries or electrolytic capacitors, owing to its fast charge and discharge rates, high power density, and long cycling stability. Especially for the recently developed micro-supercapacitors, the unique in-plane interdigital electrode architecture can fully meet the integration requirements of rapidly developed miniaturized electronic devices, and improve the power density of the unit via shortening the ionic diffusion distance between the interdigital electrodes. This concept introduces the recent advances on the design, fabrication, and application of planar micro-supercapacitors for on-chip energy storage from an overall perspective. Moreover, challenges and future development trends are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of a Real-Time and Continua-Based Framework for Care Guideline Recommendations
Directory of Open Access Journals (Sweden)
Yu-Feng Lin
2014-04-01
Full Text Available Telehealth is an important issue in the medical and healthcare domains. Although a number of systems have been developed to meet the demands of emerging telehealth services, the following problems still remain to be addressed: (1 most systems do not monitor/predict the vital signs states so that they are able to send alarms to caregivers in real-time; (2 most systems do not focus on reducing the amount of work that caregivers need to do, and provide patients with remote care; and (3 most systems do not recommend guidelines for caregivers. This study thus proposes a framework for a real-time and Continua-based Care Guideline Recommendation System (Cagurs which utilizes mobile device platforms to provide caregivers of chronic patients with real-time care guideline recommendations, and that enables vital signs data to be transmitted between different devices automatically, using the Continua standard. Moreover, the proposed system adopts the episode mining approach to monitor/predict anomalous conditions of patients, and then offers related recommended care guidelines to caregivers so that they can offer preventive care in a timely manner.
Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.
Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun
2018-01-10
Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.
Low-Cost High-Speed In-Plane Stroboscopic Micro-Motion Analyzer
Directory of Open Access Journals (Sweden)
Shashank S. Pandey
2017-11-01
Full Text Available Instrumentation for high-speed imaging and laser vibrometry is essential for the understanding and analysis of microstructure dynamics, but commercial instruments are largely unaffordable for most microelectromechanical systems (MEMS laboratories. We present the implementation of a very low cost in-plane micro motion stroboscopic analyzer that can be directly attached to a conventional probe station. The low-cost analyzer has been used to characterize the harmonic motion of 52.1 kHz resonating comb drive microactuators using ~50 ns pulsed light-emitting diode (LED stroboscope exposure times, producing sharp and high resolution (~0.5 μm device images at resonance, which rivals those of several orders of magnitude more expensive systems. This paper details the development of the high-speed stroboscopic imaging system and presents experimental results of motion analysis of example microstructures and a discussion of its operating limits. The system is shown to produce stable stroboscopic LED illumination to freeze device images up to 11 MHz.
The actuator for micro moving of a body in a plane
International Nuclear Information System (INIS)
Vasiljev, P.; Borodinas, S.; Yoon, S.-J.; Mazeika, D.; Kulvietis, G.
2005-01-01
In present work, the analysis of moving of positioning table in a plane is indicated. For this purpose, only one piezoelectric motor without intermediate parts is created. Being based on researches of compound ultrasonic piezoelectric systems called 'shaking beam' is developed actuator for moving of a body in a plane at any direction. Computer modeling of the actuator is carried out. The prototype is made. The experimental outcomes of the oscillation forms of working surfaces of an actuator are given
Diffraction Plane Dependence of Micro Residual Stresses in Uniaxially Extended Carbon Steels
Directory of Open Access Journals (Sweden)
T. Hanabusa
2010-12-01
Full Text Available In the stress measurement using X-ray or neutron diffraction, an elastic anisotropy as well as a plastic anisotropy of crystal must be carefully considered. In the X-ray and neutron diffraction stress measurement for polycrystalline materials, a particular {hkl} plane is used in measuring lattice strains. The dependence of an X-ray elastic constant on a diffraction plane is a typical example caused by an elastic anisotropy of the crystal. The yield strength and the work hardening rate of a single crystal depend on a crystallographic direction of the crystal. The difference in the yield strength and the work hardening rate relating to the crystallographic direction develops different residual stresses measured on each {hkl} diffraction after plastic deformation of a polycrystalline material. The present paper describes the result of the neutron stress measurement on uniaxially extended low and middle carbon steels. A tri-axial residual stress state developed in the extended specimens was measured on different kind of {hkl} diffraction plane. The measurement on the {110}, {200} and {211} diffraction showed that residual stresses increased with increasing the plastic elongation and the residual stresses on {110} were compressive, {200} were tensile and those on {211} were the middle of the former two planes.
Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing
DEFF Research Database (Denmark)
Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.
2017-01-01
is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism.The developed...... methodology is validated by comparison to experimental measurements conducted in plane strip drawing. The effect of physical parameters like the drawing speed, the die angle and the strip thickness reduction is investigated. The numerical results show good agreement with experiments....
Epitaxial growth of M-plane GaN on ZnO micro-rods by plasma-assisted molecular beam epitaxy
Directory of Open Access Journals (Sweden)
Shuo-Ting You
2015-12-01
Full Text Available We have studied the GaN grown on ZnO micro-rods by plasma-assisted molecular beam epitaxy. From the analyses of GaN microstructure grown on non-polar M-plane ZnO surface ( 10 1 ̄ 0 by scanning transmission electron microscope, we found that the ZnGa2O4 compound was formed at the M-plane hetero-interface, which was confirmed by polarization-dependent photoluminescence. We demonstrated that the M-plane ZnO micro-rod surface can be used as an alternative substrate to grow high quality M-plane GaN epi-layers.
Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J
2015-06-16
Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.
Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M
2012-01-01
In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.
Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue
2018-02-01
The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.
International Nuclear Information System (INIS)
Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.; Wambsganss, Joachim
2014-01-01
We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M ☉ and treat the zeropoint of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77
Directory of Open Access Journals (Sweden)
Insun Jo
2015-05-01
Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.
Chikashige, T.; Iwasaka, M.
2018-05-01
In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.
Directory of Open Access Journals (Sweden)
T. Chikashige
2018-05-01
Full Text Available In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth’s gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ∼20-μm-long plates with respect to the Earth’s gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (01¯2¯ and (01¯2. In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.
Wilbrink, H.A.
1982-01-01
In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.
Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G
2017-01-01
The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10 1 m -3 MP > 500 μm and 1 × 10 1 to 9 × 10 3 m -3 MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10 1 to 1 × 10 3 m -3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10 7 to 4 × 10 9 MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution. Copyright Â© 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Carls, B.; James, C.C.; Kubinski, R.M.; Pordes, S.; Schukraft, A.; Horton-Smith, G.; Strauss, T.
2015-01-01
Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. This paper describes an approach to view the inside of the MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance
Energy Technology Data Exchange (ETDEWEB)
Wang, Mingtao; Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, University of Alberta, E3-24 Gunning/Lemieux Chemistry Center, Edmonton, Alberta (Canada)
2010-11-01
Spatial, quantitative, and temporal information regarding the water content distribution in the transverse-plane between the catalyst layers of an operating polymer-electrolyte membrane fuel cell (PEMFC) is essential to develop a fundamental understanding of water dynamics in these systems. We report {sup 1}H micro-magnetic resonance imaging (MRI) experiments that measure the number of water molecules per SO{sub 3}H group, {lambda}, within a Nafion {sup registered} -117 membrane between the catalyst stamps of a membrane-electrode assembly, MEA. The measurements were made both ex situ, and inside a PEMFC operating on hydrogen and oxygen. The observed {sup 1}H MRI T{sub 2} relaxation time of water in the PEM was measured for several known values of {lambda}. The signal intensity of the images was then corrected for T{sub 2} weighting to yield proton density-weighted images, thereby establishing a calibration curve that correlates the {sup 1}H MRI density-weighted signal with {lambda}. Subsequently, the calibration curve was used with proton density weighted (i.e., T{sub 2}-corrected) signal intensities of transverse-plane {sup 1}H MRI images of water in the PEM between the catalyst stamps of an operating PEMFC to determine {lambda} under various operational conditions. For example, the steady state, transverse-plane {lambda} was 9 {+-} 1 for a PEMFC operating at {proportional_to}26.4 mW cm{sup -2} ({proportional_to}20.0 mA, {proportional_to}0.661 V, 20 C, flow rates of the dry H{sub 2}(g) and O{sub 2}(g) were 5.0 and 2.5 mL min{sup -1}, respectively). (author)
Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications
Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Castro, D.; Foulds, Ian G.
2015-01-01
This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used
Existence of Projective Planes
Perrott, Xander
2016-01-01
This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.
Robust micromachining of compliant mechanisms for out-of-plane microsensors
Khosraviani, Kourosh
2013-01-01
Micro-Electro-Mechanical-Systems (MEMS) take advantage of a wide range of very reliable, and well established existing microelectronics fabrication techniques. Due to the planar nature of these techniques, out-of-plane MEMS devices must be fabricated in-plane and assembled afterwards in order to create out-of-plane three-dimensional structures. Out-of-plane microstructures extend the design space of the MEMS based devices and overcome many limitations of the in-plane processing. Nevertheless,...
Cross plane scattering correction
International Nuclear Information System (INIS)
Shao, L.; Karp, J.S.
1990-01-01
Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution
Fourier plane imaging microscopy
Energy Technology Data Exchange (ETDEWEB)
Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
Instabilities of Kirkendall planes
Dal, van M.J.H.; Gusak, A.M.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.
2001-01-01
Reconsideration of the Kirkendall effect is presented. It is demonstrated (experimentally as well as theoretically) that Kirkendall planes can be multiple, stable or unstable within a single-phase reaction zone. A general criterion of instabilty is given.
Algebraic Structures on MOD Planes
Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin
2015-01-01
Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
DEFF Research Database (Denmark)
Jensen, Jonas
This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...
DEFF Research Database (Denmark)
Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard
2003-01-01
The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica......The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products...
DEFF Research Database (Denmark)
Manolova, Anna Vasileva; Ruepp, Sarah Renée
2010-01-01
. The applicability analysis carried out here focuses on the actual feasibility of the integration and the potential trade-offs which appear when two contradicting principles are combined. Taking advantage of the flexibility of the GMPLS control plane does not seem to be as easy and as straightforward as expected...
International Nuclear Information System (INIS)
Foda, Omar; Wheeler, Michael
2007-01-01
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another
Energy Technology Data Exchange (ETDEWEB)
Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2007-01-15
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.
Carbon nanotube plane fastener
Directory of Open Access Journals (Sweden)
Kaori Hirahara
2011-12-01
Full Text Available We report a feature of carbon nanotubes (CNTs that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.
Colignatus, Thomas
2011-01-01
CONQUEST OF THE PLANE provides: an integrated course for geometry and analysis a didactic build-up that avoids traditional clutter use of only the essentials for good understanding proper place for vectors, complex numbers, linear algebra and trigonometry an original and elegant development of trigonometry an original and elegant foundation for calculus examples from physics, economics and statistics integration within the dynamic environment of Mathematica ...
An Algorithm for constructing Hjelmslev planes
Hall, Joanne L.; Rao, Asha
2013-01-01
Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries o...
Simultaneous orthogonal plane imaging.
Mickevicius, Nikolai J; Paulson, Eric S
2017-11-01
Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Rensburg, E J Janse van; Ma, J
2006-01-01
We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models
Ohba, Kohtaro; Ohara, Kenichi
2007-01-01
In the field of the micro vision, there are few researches compared with macro environment. However, applying to the study result for macro computer vision technique, you can measure and observe the micro environment. Moreover, based on the effects of micro environment, it is possible to discovery the new theories and new techniques.
Duality and noncommutative planes
DEFF Research Database (Denmark)
Jøndrup, Søren
2015-01-01
We study extensions of simple modules over an associative ring A and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...
Semantic Versus Syntactic Cutting Planes
Filmus, Yuval; Hrube, Pavel; Lauria, Massimo
2016-01-01
In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...
Gravitational Couplings for Gop-Planes and y-Op-Planes
Giraldo, Juan Fernando Ospina
2000-01-01
The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.
Conceptual Design of Wave Plane
DEFF Research Database (Denmark)
Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter
The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...
Metal-core pad-plane development for ACTAR TPC
Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G. F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J. L.; Rebii, A.; Roger, T.; Rosier, P.; Saillant, F.; Wittwer, G.
2018-06-01
With the recent development of active targets and time projection chambers (ACTAR TPC) as detectors for fundamental nuclear physics experiments, the need arose for charge collection planes with a high density of readout channels. In order to fulfill the mechanical constraints for the ACTAR TPC device, we designed a pad-plane based on a metal-core circuit with an conceptually simple design and routing for signal readout, named FAKIR (in reference to a fakir bed of nails). A test circuit has been equipped with a micro mesh gaseous structure (micromegas) for signal amplification and a dedicated readout electronics. Test measurements have been performed with an 55Fe X-ray source giving an intrinsic energy resolution (FWHM) of 22 ± 1% at 5 . 9 keV, and with a 3-alpha source for which a resolution of about 130 ± 20 keV at 4 . 8 MeV has been estimated. The pad-plane has been mounted into a reduced size demonstrator version of the ACTAR TPC detector, in order to illustrate charged particle track reconstruction. The tests preformed with the X-ray and the 3-alpha sources shows that results obtained from pads signals are comparable to the intrinsic result from the micro-mesh signal. In addition, a simple alpha particle tracks analysis is performed to demonstrate that the pad plane allows a precise reconstruction of the direction and length of the trajectories.
Generating asymptotically plane wave spacetimes
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund
2003-01-01
In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)
Two-transitive MInkowski planes
Wilbrink, H.A.
1982-01-01
In this paper we determine all finite Minkowski planes with an automorphism group which satisfies the following transitivity property: any ordered pair of nonparallel points can be mapped onto any other ordered pair of nonparallel points.
International Nuclear Information System (INIS)
Kim, Yong-Sik; Dagalakis, Nicholas G; Gupta, Satyandra K
2013-01-01
Realizing out-of-plane actuation in micro-electro-mechanical systems (MEMS) is still a challenging task. In this paper, the design, fabrication methods and experimental results for a MEMS-based out-of-plane motion stage are presented based on bulk micromachining technologies. This stage is electrothermally actuated for out-of-plane motion by incorporating beams with step features. The fabricated motion stage has demonstrated displacements of 85 µm with 0.4 µm (mA) −1 rates and generated up to 11.8 mN forces with stiffness of 138.8 N m −1 . These properties obtained from the presented stage are comparable to those for in-plane motion stages, therefore making this out-of-plane stage useful when used in combination with in-plane motion stages. (paper)
Off-plane x-ray reflection grating fabrication
Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.
2015-09-01
Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard
2003-01-01
Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...
Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...
Indian Academy of Sciences (India)
Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...
International Nuclear Information System (INIS)
Merriam, J.D.
1988-01-01
Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics
Interaction of gravitational plane waves
International Nuclear Information System (INIS)
Ferrari, V.
1988-01-01
The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed
DEFF Research Database (Denmark)
Rathkjen, Arne
A state of plane stress is illustrated by means of two families of curves, each family representing constant values of a derivative of Airy's stress function. The two families of curves form a map giving in the first place an overall picture of regions of high and low stress, and in the second...
Blocking sets in Desarguesian planes
Blokhuis, A.; Miklós, D.; Sós, V.T.; Szönyi, T.
1996-01-01
We survey recent results concerning the size of blocking sets in desarguesian projective and affine planes, and implications of these results and the technique to prove them, to related problemis, such as the size of maximal partial spreads, small complete arcs, small strong representative systems
Gravitational Couplings for y-Gop-Planes
Giraldo, Juan Fernando Ospina
2000-01-01
The Wess-Zumino action for y deformed and generalized orientifold planes (yGOp-planes) is presented and one power expantion is realized from which processes that involves yGOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard yGOp-planes are showed.
Gravitational Couplings for Generalized Orientifold Planes
Giraldo, Juan Fernando Ospina
2000-01-01
The Wess-Zumino action for generalized orientifold planes (GOp-planes) is presented and a series power expantion is realized from which processes that involves GOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes are showed.
Modelling out-of-plane and in-plane resonant modes of microplates in liquid media
International Nuclear Information System (INIS)
Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U
2015-01-01
In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)
Spanjersberg , Herman
2012-01-01
International audience; In the 1970s a need arose to perform special arithmetic operations on minicomputers much more quickly than had been possible in the past. This paper tells the story of why micro programming was needed for special arithmetic operations on mini computers in the 1970s and how it was implemented. The paper tells how the laboratory in which the first experiment took place had a PDP-9 minicomputer from Digital Equipment Corporation and how the author, with several colleagues...
Hydrodynamics of planing monohull watercraft
Vorus, William S
2017-01-01
This book addresses the principles involved in the design and engineering of planing monohull power boats, with an emphasis on the theoretical fundamentals that readers need in order to be fully functional in marine design and engineering. Author William Vorus focuses on three topics: boat resistance, seaway response, and propulsion and explains the physical principles, mathematical details, and theoretical details that support physical understanding. In particular, he explains the approximations and simplifications in mathematics that lead to success in the applications of planing craft design engineering, and begins with the simplest configuration that embodies the basic physics. He leads readers, step-by-step, through the physical complications that occur, leading to a useful working knowledge of marine design and engineering. Included in the book are a wealth of examples that exemplify some of the most important naval architecture and marine engineering problems that challenge many of today’s engineers.
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Functional Aesthetic Occlusal Plane (FAOP)
Câmara, Carlos Alexandre; Martins, Renato Parsekian
2016-01-01
ABSTRACT Introduction: A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. Objective: The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP), which aims to help in the diagnosis of the relationships established among molars, incisors...
Plane waves and spacelike infinity
International Nuclear Information System (INIS)
Marolf, Donald; Ross, Simon F
2003-01-01
In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems
Directory of Open Access Journals (Sweden)
Stelian Alaci
2015-06-01
Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.
Work Planing Automation at Mechanical Subdivision
Dzindzelėta, Vytautas
2005-01-01
Work planing automation, installation possibilities and future outlook at mechanical subdivision. To study how the work planing has changed before and after automation process and to analyse automation process methodology.
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
SNAP Satellite Focal Plane Development
International Nuclear Information System (INIS)
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez, D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher, A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-01-01
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R and D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics
The application of digital image plane holography technology to identify Chinese herbal medicine
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
An introduction to finite projective planes
Albert, Abraham Adrian
2015-01-01
Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and
Systems considerations in mosaic focal planes
White, K. P., III
1983-08-01
Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.
MicroED data collection and processing
Energy Technology Data Exchange (ETDEWEB)
Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; Cruz, M. Jason de la [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 (United States); Leslie, Andrew G. W. [Medical Research Council Laboratory of Molecular Biology, Cambridge (United Kingdom); Gonen, Tamir, E-mail: gonent@janelia.hhmi.org [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 (United States)
2015-07-01
The collection and processing of MicroED data are presented. MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.
Micro club
2014-01-01
Opération NEMO Pour finir en beauté les activités spéciales que le CMC a réalisé pendant cette année 2014, pour commémorer le 60ème anniversaire du CERN, et le 30ème du Micro Club, l’ Opération NEMO aura cette année un caractère très particulier. Nous allons proposer 6 fabricants de premier ordre qui offriront chacun deux ou trois produits à des prix exceptionnels. L’opération débute le lundi 17 novembre 2014. Elle se poursuivra jusqu’au samedi 6 décembre inclus. Les délais de livraison seront de deux à trois semaines, selon les fabricants. Donc les commandes faites la dernière semaine, du 1 au 6 décembre, risquent d’arriver qu'au début du mois de janvier 2015. Liste de fabricants part...
Micro Club
2014-01-01
Jeudi 18 septembre 2014 à 18h30 au Bât. 567 R-029 Le CERN MICRO CLUB organise un Atelier sur la sécurité informatique. La Cyber-sécurité : Ce qui se passe vraiment, comment ne pas en être victime ! Orateur : Sebastian Lopienski Adjoint au Computer Security Officer du Département IT. Sujet : Cet exposé vous présentera les modes de sécurité actuels et les problèmes touchants les applications logicielles des ordinateurs, les réseaux ainsi que leurs utilisateurs. Cela inclus des informations sur les nouveaux types de vulnérabilité, les vecteurs d'attaque récents et une vue d'ensemble sur le monde de la cyber-sécurité en 2014. Biographie : Sebastian Lopienski travaille au CERN depuis 2001. Il est actuellement adjoint au Computer Security Officer et s'occupe de la protection de...
Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei
2013-04-01
To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely related to visualization of intersegmental planes on thoracic CT scans. Aging was excluded as the
The micro turbine: the MIT example; La micro turbine: l'exemple du MIT
Energy Technology Data Exchange (ETDEWEB)
Ribaud, Y. [Office National d' Etudes et de Recherches Aerospatiales (ONERA-DEFA), 92 - Chatillon (France)
2001-10-01
The micro turbine study began a few years ago at the MIT, with the participation of specialists from different fields. The purpose is the development of a MEMS (micro electro mechanical systems) based, 1 cm in diameter, micro gas turbine. Potential applications are devoted to micro drone propulsion, electric power generation for portable power sources in order to replace heavy Lithium batteries, satellite motorization, the surface distributed power for boundary suction on plane wings. The manufacturing constraints at such small scales lead to 2-D extruded shapes. The physical constraints stem from viscous effects and from limitations given by 2-D geometry. The time scales are generally shorter than for conventional machines. Otherwise the material properties are better at such length scales. Transposition from conventional turbomachinery laws is no more applicable and new design methods must be established. The present paper highlights the project progress and the technology breakthroughs. (author)
A Collaborative Knowledge Plane for Autonomic Networks
Mbaye, Maïssa; Krief, Francine
Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.
Radioactivity in the galactic plane
Walraven, G. D.; Haymes, R. C.
1976-01-01
The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.
Compact planes, mostly 8-dimensional. A retrospect
Salzmann, Helmut R.
2014-01-01
Results on $8$-dimensional topological planes are scattered in the literature. It is the aim of the present paper to give a survey of these geometries, in particular of information obtained after the appearance of the treatise Compact Projective Planes or not included in this book. For some theorems new proofs are given and a few related results concerning planes of other dimensions are presented.
Nanostructured carbon films with oriented graphitic planes
International Nuclear Information System (INIS)
Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.
2011-01-01
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.
Lower incisor inclination regarding different reference planes.
Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen
2016-09-01
The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.
Flux dynamics in ultrasensitive superconducting focal planes
National Aeronautics and Space Administration — The performance of superconducting focal planes will drive the achievable specifications of ultrasensitive instruments for NASA astrophysics missions, yet they have...
International Nuclear Information System (INIS)
Yurtsever, U.
1988-01-01
It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem
Discretization of superintegrable systems on a plane
Kabát, Z.
2012-02-01
We construct difference analogues of so called Smorodinsky-Winternitz superintegrable systems in the Euclidean plane. Using methods of umbral calculus, we obtain difference equations for generalized isotropic harmonic oscillator on the uniform lattice, and also its solution in terms of power series. In the case of gauge-rotated Hamiltonian, the solution is a polynomial, well-defined in the whole plane.
Slipping and Rolling on an Inclined Plane
Aghamohammadi, Cina; Aghamohammadi, Amir
2011-01-01
In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…
Moving vertices to make drawings plane
Goaoc, X.; Kratochvil, J.; Okamoto, Y.; Shin, C.S.; Wolff, A.; Hong, S.K.; Nishizeki, T.; Quan, W.
2008-01-01
In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of
Open Cluster Dynamics via Fundamental Plane
Lin, Chien-Cheng; Pang, Xiao-Ying
2018-04-01
Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.
Slipping and rolling on an inclined plane
International Nuclear Information System (INIS)
Aghamohammadi, Cina; Aghamohammadi, Amir
2011-01-01
In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.
Coherent field propagation between tilted planes.
Stock, Johannes; Worku, Norman Girma; Gross, Herbert
2017-10-01
Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3 log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.
Study the Z-Plane Strip Capacitance
International Nuclear Information System (INIS)
Parikh, H.; Swain, S.
2005-01-01
The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate (φ coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m 2 ) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints
Lin, Hsiao Chun Amy
2017-01-01
Biomedical imaging plays a key role in the advancement of medical research. While high-resolution microscopy enables the harvest of molecular and cellular information, a holistic picture on organ level can only be provided by means of macroscopic imaging. Wedged in between Micro-macro, the mesoscopic regime offers important bridging of the information transfer. The focus of the research presented in this thesis centers around the application of selective plane illumination microscopy (SPIM) a...
Slip patterns and preferred dislocation boundary planes
DEFF Research Database (Denmark)
Winther, G.
2003-01-01
The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...
Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.
2017-01-01
This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the
In-plane and cross-plane thermal conductivities of molybdenum disulfide
International Nuclear Information System (INIS)
Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu
2015-01-01
We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)
Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko
2009-05-01
In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.
Streptococcus anginosus infections: crossing tissue planes.
Sunwoo, Bernie Y; Miller, Wallace T
2014-10-01
Streptococcus anginosus has long been recognized to cause invasive pyogenic infections. This holds true for thoracic infections where S. anginosus has a propensity for abscess and empyema formation. Early diagnosis is important given the significant morbidity and mortality associated with thoracic S. anginosus infections. Yet, distinguishing thoracic S. anginosus clinically is difficult. We present three cases of thoracic S. anginosus that demonstrated radiographic extension across tissue planes, including the interlobar fissure, diaphragm, and chest wall. Few infectious etiologies are known to cross tissue planes. Accordingly, we propose S. anginosus be considered among the differential diagnosis of potential infectious etiologies causing radiographic extension across tissue planes.
Optically sectioned imaging by oblique plane microscopy
Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris
2011-03-01
Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.
International Nuclear Information System (INIS)
Yoon, Jin Yeong
2000-08-01
This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.
International Nuclear Information System (INIS)
Jeon, Yon Ho
1991-07-01
This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jin Yeong
2000-08-15
This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.
Causal inheritance in plane wave quotients
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality
Lieb's correlation inequality for plane rotors
International Nuclear Information System (INIS)
Rivasseau, V.
1980-01-01
We prove a conjecture by E. Lieb, which leads to the Lieb inequality for plane rotors. As in the Ising model case, this inequality implies the existence of an algorithm to compute the transition temperature of this model. (orig.)
Titanium Heat Pipe Thermal Plane, Phase II
National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...
Null-plane quantization of fermions
International Nuclear Information System (INIS)
Mustaki, D.
1990-01-01
Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields
Some Features of the Plane Couette Flow
National Research Council Canada - National Science Library
Skovorodko, Petr
2000-01-01
In the previous paper 1 it was found, in particular, that in the transition regime of the plane Couette flow the values of total energy flux and shear stress may exceed the corresponding free molecular values...
Causal inheritance in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2004-01-01
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.
Micro rapid prototyping system for micro components
International Nuclear Information System (INIS)
Li Xiaochun; Choi Hongseok; Yang Yong
2002-01-01
Similarities between silicon-based micro-electro-mechanical systems (MEMS) and Shape Deposition Manufacturing (SDM) processes are obvious: both integrate additive and subtractive processes and use part and sacrificial materials to obtain functional structures. These MEMS techniques are two-dimensional (2-D) processes for a limited number of materials while SDM enables the building of parts that have traditionally been impossible to fabricate because of their complex shapes or of their variety in materials. This work presents initial results on the development of a micro rapid prototyping system that adapts SDM methodology to micro-fabrication. This system is designed to incorporate microdeposition and laser micromachining. In the hope of obtaining a precise microdeposition, an ultrasonic-based micro powder-feeding mechanism was developed in order to form thin patterns of dry powders that can be cladded or sintered onto a substrate by a micro-sized laser beam. Furthermore, experimental results on laser micromachining using a laser beam with a wavelength of 355 nm are also presented. After further improvement, the developed micro manufacturing system could take computer-aided design (CAD) output to reproduce 3-D heterogeneous micro-components from a wide selection of materials
Proof of Polyakov conjecture on supercomplex plane
International Nuclear Information System (INIS)
Kachkachi, M.; Kouadik, S.
1994-10-01
Using Neumann series, we solve iteratively SBE to arbitrary order. Then applying this, we compute the energy momentum tensor and n points functions for generic n starting from WZP action on the supercomplex plane. We solve the superconformal Ward identity and we show that the iterative solution to arbitrary order is resumed by WZP action. This proves the Polyakov conjecture on supercomplex plane. (author). 8 refs
Constructive curves in non-Euclidean planes
Horváth, Ákos G.
2016-01-01
In this paper we overview the theory of conics and roulettes in four non-Euclidean planes. We collect the literature about these classical concepts, from the eighteenth century to the present, including papers available only on arXiv. The comparison of the four non-Euclidean planes, in terms of the known results on conics and roulettes, reflects only the very subjective view of the author.
Heteroepitaxial growth of basal plane stacking fault free a-plane GaN
Energy Technology Data Exchange (ETDEWEB)
Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)
2010-07-01
Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.
International Nuclear Information System (INIS)
Tashevski, Done
2003-01-01
In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)
Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh
Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.
Affine planes, ternary rings, and examples of non-Desarguesian planes
Ivanov, Nikolai V.
2016-01-01
The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.
Deflection of electron beams by ground planes
International Nuclear Information System (INIS)
Fernsler, R.F.; Lampe, M.
1991-01-01
Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well
The horizontal plane appearances of scoliosis
DEFF Research Database (Denmark)
Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs
2017-01-01
Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...
A Viewpoint on the Quantity "Plane Angle"
Eder, W. E.
1982-01-01
Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.
Computed tomography of peripancreatic fat planes
International Nuclear Information System (INIS)
Wittich, G.R.; Van Sonnenberg, E.; Willson, S.A.; Tobin, R.S.; Cubberley, D.A.; Marx, M.Q.
1987-01-01
Obliteration of peripancreatic fat planes usually is considered an indicator of peripancreatic tumour infiltration in the presence of a malignant mass, or of inflammation of peripancreatic tissues in patients with pancreatitis. However, absence of peripancreatic fat planes also may be found in patients without evidence of pancreatic disease. Hence, CT scans of 125 patients without clinical or computed tomographic evidence of pancreatic disease were evaluated to assess normal variations in the anatomy of the pancreas and its relation to surrounding vessels and bowel loops. The fat plane separating the superior mesenteric artery from the pancreas was preserved in 100% of patients. Conversely, fat planes between the pancreas and the superior mesenteric vein, inferior vena cava, and adjacent bowel loops were partially or totally obliterated in 13% to 50% of patients. It is concluded that the absence of fat around the superior mesenteric artery is highly suggestive of pathologic changes of the pancreas, while the lack of fat planes between the pancreas and other splanchnic vessels or bowel loops frequently is normal, and therefore, is an unreliable sign of pancreatic disease. The applications of these findings to the assessment of tumour resectability by CT, and to CT scanning techniques, are discussed. (orig.)
On the theory of twinning plane superconductivity
International Nuclear Information System (INIS)
Mishonov, T.M.
1988-01-01
The thermodynamic potential of the superconducting layer in the twinning plane (TP) vicinity for the type I superconductors is found. The corrections to the surface tension in powers of the Ginsburg-Landau parameter κ are obtained. The corresponding states law for the supercooling field for the type I twinning plane superconductivity (TPS) is obtained, as well as the critical field law for the type II TPS. A review of experimental and theoretical works on TPS and some similar systems is given. The conditions for the Berezinski-Kosterlitz-Thouless transition for the proximity effect are discussed, as well as the possible mechanisms for the conducting phase transition TPS in Nb and the pinning forces close to the twinning plane. The obtained order parameter distribution can be used for description of the superlattices from normal and superconducting metals as well. 6 figs., 44 refs
Plane wave limits and T-duality
International Nuclear Information System (INIS)
Guven, R.
2000-04-01
The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)
Micro-propulsion and micro-combustion; Micropropulsion microcombustion
Energy Technology Data Exchange (ETDEWEB)
Ribaud, Y.; Dessornes, O.
2002-10-01
The AAAF (french space and aeronautic association) organized at Paris a presentation on the micro-propulsion. The first part was devoted to the thermal micro-machines for micro drones, the second part to the micro-combustion applied to micro-turbines. (A.L.B.)
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)
2013-01-01
A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.
'Micro-8' micro-computer system
International Nuclear Information System (INIS)
Yagi, Hideyuki; Nakahara, Yoshinori; Yamada, Takayuki; Takeuchi, Norio; Koyama, Kinji
1978-08-01
The micro-computer Micro-8 system has been developed to organize a data exchange network between various instruments and a computer group including a large computer system. Used for packet exchangers and terminal controllers, the system consists of ten kinds of standard boards including a CPU board with INTEL-8080 one-chip-processor. CPU architecture, BUS architecture, interrupt control, and standard-boards function are explained in circuit block diagrams. Operations of the basic I/O device, digital I/O board and communication adapter are described with definitions of the interrupt ramp status, I/O command, I/O mask, data register, etc. In the appendixes are circuit drawings, INTEL-8080 micro-processor specifications, BUS connections, I/O address mappings, jumper connections of address selection, and interface connections. (author)
Multiple fracture planes in deuteron irradiated metals
International Nuclear Information System (INIS)
Jones, W.R.; Johnson, P.B.
1987-01-01
Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)
Copernican Revolution in the Complex Plane
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Copernican Revolution in the Complex Plane - An Algebraic Way to Show the "Chief Point" of Copernican Innovation. Giorgio Goldoni. General Article Volume 17 Issue 11 November 2012 pp 1065-1084 ...
Infrared MUSIC from Z technology focal planes
International Nuclear Information System (INIS)
Waters, C.R.; Sommese, A.; Johnston, D.; Landau, H.
1989-01-01
Presented is the Multiple Signal Classification (MUSIC) algorithm which uses the high frequency differences in sensed time signals to discriminate, count, and accurately locate closely spaced targets. Z technology focal planes allow the implementation of this algorithm and the trade-off between finer spatial resolution systems and systems with coarser resolution but higher sampling rates
Construction of the STAR Event Plane Detector
Adams, Joseph
2017-09-01
The Event Plane Detector (EPD) is an upgrade to the STAR experiment at RHIC, providing high granularity and acceptance in the forward (2.2 run for commissioning. In this talk I will discuss the construction of the EPD, the installation of the quarter wheel, and plans for full installation in 2018.
Ruler of the plane - Games of geometry
Beekhuis, S.; Buchin, K.; Castermans, T.; Hurks, T.; Sonke, W.; Aronov, B.; Katz, M.J.
2017-01-01
Ruler of the Plane is a set of games illustrating concepts from combinatorial and computational geometry. The games are based on the art gallery problem, ham-sandwich cuts, the Voronoi game, and geometric network connectivity problems like the Euclidean minimum spanning tree and traveling
Trigonometric Characterization of Some Plane Curves
Indian Academy of Sciences (India)
IAS Admin
(Figure 1). A relation between tan θ and tanψ gives the trigonometric equation of the family of curves. In this article, trigonometric equations of some known plane curves are deduced and it is shown that these equations reveal some geometric characteristics of the families of the curves under consideration. In Section 2,.
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Covariant quantum mechanics on a null plane
International Nuclear Information System (INIS)
Leutwyler, H.; Stern, J.
1977-03-01
Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions
Does monocular visual space contain planes?
Koenderink, Jan J.; Albertazzi, Liliana; van Doorn, Andrea J.; van Ee, Raymond; van de Grind, Wim A.; Kappers, Astrid M L; Lappin, Joe S.; Farley Norman, J.; (Stijn) Oomes, A. H J; te Pas, Susan P.; Phillips, Flip; Pont, Sylvia C.; Richards, Whitman A.; Todd, James T.; Verstraten, Frans A J; de Vries, Sjoerd
The issue of the existence of planes-understood as the carriers of a nexus of straight lines-in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be
In-plane user positioning indoors
Jovanovic, N.; Özçelebi, T.; Lukkien, J.J.; Skoric, B.; Ignatenko, T.
2014-01-01
Indoor positioning is a service required by many smart environment applications for various purposes, such as activity classification, indoor navigation and context awareness. In this paper, we present a novel approach to the user positioning problem based on in-plane detection enabled by a set of
Techniques to measure complex-plane fields
CSIR Research Space (South Africa)
Dudley, Angela L
2014-09-25
Full Text Available In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial...
Personnel thermoluminescent dosimetry of plane pilots
International Nuclear Information System (INIS)
Azorin V, J.C.; Rivera M, T.; Azorin N, J.
1999-01-01
In this work are presented the results of the research realized in the pilots of commercial planes of the different flight equipment existing. The results obtained show that the pilots receive during their work, doses of ionizing radiation greater than the limit recommended by the International Commission of Radiological Protection. (Author)
Elastic Constants of Plane Orthotropic Elasticity
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
The four independent material parameters of plane orthotropic elasti city are introduced as the effective stiffness, the effective Poisson ratio, the stiffness ratio and the shear parameter. It is proved that stress boundary value problems with zero resulting force on internal contours lead...
Cues for localization in the horizontal plane
DEFF Research Database (Denmark)
Jeppesen, Jakob; Møller, Henrik
2005-01-01
manipulated in HRTFs used for binaural synthesis of sound in the horizontal plane. The manipulation of cues resulted in HRTFs with cues ranging from correct combinations of spectral information and ITDs to combinations with severely conflicting cues. Both the ITD and the spectral information seem...
Locating a minisum circle in the plane
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2009-01-01
We consider the problem of locating a circle with respect to existing facilities in the plane such that the sum of weighted distances between the circle and the facilities is minimized, i.e., we approximate a set of given points by a circle regarding the sum of weighted distances. If the radius...
Crack initiation under generalized plane strain conditions
International Nuclear Information System (INIS)
Shum, D.K.M.; Merkle, J.G.
1991-01-01
A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab
Origin of the Local Group satellite planes
Banik, Indranil; O'Ryan, David; Zhao, Hongsheng
2018-04-01
We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.
Instability of in-plane vortices in two-dimensional easy-plane ferromagnets
International Nuclear Information System (INIS)
Wysin, G.M.
1994-01-01
An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory
Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.
Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter
2014-01-15
Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.
Search for Bs0 --> micro+ micro- and B0 --> micro+ micro- decays with 2 fb-1 of pp collisions.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-03-14
We have performed a search for B(s)(0) --> micro(+) micro(-) and B(0) --> micro(+) micro(-) decays in pp collisions at square root s = 1.96 TeV using 2 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron Collider. The observed number of B(s)(0) and B0 candidates is consistent with background expectations. The resulting upper limits on the branching fractions are B(B(s)0) --> micro(+) micro(-)) micro(+) micro(-))<1.8 x 10(-8) at 95% C.L.
Periodontopathic microorganisms in peripheric blood after scaling and root planing.
Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea
2007-10-01
The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.
Calibrating instrument of plane sources of alpha and beta
International Nuclear Information System (INIS)
Liu Hongquan
1988-12-01
The instrument is standard instrument for measuring emissivity of plane sources of alpha and beta under 2π geometry in radionuclide metrologic technique. It is composed of box-type detector and truck-type NIM (made in China) to make up integral equipment. Its detector is composed of multivire proportion counter with electrostatic screen of zero potential and unique anticoincidence multiwire proportion counter in lead chamber. The characteristics of the instrument are as follows: Low background (α≤ 0.006 C · P · M/cm 2 , β≤ 0.03 C · P · M/cm 2 ), low work voltage, low noise, high detective efficiency (>99%), large sensitive area (150 x 100 mm), less dead time, possessing micro accidental anticoincidences, better property of high voltage plateau and discriminating. It has fulfiled the requirements of standard which possesses wide rang (50 C · M · M ∼ 10 6 C · P · M), high precision (± 5 ∼ 6% for 50 C · P · M ∼ 220 C · P · M, ≤ ± 0.6% for 200 C · P · M ∼ 10 6 C · P · M); besides, have solved the problem of instability which usualy occurs in same kind of equipments for measuring a sources with less face conductivity
Multi-planed unified switching topologies
Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka
2017-07-04
An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.
Suicide plane crash against nuclear power plants
International Nuclear Information System (INIS)
Richard, A.
2002-01-01
Cea (French atomic energy commission) and EDF (Electricity of France) are reassessing their safety standards concerning suicide plane attacks against nuclear facilities. The general idea is to study the non-linear behaviour of reinforced concrete in case of mechanical impact. American studies carried out in 1988 show that a F-14 phantom crashing into a 3,6 meter thick wall at a speed of 774 km/h penetrates only the first 5 cm of the wall. More recent studies performed in Germany and based on computerized simulations show that the reactor containment can sustain impacts from a F15 plane or even from a 747-Boeing but contiguous buildings like the one which houses spent fuels might be more easily damaged because of their metal roofing. (A.C.)
A multiplicity jump trigger using silicon planes
International Nuclear Information System (INIS)
Alexopoulos, T.; Erwin, A.R.
1993-01-01
Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies
Wafer plane inspection for advanced reticle defects
Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song
2008-05-01
Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.
Cues for localization in the horizontal plane
DEFF Research Database (Denmark)
Jeppesen, Jakob; Møller, Henrik
2005-01-01
Spatial localization of sound is often described as unconscious evaluation of cues given by the interaural time difference (ITD) and the spectral information of the sound that reaches the two ears. Our present knowledge suggests the hypothesis that the ITD roughly determines the cone of the perce...... independently in HRTFs used for binaural synthesis. The ITD seems to be dominant for localization in the horizontal plane even when the spectral information is severely degraded....
Resonant power processors. I - State plane analysis
Oruganti, R.; Lee, F. C.
1984-01-01
State-plane techniques in conjunction with piecewise-linear analysis is employed to study the steady-state and transient characteristics of a series resonant converter. With the direct viewing of the resonant tank energy and the device switching instants, the state portrayal provides unique insights into the complex behavior of the converter. Operation of the converter under both continuous and discontinuous current modes and at frequencies both below and above resonant frequency are discussed.
Micro Elector Mechanical Systems
International Nuclear Information System (INIS)
Yun, Jun Bo; Jo, Il Ju; Choi, Yoon Seok
1996-09-01
This book consists of seven chapters, which are the flow of the age from macro world to micro world, what is MEMS, semiconductor, micro machining and MEMS, where do MEMS goes to?, How to make MEMS, MEMS in the future and knowing about MEMS more than. This book is written to explain in ease and fun. It deals with MEMS in IT, BT, NT, ST, micro robot technology, basic process for making MEMS such as Bulk micromachining, surface micromachining LGA technology, DARPA and organization in domestic and overseas and academy and journal related MEMS.
The Off-plane Grating Rocket Experiment
Donovan, Benjamin
2018-01-01
The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.
Blackfolds, plane waves and minimal surfaces
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)
2015-07-29
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Focal plane scanner with reciprocating spatial window
Mao, Chengye (Inventor)
2000-01-01
A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Linearized motion estimation for articulated planes.
Datta, Ankur; Sheikh, Yaser; Kanade, Takeo
2011-04-01
In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.
DEFF Research Database (Denmark)
Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole
2017-01-01
We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane t......We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current......-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance...
Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications
Conchouso Gonzalez, David
2015-04-01
This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used, the bimorph actuators can be designed to move in both: Counter Clockwise (CCW) and Clockwise (CW) directions with a resolution of up to 110 μm/V, with smallest step in the range of nanometers. Thermal and electrical characterization of the thermal bimorph actuators showed low influence in the platforms temperature and low power consumption (< 35μW) mainly due to the natural isolation of the structure. Tip displacements larger than 500μm were achieved. The precise angle adjustment achieved through these mechanisms makes them optimal for a range of different MEMS applications, like optical benches and low frequency sweeping sensors and antennas. © 2015 IEEE.
Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber
International Nuclear Information System (INIS)
Acciarri, R.; Adams, C.; Asaadi, J.; Danaher, J.; Fleming, B. T.
2017-01-01
As x-ray and electron tomography is pushed further into the nanoscale, the limitations of rotation stages become more apparent, leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality three-dimensional images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. With simulated data where we know the alignment error of each projection image, our approach shows a residual alignment error that is a factor of a thousand smaller, and it reaches the same error level in the reconstructed image in less than half the number of iterations. We then show its application to experimental data in x-ray and electron nanotomography.
Micro-Computer Based Dynamic Analysis of Linear Undamped Plane Frame Structures.
1985-08-01
i=1 TO GNINE apply essential BC IF BCI(i,I)=1 THEN kzk .1: IF i Ok THEN SWAP FdI(k1),Fd0(i,I) * NEXT i CALL Nat.times.tat(n,nl,n,K(),FdIO),T2...UlIE),P1454’.initial’,n4): k0O FOR i=1 TO ENeDOF ’apply boundary conditions to intil conditions IF BCI1i,1)zl THEN kzk #]: IF iOk THEN FOR j=1 TO 3
Micro-educational reproduction
DEFF Research Database (Denmark)
Andrade, Stefan Bastholm; Thomsen, Jens Peter
2017-01-01
This study analyzes the persistence of educational inequality in advanced industrialized societies with expanding and differentiated education systems. Using Denmark as a case, we investigate changes in immobility patterns for cohorts born 1960–1981 and develop a new micro-educational classificat...... forms of reproduction. In addition, the micro-educational approach far better explains the immobility of sons than it explains that of daughters, revealing important gender differences in the immobility patterns for sons and daughters......., in particular for sons. We also find great variation in immobility for specific micro-educations within the university level. Studies of educational immobility would therefore benefit from paying attention to micro-educational classifications, because they capture patterns of multidimensional, disaggregated...
2013-01-01
Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...
Badra, Jihad Ahmad; Masri, Assaad Rachid
2014-01-01
A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable
Eliyas, S; Vere, J; Ali, Z; Harris, I
2014-02-01
Non-surgical endodontic retreatment is the treatment of choice for endodontically treated teeth with recurrent or residual disease in the majority of cases. In some cases, surgical endodontic treatment is indicated. Successful micro-surgical endodontic treatment depends on the accuracy of diagnosis, appropriate case selection, the quality of the surgical skills, and the application of the most appropriate haemostatic agents and biomaterials. This article describes the armamentarium and technical procedures involved in performing micro-surgical endodontics to a high standard.
Micro Calorimeter for Batteries
Energy Technology Data Exchange (ETDEWEB)
Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-01
As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.
International Nuclear Information System (INIS)
Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel
2017-02-01
ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases
Simulation Exploration through Immersive Parallel Planes: Preprint
Energy Technology Data Exchange (ETDEWEB)
Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve
2016-03-01
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.
Wafer plane inspection with soft resist thresholding
Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song
2008-10-01
Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just
Simulation Exploration through Immersive Parallel Planes
Energy Technology Data Exchange (ETDEWEB)
Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Steve [Los Alamos Visualization Associates
2017-05-25
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.
ARC Code TI: X-Plane Communications Toolbox (XPC)
National Aeronautics and Space Administration — The X-Plane Communications Toolbox (XPC) is an open source research tool used to interact with the commercial flight simulator software X-Plane. XPC allows users to...
Dose distributions of pendulum fields in the field border plane
International Nuclear Information System (INIS)
Schrader, R.
1986-01-01
Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de
Vacuum Predisperser For A Large Plane-Grating Spectrograph
Engleman, R.; Palmer, B. A.; Steinhaus, D. W.
1980-11-01
A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.
Plane wave fast color flow mode imaging
DEFF Research Database (Denmark)
Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik
2006-01-01
A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...
Synchrotron-radiation plane-wave topography
International Nuclear Information System (INIS)
Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.
1980-01-01
A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)
PSB Chromaticity Correction in both Planes
Bartosik, Hannes; CERN. Geneva. ATS Department
2017-01-01
In view of the LHC injector upgrade program (LIU[1]), all LHC pre-accelerators and in particular the CERN Booster (PSB) are being reviewed for potential lattice optics and equipment optimizations. The option to correct the chromaticity in both planes would be very helpful for a better control of the beam in the presence of both non-linearities and space charge. Moreover, one could reduce decoherence phenomena that otherwise limit the usefulness of resonance measurement techniques based on a turn-by-turn BPM system.
New plastic plane stress model for concrete
International Nuclear Information System (INIS)
Winnicki, A.; Cichon, Cz.
1993-01-01
In the paper a description of concrete behaviour in the plane stress case is given on the basis of the modified bounding surface plasticity theory. Three independent plastic mechanisms have been introduced describing axiatoric and deviatoric plastic strains and their coupling. All the new analytical formulae for material functions being in agreement with experiments and loading/unloading criteria have been proposed. In addition, for the proper description of concrete behaviour in tension a new, separate function of bounding surface shrinkage has been introduced. (author)
Laurent, P.
2009-05-01
The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.
Characterization of DECam focal plane detectors
Energy Technology Data Exchange (ETDEWEB)
Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.
2008-06-01
DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.
The memory effect for plane gravitational waves
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2017-09-01
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.
On Helmholtz Problem for Plane Periodical Structures
International Nuclear Information System (INIS)
Akishin, P.G.; Vinitskij, S.I.
1994-01-01
The plane Helmholtz problem of the periodical disc structures with the phase shifts conditions of the solutions along the basis lattice vectors and the Dirichlet conditions on the basic boundaries is considered. The Green function satisfying the quasi periodical conditions on the lattice is constructed. The Helmholtz problem is reduced to the boundary integral equations for the simple layer potentials of this Green function. The methods of the discretization of the arising integral equations are proposed. The procedures of calculation of the matrix elements are discussed. The reality of the spectral parameter of the nonlinear continuous and discretized problems is shown. 8 refs., 2 figs
Barbed micro-spikes for micro-scale biopsy
Byun, Sangwon; Lim, Jung-Min; Paik, Seung-Joon; Lee, Ahra; Koo, Kyo-in; Park, Sunkil; Park, Jaehong; Choi, Byoung-Doo; Seo, Jong Mo; Kim, Kyung-ah; Chung, Hum; Song, Si Young; Jeon, Doyoung; Cho, Dongil
2005-06-01
Single-crystal silicon planar micro-spikes with protruding barbs are developed for micro-scale biopsy and the feasibility of using the micro-spike as a micro-scale biopsy tool is evaluated for the first time. The fabrication process utilizes a deep silicon etch to define the micro-spike outline, resulting in protruding barbs of various shapes. Shanks of the fabricated micro-spikes are 3 mm long, 100 µm thick and 250 µm wide. Barbs protruding from micro-spike shanks facilitate the biopsy procedure by tearing off and retaining samples from target tissues. Micro-spikes with barbs successfully extracted tissue samples from the small intestines of the anesthetized pig, whereas micro-spikes without barbs failed to obtain a biopsy sample. Parylene coating can be applied to improve the biocompatibility of the micro-spike without deteriorating the biopsy function of the micro-spike. In addition, to show that the biopsy with the micro-spike can be applied to tissue analysis, samples obtained by micro-spikes were examined using immunofluorescent staining. Nuclei and F-actin of cells which are extracted by the micro-spike from a transwell were clearly visualized by immunofluorescent staining.
In-plane and out-of-plane nonlinear dynamics of an axially moving beam
International Nuclear Information System (INIS)
Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco
2013-01-01
In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms
16-dimensional smooth projective planes with large collineation groups
Bödi, Richard
1998-01-01
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set of points and the set of lines are smooth manifolds) such that the geometric operations of join and intersection are smooth. A systematic study of such planes and of their collineation groups can be found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective plane which admits a ...
On Finite Hjelmslev Planes of Parameters (pk−1, p)
Atilla Akpinar
2010-01-01
In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.
Multispectral linear array (MLA) focal plane mechanical and thermal design
Mitchell, A. S.; Kaminski, E. F.
1982-01-01
The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.
The Curious Out-of-Plane Conductivity of PEDOT : PSS
van de Ruit, Kevin; Katsouras, Ilias; Bollen, Dirk; van Mol, Ton; Janssen, Rene A. J.; de Leeuw, Dago M.; Kemerink, Martijn
2013-01-01
For its application as transparent conductor in light-emitting diodes and photovoltaic cells, both the in-plane and out-of-plane conductivity of PEDOT:PSS are important. However, studies into the conductivity of PEDOT:PSS rarely address the out-of-plane conductivity and those that do, report widely
Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity
International Nuclear Information System (INIS)
Levin, G.A.; Quader, K.F.
1992-01-01
The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab
Traces of chiral symmetry on light planes
International Nuclear Information System (INIS)
Sazdjian, Hagop.
1975-01-01
The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr
The plane motion control of the quadrocopter
Directory of Open Access Journals (Sweden)
A. N. Kanatnikov
2015-01-01
Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].
The Sentinel-4 UVN focal plane assemblies
Hinger, Jürgen; Hohn, Rüdiger; Gebhardt, Eyk; Reichardt, Jörg
2017-09-01
The Sentinel-4 UVN Instrument is a dispersive imaging spectrometer covering the UV-VIS and the NIR wavelength. It is developed and built under an ESA contract by an industrial consortium led by Airbus Defence and Space. It will be accommodated on board of the MTG-S (Meteosat Third Generation - Sounder) satellite that will be placed in a geostationary orbit over Europe sampling data for generating two-dimensional maps of a number of atmospheric trace gases. The incoming light is dispersed by reflective gratings and detected by the two (UVVIS and NIR) CCDs mounted inside the focal plane assemblies. Both CCD detectors acquire spectral channels and spatial sampling in two orthogonal directions and will be operated at about 215 K mainly to minimize random telegraph signal effects and to reduce dark current. Stringent detector temperature as well as alignment stability requirements of less than +/-0.1 K per day respectively of less than 2 micrometers/2 arcseconds from ground to orbit are driving the FPA thermo-mechanical design. A specific FPA design feature is the redundant LED-calibration system for bad pixel detection as well as pixel gain and linearity monitoring. This paper reports on the design and qualification of the Focal Plane Assemblies with emphasis on thermo-mechanical as well as alignment stability verification.
The Sentinel 4 focal plane subsystem
Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf
2017-09-01
The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.
Mathematical Foundation for Plane Covering Using Hexagons
Johnson, Gordon G.
1999-01-01
This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.
Plasma drift towards a plane equipotential surface
International Nuclear Information System (INIS)
Carlqvist, P.
1984-03-01
Recently Alfven has qualitatively described how a collisionless plasma drifts in crossed electric and magnetic fields towards an infinite conducting plate of constant potential. In the present note we quantitatively study three models which are closely related to Alfven's model. It is found that when the plasma comes sufficiently close to a plane equipotential surface (conducting plate) it is deflected approximately along the surface. The deflection is not caused by pressure effects but rather by the electric and magnetic fields. Small fluxes of ions and electrons also cross the plane equipotential surface. These fluxes account for an electric current in the plasma which induces a magnetic field in the same direction as the total magnetic field assumed to be homogeneous. It is shown that if the Alfven number, M(sub)A, is much smaller than unity in the volume considered the magnetic field induced by plasma currents is small compared to the total magnetic field. However, if M(sub)A is of the order of unity or larger the total magnetic field is to a substantial degree generated by plasma currents. (Author)
A Single-Element Plane Grating Monochromator
Directory of Open Access Journals (Sweden)
Michael C. Hettrick
2016-01-01
Full Text Available Concerted rotations of a self-focused varied line-space diffraction grating about its groove axis and surface normal define a new geometric class of monochromator. Defocusing is canceled, while the scanned wavelength is reinforced at fixed conjugate distances and horizontal deviation angle. This enables high spectral resolution over a wide band, and is of particular advantage at grazing reflection angles. A new, rigorous light-path formulation employs non-paraxial reference points to isolate the lateral ray aberrations, with those of power-sum ≤ 3 explicitly expanded for a plane grating. Each of these 14 Fermat equations agrees precisely with the value extracted from numerical raytrace simulations. An example soft X-ray design (6° deviation angle and 2 × 4 mrad aperture attains a resolving power > 25 , 000 over a three octave scan range. The proposed rotation scheme is not limited to plane surfaces or monochromators, providing a new degree of freedom in optical design.
Zafar, Junaid
2012-01-01
The geometrical relationship between the cut-off and propagating planes of any waveguide system is a prerequisite for any design process. The characterization of cut-off planes and optimisation are challenging for numerical methods, closed-form solutions are always preferred. In this paper Maxwells coupled field equations are used to characterise twin E-plane and H-plane slab loaded boundary value problems. The single mode bandwidths and dispersion characteristics of these structures are pres...
Duppé, Claudia
2015-01-01
Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...
International Nuclear Information System (INIS)
Liu Qingxiang; Xu Yong
1995-01-01
A novel structure of the micro-wiggler is presented. The authors developed a simplified theoretical model of the micro-wiggler. According to the model, an analytic formula of the magnetic field in two dimensions is got. A calculated program (PWMW-I) is developed from the formula. PWMW-I can calculate the field on the axis and the off-axis for the number of periods N, and the entrance or the exit of the micro-wiggler. Three model with different period (10 mm, 5 mm and 3 mm) is designed on the program. The 5T peak field for the period of 3 mm at the gap of 1 mm is got
DEFF Research Database (Denmark)
Hosbond, Jens Henrik; Skov, Mikael B.
2008-01-01
, in our case a medium-sized retail supermarket. Two prototypes based on push and pull marketing strategies are implemented and evaluated. Taking outset in a synthesis of central issues in contemporary research on mobile marketing, we discuss their role in micro mobility marketing to point to similarities......Mobile marketing refers to marketing of services or goods using mobile technology and mobile marketing holds potentially great economical opportunities. Traditionally, mobile marketing has been viewed as mobility in the large taking place virtually anywhere, anytime. Further, research shows...... considerable number of studies on push-based SMS mobile marketing campaigns. This paper explores a related yet different form of mobile marketing namely micro mobility marketing. Micro mobility marketing denotes mobility in the small, meaning that promotion of goods takes place within a circumscribed location...
International Nuclear Information System (INIS)
Vlasov, A.A.
1988-01-01
The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''
Methods and systems for micro machines
Energy Technology Data Exchange (ETDEWEB)
Stalford, Harold L.
2018-03-06
A micro machine may be in or less than the micrometer domain. The micro machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft is operable to be driven by the micro actuator. A tool is coupled to the micro shaft and is operable to perform work in response to at least motion of the micro shaft.
Briand, Danick; Roundy, Shad
2015-01-01
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, e
DEFF Research Database (Denmark)
Tosello, Guido
2017-01-01
Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...
DEFF Research Database (Denmark)
Taipaleenmäki, H.; Hokland, L. B.; Chen, Li
2012-01-01
Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...
DEFF Research Database (Denmark)
Larsen, Søren Ejling
This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...
Inter-plane artifact suppression in tomosynthesis using 3D CT image data
Directory of Open Access Journals (Sweden)
Kim Jae G
2011-12-01
Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis
Inter-plane artifact suppression in tomosynthesis using 3D CT image data
2011-01-01
Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by
Micro-manufacturing: design and manufacturing of micro-products
National Research Council Canada - National Science Library
Koç, Muammer; Özel, Tuğrul
2011-01-01
.... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...
Micro-Avionics Multi-Purpose Platform (MicroAMPP)
National Aeronautics and Space Administration — The Micro-Avionics Multi-Purpose Platform (MicroAMPP) is a common avionics architecture supporting microsatellites, launch vehicles, and upper-stage carrier...
Structure of catalase determined by MicroED
Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir
2014-01-01
MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172
The in-focus variable line spacing plane grating monochromator
International Nuclear Information System (INIS)
Reininger, R.
2011-01-01
The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.
Guide-Plane Retention in Designing Removable Partial Dentures.
Mothopi-Peri, Matshediso; Owen, C Peter
To compare the influence of abutment teeth guide planes and guiding surfaces on retention of a removable partial denture (RPD). Extracted teeth embedded into a maxillary cast in the first premolar and second molar positions simulated two bounded saddles. Acrylic resin RPDs were made with no guide planes, then with guide planes, then with guiding surfaces added to directly contact the guide planes. The maximum loads on removal from the cast were recorded. There was a significant increase in retention force of 1.6 times when only guide planes were present and of 10.2 times when guiding surfaces intimately contacted the guide planes. The retention of acrylic resin RPDs can be substantially increased by making their guiding surfaces intimately contact the guide planes of the teeth.
Plane grating monochromators for synchrotron radiation
International Nuclear Information System (INIS)
Howells, M.R.
1979-01-01
The general background and theoretical basis of plane grating monochromators (PGM's) is reviewed and the particular case of grazing incidence PGM's suitable for use with synchrotron radiation is considered in detail. The theory of reflection filtering is described and the problem of the finite source distance is shown to be of special importance with high brightness storage rings. The design philosophy of previous instruments is discussed and a new scheme proposed, aimed at dealing with the problem of the finite source distance. This scheme, involving a parabolic collimating mirror fabricated by diamond turning, is considered in the context of Wolter-type telescopes and microscopes. Some practical details concerning an instrument presently under construction using the new design are presented
Drawing Contour Trees in the Plane.
Heine, C; Schneider, D; Carr, Hamish; Scheuermann, G
2011-11-01
The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Applying known techniques to convey this information proves hard and sometimes even impossible. We present several adaptions of popular graph drawing approaches to the problem of contour tree drawing and evaluate them. We identify five esthetic criteria for drawing contour trees and present a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria. Our implementation is fast and effective for contour tree sizes usually used in interactive systems (around 100 branches) and also produces readable pictures for larger trees, as is shown for an 800 branch example.
Landau levels on the hyperbolic plane
International Nuclear Information System (INIS)
Fakhri, H; Shariati, M
2004-01-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)
Landau levels on the hyperbolic plane
Energy Technology Data Exchange (ETDEWEB)
Fakhri, H [Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran 19395-5531 (Iran, Islamic Republic of); Shariati, M [Department of Physics, Khajeh Nassir-Al-Deen Toosi University of Technology, Tehran 15418 (Iran, Islamic Republic of)
2004-11-05
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)
Smart trigger logic for focal plane arrays
Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M
2014-03-25
An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.
Plane shock wave studies of geologic media
International Nuclear Information System (INIS)
Anderson, G.D.; Larson, D.B.
1977-01-01
Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions
A ''quadratized'' augmented plane wave method
International Nuclear Information System (INIS)
Smrcka, L.
1982-02-01
The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)
LATCHAROTE; Panon KAI, Yoshiro
2015-01-01
A macroscopic model, macro plate model, was proposed to represent a wall member of RC walls. Both in-plane and out-of-plane behavior were considered for numerical derivations of macro plate model. For out-of-plane behavior, bending deformation was incorporated with shear deformation to consider out-of-plane deformation as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly expressed by stress-strain relationships in any conventional hysteretic rules, which ...
Louwerse, M.C.
2009-01-01
This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in
Tolerances in micro manufacturing
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul
This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
International Development Research Centre (IDRC) Digital Library (Canada)
Localized application of small quantities of fertilizer (micro-dosing), combined with improved planting pits for rainwater harvesting, has generated greater profits and food security for women farmers in the Sahel. • Women are 25% more likely to use combined applications, and have expanded areas of food crops (cowpea,.
Schroen, C.G.P.H.
2015-01-01
There are two overall themes, micro- and nanotechnology, which are capable of changing the future of food considerably. In microtechnology, production of foods and food ingredients is investigated at small scale; the results are thus that larger scale production is considered through operating many
DEFF Research Database (Denmark)
Rukov, Jakob Lewin; Shomron, Noam
2011-01-01
polymorphisms, copy number variations or differences in gene expression levels of drug metabolizing or transporting genes and drug targets. In this review paper, we focus instead on microRNAs (miRNAs): small noncoding RNAs, prevalent in metazoans, that negatively regulate gene expression in many cellular...
Ferguson, John D; Macari, Louie; Williams, Peter H
1983-01-01
Programming the BBC Micro is a 12-chapter book that begins with a description of the BBC microcomputer, its peripheral, and faults. Subsequent chapters focus on practice in programming, program development, graphics, words, numbers, sound, bits, bytes, and assembly language. The interfacing, file handling, and detailed description of BBC microcomputer are also shown.
Experimental investigation of the tip based micro/nano machining
Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.
2017-12-01
Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.
Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen
2018-03-01
A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.
International Nuclear Information System (INIS)
Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.
1999-01-01
We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)
Estimating the Value of the Inclination Angle of the Lunar Plane to the Ecliptic Plane
Isildak, R. Suat; Isik, Hakan; Küçüközer, H. Asuman
2018-01-01
Sky appears to our students as a vast volume surrounding the Earth. The most striking astronomical events that they can witness in the sky are lunar phases and eclipses. However, eclipses do not occur as often as full and new phases of the Moon. This difference is due to the fact that the orbital planes of the Moon and the Earth do not overlap.…
In-plane and out-of-plane bending tests on carbon steel pipe bends
International Nuclear Information System (INIS)
Brouard, D.; Tremblais, A.; Vrillon, B.
1979-01-01
The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)
First results from the INTEGRAL galactic plane scans
DEFF Research Database (Denmark)
Winkler, C.; Gehrels, N.; Schonfelder, V.
2003-01-01
Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...
International Nuclear Information System (INIS)
Goncalves Filho, Orlando J.A.
2015-01-01
This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)
Helical waves in easy-plane antiferromagnets
Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook
2017-12-01
Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.
Planes y proyectos para un desarrollo sustentable
Directory of Open Access Journals (Sweden)
Mg. Arq. Jorge Montenegro
2014-12-01
Full Text Available La cátedra de Urbanismo I A de la Facultad de Arquitectura, Urbanismo y Diseño de la Universidad Nacional de Córdoba, considera que es fundamental educar a los alumnos en la construcción de un pensamiento crítico reﬂexivo, sobre la base de teorías, modelos y metodologías preocupados por el desarrollo sustentable de nuestras ciudades. En este contexto, la cátedra promueve la construcción de una visión holística sobre la ciudad, abordando los contenidos, metodologías e instrumentación específca —planes maestros, proyectos urbanos— desde los enfoques tradicionales: físico–funcional y morfológico–perceptual, los que se complementan con una mirada socioambiental del fenómeno urbano. En este artículo presentamos una síntesis de la tarea académica que desarrollamos.
planes de estudio y orientaciones oficiales
Directory of Open Access Journals (Sweden)
María Eugenia Fernández Fraile
2005-01-01
Full Text Available El presente artículo se propone, a través del análisis de los cambios introducidos en los Planes de estudios que más incidencia tienen sobre la enseñanza de las lenguas vivas (1900, 1926, 1934, 1938, 1953/1957, 1970 y 1990, destacar las tendencias evolutivas o las líneas maestras que configuran el concepto del Francés como Lengua Extranjera en tanto que disciplina escolar Se abordan así, en una presentación cronológica, las siguientes cuestiones: la regulación de la materia en sus aspectos materiales (horario, cursos, el concepto social e institucional de la disciplina (en conexión con el resto de las lenguas vivas y, finalmente, los objetivos-contenidos didácticos y las orientaciones metodológicas presentes en los textos oficiales.
Grand unification in the projective plane
International Nuclear Information System (INIS)
Hebecker, A.
2004-01-01
A 6-dimensional grand unified theory with the compact space having the topology of a real projective plane, i.e., a 2-sphere with opposite points identified, is considered. The space is locally flat except for two conical singularities where the curvature is concentrated. One supersymmetry is preserved in the effective 4d theory. The unified gauge symmetry, for example SU(5), is broken only by the non-trivial global topology. In contrast to the Hosotani mechanism, no adjoint Wilson-line modulus associated with this breaking appears. Since, locally, SU(5) remains a good symmetry everywhere, no UV-sensitive threshold corrections arise and SU(5)-violating local operators are forbidden. Doublet-triplet splitting can be addressed in the context of a 6d N=2 super Yang-Mills theory with gauge group SU(6). If this symmetry is first broken to SU(5) at a fixed point and then further reduced to the standard model group in the above non-local way, the two light Higgs doublets of the MSSM are predicted by the group-theoretical and geometrical structure of the model. (author)
Hybrid inflation in the complex plane
International Nuclear Information System (INIS)
Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2014-04-01
Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane - an important fact, which has been neglected in all previous studies. Based on the δN formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: The fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.
Condensation on a cooled plane upright wall
International Nuclear Information System (INIS)
Fortier, Andre.
1975-01-01
The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr
Context based Coding of Quantized Alpha Planes for Video Objects
DEFF Research Database (Denmark)
Aghito, Shankar Manuel; Forchhammer, Søren
2002-01-01
In object based video, each frame is a composition of objects that are coded separately. The composition is performed through the alpha plane that represents the transparency of the object. We present an alternative to MPEG-4 for coding of alpha planes that considers their specific properties....... Comparisons in terms of rate and distortion are provided, showing that the proposed coding scheme for still alpha planes is better than the algorithms for I-frames used in MPEG-4....
DEFF Research Database (Denmark)
Ulslev Pedersen, Rasmus; Kühn Pedersen, Mogens
2014-01-01
such as medical and manufacturing. These new sensor applications have implications for information systems (IS) and, the authors visualize this new class of information systems as fractals growing from an established class of systems; namely that of information systems (IS). The identified applications...... and implications are used as an empirical basis for creating a model for these small new information systems. Such sensor systems are called embedded systems in the technical sciences, and the authors want to couple it with general IS. They call the merger of these two important research areas (IS and embedded...... systems) for micro information systems (micro-IS). It is intended as a new research field within IS research. An initial framework model is established, which seeks to capture both the possibilities and constraints of this new paradigm, while looking simultaneously at the fundamental IS and ICT aspects...
CERN MicroClub
2016-01-01
Le CERN Micro Club (en partenariat avec Google Education et EU Code Week) organise un évènement éducatif exceptionnel autour de trois kits scientifiques basés sur le mini-ordinateur Raspberry Pi : Le Bras Robotique "Poppy Ergo Jr", conçu par l'équipe-projet Flowers (Centre de recherche Inria Bordeaux Sud-Ouest, ENSTA Paris Tech). Le kit de détection de rayons cosmiques "Muon Hunter", conçu en partenariat entre Mr Mihaly Vadai et les membres du CERN Micro Club. La voiture radio-commandée programmable Wifi "GianoPi", conçue en partenariat avec le campus "La Chataigneraie", pour l'Ecole Internationale de Genève. Le vendredi 7 octobre (de 18h à 20h) : Une conférence gratuite et ouverte à tous (limitée à 100 personnes), pendant laquelle v...
Study of combined cycle engine for aerospace plane
苅田, 丈士; KANDA, Takeshi; 工藤, 賢司; KUDO, Kenji
2002-01-01
At the Ramjet Propulsion Research Center, the scramjet engine for an aerospace plane has been studied. Other engines are required for the plane to go into orbit. Recently, a combined cycle engine including scramjet mode has been also studied to complete the engine system for the plane. The scramjet and the combined cycle engine are most effective with application to the Single-Stage-to-Orbit (SSTO) aerospace plane, as shown in Figure 1. Recent activity on the combined cycle engine and the SST...
Quantum Mechanics on the h-deformed Quantum Plane
Cho, Sunggoo
1998-01-01
We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended $h$-deformed quantum plane and solve the Schr\\"odinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincar\\'e half-plane, a surface of constant negative Gaussian curvature. We show the bound state energy spectra for particles under specific poten...
Angle measures, general rotations, and roulettes in normed planes
Balestro, Vitor; Horváth, Ákos G.; Martini, Horst
2017-12-01
In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.
Boserup, Hans
2014-01-01
The author has identified a number of styles in mediation, which lead to different processes and different outcomes. Through discourse and conversation analysis he examines the micro dynamics in three of these, the postmodern styles: systemic, transformative and narrative mediation. The differences between the three mediation ideologies and practice is illustrated through role play scripts enacted in each style. Mediator and providers of mediation and trainers in mediation are encouraged to a...
Rectenna session: Micro aspects
Gutmann, R. J.
1980-01-01
Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.
Li, La; Lou, Zheng; Han, Wei; Shen, Guozhen
2016-08-11
The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.
Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment
International Nuclear Information System (INIS)
Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae
2008-01-01
This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment
In-plane and out-of-plane emission of nuclear matter in Au+Au collisions
International Nuclear Information System (INIS)
Bastid, N.; Dupieux, P.; Ramillien, V.; Alard, J.P.; Amouroux, V.; Berger, L.; Boussange, S.; Fraysse, L.; Ibnouzahir, M.; Montarou, G.
1995-01-01
Collective flow effects in Au (E/A = 150 to 800 MeV) on Au collisions measured with the phase I setup of the FOPI detector at GSI - Darmstadt are presented. Directed side ward flow is studied, by the mean transverse momentum in the reaction plane x (y)>, without reaction plane reconstruction. A more quantitative measurement of the global amount of directed side ward flow is also made and some comparisons with the predictions of different QMD versions are given. Experimental results concerning the preferential emission of particles in a direction perpendicular to the reaction plane are also presented. Azimuthal distributions of fragments around the beam axis, with respect to the reaction plane are studied in the mid-rapidity region and the associated R N (out-of-plane/in-plane ratios) are extracted. The dependence of R N upon transverse momentum, centrality, fragment charge and bombarding energy is studied. (authors). 24 refs., 10 figs., 1 tab
Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study
Schwenk, Eric S.; Gandhi, Kishor; Baratta, Jaime L.; Torjman, Marc; Epstein, Richard H.; Chung, Jaeyoon; Vaghari, Benjamin A.; Beausang, David; Bojaxhi, Elird; Grady, Bernadette
2015-01-01
Background: Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. Objectives: To compare an out-...
ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-11-01
Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.
Energy Technology Data Exchange (ETDEWEB)
Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C
1999-10-11
We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)
Ishikawa, Kazuo; Nakao, Shota; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco; Matsuoka, Tetsuya; Nakamuro, Makoto; Shimazu, Takeshi
2014-12-01
Recently, the radiological concept of retroperitoneal interfascial planes has been widely accepted to explain the extension of retroperitoneal pathologies. This study aimed to explore embryologically based corroborative evidence, which remains to be elucidated, for this concept. Using serial or semi-serial transverse sections from 29 human fetuses at the 5th-25th week of fetal age, we microscopically observed the development of the retroperitoneal fasciae and other structures in the retroperitoneal connective tissue. A hypothesis for the formation of the interfascial planes was generated from the developmental study and analysis of retroperitoneal fasciae in computed tomography images from 224 patients. Whereas the loose connective tissue was uniformly distributed in the retroperitoneum by the 9th week, the primitive renal and transversalis fasciae appeared at the 10th-12th week, as previous research has noted. By the 23rd week, the renal fascia, transversalis fascia, and primitive adipose tissue of the flank pad emerged. In addition, the primitive lateroconal fascia, which runs parallel to and close to the posterior renal fascia, emerged between the renal fascia and the adipose tissue of the flank pad. Conversely, pre-existing loose connective tissue was sandwiched between the opposing fasciae and was compressed and narrowed by the developing organs and fatty tissues. Through this developmental study, we provided the hypothesis that the compressed loose connective tissue and both opposed fasciae compose the interfascial planes. Analysis of the thickened retroperitoneal fasciae in computed tomography images supported this hypothesis. Further developmental or histological studies are required to verify our hypothesis.
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Random skew plane partitions with a piecewise periodic back wall
DEFF Research Database (Denmark)
Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai
Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Muc...
Positivity properties of phase-plane distribution functions
Janssen, A.J.E.M.
1984-01-01
The aim of this paper is to compare the members of Cohen's class of phase-plane distributions with respect to positivity properties. It is known that certain averages (which are in a sense compatible with Heisenberg's uncertainty principle) of the Wigner distribution over the phase-plane yield
Bilinear phase-plane distribution functions and positivity
Janssen, A.J.E.M.
1985-01-01
There is a theorem of Wigner that states that phase-plane distribution functions involving the state bilinearly and having correct marginals must take negative values for certain states. The purpose of this paper is to support the statement that these phase-plane distribution functions are for
16 CFR Figure 1 to Part 1203 - Anatomical Planes
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001 ...
Wood working: planing and moulding in the last frontier
David Nicholls
2007-01-01
Planing and moulding is an important step in the value-added manufacture of wood products, and recent advances in Alaska have been noteworthy. Just a few years ago, most planing occurred on simple shop planers, producing lumber for retail sale or for wood working uses such as cabinet stock. Currently there are at least 26 planers and 13 moulders in-production at...
Plane-wave least-squares reverse-time migration
Dai, Wei
2013-06-03
A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.
Lower bound plane stress element for modelling 3D structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2017-01-01
In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...
Crack Propagation in Plane Strain under Variable Amplitude Loading
DEFF Research Database (Denmark)
Ricardo, Luiz Carlos Hernandes
2010-01-01
. In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...
Selection of planes in nuclear magnetic resonance tomography
International Nuclear Information System (INIS)
Bonagamba, T.J.
1986-01-01
A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)
Plane Stratified Flow in a Room Ventilated by Displacement Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.
2004-01-01
The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...
Plane-wave least-squares reverse-time migration
Dai, Wei; Schuster, Gerard T.
2013-01-01
. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase
Surface anatomy and anatomical planes in the adult turkish population.
Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S
2016-03-01
Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.
Plane Transformations in a Complex Setting III: Similarities
Dana-Picard, Thierry
2009-01-01
This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…
Precession of a Spinning Ball Rolling down an Inclined Plane
Cross, Rod
2015-01-01
A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…
Self-organized internal architectures of chiral micro-particles
International Nuclear Information System (INIS)
Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida
2014-01-01
The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials
Flexible micro flow sensor for micro aerial vehicles
Zhu, Rong; Que, Ruiyi; Liu, Peng
2017-12-01
This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
Energy Technology Data Exchange (ETDEWEB)
Acciarri, R.; et al.
2017-05-20
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
Identification of Critical Transmission Limits in Injection Impedance Plane
DEFF Research Database (Denmark)
Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde
2012-01-01
In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...
Phase Plane Analysis Method of Nonlinear Traffic Phenomena
Directory of Open Access Journals (Sweden)
Wenhuan Ai
2015-01-01
Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.
Effect of twinning plane on superconductor magnetic properties
International Nuclear Information System (INIS)
Buzdin, A.I.; Kuptsov, D.A.
1989-01-01
Effect of twinning planes on pinning of the Abrikosov vortices in superconductors of the second order with the Ginsburg-Landau parameter, κ >> 1, is considered. The modified Ginsburg-Landau functional, where the effect of superconducting properties improvement near the twinning plane is taken into account by adding the additional δ-function component, is used to descibe superconductivity of twinning plane. Force of interaction of a vortex filament and the twinning plane is calculated. It is shown that in case of the twinning plane opaque to electrons, additional attractive force, being analogous to that occurring in the problem on the surface Been-Livingston barrier, affects the vortex filament. The results can explain anisotropy of vortex pinning observed in the periodic twinning structure in high-temperature superconductors
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-06-15
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.
Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields
International Nuclear Information System (INIS)
Belloni, F; Doria, D; Lorusso, A; Nassisi, V; Velardi, L; Alifano, P; Monaco, C; Tala, A; Tredici, M; Raino, A
2006-01-01
A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium
Basal-plane thermal conductivity of few-layer molybdenum disulfide
International Nuclear Information System (INIS)
Jo, Insun; Ou, Eric; Shi, Li; Pettes, Michael Thompson; Wu, Wei
2014-01-01
We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS 2 ) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m −1 K −1 for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120 K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures
Energy Technology Data Exchange (ETDEWEB)
1985-03-01
The micro-hydro project, built on a small tributary of Cowley Creek, near Whitehorse, Yukon, is an important step in the development of alternative energy sources and in conserving expensive diesel fuel. In addition to demonstrating the technical aspects of harnessing water power, the project paved the way for easier regulatory procedures. The power will be generated by a 9 meter head and a 6 inch crossflow turbine. The 36 V DC power will be stored in three 12 V batteries and converted to ac on demand by a 3,800 watt inverter. The system will produce 1.6 kW or 14,016 kWh per year with a firm flow of 1.26 cfs. This is sufficient to supply electricity for household needs and a wood working shop. The project is expected to cost about $18,000 and is more economical than tying into the present grid system, or continuing to use a gasoline generator. An environmental study determined that any impact of the project on the stream would be negligible. It is expected that no other water users will be affected by the project. This pilot project in micro-hydro applications will serve as a good indicator of the viability of this form of alternate energy in the Yukon. The calculations comparing the micro-hydro and grid system indicate that the mico-hydro system is a viable source of inflation-proof power. Higher heads and larger flow resulting in ac generation in excess of 10 kW would yield much better returns than this project. 3 tabs.
1998-01-01
About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.
Dual filtered backprojection for micro-rotation confocal microscopy
International Nuclear Information System (INIS)
Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L
2009-01-01
Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application
Directory of Open Access Journals (Sweden)
N. H. Abd Rahman
2014-01-01
Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.
Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine
2015-11-01
Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.
Review of Micro Magnetic Generator
Lin DU; Gengchen SHI; Jingjing ZHAO
2014-01-01
This paper discusses the research progress of micro magnetic generator systems. Micro magnetic generator systems convert energy from the environment to electric energy with advantages as high reliability, high power density, long life time and can be applied to extreme environment. This paper summarizes methods for improving generator performance of micro magnetic generator, including rotational magnetic generator, vibrational magnetic generator and hybrid magnetic generator, analyzes and com...
Silicon micro-fluidic cooling for NA62 GTK pixel detectors
Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P
2015-01-01
Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.
Ibrahim, Hazem
2016-09-19
The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.
Micro manufacturing techniques and applications
Du, Ruxu; Li, Zifu
2013-01-01
Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials
Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.
Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette
2015-12-01
Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.
Carson, John C.
1989-09-01
The papers contained in this volume focus on the implementation and application of Z-plane focal array technology. Topics discussed include civil and military applications of Z-plane technology, electronic design and technology for on-scale plane signal processing, detector development and fabrication technology, and Z-plane module development and producibility. Papers are presented on future capabilities of Z-plane technology, comparison of planar and Z-plane focal plane technologies for dim target detection, Z-plane modules as target extraction engines, and high complexity tape automated bonding application for space hardware.
Design and Analysis of Ultra-wideband Micro Strip Patch Antenna with Notch Band Characteristics
Directory of Open Access Journals (Sweden)
Kumar Omprakash
2016-01-01
Full Text Available A new design of ultra-wideband (UWB micro strip patch antenna with notch band characteristic for wireless local area network (WLAN application is presented in this paper. The proposed antenna consists of a rectangular patch with a partial ground plane that is fed by 50 Ω micro strip line. A notch band function is created by inserting overlapped one U-shape and one C-shape slot on the radiator patch, added additional patch to the ground plane side and slit in truncated ground plane. The proposed antenna potentially minimized frequency interference between WLAN and UWB system. This antenna with the size of 26 mm × 32 mm (W×L and the simulated results show that the antenna can operate over the frequency band between 3.1 and 10.45 GHz for voltage standing wave ratio (VSWR > 2 with band notch 5.06-5.825 GHz. Besides in the working band, the antenna shows good radiation pattern in the H-plane and the E-plane and has good time domain characteristic.
Nozzle fabrication for Micro Propulsion of a Micro-Satellite
Louwerse, M.C.; Jansen, Henricus V.; Groenendijk, M.N.W.; Elwenspoek, Michael Curt
2008-01-01
To enable formation flying of micro satellites, small sized propulsion systems are required. Our research focuses on the miniaturization of a feeding and thruster system by means of micro system technology (MST). Three fabrication methods have been investigated to make a conical converging-diverging
Yudhanto, Arief
2015-04-01
Three-dimensional (3D) reinforcement by stitching is effective in improving the impact resistance of composites. Stitching, however, adversely affects the composite\\'s in-plane mechanical responses, and alters its damage mechanisms due to stitch-induced irregularities. We experimentally investigate the effect of two important stitch parameters, stitch density and thread diameter, on the damage characteristics of 3D stitched multidirectional composites under in-plane tension using X-ray radiography, X-ray micro-computed tomography and digital image correlation (DIC). Our study shows that composites stitched with thicker thread exhibit improved tensile strength due to effective hindrance of edge-delamination. We also found that stitch thread affects damage behaviors. A higher number of transverse cracks develops in the middle portion of thin 90° fiber tows; the inter-crack distance is reduced by dense stitching. DIC is able to identify the cracks that appear in resin-rich channels and distinguish strain fields due to different stitch densities.
Inagawa, Arinori; Okada, Yusuke; Okada, Tetsuo
2018-06-01
Channel-like grooves are formed on the surface of frozen aqueous sucrose. They are filled with a freeze concentrated solution (FCS) and act as an efficient size-tunable separation field for micro and nanoparticles. The width of the channel can be easily varied by changing the temperature. Because the channel width decreases with decreasing temperature, particles become immobilized due to physical interference from the ice wall when the temperature reaches a threshold point specific to the particle size. Surface modification of particles can add a factor of chemical interaction between the particles and ice walls. In this study, anti-freeze proteins (AFPs) are anchored on 1µm-polystyrene (PS) particles, and their behavior in the surface grooves on the ice is studied. The threshold temperature is an effective criterion for evaluating chemical interactions between particles and ice walls. The AFP binding on 1µm PS particles lowers the threshold temperature by 2.5°C, indicating interactions between AFPs on the PS particles and the ice wall. Because the AFPs studied here show selectivity towards the prism plane, it is critical that the prism plane of the ice crystal is in contact with the FCS in the surface grooves. Copyright © 2017 Elsevier B.V. All rights reserved.
Vectorial and plane energy fluences - useful concepts in radiation physics
International Nuclear Information System (INIS)
Carlsson, C.A.
1977-06-01
The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)
Miniaturized Fourier-plane fiber scanner for OCT endoscopy
International Nuclear Information System (INIS)
Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans
2017-01-01
A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)
Miniaturized Fourier-plane fiber scanner for OCT endoscopy
Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans
2017-10-01
A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.
Transparency in stereopsis: parallel encoding of overlapping depth planes.
Reeves, Adam; Lynch, David
2017-08-01
We report that after extensive training, expert adults can accurately report the number, up to six, of transparent overlapping depth planes portrayed by brief (400 ms or 200 ms) random-element stereoscopic displays, and can well discriminate six from seven planes. Naïve subjects did poorly above three planes. Displays contained seven rows of 12 randomly located ×'s or +'s; jittering the disparities and number in each row to remove spurious cues had little effect on accuracy. Removing the central 3° of the 10° display to eliminate foveal vision hardly reduced the number of reportable planes. Experts could report how many of six planes contained +'s when the remainder contained ×'s, and most learned to report up to six planes in reverse contrast (left eye white +'s; right eye black +'s). Long-term training allowed some experts to reach eight depth planes. Results suggest that adult stereoscopic vision can learn to distinguish the outputs of six or more statistically independent, contrast-insensitive, narrowly tuned, asymmetric disparity channels in parallel.
A micro-coupling for micro mechanical systems
Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya
2016-05-01
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and
Two-plane symmetry in the structural organization of man.
Ermolenko, A E
2005-01-01
Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.
A Study of the Gamma-Ray Burst Fundamental Plane
International Nuclear Information System (INIS)
Dainotti, M. G.; Hernandez, X.; Postnikov, S.; Nagataki, S.; O’brien, P.; Willingale, R.; Striegel, S.
2017-01-01
Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T a , its corresponding X-ray luminosity, L a , and the peak luminosity in the prompt emission, L peak . This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T a as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.
A Study of the Gamma-Ray Burst Fundamental Plane
Energy Technology Data Exchange (ETDEWEB)
Dainotti, M. G. [Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México 04510, México (Mexico); Postnikov, S. [The Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47405 (United States); Nagataki, S. [RIKEN, Hirosawa, Wako Saitama (Japan); O’brien, P.; Willingale, R. [Department of Physics and Astronomy, University of Leicester, Road Leicester LE1 7RH (United Kingdom); Striegel, S., E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: mariagiovannadainotti@yahoo.it, E-mail: xavier@astro.unam.mx, E-mail: postsergey@gmail.com, E-mail: shigehiro.nagataki@riken.jp, E-mail: zrw@le.ac.uk, E-mail: stephanie.striegel@sjsu.edu [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States)
2017-10-20
Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T {sub a} , its corresponding X-ray luminosity, L {sub a} , and the peak luminosity in the prompt emission, L {sub peak}. This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T {sub a} as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.
Anatomical planes: are we teaching accurate surface anatomy?
Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D
2012-10-01
Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.
The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate
International Nuclear Information System (INIS)
Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua
2015-01-01
Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so
An Image Encryption Method Based on Bit Plane Hiding Technology
Institute of Scientific and Technical Information of China (English)
LIU Bin; LI Zhitang; TU Hao
2006-01-01
A novel image hiding method based on the correlation analysis of bit plane is described in this paper. Firstly, based on the correlation analysis, different bit plane of a secret image is hided in different bit plane of several different open images. And then a new hiding image is acquired by a nesting "Exclusive-OR" operation on those images obtained from the first step. At last, by employing image fusion technique, the final hiding result is achieved. The experimental result shows that the method proposed in this paper is effective.
New family of exact solutions for colliding plane gravitational waves
International Nuclear Information System (INIS)
Yurtsever, U.
1988-01-01
We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equations describing colliding gravitational plane waves with parallel polarizations. The interaction regions of the solutions in this family are locally isometric to the interiors of those static axisymmetric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic extension of the exterior metric to the interior of the horizon. As a member of this family of solutions we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths
Efficient Return Algorithms For Associated Plasticity With Multiple Yield Planes
DEFF Research Database (Denmark)
Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars
2006-01-01
of such criteria. The return formulae are in closed form and no iteration is required. The method accounts for three types of stress return: Return to a single yield plane, to a discontinuity line at the intersection of two yield planes and to a discontinuity point at the intersection between three or more yield...... planes. The infinitesimal and the consistent elastoplastic constitutive matrix are calculated for each type of stress return, as are the conditions to ascertain which type of return is required. The method is exemplified with the Mohr-Coulomb yield criterion....
Acceleration of planes segmentation using normals from previous frame
Gritsenko, Pavel; Gritsenko, Igor; Seidakhmet, Askar; Abduraimov, Azizbek
2017-12-01
One of the major problem in integration process of robots is to make them able to function in a human environment. In terms of computer vision, the major feature of human made rooms is the presence of planes [1, 2, 20, 21, 23]. In this article, we will present an algorithm dedicated to increase speed of a plane segmentation. The algorithm uses information about location of a plane and its normal vector to speed up the segmentation process in the next frame. In conjunction with it, we will address such aspects of ICP SLAM as performance and map representation.
Directory of Open Access Journals (Sweden)
Luciana G. Teixeira
Full Text Available ABSTRACT: This paper pretends to demonstrate the effect of the combination of transversus abdominis plane block (TAP block and Serratus plane block (SP block techniques in analgesia of 4 dogs undergoing total unilateral mastectomy. Dogs were premedicated with methadone (0.5mg.kg-1 intramuscularly. Anesthesia was induced with propofol (6mg.kg-1 and midazolam (0.3mg.kg-1 and maintained with isoflurane. SP and TAP block were performed unilaterally using ultrasound by the injection of bupivacaine 0.25% (0.3mL kg-1 diluted with NaCl solution 1:1. Heart rate (HR, respiratory rate (f, non-invasive arterial pressure, esophageal temperature (T, oxygen saturation (SpO2 and electrocardiogram were monitored continuously. Animals were monitored for two and four hours after extubation for pain by using the Canine Acute Pain Scale from Colorado State University. Two hours after extubation, tramadol (4mg.kg-1 and dipyrone (25mg.kg-1 was administered to all dogs. It was not observed any alteration on cardiac rhythm. HR, f, T and mean arterial pressure remained below the preincisional values for all dogs. No dog required intraoperative rescue analgesia. Recovery from anesthesia was without any complication. All animals scored 0 (0/5 at pain scale, two and four hours after extubation and none of them expressed concern over the surgical wound. Dogs were able to walk before two hours after extubation. The combination of both techniques is effective in anesthetic blocking the thoracic and abdominal walls and it is suggested both may be included in the multimodal analgesia protocols for this type of surgery.
Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure
Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong
2018-05-01
Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.
Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel
2010-12-01
This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.
Piraccini, E; Biondi, G; Byrne, H; Calli, M; Bellantonio, D; Musetti, G; Maitan, S
2018-05-16
Pectoral Nerves Block (PECS) and Serratus Plane Block (SPB) have been used to treat persistent post-surgical pain after breast and thoracic surgery; however, they cannot block the internal mammary region, so a residual pain may occur in that region. Parasternal block (PSB) and Thoracic Transversus Plane Block (TTP) anaesthetize the anterior branches of T2-6 intercostal nerves thus they can provide analgesia to the internal mammary region. We describe a 60-year-old man suffering from right post-thoracotomy pain syndrome with residual pain located in the internal mammary region after a successful treatment with PECS and SPB. We performed a PSB and TTP and hydrodissection of fascial planes with triamcinolone and Ropivacaine. Pain disappeared and the result was maintained 3 months later. This report suggests that PSB and TTP with local anaesthetic and corticosteroid with hydrodissection of fascial planes might be useful to treat a post thoracotomy pain syndrome located in the internal mammary region. The use of Transversus Thoracic Plane and Parasternal Blocks and fascial planes hydrodissection as a novel therapeutic approach to treat a residual post thoracotomy pain syndrome even when already treated with Pectoral Nerves Block and Serratus Plane Block. © 2018 European Pain Federation - EFIC®.
Energy Technology Data Exchange (ETDEWEB)
Takakuwa, Masayoshi; Hashimoto, Gotaro
1987-09-12
Invention relates with a new organism for the coal liquefying desulfurization. This micro-organism conducts a good sporulation on a culture medium which contains a coal as an only carbon source. It belongs to Penicillium and named Penicillium MT-6001 registered at Fermentation Research Institute No. 8463. Coal powder is thrown into a reaction vessel which accommodated a culture solution of this bacteria, and the surface of the solution is covered with liquid paraffin; coal powder is treated of liquefaction for about 5 hours while maintaining the anaerobic condition and slowly agitating to form a transparent solution layer on the surface of the reactor together with liquid paraffin. Liquefied product shows an analysis pattern similar to naphthenic petroleum containing a lipid with polar radical. (2 figs)
DEFF Research Database (Denmark)
Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz
2015-01-01
MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...
International Nuclear Information System (INIS)
Ying, S.-Y.; Lin, S.-L.
2005-01-01
MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular mRNAs that contain partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. MiRNA was originally discovered in the intergenic regions of the Caenorhabditis elegans genome as native RNA fragments that modulate a wide range of genetic regulatory pathways during animal development. However, neither RNA promoter nor polymerase responsible for miRNA biogenesis was determined. Recent findings of intron-derived miRNA in C. elegans, mouse, and human have inevitably led to an alternative pathway for miRNA biogenesis, which relies on the coupled interaction of Pol-II-mediated pre-mRNA transcription and intron excision, occurring in certain nuclear regions proximal to genomic perichromatin fibrils
Micro thrust and heat generator
Garcia, E.J.
1998-11-17
A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.
Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori
2016-01-01
Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.
Lumbar pedicle screw placement: Using only AP plane imaging
Directory of Open Access Journals (Sweden)
Anil Sethi
2012-01-01
Conclusion: Placement of pedicle screws under fluoroscopic guidance using AP plane imaging alone with tactile guidance is safe, fast, and reliable. However, a good understanding of the radiographic landmarks is a prerequisite.
[A cephalometric study on determining the orientation of occlusal plane].
Xie, J; Zhao, Y; Chao, Y; Luo, W
1993-12-01
A study of the parallel relationship between the occlusal plane and the line connecting nasal alar and tragus was made in 90 dentulous cases by using cephalometry. The results show that the line connecting the inferior point of nasal alar and the mid-point of tragus runs much more parallel with the occlusal plane. The regression equation reveals a "line of closest fitting". It was used in the prosthetic treatment for 50 edentulous patients with good clinical results. The line connecting the inferior point of nasal alar and the mid-point of tragus therefore represents a proper reference plane for determining occlusal plane and hence should be still a valuable index in clinical dentistry.
Occlusal plane location in edentulous patients: a review.
Shetty, Sanath; Zargar, Nazia Majeed; Shenoy, Kamalakanth; Rekha, V
2013-09-01
Occlusal plane orientation is an important factor in the construction of a complete denture. Occlusal plane could be oriented using landmarks in the mandibular arch as well as in the maxillary arch. In the mandibular arch there are few landmarks which could be used to orient the occlusal plane like the retromolar pad, corner of the lips (lower lip length) whereas the maxillary arch has a number of landmarks, of which the ala-tragal line is the most commonly used and the same being the most controversial. In the following article different landmarks and its accuracy for orientating the occlusal plane in an edentulous subject as studied by various authors has been discussed.
Scattering of spinning test particles by gravitational plane waves
International Nuclear Information System (INIS)
Bini, D.; Gemelli, G.
1997-01-01
The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too
Metrical relationships in a standard triangle in an isotropic plane
Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.
2005-01-01
Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.
DC Polarographic and Plane Polarographic investigation of the ...
African Journals Online (AJOL)
Bheema
D.C., A.C. and Complex Plane Polarographic behavior of copper (II) in monoethanolamine /sodium ... The Cd of supporting electrolyte can be directly measured. Theoretical phase sensitive ..... The mass and drop time of mercury are provided ...
Detection of plane, poorly oriented wide flaws using focused transducers
International Nuclear Information System (INIS)
Vadder, D. de; Azou, P.; Bastien, P.; Saglio, R.
1976-01-01
The detection of plane, poorly oriented, wide flaws by ultrasonic non destructive testing is distinctly improved when using focused transducers. An increased echo can be obtained crossing the defect limit [fr
innovative strategies on teaching plane geometry using geogebra ...
African Journals Online (AJOL)
It was recommended that enough mathematics software in schools especially .... Education Board Statistics for 2013/2014. Session). Two (2) .... Dependent Variable: Post-test score on Mathematics plane geometry using GeoGebra application.
Crossed-Plane Imaging of Premixed Turbulent Combustion Processes
National Research Council Canada - National Science Library
Gouldin, F
2003-01-01
.... Rayleigh scattering from premixed flames can be used for temperature imaging, and we have developed crossed-plane Rayleigh imaging in order to measure with high-resolution instantaneous temperature...
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
Mergers of elliptical galaxies and the fundamental plane
Gonzalez-Garcia, AC; van Albada, TS; AvilaReese,; Firmani, C; Frenk, CS; Allen, YC
2003-01-01
N-body simulations have been carried out in order to explore the final state of elliptical galaxies after encounters and more expecifically whether the Fundamental Plane (FP hereafter) relation is affected by merging.
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin; Dai, Wei; Schuster, Gerard T.
2013-01-01
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity
On spin and matrix models in the complex plane
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1993-01-01
We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)
Plane-wave Least-squares Reverse Time Migration
Dai, Wei; Schuster, Gerard T.
2012-01-01
convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A
3D plane-wave least-squares Kirchhoff migration
Wang, Xin; Dai, Wei; Huang, Yunsong; Schuster, Gerard T.
2014-01-01
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition
DLCQ and plane wave matrix Big Bang models
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
DLCQ and plane wave matrix Big Bang models
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin
2008-01-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Regularized plane-wave least-squares Kirchhoff migration
Wang, Xin
2013-09-22
A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.
3D tomography of cells in micro-channels
Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.
2017-09-01
We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.
Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins
Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-05-01
Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.
Transversus abdominis plane block: a cadaveric and radiological evaluation.
LENUS (Irish Health Repository)
McDonnell, John G
2011-04-11
The abdominal wall is a significant source of pain after abdominal surgery. Anterior abdominal wall analgesia may assist in improving postoperative analgesia. We have recently described a novel approach to block the abdominal wall neural afferents via the bilateral lumbar triangles of Petit, which we have termed a transversus abdominis plane block. The clinical efficacy of the transversus abdominis plane block has recently been demonstrated in a randomized controlled clinical trial of adults undergoing abdominal surgery.
Role of moving planes and moving spheres following Dupin cyclides
Jia, Xiaohong
2014-03-01
We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.
Diffraction by a plane angular sector, a new derivation
DEFF Research Database (Denmark)
Hansen, Thokild B.
1990-01-01
An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)......An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)...
Locating a circle on the plane using the minimax criterion
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schoebel, Anita
2006-01-01
We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed.......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed....
Apodised aperture using rotation of plane of polarization
International Nuclear Information System (INIS)
Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.
1975-01-01
An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation
Focal plane for the next generation of earth observation instruments
Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis
2017-09-01
Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.
Plane-wave scattering from half-wave dipole arrays
DEFF Research Database (Denmark)
Jensen, Niels E.
1970-01-01
A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....
Tunnelling of plane waves through a square barrier
Energy Technology Data Exchange (ETDEWEB)
Julve, J [IMAFF, Consejo Superior de Investigaciones CientIficas, Serrano 113 bis, Madrid 28006 (Spain); UrrIes, F J de [Departamento de Fisica, Universidad de Alcala de Henares, Alcala de Henares, Madrid (Spain)], E-mail: julve@imaff.cfmac.csic.es, E-mail: fernando.urries@uah.es
2008-08-01
The time evolution of plane waves in the presence of a one-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states.
In-plane fluidelastic instability analysis for large steam generators
International Nuclear Information System (INIS)
Mureithi, Njuki; Olala, Stephen; Hadji, Abdallah
2015-01-01
Fluidelastic instability remains the most important vibration excitation mechanism in nuclear steam generators (SGs). Design guidelines, aimed at eliminating the possibility of fluidelastic instability, have been developed over the past 40 years. The design guidelines, based on the Connors equation, depend on a large database on cross-flow fluidelastic instability i.e. instability in the direction transverse to the flow. Past experience had shown that for an axi-symmetrically flexible tube, instability generally occurred in the transverse direction, at least at first. Although often not explicitly stated, there has been an implicit assumption that the in-plane direction was either stable, or would only suffer instability at velocities significantly higher than the transverse direction. This explains why SGs are fitted with anti-vibrations bars (AVBs) to mitigate transverse (out-of-plane) vibrations with no equivalent consideration for potential in-plane instability. This 'oversight' recently came to a head when SG at the San-Onofre NPP suffered in-plane fluidelastic instability. The present paper addresses the question of in-plane fluidelastic instability in large SGs. A historical review is presented to explain why this potential problem was left unresolved (or ignored) over the past 40+ years, and why engineers got away with it - at least until recently. Following the review, some recent work on in-plane fluidelastic instability modeling, using the quasi-steady model is presented. It is shown that in-plane fluidelastic instability can be fully modelled using this approach. The model results are used to propose some changes to existing design guidelines to cover the case of in-plane fluidelastic instability. (author)
Role of moving planes and moving spheres following Dupin cyclides
Jia, Xiaohong
2014-01-01
We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.
Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi
2017-06-01
The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.
Data-plane Defenses against Routing Attacks on Tor
Directory of Open Access Journals (Sweden)
Tan Henry
2016-10-01
Full Text Available Tor is susceptible to traffic correlation attacks in which an adversary who observes flows entering and leaving the anonymity network can apply statistical techniques to correlate flows and de-anonymize their endpoints. While an adversary may not be naturally positioned to conduct such attacks, a recent study shows that the Internet’s control-plane can be manipulated to increase an adversary’s view of the network, and consequently, improve its ability to perform traffic correlation. This paper explores, in-depth, the effects of control-plane attacks on the security of the Tor network. Using accurate models of the live Tor network, we quantify Tor’s susceptibility to these attacks by measuring the fraction of the Tor network that is vulnerable and the advantage to the adversary of performing the attacks. We further propose defense mechanisms that protect Tor users from manipulations at the control-plane. Perhaps surprisingly, we show that by leveraging existing trust anchors in Tor, defenses deployed only in the data-plane are sufficient to detect most control-plane attacks. Our defenses do not assume the active participation of Internet Service Providers, and require only very small changes to Tor. We show that our defenses result in a more than tenfold decrease in the effectiveness of certain control-plane attacks.
Thermomechanical architecture of the VIS focal plane for Euclid
International Nuclear Information System (INIS)
Martignac, Jerome; Carty, Michael; Tourette, Thierry; Bachet, Damien; Berthe, Michel; Augueres, Jean-Louis; Amiaux, Jerome; Fontignie, Jean; Horeau, Benoit; Renaud, Diana
2014-01-01
One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150 K) connected to their front end electronics (operated at 280 K) as to obtain one of the largest focal plane (0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints. (authors)
A zonal wavefront sensor with multiple detector planes
Pathak, Biswajit; Boruah, Bosanta R.
2018-03-01
A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.
3D plane-wave least-squares Kirchhoff migration
Wang, Xin
2014-08-05
A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.
Sustainable Micro-Manufacturing of Micro-Components via Micro Electrical Discharge Machining
Directory of Open Access Journals (Sweden)
Valeria Marrocco
2011-12-01
Full Text Available Micro-manufacturing emerged in the last years as a new engineering area with the potential of increasing peoples’ quality of life through the production of innovative micro-devices to be used, for example, in the biomedical, micro-electronics or telecommunication sectors. The possibility to decrease the energy consumption makes the micro-manufacturing extremely appealing in terms of environmental protection. However, despite this common belief that the micro-scale implies a higher sustainability compared to traditional manufacturing processes, recent research shows that some factors can make micro-manufacturing processes not as sustainable as expected. In particular, the use of rare raw materials and the need of higher purity of processes, to preserve product quality and manufacturing equipment, can be a source for additional environmental burden and process costs. Consequently, research is needed to optimize micro-manufacturing processes in order to guarantee the minimum consumption of raw materials, consumables and energy. In this paper, the experimental results obtained by the micro-electrical discharge machining (micro-EDM of micro-channels made on Ni–Cr–Mo steel is reported. The aim of such investigation is to shed a light on the relation and dependence between the material removal process, identified in the evaluation of material removal rate (MRR and tool wear ratio (TWR, and some of the most important technological parameters (i.e., open voltage, discharge current, pulse width and frequency, in order to experimentally quantify the material waste produced and optimize the technological process in order to decrease it.
Review of Micro Magnetic Generator
Directory of Open Access Journals (Sweden)
Lin DU
2014-08-01
Full Text Available This paper discusses the research progress of micro magnetic generator systems. Micro magnetic generator systems convert energy from the environment to electric energy with advantages as high reliability, high power density, long life time and can be applied to extreme environment. This paper summarizes methods for improving generator performance of micro magnetic generator, including rotational magnetic generator, vibrational magnetic generator and hybrid magnetic generator, analyzes and compares their design and performance, and concludes key technologies and ongoing challenges for further progress. The paper is instructive and meaningful to for research work of related field.
DEFF Research Database (Denmark)
Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2005-01-01
This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...
DEFF Research Database (Denmark)
Jansson, Martin D; Lund, Anders H
2012-01-01
biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, micro...
Badra, Jihad Ahmad
2014-09-18
A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.
Aradhya, Sriharsha; Rowlands, Graham; Shi, Shengjie; Oh, Junseok; Ralph, D. C.; Buhrman, Robert
Magnetic random access memory (MRAM) using spin transfer torques (STT) holds great promise for replacing existing best-in-class memory technologies in several application domains. Research on conventional two-terminal STT-MRAM thus far has revealed the existence of limitations that constrain switching reliability and speed for both in-plane and perpendicularly magnetized devices. Recently, spin torque arising from the giant spin-Hall effect in Ta, W and Pt has been shown to be an efficient mechanism to switch magnetic bits in a three-terminal geometry. Here we report highly reliable, nanosecond timescale pulse switching of three-terminal devices with in-plane magnetized magnetic tunnel junctions. We obtain write error rates (WER) down to ~10-5 using pulses as short as 2 ns, in contrast to conventional in-plane STT-MRAM devices where write speeds were limited to a few tens of nanoseconds for comparable WER. Utilizing micro-magnetic simulations, we discuss the differences from conventional MRAM that allow for this unanticipated and significant performance improvement. Finally, we highlight the path towards practical application enabled by the ability to separately optimize the read and write pathways in three-terminal devices.
Sadeghi, E.; Djilali, N.; Bahrami, M.
Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity. This transport property differs significantly in the through-plane and in-plane directions due to the anisotropic micro-structure of the GDL. A novel test bed that allows separation of in-plane effective thermal conductivity and thermal contact resistance in GDLs is described in this paper. Measurements are performed using Toray carbon paper TGP-H-120 samples with varying polytetrafluoroethylene (PTFE) content at a mean temperature of 65-70 °C. The measurements are complemented by a compact analytical model that achieves good agreement with experimental data. The in-plane effective thermal conductivity is found to remain approximately constant, k ≈ 17.5 W m -1 K -1, over a wide range of PTFE content, and its value is about 12 times higher than that for through-plane conductivity.
Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie
2007-03-01
This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.
Directory of Open Access Journals (Sweden)
JUNJIE CHEN
2014-11-01
Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.
Micro transport phenomena during boiling
Peng, Xiaofeng
2011-01-01
"Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.
Micro Mercury Ion Clock (MMIC)
National Aeronautics and Space Administration — Demonstrate micro clock based on trapped Hg ions with more than 10x size reduction and power; Fractional frequency stability at parts per 1014 level, adequate for...
Energy Technology Data Exchange (ETDEWEB)
Elland, J.; Dickson, J.; Cranfield, P.
2003-07-01
This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.
On deformation of complex continuum immersed in a plane space
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-05-01
The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.
The geometry of plane waves in spaces of constant curvature
International Nuclear Information System (INIS)
Tran, H.V.
1988-01-01
We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect
A differentiated plane wave: its passage through a slab
International Nuclear Information System (INIS)
Hannay, J H; Nye, J F
2013-01-01
Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)
Micro creep mechanisms of tungsten
International Nuclear Information System (INIS)
Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.
2000-01-01
Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)
MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.
Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo
2017-11-16
Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.
Micro watt thermocurrent generator
International Nuclear Information System (INIS)
Bustard, T.; Goslee, D.; Barr, H.
1976-01-01
This nuclear thermocurrent generator to feed a cardic pacemaker should have higher life expectancy and reliability than was previously achieved. For this purpose a gettering arrangement is connected to be heat conducting immediately adjacent to the nuclear fuel arrangement in an evacuated casing. The gettering arrangement can be operated to activate at as high a temperature as possible, from 121 0 C to preferably about 204 0 C, so that a high vacuum is maintained. The current generating thermal column works at a temperature difference of 55.6 0 C. As the cold end of the column is connected to the outer casing, and should be held to a mean body temperature of 37.8 0 C, the hot side of the thermal column may only be heated to 93.4 0 C. The temperature jump from 121 0 or 204 0 to 93.4 0 is produced by a thermal resistance inserted between the hot side of the thermal column and the fuel arrangement. It may consist of a spacer made of stainless steel or by a gap, while in this first arrangement the nuclear heat generator is situated between the gettering arrangement and the thermal column, another arrangement shows the gettering arrangement enclosed in the fuel arrangement and thermal column. Here the heat flows in one direction only, the required temperature gradient is produced by suitable construction of the heat contacts between the 3 elements. Detailed constructional and manufacturing data are given for both models. Plutonium oxide is welded into a double casing as heat generator, in example the casing is made of nickel alloy. 1/10 gram of plutonium supplies a thermal energy of 50m watts, which produces a thermal current of 300 to 400 micro watts at 0.3V. (RW) [de
Designing broad phononic band gaps for in-plane modes
Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong
2018-03-01
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.
Cutting solid figures by plane - analytical solution and spreadsheet implementation
Benacka, Jan
2012-07-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.
Polarization sensitivity testing of off-plane reflection gratings
Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor
2015-09-01
Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.
Projecting non-diffracting waves with intermediate-plane holography.
Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G
2018-02-19
We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.
Flow of Dense Granular Suspensions on an Inclined Plane
Bonnoit, C.; Lanuza, J.; Lindner, A.; Clément, E.
2008-07-01
We investigate the flow behavior of dense granular suspensions, by the use of an inclined plane. The suspensions are prepared at high packing fractions and consist of spherical non-Brownian particles density matched with the suspending fluid. On the inclined plane, we perform a systematic study of the surface velocity as a function of the layer thickness for various flow rates and tilt angles. We perform measurements on a classical rheometer (parallel-plate rheometer) that is shown to be in good agreement with existing models, up to a volume fraction of 50%. Comparing these results, we show that the flow on an inclined plane can, up to a volume fraction of 50%, indeed be described by a purely viscous model in agreement with the results from classical rheometry.
Thermal properties of self-gravitating plane-symmetric configuration
Energy Technology Data Exchange (ETDEWEB)
Hara, T; Ikeuchi, S [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, D
1976-09-01
As a limiting case of rotating stars, thermal properties of infinite plane-symmetric self-gravitating gas are investigated. Such a configuration is characterized by surface density of the plane instead of stellar mass. In the Kelvin contraction, temperature of the interior decreases, if the surface density is kept constant. If the accretion of matter takes place, or if the angular momenta are transferred outward, the surface density will increase. In this case, the temperature of the interior may increase. When a nuclear burning is ignited, it is thermally unstable in most cases, even when electrons are non-degenerate. This thermal instability is one of the essential differences of the plane-symmetric configuration from the spherical star. Such instabilities are computed for different cases of nuclear fuels. This type of nuclear instability is the same phenomenon as thermal instability of a thin shell burning in a spherical star.
Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes
Energy Technology Data Exchange (ETDEWEB)
Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)
2014-09-01
The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.
Apparatus and methods for memory using in-plane polarization
Liu, Junwei; Chang, Kai; Ji, Shuai-Hua; Chen, Xi; Fu, Liang
2018-05-01
A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process is non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.
Voicu, Rodica-Cristina; Zandi, Muaiyd Al; Müller, Raluca; Wang, Changhai
2017-11-01
This paper reports the results of numerical nonlinear electro-thermo-mechanical analysis and experimental testing of a polymeric microgripper designed using electrothermal actuators. The simulation work was carried out using a finite element method (FEM) and a commercial software (Coventorware 2014). The biocompatible SU-8 polymer was used as structural material for the fabrication of the microgripper. The metallic micro-heater was encapsulated in the polymeric actuation structures of the microgripper to reduce the undesirable out-of-plane displacement of the microgripper tips, and to electrically isolate the micro-heater, and to reduce the mechanical stress as well as to improve the thermal efficiency. The electro- thermo-mechanical analysis of the actuator considers the nonlinear temperature-dependent properties of the SU-8 polymer and the gold thin film layers used for the micro-heater fabrication. An optical characterisation of the microgripper based on an image tracking approach shows the thermal response and the good repeatability. The average deflection is ~11 µm for an actuation current of ~17 mA. The experimentally obtained tip deflection and the heater temperature at different currents are both shown to be in good agreement with the nonlinear electro-thermo-mechanical simulation results. Finally, we demonstrate the capability of the microgripper by capture and manipulation of cotton fibres.
Laplace plane modifications arising from solar radiation pressure
Energy Technology Data Exchange (ETDEWEB)
Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)
2014-05-01
The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.
Dynamics of plane-symmetric thin walls in general relativity
International Nuclear Information System (INIS)
Wang, A.
1992-01-01
Plane walls (including plane domain walls) without reflection symmetry are studied in the framework of Einstein's general relativity. Using the distribution theory, all the Einstein field equations and Bianchi identities are split into two groups: one holding in the regions outside of the wall and the other holding at the wall. The Einstein field equations at the wall are found to take a very simple form, and given explicitly in terms of the discontinuities of the metric coefficients and their derivatives. The Bianchi identities at the wall are also given explicitly. Using the latter, the interaction of a plane wall with gravitational waves and some specific matter fields is studied. In particular, it is found that, when a gravitational plane wave passes through a wall, if the wall has no reflection symmetry, the phenomena, such as reflection, stimulation, or absorption, in general, occur. It is also found that, unlike for gravitational waves, a massless scalar wave or an electromagnetic wave continuously passes through a wall without any reflection. The repulsion and attraction of a plane wall are also studied. It is found that the acceleration of an observer who is at rest relative to the wall usually consists of three parts: one is due to the force produced by the wall, the second is due to the force produced by the space-time curvature, which is zero if the wall has reflection symmetry, and the last is due to the accelerated motion of the wall. As a result, a repulsive (attractive) plane wall may not be repulsive (attractive) at all. Finally, the collision and interaction among the walls are studied
Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.
1993-08-01
An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.
International Nuclear Information System (INIS)
Inamura, T.; Kim, H.Y.; Hosoda, H.; Miyazaki, S.
2013-01-01
Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP
International Nuclear Information System (INIS)
Wei, Hsin-Yu; Qiu, Chang-Hua; Soleimani, Manuchehr
2015-01-01
Electrical capacitance tomography (ECT) is a non-invasive imaging technique that is sensitive to the dielectric permittivity property of an object. Conventional ECT systems have a circular/cylindrical or rectangular geometry, in which the electrode plates are usually spaced equally around the tank. It is the most common configuration as it can be easily applied to industrial pipelines. However, under some circumstances, the full access to the imaging geometry may not be applicable due to the limitation of the process area. In those cases, and with limited access, planar ECT sensors can fit the process structure if access to only one side is possible. A single-plane ECT configuration has been proposed for such applications. However, the planar array often suffers from a lack of sensitivity and difficulty with depth detection. To better understand these limitations we investigate the imaging performance from the single-plane ECT to dual-plane ECT structure. The limitations and constraints of the planar configuration will also be discussed. Several experiments were conducted using both single-plane and dual-plane configurations to evaluate the potential applications. The initial results are promising, and the quality of the reconstructed images are compared with the real condition for process validation. (paper)
Inductance calculation of 3D superconducting structures with ground plane
International Nuclear Information System (INIS)
Teh, C.H.; Kitagawa, M.; Okabe, Y.
1999-01-01
An inductance calculation method, which is based on calculating the current distribution of a fluxoid-trapped superconducting loop by using the expression of momentum and the Maxwell equations, is reconstructed to enable calculation of arbitrary 3D structures which have a ground plane (GP). Calculation of the mutual inductances of the superconductor system is also incorporated into the algorithm. The method of images is used to save computational resources, and the mirror plane is demonstrated to be just at the effective penetration depth below the upper boundary of the GP. The algorithm offers accurate results with reasonable calculation time. (author)
The Groenewold-Moyal Plane and its Quantum Physics
International Nuclear Information System (INIS)
Balachandran, A. P.; Padmanabhan, Pramod
2009-01-01
Quantum theories constructed on the noncommutative spacetime called the Groenewold-Moyal(GM) plane exhibit many interesting properties such as causality violation, Lorentz and CPT non-invariance and twisted statistics. Such violations lead to many striking features that may be tested experimentally. Thus these theories predict Pauli-forbidden transitions due to twisted statistics, anisotropies and acausal effects in the cosmic microwave background radiation in correlations of observables and Lorentz and CPT violations in scattering amplitudes. Such features of quantum physics on the GM plane are surveyed in this review.
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Dynamics of polynomials in finite and infinite Benz planes
Rafael Artzy
1992-01-01
The classical Benz planes, that is, Möbius, Minkowski, and Laguerre planes, can be coordinatized [cf. 1], respectively, by the field C of complex numbers, the ring of “double numbers” z=x+jy (x,y ∊ R) where an element j not in R, with j2=1 is adjoined, and the ring of “dual numbers” z=x+ye where an element e not in R with e2=0 is adjoined to R. When the field R is replaced by another field, in our case finite prime fields Fp (p a prime), one also obtains co...
Vertical-Cavity In-plane Heterostructures: Physics and Applications
DEFF Research Database (Denmark)
Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug
2015-01-01
We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...
Exploring plane-symmetric solutions in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)
2016-02-15
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.
Plane waves and structures in turbulent channel flow
Sirovich, L.; Ball, K. S.; Keefe, L. R.
1990-01-01
A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.
Comb-Line Filter with Coupling Capacitor in Ground Plane
Directory of Open Access Journals (Sweden)
Toshiaki Kitamura
2011-01-01
Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.
Plane-Wave Imaging Challenge in Medical Ultrasound
DEFF Research Database (Denmark)
Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt
2016-01-01
for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...
Combinatorics associated with inflections and bitangents of plane quartics
International Nuclear Information System (INIS)
Gizatullin, M Kh
2013-01-01
After a preliminary survey and a description of some small Steiner systems from the standpoint of the theory of invariants of binary forms, we construct a binary Golay code (of length 24) using ideas from J. Grassmann's thesis of 1875. One of our tools is a pair of disjoint Fano planes. Another application of such pairs and properties of plane quartics is a construction of a new block design on 28 objects. This block design is a part of a dissection of the set of 288 Aronhold sevens. The dissection distributes the Aronhold sevens into 8 disjoint block designs of this type
Hi-GAL: The Herschel Infrared Galactic Plane Survey
Molinari, S.; Swinyard, B.; Bally, J.; Barlow, M.; Bernard, J.-P.; Martin, P.; Moore, T.; Noriega-Crespo, A.; Plume, R.; Testi, L.; Zavagno, A.; Abergel, A.; Ali, B.; André, P.; Baluteau, J.-P.
2010-01-01
Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy...
Problems of the orthogonalized plane wave method. 1
International Nuclear Information System (INIS)
Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.
1979-01-01
The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)
Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms
Unterberger, Andre
2011-01-01
Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane I to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in I according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincare summation process, which consists in building au
Locating a circle on the plane using the minimax criterion
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2009-01-01
We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed...
Geometric characteristics of aberrations of plane-symmetric optical systems
International Nuclear Information System (INIS)
Lu Lijun; Deng Zhiyong
2009-01-01
The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.
Locating a general minisum 'circle' on a plane
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph
2011-01-01
We approximate a set of given points in the plane by the boundary of a convex and symmetric set which is the unit circle of some norm. This generalizes previous work on the subject which considers Euclidean circles only. More precisely, we examine the problem of locating and scaling the unit circle...... of some given norm k with respect to given points on the plane such that the sum of weighted distances (as measured by the same norm k) between the circumference of the circle and the points is minimized. We present general results and are able to identify a finite dominating set in the case that k...
On the topology of real algebraic plane curves
DEFF Research Database (Denmark)
Cheng, Jinsan; Lazard, Sylvain; Peñaranda, Luis
2010-01-01
We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given...... and isolation with rational univariate representations. This has the advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This decomposition...
International Nuclear Information System (INIS)
Rowbottom, Carl G.; Jaffray, David A.
2004-01-01
The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 deg. of rotation in the axial plane to the micro-MOSFET was ±2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams
Analysis on and Optimization of a Circular Piezoelectric Composite Laminate for a Micro-Pump Driver
International Nuclear Information System (INIS)
Jia, Jianyuan; Wang, Weidong; Huang, Xinbo
2002-01-01
Among the various micro-pump actuation devices, piezoelectric composite laminate actuation has become an effective method. Due to lacking of analysis treatments, the design of this type micro-pump is in a great limitation. In this paper, an electromechanical-coupled mechanics model is established for the circle-flake micro-actuator. A kind of analysis and design method is presented that piezoelectric plate's radial strain induced by inverse piezoelectric effect is equivalently substituted with transverse stress on piezoelectric composite laminates. It is pointed out that the equivalent transverse load depends on the edge electric field distribution of parallel plate capacitor. The question has been solved that where the neutral plane in the piezoelectric composite laminates lies. Finally, an optimization design is developed on the radius ratio of piezoelectric-to-silicon plate radius by utilizing of FEA modeling
Micro-droplet formation via 3D printed micro channel
Jian, Zhen; Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T.
2016-11-01
Low cost, fast-designed and fast-fabricated 3D micro channel was used to create micro-droplets. Capillary with an outer diameter of 1.5 mm and an inner diameter of 150 μm was inserted into a 3D printed cylindrical channel with a diameter of 2 mm . Flow rate of the two inlets, insert depth, liquid (density, viscosity and surface tension) and solid (roughness, contact angle) properties all play a role in the droplet formation. Different regimes - dripping, jetting, unstable state - were observed in the micro-channel on varying these parameters. With certain parameter combinations, successive formation of micro-droplets with equal size was observed and its size can be much smaller than the smallest channel size. Based on our experimental results, the droplet formation via 3D printed micro T-junction was investigated through direct numerical simulations with a code called Gerris. Reynolds numbers Re = ρUL / μ and Weber numbers We = ρU2 L / σ of the two liquids were introduced to measure the liquid effect. The parameter regime where different physical dynamics occur was studied and the regime transition was observed with certain threshold values. Qualitative and quantitative analysis were performed as well between simulations and experiments.
International Nuclear Information System (INIS)
Olsen, Michael G
2009-01-01
An analytical model for the microscopic particle image velocimetry (microPIV) correlation signal peak in a purely shearing flow was derived for the case of in-plane shearing (out-of-plane shearing was not considered). This model was then used to derive equations for the measured velocity weighting functions for the two velocity components, and the weighting functions were in turn used to define the depths of correlation associated with the two measured velocity components. The depth of correlation for the velocity component perpendicular to the shear was found to be unaffected by the shear rate. However, the depth of correlation for the velocity component in the direction of the shear was found to be highly dependent on the shear rate, with the depth of correlation increasing as the shear rate increased. Thus, in a flow with shear, there is not a single value for the depth of correlation within an interrogation region. Instead, the depth of correlation exhibits directional dependence, with a different depth of correlation for each of the two measured velocity components. The increase in the depth of correlation due to the shear rate is greater for large numerical aperture objectives than for small numerical aperture objectives. This increase in the depth of correlation in a shearing flow can be quite large, with increases in the depth of correlation exceeding 100% being very possible for high numerical aperture objectives. The effects of out-of-plane shear are beyond the capabilities of this analysis, although the possible consequences of out-of-plane shear are discussed
International Nuclear Information System (INIS)
Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami
2008-01-01
We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively
[fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
Lubatschowski, H; Schumacher, S; Wegener, A; Fromm, M; Oberheide, U; Hoffmann, H; Gerten, G
2009-12-01
Based on the Helmholtz theory for accommodation, increasing sclerosis of the lens nucleus and cortex is the main cause for the development of presbyopia. Existing therapies, however, do not reverse the stiffness of the crystalline lens and thus do not regain real accommodation ability. A new approach to restore the flexibility of the lens has been realised by utilising the non-linear interaction of ultrafast laser pulses with transparent tissue, the so-called photodisruption. This process has been used to create micro-incisions which act as gliding planes inside the crystalline lens without opening the eye globe. This treatment method, known as fs-lentotomy, enables regeneration of real dynamic accommodation. For the first time, 3D structures for gliding planes were successfully generated in experiments with human donor lenses of different ages. An average increase in anterior-posterior lens thickness of 100 mum accompanied by a decrease of equatorial lens diameter was observed as a direct consequence of fs-lentotomy. This is attributed to the increased flexibility, as the force of the capsule bag moulds the lens tissue more spherically. Moreover, in vivo experiments on rabbit eye lenses did not induce an increasing opacification (cataract) over a six-month follow-up period. However, the incisions were still detectable using Scheimpflug imaging and histopathological techniques, although the visibility of the incisions was declining. Furthermore, no side effects were observed during the wound healing process and during a six-months follow-up period. Based on these findings fs-lentotomy might have the potential to become a procedure for the reversal of presbyopia. Copyright Georg Thieme Verlag KG Stuttgart . New York.
A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings
Energy Technology Data Exchange (ETDEWEB)
Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.
2016-08-01
Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.
Micro Machining Enhances Precision Fabrication
2007-01-01
Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.
Dynamic photonic lightpaths in the StarPlane network
Grosso, P.; Marchal, D.; Maassen, J.; Bernier, E.; Xu, L.; de Laat, C.
2009-01-01
The StarPlane project enables users to dynamically control network photonic paths. Applications running on the Distributed ASCI Supercomputer (DAS-3) can manipulate wavelengths in the Dutch research and education network SURFnet6. The goal is to achieve fast switching times so that when the
In-plane laser forming for high precision alignment
Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert
2014-01-01
Laser microforming is extensively used to align components with submicrometer accuracy, often after assembly. While laser-bending sheet metal is the most common laser-forming mechanism, the in-plane upsetting mechanism is preferred when a high actuator stiffness is required. A three-bridge planar
A 1.3 giga pixels focal plane for GAIA
Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar
2004-06-01
The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.
Balanced partitions of 3-colored geometric sets in the plane
Bereg, S.; Hurtado, F.; Kano, M.; Korman, M.; Lara, D.; Seara, C.; Silveira, R.I.; Urrutia, J.; Verbeek, K.A.B.
2015-01-01
Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two
Reconstruction of Galileo Galilei's Experiment: The Inclined Plane
Straulino, S.
2008-01-01
In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…
Fisher-Renyi entropy product and information plane
International Nuclear Information System (INIS)
Romera, E.; Nagy, A.
2008-01-01
Connection between Fisher information and Renyi entropy has been established. This link allows us to define the Fisher-Renyi information plane and an entropic product in terms of these quantities. New Renyi uncertainty relations are obtained for single particle densities of many particle systems in position-momentum conjugate spaces
Technique for measurements of plane waves of uniaxial strain
International Nuclear Information System (INIS)
Graham, R.A.
1977-01-01
The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed
Axial and focal-plane diffraction catastrophe integrals
International Nuclear Information System (INIS)
Berry, M V; Howls, C J
2010-01-01
Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.
Refining the fundamental plane of accreting black holes
Körding, E.; Falcke, H.D.E.; Corbel, S.; K�rding, E.
2006-01-01
Context: .The idea of a unified description of supermassive and stellar black holes has been supported by the extension of the empirical radio/X-ray correlation from X-ray binaries to active galactic nuclei through the inclusion of a mass term. This has lead to the so-called fundamental plane of
Modelling the Landing of a Plane in a Calculus Lab
Morante, Antonio; Vallejo, Jose A.
2012-01-01
We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)
Pascal’s Theorem in Real Projective Plane
Coghetto Roland
2017-01-01
In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines.
Pascal’s Theorem in Real Projective Plane
Directory of Open Access Journals (Sweden)
Coghetto Roland
2017-07-01
Full Text Available In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem1. Pappus’ theorem is a special case of a degenerate conic of two lines.
Observations with a mid-plane reciprocating probe in MAST
International Nuclear Information System (INIS)
Yang, Y.; Counsell, G.F.
2003-01-01
A fast reciprocating probe has recently been installed on MAST. It has been used to measure the outboard, mid-plane scrape off layer (SOL) of L-mode plasmas, and to study the intermittent fluctuations in the SOL in L-mode and ELMy H-mode discharges. In this paper, the system and the experiments are introduced
Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly
Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.
2012-01-01
A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.
Minimum-link paths among obstacles in the plane
Mitchell, J.S.B.; Rote, G.; Woeginger, G.J.
1992-01-01
Given a set of nonintersecting polygonal obstacles in the plane, thelink distance between two pointss andt is the minimum number of edges required to form a polygonal path connectings tot that avoids all obstacles. We present an algorithm that computes the link distance (and a corresponding
A plane stress softening plasticity model for orthotropic materials
Lourenço, P.B.; Borst, R. de; Rots, J.G.
1997-01-01
A plane stress model has been developed for quasi-brittle orthotropic materials. The theory of plasticity, which is adopted to describe the inelastic behaviour, utilizes modern algorithmic concepts, including an implicit Euler backward return mapping scheme, a local Newton-Raphson method and a
Distribution of Interstellar Reddening Material in the Galactic Plane
Directory of Open Access Journals (Sweden)
Chulhee Kim
1987-12-01
Full Text Available By using the recently determined color excess and distance data of classical cepheids by Kim(1985, the distribution of interstellar reddening material was studied to see the general picture of the average rate of interstellar absorption out to about 7-8kpc in the Galactic plane in various directions from the sun.
Fixating the pelvis in the horizontal plane affects gait characteristics
Veneman, J.F.; Menger, Jasper; van Asseldonk, Edwin H.F.; van der Helm, F.C.T.; van der Kooij, Herman
2008-01-01
In assistive devices for neuro-rehabilitation, natural human motions are partly restricted by the device. This may affect the normality of walking during training. This research determines effects on gait of fixating the pelvis translations in the horizontal plane during treadmill walking. Direct
Automatic test comes to focal plane array production
Skaggs, Frank L.; Barton, T. D.
1992-08-01
To meet the needs of military and commercial markets, the infrared focal plane array industry must develop new, effective and low cost methods of fabricating and testing imaging detectors. This paper describes Texas Instruments new concepts in automated testing and cold probe technology as they apply to volume production.
Plane-wave electronic structure calculations on a parallel supercomputer
International Nuclear Information System (INIS)
Nelson, J.S.; Plimpton, S.J.; Sears, M.P.
1993-01-01
The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms
On harmonicity in some Moufang-Klingenberg planes
ÇELİK, Basri; AKPINAR, Atilla; ÇİFTÇİ, Süleyman
2010-01-01
In this paper we study Moufang-Klingenberg planes M (A) defined over a local alternative ring A of dual numbers. We show that some collineations of M (A) preserve cross-ratio and thus establish a relation between harmonicity and harmonic position.
Motion on an Inclined Plane and the Nature of Science
Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika
2014-01-01
Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
The Toledo invariant, and Seshadri constants of fake projective planes
DI CERBO, Luca F.
2017-01-01
The purpose of this paper is to explicitly compute the Seshadri constants of all ample line bundles on fake projective planes. The proof relies on the theory of the Toledo invariant, and more precisely on its characterization of $\\mathbb{C}$-Fuchsian curves in complex hyperbolic spaces.
Locating an axis-parallel rectangle on a Manhattan plane
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph
2014-01-01
In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm 1. In this way we solve an extension of the Weber problem...
Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming
DEFF Research Database (Denmark)
Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt
2008-01-01
In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...
A differentiated plane wave as an electromagnetic vortex
International Nuclear Information System (INIS)
Hannay, J H; Nye, J F
2015-01-01
Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here. (paper)
STRUCTURAL ANALYSIS OF IN-PLANE LOADED CLT BEAMS
Directory of Open Access Journals (Sweden)
Mario Jeleč
2017-01-01
Full Text Available Cross laminated timber (CLT is a versatile engineered timber product that is increasingly well-known and of global interest in several applications such as full size plane or linear timber elements. The aim of this study involves investigating the performance of CLT beams loaded in-plane by considering bending and shear stress analysis with a special emphasis on the in-plane shear behavior including the complex internal structure of CLT. Numerical analysis based on 3D-FE models was used and compared with two existing analytical approaches, namely representative volume sub element (method I and composite beam theory (method II. The separate verification of bending and shear stresses including tree different shear failure modes was performed, and a good agreement was obtained. The main difference between the results relates to shear failure mode in the crossing areas between the orthogonally bonded lamellas in which the distribution of shear stresses τzx over the crossing areas per height of the CLT beam is not in accordance with the analytical assumptions. The presented analyses constitute the first attempt to contribute to the on-going review process of Eurocode 5 with respect to CLT beams loaded-in plane. Currently, regulations on designing these types of beams do not exist, and thus experimental and numerical investigations are planned in the future.
Fast decoding of codes from algebraic plane curves
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd
1992-01-01
Improvement to an earlier decoding algorithm for codes from algebraic geometry is presented. For codes from an arbitrary regular plane curve the authors correct up to d*/2-m2 /8+m/4-9/8 errors, where d* is the designed distance of the code and m is the degree of the curve. The complexity of finding...
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...
Absolute parametric instability in a nonuniform plane plasma
Indian Academy of Sciences (India)
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.
Plane Symmetric Cosmological Model with Quark and Strange ...
Indian Academy of Sciences (India)
Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...
Position sensitive proportional counters as focal plane detectors
International Nuclear Information System (INIS)
Ford, J.L.C. Jr.
1979-01-01
The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)
Integral representation in the hodograph plane of compressible flow
DEFF Research Database (Denmark)
Hansen, Erik Bent; Hsiao, G.C.
2003-01-01
Compressible flow is considered in the hodograph plane. The linearity of the equation determining the stream function is exploited to derive a representation formula involving boundary data only, and a fundamental solution to the adjoint equation. For subsonic flow, an efficient algorithm...
New bi-Hamiltonian systems on the plane
Tsiganov, A. V.
2017-06-01
We discuss several new bi-Hamiltonian integrable systems on the plane with integrals of motion of third, fourth, and sixth orders in momenta. The corresponding variables of separation, separated relations, compatible Poisson brackets, and recursion operators are also presented in the framework of the Jacobi method.
A plane-wave final-state theory of ATI
International Nuclear Information System (INIS)
Parker, J.S.; Clark, C.W.
1993-01-01
A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude
A bijection between phylogenetic trees and plane oriented recursive trees
Prodinger, Helmut
2017-01-01
Phylogenetic trees are binary nonplanar trees with labelled leaves, and plane oriented recursive trees are planar trees with an increasing labelling. Both families are enumerated by double factorials. A bijection is constructed, using the respective representations a 2-partitions and trapezoidal words.
Path integration on the upper half-plane
International Nuclear Information System (INIS)
Kubo, Reijiro.
1987-06-01
Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation δf/δt = Δ H f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly. (author)
Path Integration on the Upper Half-Plane
Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University
1987-01-01
Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation ∂f/∂t=Δ_Hf can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.
A superparticle on the 'super' Poincare upper half plane
International Nuclear Information System (INIS)
Uehara, S.; Yasui, Yukinora
1988-01-01
A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace. (orig.)
Superparticle on the 'super' Poincare upper half plane
Energy Technology Data Exchange (ETDEWEB)
Uehara, S; Yasui, Yukinora
1988-03-17
A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace.
Intersection of Three Planes Revisited--An Algebraic Approach
Trenkler, Götz; Trenkler, Dietrich
2017-01-01
Given three planes in space, a complete characterization of their intersection is provided. Special attention is paid to the case when the intersection set does not exist of one point only. Besides the vector cross product, the tool of generalized inverse of a matrix is used extensively.
3-D Velocity Estimation for Two Planes in vivo
DEFF Research Database (Denmark)
Holbek, Simon; Pihl, Michael Johannes; Ewertsen, Caroline
2014-01-01
3-D velocity vectors can provide additional flow information applicable for diagnosing cardiovascular diseases e.g. by estimating the out-of-plane velocity component. A 3-D version of the Transverse Oscillation (TO) method has previously been used to obtain this information in a carotid flow...... and stored on the experimental scanner SARUS. The full 3-D velocity profile can be created and examined at peak-systole and end-diastole without ECG gating in two planes. Maximum out-of-plane velocities for the three peak-systoles and end-diastoles were 68.5 5.1 cm/s and 26.3 3.3 cm/s, respectively....... In the longitudinal plane, average maximum peak velocity in flow direction was 65.2 14.0 cm/s at peak-systole and 33.6 4.3 cm/s at end-diastole. A commercial BK Medical ProFocus UltraView scanner using a spectral estimator gave 79.3 cm/s and 14.6 cm/s for the same volunteer. This demonstrates that real-time 3-D...
Grace and Courtesy across the Planes of Development
Ludick, Pat
2015-01-01
Pat Ludick's commentary on grace and courtesy is established by a philosophical orientation to development: Grace is oriented to the life of the interior that is consciousness and being, and courtesy moves outward to daily living where civility reflects on success with human interactions. Pat's projected grace and courtesy across the planes is…
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
Precision of Points Computed from Intersections of Lines or Planes
DEFF Research Database (Denmark)
Cederholm, Jens Peter
2004-01-01
estimates the precision of the points. When using laser scanning a similar problem appears. A laser scanner captures a 3-D point cloud, not the points of real interest. The suggested method can be used to compute three-dimensional coordinates of the intersection of three planes estimated from the point...
(AJST) A CUTTING- PLANE APPROACH FOR SEMI- INFINITE ...
African Journals Online (AJOL)
opiyo
Section 3 deals with convex semi-infinite programming while in section 4 we give some hints for dealing with the geometric case. The paper ends with concluding remarks along with a comparison of the cutting-plane philosophy with other existing approaches and a claim for implementing. Decision Support System for this ...
A cutting- plane approach for semi- infinite mathematical programming
African Journals Online (AJOL)
Many situations ranging from industrial to social via economic and environmental problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane approach which lends itself better for standard non-linear programs is exploited with good reasons for grappling with linear, convex and ...
Facial rejuvenation with fillers: The dual plane technique
Directory of Open Access Journals (Sweden)
Giovanni Salti
2015-01-01
Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.
International Nuclear Information System (INIS)
Oishi, M; Kinoshita, H; Fujii, T; Oshima, M
2011-01-01
This paper presents a micro-multiphase flow measurement technique, 'multicolour confocal micro-particle image velocimetry (PIV), and its application to the internal and surrounding flow measurement of a droplet moving through a microchannel. The present system measures the dynamic interaction between flows in two different phases, such as solid–liquid or liquid–liquid, simultaneously and separately. Unlike conventional confocal micro-PIV, this system features a wavelength separation optical device. The optical components (e.g., filters and dichroic mirror) are designed to separate fluorescent lights of tracer particles and to eliminate unnecessary scattered light depending on the characteristic wavelengths. The system can record a sequence of images at up to 2000 frames per second. It also has an in-plane spatial resolution of 0.284 µm/pixel in a field of 227.2 µm × 170.4 µm and a confocal depth of 3.43 µm using 1.0 µm particles and a 40× objective lens. This paper examines the performance of the present system, such as its ability to separate wavelengths. Furthermore, this system is applied to liquid–liquid two-phase flow, which consists of a water droplet and surrounding oil flow, in a microchannel. We succeeded in measuring each phase movement separately and simultaneously. As a result of the estimation of the out-of-plane velocity component, a three-dimensional flow structure is obtained and the interaction between each phase is investigated
Cavitational micro-particles: plasma formation mechanisms
International Nuclear Information System (INIS)
Bica, Ioan
2005-01-01
Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)
Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.
Rosen, H M
1993-06-01
Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically
The plane strain tests in the PROMETRA program
International Nuclear Information System (INIS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-01-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO ® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.
The plane strain tests in the PROMETRA program
Energy Technology Data Exchange (ETDEWEB)
Cazalis, B., E-mail: bernard.cazalis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Desquines, J. [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Carassou, S.; Le Jolu, T. [Commissariat à l' Energie Atomique, CEA/DEN/DMN, F- 91191 Gif-sur-Yvette (France); Bernaudat, C. [Electricité de France, EDF/SEPTEN, F-69628 Villeurbanne (France)
2016-04-15
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO{sup ®} specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.
Positioning of electrode plane systematically influences EIT imaging
International Nuclear Information System (INIS)
Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Möller, Knut; Zhao, Zhanqi; Müller-Lisse, Ullrich
2015-01-01
Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔI_E_R_V/ERV, ΔI_V_T/VT and ΔI_I_R_V/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔI_E_R_V/ERV ratio in all subjects was significantly higher than the normalized ΔI_I_R_V/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions. (paper)
Positioning of electrode plane systematically influences EIT imaging.
Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Müller-Lisse, Ullrich; Möller, Knut; Zhao, Zhanqi
2015-06-01
Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔIERV/ERV, ΔIVT/VT and ΔIIRV/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔIERV/ERV ratio in all subjects was significantly higher than the normalized ΔIIRV/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions.
International Nuclear Information System (INIS)
1991-01-01
MicroPRIS is a new service of the IAEA Power Reactor Information System (PRIS) for the Member States of IAEA. MicroPRIS makes the IAEA database on nuclear power plants and their operating experience available to Member States on computer diskettes in a form readily accessible by standard commercially available personal computer packages. The aim of this publication is to provide the users of the PC version of PRIS data with description of the subset of the full PRIS database contained in MicroPRIS (release 1990), description of files and file structures, field descriptions and definitions, extraction and selection guide and with the method of calculation of a number of important performance indicators used by the IAEA
Dimensional micro and nano metrology
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han
2006-01-01
The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...
Micro-Mechanical Temperature Sensors
DEFF Research Database (Denmark)
Larsen, Tom
Temperature is the most frequently measured physical quantity in the world. The field of thermometry is therefore constantly evolving towards better temperature sensors and better temperature measurements. The aim of this Ph.D. project was to improve an existing type of micro-mechanical temperature...... sensor or to develop a new one. Two types of micro-mechanical temperature sensors have been studied: Bilayer cantilevers and string-like beam resonators. Both sensor types utilize thermally generated stress. Bilayer cantilevers are frequently used as temperature sensors at the micro-scale, and the goal....... The reduced sensitivity was due to initial bending of the cantilevers and poor adhesion between the two cantilever materials. No further attempts were made to improve the sensitivity of bilayer cantilevers. The concept of using string-like resonators as temperature sensors has, for the first time, been...
Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes
International Nuclear Information System (INIS)
Hyakutake, Y.; Imamura, Y.; Sugimoto, S.
2000-01-01
There is a longstanding puzzle concerned with the existence of Op-planes with p≥6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6-planes are possible in massive IIA theory with odd cosmological constant, while O7-planes and O8-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addressed. (author)
Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes
Hyakutake, Yoshifumi; Imamura, Yosuke; Sugimoto, Shigeki
2000-01-01
There is a longstanding puzzle concerned with the existence of Op~-planes with p>=6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6~-planes are possible in massive IIA theory with odd cosmological constant, while O7~-planes and O8~-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addr...
Frazin, Richard A
2016-04-01
A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.
Micro-machined calorimetric biosensors
Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.
2002-01-01
A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.
Automated Micro Hall Effect measurements
DEFF Research Database (Denmark)
Petersen, Dirch Hjorth; Henrichsen, Henrik Hartmann; Lin, Rong
2014-01-01
With increasing complexity of processes and variety of materials used for semiconductor devices, stringent control of the electronic properties is becoming ever more relevant. Collinear micro four-point probe (M4PP) based measurement systems have become high-end metrology methods for characteriza......With increasing complexity of processes and variety of materials used for semiconductor devices, stringent control of the electronic properties is becoming ever more relevant. Collinear micro four-point probe (M4PP) based measurement systems have become high-end metrology methods...
Improvement of micro endmill geometry for micro hard milling application
Li, P.; Oosterling, J.A.J.; Hoogstrate, A.M.; Langen, H.H.
2008-01-01
One of the applications of the micromilling technology is to machine micro features on moulds by direct machining of hardened tool steels. However at this moment, this process is not industrial applicable because of the encountered problems, such as the big tool deflection, severe tool wear, and
An, Zhe; He, Jing
2011-10-28
The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011
Wettability and friction coefficient of micro-magnet arrayed surface
Huang, Wei; Liao, Sijie; Wang, Xiaolei
2012-01-01
Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.
Analysis of new actuation methods for capacitive shunt micro switchs
Directory of Open Access Journals (Sweden)
Ben Sassi S
2016-01-01
Full Text Available This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM. Based on Galerkin approximation, a single degree of freedom dynamic model is developed and limit-cycle solutions are calculated using the Finite Difference Method (FDM. In addition to the harmonic waveform signal, we apply novel actuation waveform signals to simulate the frequency-response. We show that, biased signals, using a square wave signal reduces significantly the pull-in voltage compared to the triangular and harmonic signal . Finally, these results are validated experimentally.
On-chip micro-power: three-dimensional structures for micro-batteries and micro-supercapacitors
Beidaghi, Majid; Wang, Chunlei
2010-04-01
With the miniaturization of portable electronic devices, there is a demand for micro-power source which can be integrated on the semiconductor chips. Various micro-batteries have been developed in recent years to generate or store the energy that is needed by microsystems. Micro-supercapacitors are also developed recently to couple with microbatteries and energy harvesting microsystems and provide the peak power. Increasing the capacity per footprint area of micro-batteries and micro-supercapacitors is a great challenge. One promising route is the manufacturing of three dimensional (3D) structures for these micro-devices. In this paper, the recent advances in fabrication of 3D structure for micro-batteries and micro-supercapacitors are briefly reviewed.
Parallel-beams/lever electrothermal out-of-plane actuator
Deladi, S.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
2004-01-01
We report on the design, modeling, fabrication and testing of a powerful electrothermal actuator allowing for various modes of movement and exhibiting forces large enough to be usable in a micro-tribotester. The performance of the actuator has been simulated combining numerical and analytical
Tambake, Deepti; Shetty, Shilpa; Satish Babu, C L; Fulari, Sangamesh G
2014-12-01
The study was undertaken to evaluate the parallelism between hamular-incisive-papilla plane (HIP) and the Campers plane. And to determine which part of the posterior reference of the tragus i.e., the superior, middle or the inferior of the Camper's plane is parallel to HIP using digital lateral cephalograms. Fifty edentulous subjects with well formed ridges were selected for the study. The master casts were obtained using the standard selective pressure impression procedure. On the deepest point of the hamular notches and the centre of the incisive papilla stainless steel spherical bearings were glued to the cast at the marked points. The study templates were fabricated with autopolymerizing acrylic resin. The subjects were prepared for the lateral cephalograms. Stainless steel spherical bearings were adhered to the superior, middle, inferior points of the tragus of the ear and inferior border of the ala of the nose using surgical adhesive tape. The subjects with study templates were subjected to lateral cephalograms. Cephalometric tracings were done using Autocad 2010 software. Lines were drawn connecting the incisive papilla and hamular notch and the stainless steel spherical bearings placed on the superior, middle and inferior points on the tragus and the ala of the nose i.e., the Campers line S, Campers line M, Campers line I. The angles between the three Camper's line and the HIP were measured and recorded. Higher mean angulation was recorded in Campers line S -HIP (8.03) followed by Campers line M-HIP (4.60). Campers line I-HIP recorded the least angulation (3.80). The HIP is parallel to the Camper's plane. The Camper's plane formed with the posterior reference point as inferior point of the tragus is relatively parallel to the HIP.
METHOD FOR DETERMINATION OF FOCAL PLANE LOCATION OF FOCUSING COMPONENTS
Directory of Open Access Journals (Sweden)
A. I. Ivashko
2017-01-01
Full Text Available Mass-production of different laser systems often requires utilization of the focal spot size method for determination of output laser beam spatial characteristics. The main challenge of this method is high accuracy maintenance of a CCD camera beam profiler in the collecting lens focal plane. The aim of our work is development of new method for placing of photodetector array in the collecting lens focal plane with high accuracy.Proposed technique is based on focusing of several parallel laser beams. Determination of the focal plane position requires only longitudinal translation of the CCD-camera to find a point of laser beams intersection. Continuous-wave (CW diode-pumped laser emitting in the spectral region near 1μm was created to satisfy the requirements of the developed technique. Designed microchip laser generates two stigmatic Gaussian beams with automatically parallel beam axes due to independent pumping of different areas of the one microchip crystal having the same cavity mirrors.It was theoretically demonstrated that developed method provides possibility of the lenses focal plane determination with 1 % accuracy. The microchip laser generates two parallel Gaussian beams with divergence of about 10 mrad. Laser output power can be varied in the range of 0.1–1.5 W by changing the pumping laser diode electrical current. The distance between two beam axes can be changed in the range of 0.5–5.0 mm.We have proposed method for determination of positive lens focal plane location by using of CCDcamera and two laser beams with parallel axes without utilization of additional optical devices. We have developed CW longitudinally diode pumped microchip laser emitting in the 1-μm spectral region that can be used in the measuring instrument that doesn’t require precision mechanical components for determination of focal plane location with 1 % accuracy. The overall dimensions of laser head was 70 × 40 × 40 mm3 and maximum power consumption was
Roof planes detection via a second-order variational model
Benciolini, Battista; Ruggiero, Valeria; Vitti, Alfonso; Zanetti, Massimo
2018-04-01
The paper describes a unified automatic procedure for the detection of roof planes in gridded height data. The procedure exploits the Blake-Zisserman (BZ) model for segmentation in both 2D and 1D, and aims to detect, to model and to label roof planes. The BZ model relies on the minimization of a functional that depends on first- and second-order derivatives, free discontinuities and free gradient discontinuities. During the minimization, the relative strength of each competitor is controlled by a set of weight parameters. By finding the minimum of the approximated BZ functional, one obtains: (1) an approximation of the data that is smoothed solely within regions of homogeneous gradient, and (2) an explicit detection of the discontinuities and gradient discontinuities of the approximation. Firstly, input data is segmented using the 2D BZ. The maps of data and gradient discontinuities are used to isolate building candidates and planar patches (i.e. regions with homogeneous gradient) that correspond to roof planes. Connected regions that can not be considered as buildings are filtered according to both patch dimension and distribution of the directions of the normals to the boundary. The 1D BZ model is applied to the curvilinear coordinates of boundary points of building candidates in order to reduce the effect of data granularity when the normals are evaluated. In particular, corners are preserved and can be detected by means of gradient discontinuity. Lastly, a total least squares model is applied to estimate the parameters of the plane that best fits the points of each planar patch (orthogonal regression with planar model). Refinement of planar patches is performed by assigning those points that are close to the boundaries to the planar patch for which a given proximity measure assumes the smallest value. The proximity measure is defined to account for the variance of a fitting plane and a weighted distance of a point from the plane. The effectiveness of the
Evolution of miniature detectors and focal plane arrays for infrared sensors
Watts, Louis A.
1993-06-01
Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.
Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression
International Nuclear Information System (INIS)
Ma, Duancheng; Eisenlohr, Philip; Epler, Eike; Volkert, Cynthia A.; Shanthraj, Pratheek; Diehl, Martin; Roters, Franz; Raabe, Dierk
2016-01-01
We present a study on the plastic deformation of single crystalline stochastic honeycombs under in-plane compression using a crystal plasticity constitutive description for face-centered cubic (fcc) materials, focusing on the very early stage of plastic deformation, and identifying the interplay between the crystallographic orientation and the cellular structure during plastic deformation. We observe that despite the stochastic structure, surprisingly, the slip system activations in the honeycombs are almost identical to their corresponding bulk single crystals at the early stage of the plastic deformation. On the other hand, however, the yield stresses of the honeycombs are nearly independent of their crystallographic orientations. Similar mechanical response is found in compression testing of nanoporous gold micro-pillars aligned with various crystallographic orientations. The macroscopic stress tensors of the honeycombs show the same anisotropy as their respective bulk single crystals. Locally, however, there is an appreciable fluctuation in the local stresses, which are even larger than for polycrystals. This explains why the Taylor/Schmid factor associated with the crystallographic orientation is less useful to estimate the yield stresses of the honeycombs than the bulk single crystals and polycrystals, and why the plastic deformation occurs at smaller strains in the honeycombs than their corresponding bulk single crystals. Besides these findings, the observations of the crystallographic reorientation suggest that conventional orientation analysis tools, such as inverse pole figure and related tools, would in general fail to study the plastic deformation mechanism of monocrystalline cellular materials.
Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry
Shum, H.; Gaffney, E. A.; Smith, D. J.
2010-01-01
We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology. © 2010 The Royal Society.
International Nuclear Information System (INIS)
Cagliani, A; Kjær, D; Østerberg, F W; Hansen, O; Petersen, D H; Nielsen, P F
2017-01-01
The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for magnetic random access memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from the R and D phase to the pilot production phase. This will require an improvement in the repeatability of the CIPT metrology technique. Here, we present an analytical model that can be used to simulate numerically the repeatability of a CIPT measurement for an arbitrary MTJ stack prior to any CIPT measurement. The model describes mathematically the main sources of error arising when a micro multi-electrode probe is used to perform a CIPT measurement. The numerically simulated repeatability values obtained on four different MTJ stacks are verified by experimental data and the model is used to optimize the choice of electrodes on a multi-electrode probe to reach up to 36% improvement on the repeatability for the resistance area product and the tunneling magnetoresistance measurement, without any hardware modification. (paper)
Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry
Shum, H.
2010-01-13
We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology. © 2010 The Royal Society.
Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan
2015-01-01
Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
Hybrid cycles for micro generation
International Nuclear Information System (INIS)
Campanari, S.
2000-01-01
This paper deals with the main features of two emerging technologies in the field of small-scale power generation, micro turbines and Solid Oxide Fuel Cells, discussing the extremely high potential of their combination into hybrid cycles and their possible role for distributed cogeneration [it
Micro-Encapsulation of Probiotics
Meiners, Jean-Antoine
Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.
Micro RNAs in animal development.
Plasterk, R.H.A.
2006-01-01
Micro RNAs (miRNAs) are approximately 22 nucleotide single-stranded noncoding RNA molecules that bind to target messenger RNAs (mRNAs) and silence their expression. This Essay explores the importance of miRNAs in animal development and their possible roles in disease and evolution.
Micro Coriolis Gas Density Sensor
Sparreboom, Wouter; Ratering, Gijs; Kruijswijk, Wim; van der Wouden, E.J.; Groenesteijn, Jarno; Lötters, Joost Conrad
2017-01-01
In this paper we report on gas density measurements using a micro Coriolis sensor. The technology to fabricate the sensor is based on surface channel technology. The measurement tube is freely suspended and has a wall thickness of only 1 micron. This renders the sensor extremely sensitive to changes
Cagliani, Alberto; Østerberg, Frederik W; Hansen, Ole; Shiv, Lior; Nielsen, Peter F; Petersen, Dirch H
2017-09-01
We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance was improved by up to a factor of 3.5 and the measurement reproducibility by up to a factor of 17, thanks to our improved position correction technique.
Contamination Study of Micro Pulsed Plasma Thruster
National Research Council Canada - National Science Library
Kesenek, Ceylan
2008-01-01
.... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...