WorldWideScience

Sample records for content isotopic composition

  1. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy gamma-ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma-ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented

  2. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Dowell, M.R.W.

    1985-05-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented. 4 refs., 4 tabs

  3. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  4. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  5. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  6. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  7. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    Science.gov (United States)

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (phydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmaisotopic composition, aimed at reducing the level of heavy non-radioactive atoms will allow the targeted nutritional correction of prooxidant-antioxidant status of the population in areas with adverse environmental conditions, stimulating by created isotopic D/H gradient cytoprotective mechanisms influencing the various components of nonspecific protection, including free radical oxidation processes. And then again, periodic assessment of the isotopic composition of nutrients will monitor the quality of food consumed by the population, and if

  8. Stable-isotope composition of the water of apple juice

    International Nuclear Information System (INIS)

    Bricout, Jacques; Merlivat, Liliane

    1973-01-01

    By deuterium and oxygen 18 analysis, it was shown that apples' water is enriched in heavier isotopes as compared to rain water. The isotopic composition of the water of reconstituted apple juice is closed to the isotopic content of the rain water used for dilution. Thus, deuterium and oxyden 18 analysis allows a good analytical distinction between natural apple juice and reconstituted juices [fr

  9. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  10. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  11. Deuterium isotope composition of palaeoinfiltration water trapped in speleothems

    International Nuclear Information System (INIS)

    Rozanski, K.

    1987-05-01

    Analytical and methodological aspects of combined isotope investigations of carbonate cave deposits are thoroughly discussed in the report. Weight is put on isotope analyses of fluid inclusions (D and 18 O content) extracted from speleothems of known age. Dating was done by the 230 Th/ 234 U ratio method. Isotopic analyses of speleothems originating from European caves allowed some important conclusions to be formulated regarding past climatic and environmental conditions prevailing over the European continent during the last 300,000 yrs: a) δD values of fluid inclusions suggest a remarkable constancy of the heavy-isotope content of European palaeoinfiltration waters recharged during interglacial periods, b) a climate-induced, long-term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of ca.1 4 deg./oo/deg. C, c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters as judged from the fluid inclusion data suggests that atmospheric circulation over Europe did not undergo substantial changes for at least 300,000 years

  12. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    Science.gov (United States)

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  13. Isotopic composition of groundwater in semi-arid regions of Southern Africa

    International Nuclear Information System (INIS)

    Vogel, J.C.; Urk, H. van

    1975-01-01

    Although the isotope content of precipitation in the semi-arid regions of southern Africa is extremely variable, groundwater samples from the same district are found to have a remarkably constant isotopic composition. The oxygen-18 content of the underground water, in general, varies by about 0.5% in a given area. The differences that occur between different regions are sufficiently large to allow the groundwater of an area to be characterized by means of its oxygen-18 content. In order to localize the infiltration area of an aquifer, radiocarbon dating of the water is used. It appears that the groundwater contains, in general, less of the heavy isotopes than does the precipitation in the recharge area. This indicates that infiltration only takes place during periods of heavy rainfall. Examples are given where the isotope content of the groundwater is used to distinguish between different aquifers in the same region

  14. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  15. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  16. Environmental isotopes, chemical composition and groundwater sources in Al-Maghara area, Sinai, Egypt

    International Nuclear Information System (INIS)

    Nada, A.A.; Awad, M.A.; Froehlich, K.; El Behery, M.

    1991-01-01

    Groundwater samples collected from a number of localities, in Al-Maghara area, north central part of Sinai, were subject to various chemical and isotopic analysis. The purpose of the study is to determine whether the groundwaters are recently recharged or not in order to adopt an efficient water management policy. The hydrochemical results indicate that they are mainly of primary marine origin, dilution of this water by meteoric water changes its chemical composition to be mixed water type, which has the major chemical components: KCl, NaCl, Na 2 SO 4 , MgSO 4 , Mg(HCO 3 ) 2 and Ca(HCO 3 ) 2 . The tritium content confirm the meteoric water recharge recently especially for wells with high tritium content. The stable environmental isotopic composition of the groundwater reflects the isotopic composition of precipitation and flooding with some evaporation enrichment prior to infiltration. There is also mixing with palaeowater (water recharge in the past cooler climate periods), by leaking through faulting in the area. (orig.) [de

  17. Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea

    Science.gov (United States)

    Ryb, U.; Eiler, J. M.

    2017-12-01

    The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.

  18. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  19. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  20. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  1. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    Science.gov (United States)

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  2. Conceptual model: possible changes of the seawater uranium isotopic composition through time

    Energy Technology Data Exchange (ETDEWEB)

    Nowitzki, Hannah; Frank, Norbert; Fohlmeister, Jens [Universitaet Heidelberg (Germany)

    2015-07-01

    U behaves in seawater like a conservative element. More than 99% of the oceanic U content is {sup 238}U, whereas {sup 234}U is only present in trace amounts. As the residence time of U is significantly longer than the mixing time of the ocean, the ocean is well mixed with respect to U and its isotopic composition (Dunk 2002). Moreover, living corals incorporate U without isotopic fractionation. Therefore, the past seawater isotopic evolution of ({sup 234}U/{sup 238}U) can be accessed via U/Th age-dating of corals and the subsequent calculation of the initial ({sup 234}U/{sup 238}U) value. The isotopic ({sup 234}U/{sup 238}U) composition of seawater during the last 360 ka scatters around the modern seawater value (δ{sup 234}U ∼ (145±15) %, Henderson 2002). As these variations in the δ{sup 234}U value are rather small, a 'constant seawater isotopic composition hypothesis' is often used to validate U/Th ages of fossil corals. However, some authors find that the variability of the isotopic composition exceeds the expected range and suggest that it provides valuable information on variations in continental weathering and global run-off fluctuations or sea-level changes. This work will attempt to compare literature data of the seawater U isotopic composition to the results of a conceptual box-model of the oceanic U budget.

  3. Magnesium isotopic composition of the mantle

    Science.gov (United States)

    Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.

    2009-12-01

    Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium-aluminum-rich inclusions in the proto planetary disc is thus not required to explain the Mg isotopic composition of the Earth.

  4. Elemental and iron isotopic composition of aerosols collected in a parking structure

    International Nuclear Information System (INIS)

    Majestic, Brian J.; Anbar, Ariel D.; Herckes, Pierre

    2009-01-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) 2.5 μm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m -3 ) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 ± 0.03 per mille and + 0.18 ± 0.03 per mille for the PM 2.5 μm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  5. Stable isotope compositions of organic carbon and contents of organic carbon and nitrogen of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.

    2006-01-01

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. Accelerate mass spectrometer (AMS) 14 C ages on total OM for sediments collected from the Ngorongoro Crater Lake indicate that the sedimentation rate is approximately 17 cm/ka. The δ 13 C values from the 20 cm long core (short core) show a downcore increase, whereas that of 500 cm long core (long core), show two peaks enriched in 13 C and three peaks depleted in 13 C. A general downcore increase in the δ 13 C values for the short core suggests changes in the relative proportion of C 3 and C 4 fraction increasing downcore. Similarly, low and high peaks in the long core suggest changes in the relative proportion of C 3 and C 4 with low values having high proportion of C 3 type of material, probably indicating changes in precipitation and lake levels in the area. Deposition of OM depleted in 13 C took place during periods of high precipitation and high lake levels. Although high content of OC and nitrogen in some core sections are associated with elevated C/N ratio values, diagenetic alteration of isotope signature is unlikely to have caused OC and isotope enrichment in sections having high contents of OC and nitrogen. The OC isotope record from Lake Ndutu shows a general downcore decrease in δ 13 C values and contents of OC and nitrogen. (author)

  6. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  7. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  8. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  9. Isotopic composition of Danube water in the pre-delta section from the years 2009 - 2012

    Directory of Open Access Journals (Sweden)

    RANK Dieter

    2013-12-01

    Full Text Available The isotopic composition of river water in the Danube Basin is mainly governed by the isotopic composition of precipitation in the catchment area, evaporation effects play only a minor role. Short-term and long-term isotope signals from precipitation are thus transmitted through the whole catchment. The isotopic composition of Danube water in the Delta region so provides an integrated isotope signal for climatic/hydrological conditions and changes in the whole catchment. The aim of this investigation was to establish a representative isotope monitoring near the Danube Delta. The results showed that the Danube River is regarding isotope content fully mixed at the bifurcation of the Danube Delta arms. Therefore routine sampling at only one location in the pre-delta region should be sufficient to obtain a representative isotope record for the whole Danube Basin. The δ 18 O time series from November 2009 to May 2012 (sampling twice a month shows seasonal variations in the range of -9.8 ‰ ± 0.7 ‰ with a minimum in spring and a maximum in autumn. The tritium results exhibit the influence of short term contaminations due to human activities. The expected “environmental” tritium content of river water in Central Europe would be about 10 TU. During this investigation 3 H values up to 100 TU were observed in the pre-delta section. This indicates short terms releases of tritium from local sources such as nuclear power plants in the Danube river system.

  10. Magnesium isotopic composition of the Earth and chondrites

    Science.gov (United States)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  11. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  12. Experimental study on isotope fractionation of evaporating water of different initial isotopic composition

    International Nuclear Information System (INIS)

    Pooja Devi; Jain, A.K.; Rao, M.S.; Kumar, B.

    2014-01-01

    The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan. (author)

  13. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

    Science.gov (United States)

    Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre

    1987-01-01

    It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.

  14. Isotope Compositions Of Mekong River Flow Water In The South Of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Huynh Long; Le Danh Chuan; Nguyen Van Nhien; Tran Thi Bich Lien

    2008-01-01

    As a part of the Research Contract No. VIE/12569, isotope composition of Mekong river flow water in the South of Vietnam has been monitored to provide information on water origin and residence times, surface-groundwater exchange in the monitoring area. According to the primary results obtained, a seasonal variation as well as the dependence on local precipitation and on the river water level of isotopic composition of two distributaries of Mekong river water have been observed. At the same time a slight change on season of tritium in rivers water and the difference between tritium content in local rainy water and river water has been recorded. (author)

  15. Monitoring of carbon isotope composition of snow cover for Tomsk region

    Science.gov (United States)

    Akulov, P. A.; Volkov, Y. V.; Kalashnikova, D. A.; Markelova, A. N.; Melkov, V. N.; Simonova, G. V.; Tartakovskiy, V. A.

    2016-11-01

    This article shows the potential of using δ13C values of pollutants in snow pack to study the human impact on the environment of Tomsk and its surroundings. We believe that it is possible to use a relation between the isotope compositions of a fuel and black carbon for establishing the origin of the latter. The main object of our investigation was dust accumulated by the snow pack in the winter of 2015-2016. The study of dust samples included the following steps: determination of the total carbon content in snow pack samples of Tomsk and its surroundings, extraction of black carbon from the dust, as well as the determination of δ13C values of the total and black carbon accumulated in the snow pack. A snow survey was carried out on the 26th of January and on the 18th of March. The relative carbon content in the dust samples was determined by using an EA Flash 2000 element analyzer. It varied from 3 to 24%. The maximum carbon content was in the dust samples from areas of cottage building with individual heating systems. The δ13C values of the total and black carbon were determined by using a DELTA V Advantage isotope mass spectrometer (TomTsKP SB RAS). The isotope composition of black carbon corresponded to that of the original fuel. This fact allowed identifying the origin of black carbon in some areas of Tomsk.

  16. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  17. Measurement of plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Kim, J. S.; Shin, J. S.; Ahn, J. S.

    1998-01-01

    The technology of the analysis of plutonium isotopic ratio is independent of the measurement geometry and applicable to samples of physical and chemical composition. Three standard plutonium samples were measured in the HPGe system. The results showed that CRM 136 and CRM 137 containing 238 Pu(0.223%) and 238 Pu(0.268%) were 18.4% and 14.2% error and CRM 138 of 238 Pu(0.01%) was 76% error. However the analysis represented less than 1.6% and 9% error in the three standard samples of highly involved 239 Pu and 240 Pu. Therefore, gamma-ray spectroscopy is very effective in the plutonium isotope analysis, having greater than 10% in content

  18. A new method of accurate determination of isotopic composition and concentration of strontium in a spike solution used for geochronological works

    International Nuclear Information System (INIS)

    Yanagi, Takeru

    1990-01-01

    A new method of accurate determination of isotopic composition and concentration of a strontium-84 spike solution was devised for simultaneous determination of strontium contents and isotopic compositions in rocks and minerals by measuring strontium isotopic ratios in spiked samples. In this method, the isotopic composition of strontium in the spike were determined so as to minimize the sum of squares of deviations of spike strontium-84 concentrations which were calculated from measured isotopic ratios of strontium in five different mixtures of the spike and the standard solution. The method can eliminate all mass discriminations occurred during the measurements on a surface ionization mass spectrometer. The results were tested by measuring 87 Sr/ 86 Sr ratios of Eimer and Amend SrCO 3 and JB-1 geochemical reference material, and by determining the strontium content in JB-1. The measurements of strontium isotope ratios in spiked samples give average values of 0.708007±0.000052 and 0.70417±0.00004 for 87 Sr/ 86 Sr ratios of E and A SrCO 3 and JB-1, respectively. The strontium content in JB-1 was estimated at 457.1±1.3 ppm. These values are very close to reported respective values. (author)

  19. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    Science.gov (United States)

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  20. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  1. Metal Content and Stable Isotope Determination in Some Commercial Beers from Romanian Markets

    Directory of Open Access Journals (Sweden)

    Cezara Voica

    2015-01-01

    Full Text Available Characterization of beer samples is of interest because their compositions affect the taste and stability of beer and, also, consumer health. In this work, the characterizations of 20 Romanian beers were performed by mean of Inductively Coupled Plasma Mass Spectrometry (ICP-MS and Isotope Ratio Mass Spectrometry (IRMS in order to trace heavy metals and isotopic content of them. Major, minor, and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and influence yeast metabolism. Beside this, the presence of the C4 plants in the brewing process was followed. Our study has shown that the analyzed beers indicated the presence of different plant types used in brewing: C3, C3-C4 mixtures, and also C4, depending on producers. Also the trace metal content of each sample is presented and discussed in this study. A comparison of the beers quality manufactured by the same producer but bottled in different type of packaging like glass, dose, or PET was made; our results show that no compositional differences among the same beer type exist.

  2. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  3. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition

    Science.gov (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.

    2002-12-01

    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  4. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  5. The effect of natural weathering on the chemical and isotopic composition of biotites

    International Nuclear Information System (INIS)

    Clauer, N.; Bonnot-Courtois, C.

    1982-01-01

    The effect of progressive natural weathering on the isotopic (Rb-Sr, K-Ar, deltaD, delta 18 O) and chemical (REE, H 2 O + ) compositions of biotite has been studied on a suite of migmatitic biotites from the Chad Republic. During the early stages of weathering the Rb-Sr system is strongly affected, the hydrogen and oxygen isotope compositions change markedly, the minerals are depleted in light REE, the water content increases by a factor of two, and the K-Ar system is relatively little disturbed. During intensive weathering the K-Ar system is more strongly disturbed than the Rb-Sr system. Most of the isotopic and chemical modifications take place under nonequilibrium conditions and occur before newly formed kaolinite and/or smectite can be detected. These observations suggest that (a) 'protominerals' may form within the biotite structure during the initial period of weathering, and (b) only when chemical equilibrium is approached in the weathering profile are new minerals able to form. (author)

  6. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  7. The isotopic composition and content of sulphur in soils of Kansk-Achinsk fuel power generation complex

    International Nuclear Information System (INIS)

    Grinenko, L.N.; Grinenko, V.A.

    1991-01-01

    In the 1970s the first phase of a large coal-burning power complex was brought into operation in the Kansk-Achinsk region of the Soviet Union. The target consumption for this complex is 50 x 10 6 tonnes yr -1 and most of this is supplied from local open-pit mines. The emission of SO 2 from this plant caused concern as to its impact on the local environment and prompted a study of the sulphurous depositions. Monitoring the areal extent and distribution of the deposited S and its fate in the environment can be a mammoth task involving continual measurement of many biological and physical factors including atmospheric concentrations, wind speed, emission rates, and forms of S in soil, plants, and animals. A possible alternative for evaluating the amount, distribution, and fate of the emitted S in the ecosystem is stable sulphur isotope analyses since different coals and SO 2 from their combustion often have δ 34 S values differing from those of soils and plants in the region. The study reported here was initiated to see if the δ 34 S values for emissions differed significantly from the natural environment. Assuming that the difference was sufficient, a second objective was to document changes that have occurred in the sulphur isotope compositions of the environmental receptors over time. Soil samples from 23 sites were collected and analysed for S content and δ 34 S values. Coal, cinder and ash collected from furnaces and SO 2 from the combustion products were similarly analysed. Figs and tabs

  8. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  9. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  10. Isotope composition and uranium content in the rivers Naryn and Mailuu-Suu

    International Nuclear Information System (INIS)

    Vasiliev, I. A.; Alekhina, V. M.; Orozobakov, T.; Mamatibraimov, S.

    2002-01-01

    To solve the atomic problem, including the creation of an atomic weapon, one must embark on an intensive exploration and mining of radioactive raw materials, first among which uranium, together with other materials and metals. The acquisition of all these materials has thus been accompanied by the creation of a great deal of production and storage wastes and other refuse from plants, leading to many problems of protecting the environment from radioactive and other hazardous metals and materials. And so, as a result of the extensive mining and processing of radioactive and other raw materials that had been necessary for the atomic industry, in locations like Kara-Balty, Mailuu-Suu, Kavak, Kadamzhay and other places, a series of radioactive and hazardous tailings and dumps has been generated in the Kyrgyz Republic. The toxic ingredients from the dumps migrate and mix together with the ground waters that leach the tailings. However, how these waters migrate both in space and time have not been sufficiently studied; and, so, in general, we cannot forecast the propagation of these hazards. In the usual estimation of the scale of migration from uranium plants, only the total uranium content in the ground water is used. But this does not show natural or technogenic components; and it is obvious that the danger from the plants need only be characterized by the technogenic components. To solve this problem, one can employ the phenomenon where there is a natural separation in the fraction of 234 U and 238 U present in nature and as a result of technological processes. The essence of this understanding is that, as uranium transitions from solid form into a liquid, such as its dissolution in ground water, it undergoes isotope enrichment, i.e. hydrogenic uranium is enriched with 234 U compared to 238 U.The essence of this understanding is that, as uranium transitions from solid form into a liquid, such as its dissolution in ground water, it undergoes isotope enrichment, i

  11. Review of data of oxygen and hydrogen isotope composition in thermal waters in China

    International Nuclear Information System (INIS)

    Fan Zhicheng; Wang Jiyang

    1988-01-01

    Based on the data of δD and δ 18 O content from more than 600 water samples, this paper reviews the stable isotope composition of thermal waters in China. Data to be used in this paper were mostly collected from published literatures with a few by authors. 9 figs, 2 tabs

  12. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  13. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  14. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  15. Spectral determination of thallium isotope composition

    International Nuclear Information System (INIS)

    Polyanskij, V.A.; Turkin, Yu.I.; Yakimova, N.M.

    1986-01-01

    The photoelectric non-standard method for determination of the thallium isotope composition is developed. The analysis is carried out by measuring the brightness of the Hfs components in the line Tl Iλ535.04 nm. The relative standard deviation of the results of the isotope analysis of thallium as metal is 0.02 and of thallium salts - 0.02-0.05

  16. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  17. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  18. Tracing anthropogenic thallium in soil using stable isotope compositions.

    Science.gov (United States)

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  19. Variation in the isotopic content of precipitation with altitude

    International Nuclear Information System (INIS)

    Stowhas, L.; Silva, C.; Moser, H.; Stichler, W.

    1975-03-01

    Monthly precipitation and single storms have been collected during three years at 12 stations along a W-E profile in Chile, going from Juan Fernandez Islands to Valparaiso, Santiago and Infiernillo in the Andes, and analysed for their deuterium content. The deltaD values are correlated with the altitude of the station, the mean temperature - which also largely depends on the altitude - and the distance from the sea. The correlation parameters show however important variations from year to year and even more from month to month. For instance, in the stretch Santiago (520 m a.s.l.) - La Parva (2680 m) the mean isotopic gradient with altitude were: -1.84 deltaD per mil/100 m in 1970, -1.09 in 1971 and -2.0 in 1972. The low value observed in 1971 could be a consequence of the peculiar weather characteristics of this unusually dry year. In the stretch from the coast to Santiago the trend of the isotopic composition of precipitation is more complicated, because the so-called continental effect is superimposed to the altitude effect. The deuterium content variations have been also determined in snowpack profiles at La Parva station. The results show that snow melting occurs slowly at the bottom during the whole winter, at the expenses of the heat stored during summer in the soil. The melting of the surface snow layers only starts at the end of the winter and then proceeds very fast

  20. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  1. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  2. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    Science.gov (United States)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  3. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Juelich, Germany

    International Nuclear Information System (INIS)

    Freyer, H.D.

    1978-01-01

    Data are presented on nitrogen isotope composition in ammonium and nitrate from rain-water collected over 2 years in an interior area at Juelich, Germany. The seasonal trends in these data are discussed relative to natural and anthropogenic emissions of nitrogen compounds which additionally have been measured or estimated in their isotope composition, e.g. ammonia from animal urine, fuel combustion, fertilizer use and organic soil nitrogen, and natural and anthropogenic nitric oxides from automobile exhausts as well. The 15 N content of Juelich rain ammonium is found to be different from values of Hoering (1957) and Moore (1974) and from other rain samples collected in coastal areas. (Auth.)

  4. Diets of introduced predators using stable isotopes and stomach contents

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  5. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  6. Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins.

    Directory of Open Access Journals (Sweden)

    Michael J Polito

    Full Text Available Stomach content analysis (SCA and more recently stable isotope analysis (SIA integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica and Gentoo (P. papua penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1 selecting appropriate prey sources, 2 weighting combinations of isotopically similar prey in two-source mixing models and 3 refining predicted contributions of isotopically similar prey in multi-source models.

  7. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    Garde, A.A.

    1979-01-01

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta 13 C and -9.9+-1.5 per 1000 delta 18 O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta 13 C and delta 18 O. Five 13 C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13 C and delta 18 O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  8. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  9. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  10. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  11. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  12. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  13. Isotopic composition of primary xenon and the fission of Pu-244

    Energy Technology Data Exchange (ETDEWEB)

    Levskii, L K

    1983-05-01

    The hypothesis that the origin of xenon on earth is due to the fission of uranium and/or transuranium elements is examined. The isotopic composition of primary xenon on earth is calculated using a model (Levskii, 1980) of the isotopic composition of rare gases which is based on the hypothesis of the heterogeneity of the isotopic composition of the elements of the solar system. The isotopic composition of fission-produced xenon in the atmosphere and solid earth is determined to correspond to the abundance of xenon isotopes as a result of the spontaneous fission of Pu-244 (half-life of 8.2 x 10 to the 7th years). The amount of fission-produced xenon in the atmosphere is shown to amount to about 30 percent (Xe-136). Under certain conditions, the degree of the degassing of the solid earth for xenon is 25 percent, which corresponds to a ratio of Kr-84/Xe-130 45 for the earth as a whole.

  14. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  15. Determination of uranium, thorium and radium isotope ratio

    International Nuclear Information System (INIS)

    Sokolova, Z.A.

    1983-01-01

    The problems connected with the study of isotope composition of natural radioactive elements in natural objects are considered. It is pointed out that for minerals, ores and rocks the following ratios are usually determined: 234 U/ 238 U, 230 Th/ 238 U, 226 Ra/ 238 U, 228 Th/ 230 Th, 228 Th/ 232 Th and lead isotopes; for natural waters, besides the enumerated - 226 Ra/ 228 Ra. General content of uranium and thorium in the course of isotope investigations is determined from separate samples, most frequently by the X-ray spectral method, radium content - by usual radiochemical method, uranium and radium content in waters -respectively by calorimetric and emanation methods. Radiochemical preparation of geologic powder and aqueous samples for isotope analysis is described in detail. The technique of measuring and calculating isotope ratios (α-spectrometry for determining isotope composition of uranium and thorium and emanation method for determining 226 Ra/ 228 Ra) is presented

  16. Environmental isotopes, chemical composition and groundwater recharge in ataqa-north galala region, Egypt

    International Nuclear Information System (INIS)

    Shohaib, R.EL-SH.; Nada, A.; Safie El-Din, A.

    1991-01-01

    Groundwater samples collected from a number of localities in ataqa-north galala region were subjected to various chemical and isotopic analyses. The seasonal fluctuations in hydrochemical composition reveal that the marin Mg Cl 2 type is dominant in the aquifer through-out the year. The Ca Cl 2 water type of marine origin appears in January in wells W 3 and W 7 which lie close to sukhna fault. Recharge to the aquifer is reflected by fluctuation in the water level and fluctuations of the hydrochemical composition of the water. The results of the isotopic content of the water samples indicate that the connate marine water has been subjected to dilution and mixing by the meteoric water invasion since the pliestocene pluvial period (paleowater) and recent meteoric water precipitation. The bulk of the stored water ( about 80%) is paleowater and the recent water (20%) are percolate ones derived from the rain-fall at high latitudes.4 fig. 1 tab

  17. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    Directory of Open Access Journals (Sweden)

    P. Benettin

    2018-05-01

    Full Text Available Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  18. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  19. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  20. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  1. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    Science.gov (United States)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  2. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  3. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  4. What Affects the Isotopic Composition of Precipitation - A New Interpretation?

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A. [Nuclear Research Center, Negev, Beer Sheva (Israel)

    2013-07-15

    Rainfall events were sampled in high resolution for stable isotope analyses during four rainy seasons in the central negev of Israel. Each sample is equivalent to 1-2 mm of rain. High variability in the isotopic composition was found in fractions of rain during storms. Two modes of isotopic distribution were found. The first is a wave shaped distribution, where isotopic compositions showed enriched to depleted graded changes and vice versa. The second mode is a step function where each rain cell displayed a constant {delta}{sup 18}O value, but varied greatly from the other rain cells. New interpretation suggests that during the transport of the air parcel system three processes can occur. The first process is a complete blending among the rain cells. The second is a partial isotopic mixing between the rain cells. Finally the third case is when each rain cell maintains its own isotopic values separate from the other rain cells. The third case of no mixing showed unexpected results due to the high air turbulence, vertically and horizontally. There was no evidence of complete mixing among the rain cells of identical air parcel systems. The processes in the air parcel trajectory itself suggested here is put forward as a new way to explain the changes in the isotopic composition during the rain. (author)

  5. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  6. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  7. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    Science.gov (United States)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  8. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Science.gov (United States)

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Transition of the Isotopic Composition of Leaf Water to the Isotopic Steady State in Soybean and Corn

    Science.gov (United States)

    Kim, K.; Lee, X.; Welp, L. R.

    2007-12-01

    The isotope composition of leaf water (δL) plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. The objective of this study is to improve our understanding of environmental and biological controls on the transition of δL to steady state through laboratory experiments. Plants (soybean, Glycine max; corn, Zea mays) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. In the first set of experiments, humidity inside the container was saturated to mimic dew events in field conditions. In the second set, humidity was controlled at approximately 95%. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of δL in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of δL differ between the C3 and C4 photosynthesis pathways.

  10. The isotopic composition of CO in vehicle exhaust

    NARCIS (Netherlands)

    Naus, S.; Röckmann, T.; Popa, M.E.

    2018-01-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO 2 isotopes, and the CO:CO 2 , CH 4 :CO 2 and H 2 :CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench.

  11. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    Science.gov (United States)

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  12. Application of Environmental Isotopes in Hydrological Studies Along the River Nile Valley, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Nada, A. A. [Site and Environmental Dept. NCNSRC, Atomic Energy Authority, Cairo (Egypt)

    2013-07-15

    This paper reviews some of the contributions of isotope techniques to better understanding hydrological problems in Egypt and the Nile basin. The stable isotope composition of precipitation shows considerable variations both in time and space since it is controlled by climatic factors. Surface waters became enriched in deuterium and oxygen-18 relative to their initial isotopic composition as losses by evaporation occur. The GNIP sampling stations at Entebbe and Addis Ababa, which are located at the source of the Nile River, present relatively depleted isotopic contents. Assuming that the central Africa runoff (White Nile downstream from Sudan) represents 30% of the natural discharge of Egypt, and the remaining 70% is derived from Ethiopia (Blue Nile), we obtain a composite depleted stable isotope composition of the river Nile reaching upper Egypt under natural conditions (before the construction of the Aswan High Dam). Stable isotopes were used to estimate the evaporation rate from Lake Nasser, based on the isotopic content of the lake water. The lake can be divided into two sectors: the first sector, with remarkable vertical gradient in O-18 and deuterium, and a second sector, characterized by a lower vertical isotopic gradient. In order to detect this effect, surface Nile water samples have been collected at Cairo after a heavy storm event covering all Egypt at the beginning of November 1994, characterized by very negative deuterium and oxygen-18 contents. The isotopic content of Nile water samples fluctuated and slightly changed with time. The variation of the bomb tritium response of the Nile has been reconstructed using a model based on the contents in the catchment areas of the Nile. Pre-bomb tritium content in the Nile was about 5 TU, reaching a maximum level during the early sixties of about 500 TU. At present the tritium level content of the Nile is about 6 TU. (author)

  13. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  14. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  15. Monitoring of chemical and isotopic composition of the Euphrates river in Syria

    International Nuclear Information System (INIS)

    Kattan, Z.

    2008-11-01

    The ratios of stable isotopes ( 18 O and 2 H), tritium content, together with the chemical composition of major ions of the Euphrates and Balikh (Euphrates tributary) Rivers, and the groundwaters of four wells drilled close to the Euphrates River course, were measured on a monthly basis. The Euphrates River water was monitored at twelve stations along its course in Syria during the period from January 2004 to December 2006, whereas those of the Balikh and groundwaters were only investigated during 2005. Although, the spatial variations of heavy stable isotope concentrations are moderated with respect to other large rivers in the world, the concentrations of these isotopes increase generally downstream the Euphrates River, with a sharp enrichment at Al-Assad Lake. This sharp increase could be explained by the effect of direct evaporation from the river and its tributaries; and the effect of drainage return flows of irrigation waters, isotopically more enriched. Enrichment of stable isotopes in the Euphrates River water was used as a direct indicator of evaporation. Based on an experimental evaporation result of a Euphrates water sample and the integral enrichment of heavy stable isotopes in the Euphrates River system, the amount of water losses by evaporation from Al-Assad Lake was estimated to be about 1.26 to 1.62 billion m''3, according to 18 O and deuterium ( 2 H), respectively. This amount represents about 12-16% of the renewable surface water resources in the country. (author)

  16. Correlates of elemental-isotopic composition of stream fishes: the importance of land-use, species identity and body size.

    Science.gov (United States)

    Montaña, C G; Schalk, C M

    2018-04-01

    The isotopic (δ 13 C and δ 15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ 13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ 15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources. © 2018 The Fisheries Society of the British Isles.

  17. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    influences the isotopic composition at the study site. A simple model of evaporation on falling rain was applied with the aim to reproduce observational data and show the potential influence of changing humidity conditions on precipitation compositions. The rather simple model approach did not fully explain...

  18. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  19. Neodymium isotopic variations in seawater

    Science.gov (United States)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  20. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  1. High burn-up plutonium isotopic compositions recommended for use in shielding analysis

    International Nuclear Information System (INIS)

    Zimmerman, M.G.

    1977-06-01

    Isotopic compositions for plutonium generated and recycled in LWR's were estimated for use in shielding calculations. The values were obtained by averaging isotopic values from many sources in the literature. These isotopic values should provide the basis for a reasonable prediction of exposure rates from the range of LWR fuel expected in the future. The isotopic compositions given are meant to be used for shielding calculations, and the values are not necessarily applicable to other forms of analysis, such as inventory assessment or criticality safety. 11 tables, 2 figs

  2. Hydrogen-isotopic composition of some hydrous manganese minerals

    International Nuclear Information System (INIS)

    Hariya, Y.; Tsutsumi, M.

    1981-01-01

    Initial data on the hydrogen-isotopic compositions in hydrous Mn minerals from various occurrences fall in a wide range from -298 to -84per thousand, relative to SMOW. deltaD-values of todorokite and cryptomelane from Tertiary deposits show -89 and -150per thousand. 10 A-manganite and delta-MnO 2 from deep-sea nodules have relatively restricted deltaD-values ranging from -96 to -84per thousand. The deltaD-values for manganese bog ores from recent hot springs show almost -105per thousand. It is recognized that the isotopic values obtained for the deep-sea nodules and recent bog ores are slightly different ranged. Manganite and groutite are unique in their hydrogen-isotopic compositions, having the most depleted deltaD-values ranging from -298 to -236per thousand. MnO(OH) minerals are more deuterium-depleted hydrous minerals than any other hydrothermal minerals from various ore deposits. Hydrogen-isotope fractionation factors between manganite and water were experimentally determined to be 0.7894, 0.7958 and 0.8078 at 150 0 , 200 0 and 250 0 C respectively. The present experimental results indicate that if manganites were formed at temperatures below 250 0 C, under isotopic equilibrium conditions most of the manganite mineralization in the Tertiary manganese deposits must have precipitated from meteoric hydrothermal solutions. (Auth.)

  3. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  4. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    Dirican, A.; Acar, Y.; Demircan, M.

    2002-01-01

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ 18 O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ 18 O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ 18 O relation of event, daily precipitation and water vapour were defined

  5. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  6. Isotopic meteoric line for Colombia

    International Nuclear Information System (INIS)

    Rodriguez N, Cesar O

    2004-01-01

    Isotope analyses from representative rainfall samples taken from different areas in Colombia were processed to yield the meteoric line. Stable isotope composition in precipitation reflects the effects of temperature, altitude and of the continental site, being affected by different sources of atmospheric humidity over the Colombian territory. There is a seasonal variation in isotopic composition of precipitation with grater σ deviation during the rainy season and lower values in the dry season. In coastal areas the variation is smaller and is more pronounced than at continental stations. Correlation between altitude and isotope content led to equations, which indicate, on a regional level, a change in isotopic composition with altitude, of about 0.5 σ units per 200 m, for O 18 and 4 σ units per 200 m for H 2 . Such equations may be used to identify the original altitude of precipitation water, in hydrological surface and groundwater studies. Meteoric line and the concepts derived from the resulting equations presented in this paper may be applied to the interpretation of isotope analysis in future hydrological studies, particularly in areas without available data

  7. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    Science.gov (United States)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  8. Measurements of the isotopic composition of galactic cosmic rays

    International Nuclear Information System (INIS)

    Herrstroem, N.Y.

    1985-01-01

    The galactic cosmic-ray boron and carbon isotopic composition has been measured. The boron measurement is the first ever made in nuclear emulsion. The carbon measurement has substantially improved the statistical assuracy in the determination of the 13 C abundance as compared to an earlier measurement using the same technique. Mass-spectra of cosmic-ray carbon and oxygen in different zenith angle intervals have been compared with calculated spectra. The method makes it possible to study experimentally the atmospheric influence on the primary cosmic-ray isotopic composition. Photometric measurements on fragments from oxygen-induced interactions in nuclear emulsion have been made. Accurate charge assignments have been made on all heavy fragments which has made it possible to study the interaction exclusively event-by-event. Measurements on the isotopic composition of primary cosmic-ray neom have been made. The data are from the Danish-French instrument on the HEAO-3 satellite. The rigidity dependent filtering of the cosmic rays by the Earth's magnetic field has been used. The energy dependence of the 22 Ne/ 20 Ne-ratio and its astrophysical implications are discussed. (Author)

  9. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  10. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  11. Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation.

    Science.gov (United States)

    Ma, Yun-Qi; Peng, Zhang-Kuang; Yang, Jian; Xiao, Ying-Kai; Zhang, Yan-Ling

    2017-12-01

    As a stable isotope, boron plays an important role in hydrogeology, environmental geochemistry, ore deposit geochemistry and marine paleoclimatology. However, there is no report of boron isotopic composition in gypsum. This is mainly confined to complete dissolution of Gypsum by water or acid. In this study, gypsum was converted to calcium carbonate (CaCO 3 ) with ammonium bicarbonate(NH 4 HCO 3 ) by two steps at 50°C. In every step, the mass ratio of NH 4 HCO 3 /CaSO 4 ·2H 2 O was twice, and conversion rate reached more than 98%. Converted CaCO 3 was totally dissolved with hydrochloric acid (the dissolution rate was over 99%). In order to overcome the difficulties of the matrix interference and the detection limit of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), we use Amberlite IRA 743 resin to purify and enrichment the boron at first, then eluting boron from the resin with 10mL 0.1mol/L hydrochloric acid at 75°C. The boron isotopic composition of natural gypsum samples was determined using positive thermal ionization mass spectrometry (P-TIMS). The boron isotopic composition of gypsum may be an excellent indicator for the formation environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    Science.gov (United States)

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  13. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  14. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  15. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089.......The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...... the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...

  16. Pb isotopic composition of the atmosphere of the Sao Paulo city, Brazil, and isotopic characterization of some pollutant sources

    International Nuclear Information System (INIS)

    Aily, C.; Babinski, M.; Ruiz, I.R.; Sato, K

    2001-01-01

    Lead isotopes are known to be good tools for surveying lead origin in atmospheric samples (Chow et al., 1975). Lead has four naturally occurring stable isotopes: 206 Pb, 207 Pb, 208 Pb and 204 Pb. The first three isotopes are end products of radioactive decay chains from 238 U, 235 U and 232 Th, respectively, and the last one is non-radiogenic. Therefore, their abundance and the ratios among the four isotopes gradually change with time. Lead in the atmosphere comes from various sources, such as leaded gasoline, industrial emissions and coal combustion. Thus, lead isotope ratios different from those of the mother rock in the region are often observed in the atmosphere (Tatsumoto and Patterson, 1963). Lead is emitted to the atmosphere in fine particles, which can be transported within air masses for very long distances, e. g. from mid latitude regions to the Artic and Antarctica (Sturges and Barrie, 1989). Lead isotopes have been used to trace the pollutant sources in many cities of the world. However, a systematic study using this methodology has not been done in any Brazilian city. The main purpose of the present work is to characterize the Pb isotope composition in the atmosphere in Sao Paulo city, and suggest the possible pollutant sources. For our study lead isotopes were measured in different samples: aerosols and rainwater which would yield the Pb isotope composition of the atmosphere. Samples of gasoline and ethanol, gutter sweepings, soot from vehicle exhaust pipes, and filters containing particulate material from industrial emissions were also analyzed, since they were considered potential pollutant sources of the atmosphere. In order to obtain the local geogenic Pb isotopic composition we also analyzed rock and K-feldspar samples. Lead concentrations were only determined on aerosols and rainwater samples (au)

  17. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  18. First measurements on the core and edge isotope composition using the JET isotope separator neutral particle analyser

    International Nuclear Information System (INIS)

    Bettella, D; Murari, A; Stamp, M; Testa, D

    2003-01-01

    Direct measurements of tokamak plasmas isotope composition are in general quite difficult and have therefore been very seldom performed. On the other hand, the importance of this measurement is going to increase, as future experiments will be progressively focused on plasmas approaching reactor conditions. In this paper, we report for the first time encouraging experimental evidence supporting a new method to determine the radial profile of the density ratio n H /(n H + n D ), based on neutral particle analyser (NPA) measurements. The measurements have been performed in JET with the ISotope SEParator (ISEP), a NPA device specifically developed to measure the energy spectra of the three hydrogen isotopes with very high accuracy and low cross-talk. The data presented here have been collected in two different experimental conditions. In the first case, the density ratio has been kept constant during the discharge. The isotope ratio derived from the ISEP has been compared with the results of visible spectroscopy at the edge and with the isotope composition derived from an Alfven eigenmodes active diagnostic (AEAD) system at about half the minor radius for the discharges reported in this paper. A preliminary evaluation of the additional heating effects on the measurements has also been carried out. In the second set of experiments, the isotope composition of deuterium plasmas has been abruptly changed with suitable short blips of hydrogen, in order to assess the capability of the method to study the transport of the hydrogen isotope species. Future developments of the methodology and its applications to the evaluation of hydrogen transport coefficients are also briefly discussed. The results obtained so far motivate further development of the technique, which constitutes one of the few candidate diagnostic approaches viable for ITER

  19. Hydrochemical and Isotopic Composition of The Water Resources In The Po Delta Plain (northern Italy) and Its Environmental Impact

    Science.gov (United States)

    Rapti Caputo, D.; Martinelli, G.

    Groundwater samples from wells were collected to examine the hydrochemical char- acteristics and isotopic composition of the water resources in the Ferrara area (delta Po plain). Electrical conductivity (EC), pH, total dissolved solid (TDS), temperature of the water were directly measured in the field. Subsequently, in the laboratory, the samples were analysed for the determination of major ions such as Ca, Mg, K, Na, SO4, Cl, NO3 and HCO3. Also, oxygen, deuterium and tritium isotopic composition, of the same samples were analysed for the isotopic characterisation of the waters. Three principal water groups can be distinguished on the basis of the distribution of the values of 18O and 2H. The first group (A), include the waters from the wells that exploit the unsatured shallow aquifer, developing in mainly sandy or sandy-silty lenses. These are large diameter wells, whose depth does not exceed the 7 m, while their piezometric level is at depth varying between 2 and 3 m from the soil surface. The isotopic composition of such wells is strongly affected by meteorological events (local recharge). Indeed, the main supply to the aquifer occurs through infiltration, mainly from rainwaters and, secondly, from the waters contained in the drainage channels. The hydrochemical characteristics of the waters coming from those wells present a very high sulphate concentration (up to 508 mg/l). To the second group (B) belong the waters with an 18O and 2H content lower than the previously described group and varying, respectively, between -9.6 Ferrara plain (Po and Po di Volano rivers). In group C, are the waters of the Po River, where low values can be 1 observed both in oxygen and deuterium contents, with values equal to -9.90 s´ 0.03 and -71.3 s´ 0.9, respectively.

  20. Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements

    Science.gov (United States)

    Falk, E. S.; Guo, W.; Paukert, A. N.; Matter, J. M.; Mervine, E. M.; Kelemen, P. B.

    2016-11-01

    Carbonate formation at hyperalkaline springs is typical of serpentinization in peridotite massifs worldwide. These travertines have long been known to exhibit large variations in their carbon and oxygen isotope compositions, extending from apparent equilibrium values to highly depleted values. However, the exact causes of these variations are not well constrained. We analyzed a suite of well-characterized fresh carbonate precipitates and travertines associated with hyperalkaline springs in the peridotite section of the Samail ophiolite, Sultanate of Oman, and found their clumped isotope compositions vary systematically with formation environments. Based on these findings, we identified four main processes controlling the stable isotope compositions of these carbonates. These include hydroxylation of CO2, partial isotope equilibration of dissolved inorganic carbon, mixing between isotopically distinct carbonate end-members, and post-depositional recrystallization. Most notably, in fresh crystalline films on the surface of hyperalkaline springs and in some fresh carbonate precipitates from the bottom of hyperalkaline pools, we observed large enrichments in Δ47 (up to ∼0.2‰ above expected equilibrium values) which accompany depletions in δ18O and δ13C, yielding about 0.01‰ increase in Δ47 and 1.1‰ decrease in δ13C for every 1‰ decrease in δ18O, relative to expected equilibrium values. This disequilibrium trend, also reflected in preserved travertines ranging in age from modern to ∼40,000 years old, is interpreted to arise mainly from the isotope effects associated with the hydroxylation of CO2 in high-pH fluids and agrees with our first-order theoretical estimation. In addition, in some fresh carbonate precipitates from the bottom of hyperalkaline pools and in subsamples of one preserved travertine terrace, we observed additional enrichments in Δ47 at intermediate δ13C and δ18O, consistent with mixing between isotopically distinct carbonate end

  1. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    International Nuclear Information System (INIS)

    Salamalikis, V.; Argiriou, A.A.; Dotsika, E.

    2016-01-01

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R"2 > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  2. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Salamalikis, V., E-mail: vsalamalik@upatras.gr [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Argiriou, A.A. [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Dotsika, E. [Stable Isotope Unit, Institute of Nanoscience and Nanotechnology, National Center of Scientific Research ‘Demokritos’, Ag. Paraskevi Attikis, 15310 Athens (Greece)

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R{sup 2} > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  3. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  4. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    Science.gov (United States)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga

  5. 61 stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    Mgina

    isotope record from Lake Ndutu shows a general downcore decrease in δ. 13C values ... in bulk δ13C of the terrestrial biomass in the tropics may ... CO2, temperature, moisture conditions and ... A map showing location of sampling sites of Ngorongoro Crater, Lake Ndutu and .... the Lakes Makat and Masek records cannot.

  6. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  7. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  8. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  9. SIMSISH Technique Does Not Alter the Apparent Isotopic Composition of Bacterial Cells

    Science.gov (United States)

    Chapleur, Olivier; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Mazéas, Laurent; Bouchez, Théodore

    2013-01-01

    In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine – iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific 13C uptake during labelled methanol anaerobic degradation. PMID:24204855

  10. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    International Nuclear Information System (INIS)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I.

    2015-01-01

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  11. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  12. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  13. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  14. 18O, 2H and 3H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    International Nuclear Information System (INIS)

    Hendriksson, N.; Karhu, J.; Niinikoski, P.

    2014-12-01

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ 18 O, - 82.3 per mille and -80.3 per mille for δ 2 H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ 2 H = 7.45 star δ 18 O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ 18 O and δ 2 H values may be related to climatic variability while the gradual decline observed in the 3 H data is attributed to the still continuing decrease in atmospheric 3 H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates of the evaporated Baltic Sea water

  15. Comparative determination of sucrose content in sugar beet by polarimetric and isotope dilution methods

    Energy Technology Data Exchange (ETDEWEB)

    Malec, K; Szuchnik, A [Institute of Nuclear Research, Warsaw (Poland); Rydel, S; Walerianaczyk, E [Instytut Przemyslu Cukrowniczego, Warsaw (Poland)

    1976-01-01

    The comparative determination of sucrose content in sugar beets has been investigated by following methods: polarimetric, direct isotope dilution and double carrier-isotope dilution analysis. Basing upon the obtained results it has been ascertained, that in the case of worse quality beets the polarimetric determinations differ greatly from isotopic data.

  16. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  17. Isotopic composition of chemical elements in natural cycles

    International Nuclear Information System (INIS)

    Wetzel, K.

    1977-12-01

    Mathematical models developed for planning and evaluating tracer experiments have been applied in investigations of the isotopic composition of carbon in its natural cycle through various periods of the last billion years. The influence on the natural isotope ratio due to industrial combustion of fossil fuels is shown. In order to describe regional differences from the global behaviour of carbon a parameter has been introduced, which represents the time needed for one total exchange of the atmosphere in a certain region with the global atmosphere

  18. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  19. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  20. Isotopic separation of nitrogen 15. Influence of the gaseous phase composition

    International Nuclear Information System (INIS)

    Lacoste, Germain; Routie, Rene; Mahenc, Jean

    1977-01-01

    A study has been made on the gas phase composition effect on the isotopic separation of nitrogen 15 for the two HNO 3 -NO and N 2 O 3 -NO systems. It was shown that the changes in composition of the gas phases could account for the increase in the overall separation; most accuracy, measurements of isotopic concentration along the separation column and of total enrichment exhibit how important are the reactions of oxydo-reduction between the two phases in such process [fr

  1. Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece).

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, Apostolos; Godelitsas, Athanasios

    2014-04-01

    The present study involves an integration of the hydrogeological, hydrochemical and isotopic (both stable and radiogenic) data of the groundwater samples taken from aquifers occurring in the region of northeastern Peloponnesus. Special emphasis has been given to health-related ions and isotopes in relation to the WHO and USEPA guidelines, to highlight the concentrations of compounds (e.g., As and Ba) exceeding the drinking water thresholds. Multivariate statistical analyses, i.e. two principal component analyses (PCA) and one discriminant analysis (DA), combined with conventional hydrochemical methodologies, were applied, with the aim to interpret the spatial variations in the groundwater quality and to identify the main hydrogeochemical factors and human activities responsible for the high ion concentrations and isotopic content in the groundwater analysed. The first PCA resulted in a three component model, which explained approximately 82% of the total variance of the data sets and enabled the identification of the hydrogeological processes responsible for the isotopic content i.e., δ(18)Ο, tritium and (222)Rn. The second PCA, involving the trace element presence in the water samples, revealed a four component model, which explained approximately 89% of the total variance of the data sets, giving more insight into the geochemical and anthropogenic controls on the groundwater composition (e.g., water-rock interaction, hydrothermal activity and agricultural activities). Using discriminant analysis, a four parameter (δ(18)O, (Ca+Mg)/(HCO3+SO4), EC and Cl) discriminant function concerning the (222)Rn content was derived, which favoured a classification of the samples according to the concentration of (222)Rn as (222)Rn-safe (11 Bq·L(-1)). The selection of radon builds on the fact that this radiogenic isotope has been generally related to increased health risk when consumed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions

    International Nuclear Information System (INIS)

    Hu, Xin; Sun, Yuanyuan; Ding, Zhuhong; Zhang, Yun; Wu, Jichun; Lian, Hongzhen; Wang, Tijian

    2014-01-01

    Lead levels and isotopic compositions in atmospheric particles (TSP and PM 2.5 ), street dust and surface soil collected from Nanjing, a mega city in China, were analyzed to investigate the contamination and the transfer of lead in urban environmental compartments. The lead contents in TSP and PM 2.5 are significantly higher than them in the surface soil and street dust (p  206 Pb/ 207 Pb vs. 208 Pb/ 206 Pb and 206 Pb/ 207 Pb vs. 1/Pb imply that the street dust and atmospheric particles (TSP and PM 2.5 ) have very similar lead sources. Coal emissions and smelting activities may be the important lead sources for street dust and atmospheric particles (TSP and PM 2.5 ), while the deposition of airborne lead is an important lead source for urban surface soil. - Highlights: • Lead levels and isotope ratios in atmospheric particles, street dust and surface soil. • Significant enrichment of lead in atmospheric particles was observed. • Street dust and atmospheric particles have similar lead sources. • Endmembers of soil lead differ from street dust and atmospheric particles. • Airborne lead poses the main risks to unban environmental quality. - Transfer of airborne particle bound lead into street dust and surface soil in unban environmental based on lead levels and isotopic compositions

  3. Improvements to SFCOMPO - a database on isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, Kenya; Nouri, Ali; Mochizuki, Hiroki; Nomura, Yasushi

    2003-01-01

    Isotopic composition is one of the most relevant data to be used in the calculation of burnup of irradiated nuclear fuel. Since autumn 2002, the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) has operated a database of isotopic composition - SFCOMPO, initially developed in Japan Atomic Energy Research Institute. This paper describes the latest version of SFCOMPO and the future development plan in OECD/NEA. (author)

  4. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  5. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  6. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Cortecci, G.; Dinelli, E.; Boschetti, T. [University of Bologna (Italy). Dept. of Earth and Geological Environmental Sciences; Bolognesi, L. [International Institute for Geothermal Research, Pisa (Italy); Ferrara, G. [University of Pisa (Italy). Dept. of Earth Sciences

    2001-02-01

    Twenty-two cold and thermal waters from shallow wells sampled in June 1995 in the Vulcano Porto area, Vulcano Island, were analyzed for major and minor chemical constituents, oxygen and hydrogen isotopes and tritium contents, and sulfur isotopes in the dissolved sulfate. The sulfur isotopic composition of the dissolved sulfate ranges between + 0.6 and + 6.5 per mille (mean + 3.7{+-}1.7 per mille), and is interpreted as deriving mainly from fumarolic SO{sub 2} undergoing oxidation in deep and shallow aquifers, with possible minor contributions from oxidation of H{sub 2}S. Dissolution of secondary anhydrite may have been a minor source of the isotopically heavy aqueous sulfate in the cold groundwaters. The chemical and isotopic features of the waters support previous interpretative hydrologic models of Vulcano Porto, which comprise a number of aquifers fed basically by two major end-members, i.e. meteoric water and crater-type fumarolic inputs, the latter in the form of absorbed emissions or condensate. These data, along with the sulfur isotopes of aqueous sulfate, exclude involvement of seawater in the recharge of the groundwater system of the island. (author)

  7. Isotopic compositions of potassium and calcium in magnetic spherulesfrom marine sediments

    International Nuclear Information System (INIS)

    Shimarura, T.; Yanagita, S.; Yamakoshi, K.; Nogami, K.; Arai, O.; Tazawa, Y.; Kobayashi, K.

    1979-01-01

    Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2sigma), although for calcium isotopes enrichment of 46 Ca, 44 Ca and 42 Ca were observed in one spherule. The relative excess of 46 Ca, 44 Ca and 42 Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space. (Auth.)

  8. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Science.gov (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.

    2016-02-01

    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  9. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    Science.gov (United States)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  10. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  11. The atomic weight and isotopic composition of nitrogen and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1987-01-01

    Two stable isotopes of nitrogen exist in nature, 14 N and 15 N. The less abundant isotope, 15 N, was discovered in 1929 by Naude, who studied the band spectra of nitric oxide, NO. However, the main source of a standard for this element is the air in the atmosphere, which is made up of approximately 78% N 2 . Reviewed in this paper is the measurements of the isotopic composition in air and its variation around the world. Also investigated is the variation of the isotopic composition in the various compounds or sources of nitrogen compared to the value in air. Data on the atomic weight and non-terrestrial data for nitrogen is also reviewed

  12. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    International Nuclear Information System (INIS)

    Davis, A.M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G.J.

    1982-01-01

    Thirty-seven major, minor and trace elements were determined by INAA and RNAA in samples of hibonite, black rim and portions of friable rim from an unusual Allende inclusion, HAL. The peculiar isotopic, mineralogical and textural properties of HAL are accompanied by very unusual trace element abundances. The most striking feature of the chemistry is the virtual absence of Ce from an inclusion otherwise highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os and Ir, relative to other refractory elements. Of the lithophile elements determined which are normally considered to be refractory in a gas of solar composition, Sr, Ba, Ce, U and V are the most volatile in oxidizing gases. The distribution of REE between hibonite and rims seems to have been established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. On the basis of HAL's chemical and isotopic composition, possible locations for the chemical and mass dependent isotopic fractionation are discussed. (author)

  13. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-01-01

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932

  14. LSDS Development for Isotopic Fissile Content Assay

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2010-01-01

    Concerning the sustainable energy supply and green house effect, nuclear energy became the most feasible option to meet the energy demand in Korea. However, the production of the spent nuclear fuel is the inevitable situation. Since the first nuclear power plant started to produce the electricity in Korea, the accumulated amount of spent fuels exceeded 10k tomes recently. The accumulation of the spent fuels is the big issue in the society. Therefore, as an option which strengthens the nuclear proliferation resistance and reduces the amount of spent fuels, sodium fast reactor (SFR) program linked with pyro-processing is under development to re-use the PWR spent fuel and produce the energy. In the process, the produced metallic material involves uranium and TRU (transuranic; neptunium, plutonium, and americium). The uranium-TRU is used to fabricate SFR fuel. The burning the recycled fuel in the reactor is to solve the current spent fuel storage problem and to minimize the actinides accumulation having long half-life. Generally, the spent fuel from PWR has unburned ∼1 % U235, produced ∼0.5 % plutonium from decay chain, ∼3 % fission products, ∼ 0.1 % minor actinides (MA) and uranium remainder. About 1.5 % fissile materials still exist in the spent fuel. Therefore, spent fuel is not only waste but energy resource. The direct and isotopic fissile content assay is the crucial technology for the spent fuel reuse. Additionally, the fissile content analysis will contribute to the optimum storage design and safe spent fuel management. Several nondestructive technologies have been developed for the spent fuel assay; gamma ray measurement, passive and active neutron measurements. Spent fuel emits intense gamma rays and neutrons by (a, n) and spontaneous fission. This intense background has the limitation on the direct analysis of fissile materials. Recently, to analyze the individual fissile content, leadslowing down spectrometer (LSDS) has been being developed in Korea

  15. Karst springs as 'natural' pluviometers: Constraints on the isotopic composition of rainfall in the Apennines of central Italy

    International Nuclear Information System (INIS)

    Minissale, A.; Vaselli, O.

    2011-01-01

    Highlights: → Isotopic compositions of karstic springs in central Italy have been reviewed. → Isotopic gradients of rainfalls for elevations have been evaluated in an Alpine valley. → Karstic drops have been calculated by using isotopic compositions of springs. → Isotopic compositions of rainfalls in central Italy have been re-calculated using the isotopic compositions of karstic springs. - Abstract: This paper describes an indirect method to calculate the isotopic composition of rainfall by using the isotopic composition of karst springs fed by waters circulating in the most important regional aquifer of central Italy, i.e. the Mesozoic limestone sequence that forms the backbone of the Apennines. By using δ 18 O and δD data and the δ 18 O (and/or δD) average gradient for elevation, evaluated through the use of literature rainfall data and new measurements from a typical Alpine valley in northern Italy, the altitude of precipitation of their parent water has been re-calculated. Vertical descents of more than 2000 m, from recharge to discharge, have been assessed in some high flow-rate cold springs in the morphologically steep Adriatic sector of central Italy. A clear correlation between the vertical descents and more negative isotopic compositions at their relative emergence elevations is highlighted. In contrast, in the Tyrrhenian sector lower karstic drops (generally lower than 500 m) correlate with less negative isotopic composition of recharge areas. The δ 18 O iso-contour map of the 'recalculated' parent rainfall in central Italy is more detailed than any possible isotopic map of rainfall made using pluviometers, unless large number of rainfall collectors were deployed on mountaintops. The data also show that the isotopic composition of rainfall depends on the source of the storm water. In particular, precipitation is isotopically heavier when originating in the Mediterranean Sea, and lighter when formed in the Atlantic Ocean. Consequently, the

  16. Use of lead isotopic composition in sulfides for the mineral-formation geochronology

    International Nuclear Information System (INIS)

    Ordynets, G.E.

    1977-01-01

    A study of the isotopic composition of lead in pyrites and galenites of a hydrothermal uranium deposit makes it possible to determine the time of ore formation. A few types of lead ores are distinguished. Each type corresponds to a definite period of mineralization and is characterized by a specific isotopic composition. The Cimmerian age of carbonate-sulphide veins has been established, the deposit being formed over a period of 150-200 million years

  17. Determination of isotopic composition of uranium in microparticles by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Veniaminov, N.N.; Kolesnikov, O.N.; Stebel'kov, V.A.

    1992-01-01

    Aerosol particles including uranium in their composition are specific atmospheric polutants. Uranium is used as nuclear fuel in atomic power stations and in spacecraft power units, and also as a component of nuclear warheads. In order to monitor the discharge of uranium-containing aerosol particles to the atmosphere, they must first be identified. As an example, one may cite an investigation of the elemental composition and radioactivity of particles formed in the accident at the Chernobyl atomic power station. One of the most informative indicators of the origin of uranium-containing aerosol particles is the isotopic composition of the uranium. Secondary ion mass spectrometry (SIMS) offers unique possibilities for the measurement of isotope ratios in individual microscopic objects. At the same time, a measurement of isotope ratios of sulfur in microsection of galenite PbS 2 has shown that the application of SIMS for these purposes is seriously limited by the difference in yield of secondary ions for isotopes with different masses. These discrimination effects, in the case of light elements such as boron, may result in distortion of the isotope ratios by several percent. In the case of heavy elements, however, the effect is less significant, amounting to about 0.5% for lead isotopes. 13 refs., 3 figs., 1 tab

  18. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  19. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  20. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  1. Determination of Pu isotopic composition and 241Am by high resolution gamma spectrometry on solid samples

    International Nuclear Information System (INIS)

    Sarkar, Arnab; Paul, Sumana; Aggarwal, Suresh K.; Tomar, Bhupendra S.

    2011-08-01

    The present report gives a detailed account of the development of non-destructive assay technique using high resolution gamma-ray spectrometry (HRGS) for determination of plutonium (Pu) isotopic composition and the 241 Am content in solid Pu samples. Energy range 120-420 keV was used in this study. The methodology involves in situ relative efficiency calibration during the measurement process itself, to reduce the errors and increase the reliability of the method. Twenty solid Pu samples of power reactor and research reactor grade were analyzed by this method and the results were compared with those obtained by thermal ionization mass spectrometry. The accuracy of the final results depends strongly upon the accuracy of the available nuclear data (decay constant, gamma abundance etc.). MATLAB based programme was written to perform the analysis. A counting time of 4 hour was chosen for achieving good statistics on the results for samples having 100-200 mg of Pu. The attainable accuracy is found to be 0.5-1% for the fissile isotopes ( 239 Pu + 241 Pu) and 5-10% for 241 Am content. (author)

  2. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    Science.gov (United States)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  3. H-Isotopic Composition of Apatite in Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  4. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    considerable variation in carbon isotopic composition. The Trambau ... One of the most significant changes in the ocean atmosphere .... cryogenic separation of water, CO2 was dynami- .... light condition, nutrients and temperature are low,.

  5. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  6. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    International Nuclear Information System (INIS)

    Hagemann, R.; Nief, G.; Roth, E.

    1968-01-01

    The presence of H 3+ ions which are indistinguishable from HD + ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10 -6 . The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author) [fr

  7. Stable Isotopic Composition of Rainfall in Western Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ketchemen-Tandia, B.; Ngo Boum, S.; Ebonji Seth, C. R.; Nkoue Ndong, G. R.; Wonkam, C. [Universite de Douala, Douala (Cameroon); Huneau, F. [Universite de Bordeaux, EA Georessources and Environnement, Talence (France); Celle-Jeanton, H. [Clermont Universite, Clermont-Ferrand (France)

    2013-07-15

    Monthly rainfall collected at the douala station (Western cameroon) from 2006 to 2008 was analysed for oxygen-18 and deuterium content. The dataset, which is now integrated into the GNIP database, was compared to the local groundwater record in order to define the input function of regional hydrosystems. The isotope data displays a wide range of values from -0.59 to -6.14 per mille for oxygen-18 and from -7.75 to -38.8 per mille for deuterium, closely following the GMWL (global Meteoric Water line), suggesting that rain formation processes occurred under isotopic equilibrium conditions between the condensate and the corresponding vapour. No significant evaporation tendency was found. The comparison with the previous studies in the area provides a realistic pattern of isotope concentrations in both surface and groundwater throughout Cameroon. (author)

  8. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood

    International Nuclear Information System (INIS)

    Spiker, E.C.; Hatcher, P.G.

    1987-01-01

    Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the delta 13 C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on delta 13 C values should consider the possibility of a 1 to 2 per mil decrease in the delta 13 C value of degraded wood. (author)

  9. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    Science.gov (United States)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-12-01

    Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  10. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  11. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  12. Carbon isotope composition of individual amino acids in the Murchison meteorite

    International Nuclear Information System (INIS)

    Engel, M.H.; Macko, S.A.; Silter, J.A.

    1996-01-01

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets. 1 The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis 2 and the composition of organic matter on Earth before living systems developed. 3 Previous studies 11,12 have shown that meteorite amino acids are enriched in 13 C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the 13 C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in 13 C, indicating an extraterrestrial origin. Alanine is not racemic, and the 13 C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. copyright 1996 American Institute of Physics

  13. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: A Pb isotope study

    NARCIS (Netherlands)

    Walraven, N.; van Os, B.J.H.; Klaver, G.Th.; Middelburg, J.J.; Davies, G.R.

    2014-01-01

    Lake sediments provide a record of atmospheric Pb deposition and changes in Pb isotope composition. To our knowledge, such an approach has not previously been performed in The Netherlands or linked to national air monitoring data. Results are presented for Pb content and isotope composition of 137Cs

  14. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    Science.gov (United States)

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  15. Temporal variations of isotopes in arid rain storms

    International Nuclear Information System (INIS)

    Adar, E.M.; Dodi, A.; Geyh, M.A.; Yair, A.

    1999-01-01

    The distribution of isotopes in rainfall has long been used to elaborate on hydrological systems. Both isotopic composition of stable isotopes (oxygen-18 and deuterium) and tritium content are used to illuminate on sources of groundwater recharge and as tracers upon which groundwater fluxes are assessed. As runoff is concerned, stable isotopes have been used to identify flow paths and the precise location of the rain storm which produced the floods. Analyses of stable isotopes in arid storms in the Negev desert revealed clear discrepancy between the spatial isotopic composition in floods versus the spatial and temporal isotopic composition in rainfall. In addition, simple water balance revealed that the entire flood volume is equivalent to a very small portion of the rain storm, suggesting that a specific flood is produced by a very short and intensive portion of the rainfall. Therefore, knowledge of the weighted isotopic average of a rainfall can not serve as an adequate input function for modeling of desert floods. Since in arid environment, floods are considered as major source of groundwater recharge it also can not be used as input function for modeling of groundwater systems. This paper summarizes detailed isotopic study of short segments (∼2 mm each) of desert rainstorms as sampled in the Negev desert, Israel

  16. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    International Nuclear Information System (INIS)

    Dody, A.

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system's inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the δ 18O values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs

  17. Nucleosynthesis in Wolf-Rayet stars and galactic cosmic-ray isotopic composition

    International Nuclear Information System (INIS)

    Prantzos, N.

    1984-01-01

    An explanation of the isotopic composition of galactic cosmic rays could provide some clues to the mystery of their origin. It seems now that the strong stellar winds of Wolf-Rayet stars could account for most of the isotopic anomalies that have been observed in cosmic rays. Some results are presented, obtained by detailed nucleosynthesis computations. 25 references

  18. Isotopic composition of carbon of natural gases in the sedimentary basins of Kamchatka and Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lobkov, V.A.; Kudriavtseva, E.I.

    1981-01-01

    A study was carried out on the chemical and isotopic compositions of carbon of natural gases, which are prospective for oil and gas structures. An isotopic composition of the carbon of gases, covered by wells in possible oil and gas bearing basins (Eastern Kamchatka Central Kamchatka, Western Kamchatka, Anadyrsk, and Khatyrsk), created by terrigenic rock of the cretaceous, paleogenic, and neogenic ages, with dimensions of three to six kilometers, is presented. Investigation is made of the isotopic carbon of methane, ethane, and propane in 36 gas specimens. The plan of the distribution of the tested structures is shown, and an analysis is given of the chemical and isotopic composition of carbon of the prospected areas of Kamchatka and Chukotka and the interconnection of the isotopic composition of the carbon of methane with ethane and propane. A supposition is made concerning the existence of a single equilibrious volumetric system of CH/sub 4/--C/sub 2/H/sub 6/--C/sub 3/H/sub 8/--CO/sub 2/, in which ethane and propane are by-products, and owing to this, equilibrium establish according to this more slowly. The study of the isotopic composition of carbon of methane shows, that at various areas of depth formation of hydrocarbon gases is different. A conclusion is made that the gases formed at high temperatures. This points to a significant distance in the vertical migration of gases in the given region.

  19. Osmium Isotope Compositions of Komatiite Sources Through Time

    Science.gov (United States)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os

  20. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Puscas, R.; Feurdean, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Simon, V. [Babes-Bolyai University Faculty of Physics (Romania)

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviated from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.

  1. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  2. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    Science.gov (United States)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  3. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  4. Isotopic incorporation and the effects of fasting and dietary lipid content on isotopic discrimination in large carnivorous mammals

    Science.gov (United States)

    Rode, Karyn D.; Stricker, Craig A.; Erlenbach, Joy; Robbins, Charles T.; Cherry, Seth; Newsome, Seth D.; Cutting, Amy; Jensen, Shannon; Stenhouse, Gordon; Brooks, Matt; Hash, Amy; Nicassio, Nicole

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆13Ctissue-bulk diet) and slightly decreasing differences between plasma δ13C and lipid-extracted diet. Plasma Δ15Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ15N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ13C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ13C and δ15N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ13C discrimination and indirectly affecting δ15N discrimination via the inverse relationship with dietary protein content.

  5. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.

    1989-01-01

    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  6. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    Science.gov (United States)

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

  7. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    Energy Technology Data Exchange (ETDEWEB)

    Dody, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system`s inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the {delta}{sup 18O} values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs.

  8. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  9. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Wierzchnicki, R.

    2002-01-01

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  10. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  11. The distribution of lead concentrations and isotope compositions in the eastern Tropical Atlantic Ocean

    Science.gov (United States)

    Bridgestock, Luke; Rehkämper, Mark; van de Flierdt, Tina; Paul, Maxence; Milne, Angela; Lohan, Maeve C.; Achterberg, Eric P.

    2018-03-01

    Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600-900 m, 35 pmol kg-1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818-1.1824, 208Pb/207Pb = 2.4472-2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50-60 years. In contrast, North Atlantic Deep Water (2000-4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762-1.184, 208Pb/207Pb = 2.4482-2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80-100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the

  12. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture

    Directory of Open Access Journals (Sweden)

    G. Jeelani

    2018-06-01

    Full Text Available The flow of the Himalayan rivers, a key source of fresh water for more than a billion people primarily depends upon the strength, behaviour and duration of the Indian summer monsoon (ISM and the western disturbances (WD, two contrasting circulation regimes of the regional atmosphere. An analysis of the 2H and 18O isotope composition of daily precipitation collected along the southern foothills of the Himalayas, combined with extensive backward trajectory modelling, was used to gain deeper insight into the mechanisms controlling the isotopic composition of precipitation and the origin of atmospheric moisture and precipitation during ISM and WD periods. Daily precipitation samples were collected during the period from September 2008 to December 2011 at six stations, extending from Srinagar in the west (Kashmir state to Dibrugarh in the east (Assam state. In total, 548 daily precipitation samples were collected and analysed for their stable isotope composition. It is suggested that the gradual reduction in the 2H and 18O content of precipitation in the study region, progressing from δ18O values close to zero down to ca. −10 ‰ in the course of ISM evolution, stems from regional, large-scale recycling of moisture-driven monsoonal circulation. Superimposed on this general trend are short-term fluctuations of the isotopic composition of rainfall, which might have stem from local effects such as enhanced convective activity and the associated higher degree of rainout of moist air masses (local amount effect, the partial evaporation of raindrops, or the impact of isotopically heavy moisture generated in evapotranspiration processes taking place in the vicinity of rainfall sampling sites. Seasonal footprint maps constructed for three stations representing the western, central and eastern portions of the Himalayan region indicate that the influence of monsoonal circulation reaches the western edges of the Himalayan region. While the characteristic

  13. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  14. Karst springs as 'natural' pluviometers: Constraints on the isotopic composition of rainfall in the Apennines of central Italy

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, A., E-mail: minissa@igg.cnr.it [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources (Section of Florence) - Via La Pira 4, 50121 Firenze (Italy); Vaselli, O. [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources (Section of Florence) - Via La Pira 4, 50121 Firenze (Italy)] [Department of Earth Sciences, University of Florence - Via La Pira 4, 50121 Firenze (Italy)

    2011-05-15

    Highlights: > Isotopic compositions of karstic springs in central Italy have been reviewed. > Isotopic gradients of rainfalls for elevations have been evaluated in an Alpine valley. > Karstic drops have been calculated by using isotopic compositions of springs. > Isotopic compositions of rainfalls in central Italy have been re-calculated using the isotopic compositions of karstic springs. - Abstract: This paper describes an indirect method to calculate the isotopic composition of rainfall by using the isotopic composition of karst springs fed by waters circulating in the most important regional aquifer of central Italy, i.e. the Mesozoic limestone sequence that forms the backbone of the Apennines. By using {delta}{sup 18}O and {delta}D data and the {delta}{sup 18}O (and/or {delta}D) average gradient for elevation, evaluated through the use of literature rainfall data and new measurements from a typical Alpine valley in northern Italy, the altitude of precipitation of their parent water has been re-calculated. Vertical descents of more than 2000 m, from recharge to discharge, have been assessed in some high flow-rate cold springs in the morphologically steep Adriatic sector of central Italy. A clear correlation between the vertical descents and more negative isotopic compositions at their relative emergence elevations is highlighted. In contrast, in the Tyrrhenian sector lower karstic drops (generally lower than 500 m) correlate with less negative isotopic composition of recharge areas. The {delta}{sup 18}O iso-contour map of the 'recalculated' parent rainfall in central Italy is more detailed than any possible isotopic map of rainfall made using pluviometers, unless large number of rainfall collectors were deployed on mountaintops. The data also show that the isotopic composition of rainfall depends on the source of the storm water. In particular, precipitation is isotopically heavier when originating in the Mediterranean Sea, and lighter when formed in

  15. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  16. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  17. Isotopic composition of water in precipitation in a region or place

    International Nuclear Information System (INIS)

    Singh, B.P.

    2013-01-01

    Stable isotopes of water molecules in hydrology, the water cycle and Craig's global meteoric water line (GMWL) relating δ 18 O and δ 2 H are well established with a slope of around 8 and an intercept of around 10. However, in many situations the slope is less than 8 and the intercept is smaller or even negative. These observations need to be understood and a method is suggested to correlate with the global meteoric water line (GMWL). How to find the isotopic composition of water at a particular place is also suggested. - Highlights: ► A best fit line is drawn between slopes of plots on δ 18 O and δ 2 H line versus intercept of the measurement in a region. ► A new approach is suggested to understand this experimental best fit line. ► The new method is suggested to achieve the isotopic composition of meteoric water in region or a place

  18. Stable isotope compositions (O-C) of reef fish otoliths from the Taiaro lagoon (Tuamotu, French Polynesia): isotopic and biologic implications

    International Nuclear Information System (INIS)

    Blamart, D.; Juillet-Leclerc, A.; Ouahdi, R.; Escoubeyrou, K.; Lecomte-Finiger, R.

    2002-01-01

    Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. δ 18 O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. δ 18 O values of the outer parts show a slight isotopic disequilibrium ( 13 C values exhibit a strong isotopic disequilibrium related to metabolic activity. (authors)

  19. Stable isotope composition of cocoa beans of different geographical origin.

    Science.gov (United States)

    Perini, Matteo; Bontempo, Luana; Ziller, Luca; Barbero, Alice; Caligiani, Augusta; Camin, Federica

    2016-09-01

    The isotopic profile (δ(13) C, δ(15) N, δ(18) O, δ(2) H, δ(34) S) was used to characterise a wide selection of cocoa beans from different renowned production areas (Africa, Asia, Central and South America). The factors most influencing the isotopic signatures of cocoa beans were climate and altitude for δ(13) C and the isotopic composition of precipitation water for δ(18) O and δ(2) H, whereas δ(15) N and δ(34) S were primarily affected by geology and fertilisation practises. Multi-isotopic analysis was shown to be sufficiently effective in determining the geographical origin of cocoa beans, and combining it with Canonical Discriminant Analysis led to more than 80% of samples being correctly reclassified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Application of environmental isotope techniques to selected hydrological systems in Pampean, Argentina

    International Nuclear Information System (INIS)

    Dapena, C.; Panarello, H.O.

    2007-01-01

    The isotopic composition of precipitation in Buenos Aires station is of great importance to understand the Pampean hydrological Systems. The rain isotope content ( 2 H, 18 O and 3 H) is being recorded since 1978 at Ciudad Universitaria Station, belonging to the Red Nacional de Colectores constitutes the main recharge factor for most of local and regional hydrologic system. The knowledge and characterization of their isotope content is of fundamental importance for a hydrological investigation, so we need a historical updated record. For this reason the International Atomic Energy Agency (IAEA) in co-operation with the World Meteorological Organization (WMO) developed an international network devoted to the measurement of isotope contents in precipitation named as GNIP (Global Network for Isotopes in Precipitation) which started in 1960. The main objective of the network is to evaluate on a global scale the spatial and temporal distribution of isotope contents in precipitation and their dependence to relevant meteorological parameters. In this framework, the 'Instituto de Geocronologia y Geologia Isotopica' (INGEIS) established a National Collector Network for Isotopes in Precipitation (RNC) which integrates with the GNIP. The operation of the network in Argentina began in November 1978 with one station located in Buenos Aires City. At present, INGEIS is operating 17 stations at different altitudes and latitudes, covering a wide range of temperatures and a large variety of climates. This information allows us to know the input functions (rain isotope content) at different regions of the country. Signatures of isotopes in precipitation are not static. They respond to both, synoptic and climatology and global climate change. Attracted by this issue, a new community, interested in palaeoclimate and atmospheric circulation modelling, started to use the GNIP data. However, it becomes apparent soon that the collected data were also useful in other water-related fields

  1. FY 2006 annual report. 21st century COE program isotope science and engineering from basics to applications

    International Nuclear Information System (INIS)

    2007-01-01

    The 06' activity on 21st century COE program, Nagoya University, Isotopes open the future' is reported. The contents are: Research and educational execution planning; Operational reports (research activities, educational activities, international conferences, etc.); Research activities (1. the basic research field...isotope separation, isotope production, isotope measurement, and isotope materials, 2. the composite and development field...isotopes in biology, cultural science, and environment, 3. the young researchers unit for composite research, 4. research contributions); Educational activities (1. programs for assist of young researchers, 2. lectures on English, 3. lectures for postgraduate students). (J.P.N.)

  2. Site-specific 13C content by quantitative isotopic 13C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    International Nuclear Information System (INIS)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S.

    2013-01-01

    Graphical abstract: -- Highlights: •First ring test on isotopic 13 C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic 13 C NMR spectrometry, which is able to measure intra-molecular 13 C composition, is of emerging demand because of the new information provided by the 13 C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13 C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13 C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13 C NMR was then assessed on vanillin from three different origins associated with specific δ 13 C i profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ 13 C i in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results

  3. {sup 18}O, {sup 2}H and {sup 3}H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Hendriksson, N. [Geological Survey of Finland, Espoo (Finland); Karhu, J.; Niinikoski, P. [Univ. of Helsinki (Finland)

    2014-12-15

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ{sup 18}O, - 82.3 per mille and -80.3 per mille for δ{sup 2}H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ{sup 2}H = 7.45 star δ{sup 18}O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ{sup 18}O and δ{sup 2}H values may be related to climatic variability while the gradual decline observed in the {sup 3}H data is attributed to the still continuing decrease in atmospheric {sup 3}H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates

  4. Barium isotope composition of altered oceanic crust from the IODP Site 1256 at the East Pacific Rise

    Science.gov (United States)

    Nan, X.; Yu, H.; Gao, Y.

    2017-12-01

    To understand the behavior of Ba isotopes in the oceanic crust during seawater alteration, we analyzed Ba isotopes for altered oceanic crust (AOC) from the IODP Site 1256 at the East Pacific Rise (EPR). The samples include 33 basalts, 5 gabbros, and 1 gabbronorite. This drill profile has four sections from top to bottom, including the volcanic section, transition zone, sheeted dyke complex, and plutonic complex. They display various degrees of alteration with obviously variable temperatures and water/rock ratios (Gao et al., 2012). The volcanic section is slightly to moderately altered by seawater at 100 to 250°; the transition zone is a mixing zone between upwelling hydrothermal fluids and downwelling seawater; and the sheeted dyke complex and plutonic complex are highly altered by hydrothermal fluids (˜250°). Ba isotopes were analyzed on a Neptune Plus MC-ICP-MS at the University of Science and Technology of China. The long-term precision of δ137/134Ba is better than 0.04‰ (2SD). The δ137/134Ba of the volcanic section and the top of the transition zone range between -0.01 and 0.30‰, higher than the δ137/134Ba of fresh MORB and upper mantle (0.020 ± 0.021‰, 2SE, Huang et al., 2015). Similarly, the δ137/134Ba of the sheeted dyke complex ranges from 0.05 to 0.28‰. The plutonic section has δ137/134Ba from -0.17 to -0.05‰, which is lower than the upper mantle, with one exception that has δ137/134Ba of 0.19‰. No correlation exists between Ba contents and δ137/134Ba. The weighted average δ137/134Ba of the AOC samples is 0.13±0.04‰ (2SE), significantly higher than that of the upper mantle. In all, our AOC data reveal obvious Ba isotopic fractionation, reflecting alteration of the AOC by hydrothermal fluids and seawater. The obvious difference of Ba isotope composition between the AOC and the upper mantle further indicates that recycling of the AOC could result in Ba isotope heterogeneity of the mantle. References: Gao Y, Vils F, Cooper K M, et

  5. Changes in Isotopic Composition of Bottled Natural Waters Due to Different Storage Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ferjan, T. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Brencic, M. [Faculty of Natural Sciences and Engineering, Department of Geology, and Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-15

    To establish the influence of environmental conditions on processes affecting the stable isotopic composition of bottled water during storage, various brands of bottled water were exposed for 2 years in different conditions. Selected low mineralized natural mineral water of one particular brand stored in polyethylene terephthalate (PET) bottles was placed at three different locations with different physical conditions (temperature, relative humidity, air pressure, exposure to sunlight). For comparison, bottles of three other low mineralized natural mineral water brands, each from a different aquifer source, were placed in parallel at one of the locations. Each location was characterized by temperature, relative humidity and air pressure measurements. pH, conductivity and stable isotopic composition of oxygen, hydrogen and carbon in dissolved inorganic carbon ({delta}{sup 18}O, {delta}{sup 2}H, {delta}{sup 13}C{sub DIC}) were measured in regular intervals for nearly two years. Preliminary results from each location show noticeable changes in isotopic composition as well as the physical parameters of water with time of storage.

  6. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  7. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions

    Science.gov (United States)

    Ren, Zhong-Yuan; Wu, Ya-Dong; Zhang, Le; Nichols, Alexander R. L.; Hong, Lu-Bing; Zhang, Yin-Hui; Zhang, Yan; Liu, Jian-Qiang; Xu, Yi-Gang

    2017-07-01

    Olivine-hosted melt inclusions within lava retain important information regarding the lava's primary magma compositions and mantle sources. Thus, they can be used to infer the nature of the mantle sources of large igneous provinces, which is still not well known and of the subject of debate. We have analysed the chemical compositions and Pb isotopic ratios of olivine-hosted melt inclusions in the Dali picrites, Emeishan Large Igneous Province (LIP), SW China. These are the first in-situ Pb isotope data measured for melt inclusions found in the Emeishan picrites and allow new constraints to be placed on the source lithology of the Emeishan LIP. The melt inclusions show chemical compositional variations, spanning low-, intermediate- and high-Ti compositions, while their host whole rocks are restricted to the intermediate-Ti compositions. Together with the relatively constant Pb isotope ratios of the melt inclusions, the compositional variations suggest that the low-, intermediate- and high-Ti melts were derived from compositionally similar sources. The geochemical characteristics of melt inclusions, their host olivines, and whole-rocks from the Emeishan LIP indicate that Ca, Al, Mn, Yb, and Lu behave compatibly, and Ti, Rb, Sr, Zr, and Nb behave incompatibly during partial melting, requiring a pyroxenite source for the Emeishin LIP. The wide range of Ti contents in the melt inclusions and whole-rocks of the Emeishan basalts reflects different degrees of partial melting in the pyroxenite source at different depths in the melting column. The Pb isotope compositions of the melt inclusions and the OIB-like trace element compositions of the Emeishan basalts imply that mixing of a recycled ancient oceanic crust (EM1-like) component with a peridotite component from the lower mantle (FOZO-like component) could have underwent solid-state reaction, producing a secondary pyroxenite source that was subsequently partially melted to form the basalts. This new model of pyroxenite

  8. The features of the isotope composition of carbon in the Paleozoic and Mesozoic oils of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, S.I.; Lebedena, L.V.

    1984-01-01

    The isotope composition of the carbon in the oils from the Mesozoic and Paleozoic deposits is measured. The variations in the isotope composition of carbon for the Paleozoic oils is between 27.5 and 30.8 percent, while for the oils from the lower Jurassic and Triassic levels it is between 27.7 and 31.2 percent and for the upper Jurassic oils it is between 30.1 and 34.5 percent. The dependence of the isotope composition of the carbon in the oils on the type of original organic matter and its metamorphosis conditions during lithogenesis is analyzed. A softening in the isotope composition of the carbon in the oils from the oceanic deposits relative to continental deposits is found, together with a genetic individualism of the oils from the Paleozoic deposits and their difference from the oils in the Mesozoic deposits.

  9. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    Science.gov (United States)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal

  10. Physical and Human Controls on the Carbon Composition of Organic Matter in Tropical Rivers: An Integrated Analysis of Landscape Properties and River Isotopic Composition

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, M. V.R.; Victoria, R. L.; Krusche, A. V. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba (Brazil); Bernardes, M. [Universidade Federal Fluminense, Rio de Janeiro (Brazil); Neill, C.; Deegan, L. [Marine Biological Laboratory, Woods Hole, MA (United States); Richey, J. E. [University of Washington, Seatle, WA (United States)

    2013-05-15

    We applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. To evaluate physical and human controls on the carbon composition of organic matter in tropical rivers, we applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. Our main objective was to establish the relationship between basin attributes and forms, fluxes and composition of dissolved and particulate organic matter in river channels. A physical template was developed as a GIS-based comprehensive tool to support the understanding of the biogeochemistry of the surface waters of two tropical rivers: the Ji-Parana (Western Amazonia) and the Piracicaba (southeastern of Brazil). For each river we divided the basin into drainage units, organized according to river network morphology and degree of land use impact. Each sector corresponded to a sampling point where river isotopic composition was analysed. River sites and basin characteristics were calculated using datasets compiled as layers in ArcGis Geographical Information System and ERDAS-IMAGINE (Image Processing) software. Each delineated drainage area was individually characterized in terms of topography, soils, river network and land use. Carbon stable isotopic composition of dissolved organic matter (DOM) and particulate organic matter (POM) was determined at several sites along the main tributaries and small streams. The effects of land use on fluvial carbon composition were quantified by a linear regression analysis, relating basin cover and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, vegetation plays a key role in the composition of riverine organic matter in agricultural ecosystems. (author)

  11. Magnesium and Titanium Isotopic Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: It Is Fun

    Science.gov (United States)

    Liu, M.-C.; Keller, L. P.; McKeegan, K. D.

    2016-01-01

    of (sup 26) Al. Delta (sup 25) Mg (mass-dependent fractionation) in hibonite is approximately -5 per mille per atomic mass unit relative to Madagascar hibonite, but is not well constrained for perovskite due to very large uncertainties owing to extremely low Mg contents. Similar to Mg isotopes, SHAL hibonite and perovskite show essentially the same Ti isotopic compositions, with anomalies in (sup 50) Ti of approximately 14 per mille, but the former shows greater Ti isotope fractionation than the latter (2.5 per mille per atomic mass unit versus 0 per mille). Discussion and Conclusions: The Al-Mg and Ti isotopic compositions of SHAL hibonite are consistent with those of HAL, suggesting that SHAL hibonite is a FUN inclusion and likely formed prior to homogenization of (sup 26) Al and Ti isotope variations in the solar nebula. However, the formation mechanisms for SHAL and HAL differ, given the differences in the REE patterns and degrees of oxygen mass-dependent fractionation. The Group-II to Group-III like REE patterns, the Yb depletions, and negative delta (sup 25) Mg observed in SHAL hibonite are all consistent with condensation of the hibonite precursor in a reducing environment.. The lack of large Ce depletions in SHAL hibonite implies that distillation processes that fractionated hibonite's oxygen isotopes must have taken place under a reducing condition, but the extent to which SHAL hibonite was distilled appears to be less than HAL because of the smaller degree of oxygen mass-dependent fractionation. The perovskite shares essentially the same Ti and Mg isotopic compositions as hibonite and probably formed in the same reservoir.. The ultrarefractory REE pattern seen in perovskite likely resulted from gas-solid fractionation which depleted HREEs in this reservoir. This process also explains why SHAL hibonite is generally depleted in HREEs relative to LREEs.

  12. Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES

    Science.gov (United States)

    Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin

    2014-05-01

    Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the

  13. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  14. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  15. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.

  16. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Becker, J.S.

    2001-01-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10 -4 and 10 -3 counts per atom were achieved for 238 U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH + /U + was 1.2 x 10 -4 and 1.4 x 10 -4 , respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 μg L -1 NBS U-020 standard solution was 0.11% ( 238 U/ 235 U) and 1.4% ( 236 U/ 238 U) using a MicroMist nebulizer and 0.25% ( 235 U/ 238 U) and 1.9% ( 236 U/ 238 U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . Results obtained with ICP-MS, α- and γ-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  17. Data book of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1994-03-01

    In the framework of the activity of the working group on Evaluation of Nuclide Generation and Depletion in the Japanese Nuclear Data Committee, we summarized the assay data of the isotopic composition of LWR spent fuels in order to verify the accuracy of the burnup calculation codes. The report contains the data collected from the 13 light water reactors (LWRs) including the 9 LWRs (5 PWRs and 4 BWRs) in Europe and USA, the 4 LWRs (2 PWRs and 2 BWRs) in Japan. The collected data were sorted into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples. (author)

  18. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  19. Changes in Chemical and Isotopic Composition of Groundwater During a Long Term Pumping Test in Brestovica Karst Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Mezga, K.; Urbanc, J. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia)

    2013-07-15

    A pumping test of the Klarici water supply near Brestovica was performed in August 2008, in order to determine the karst groundwater resource capacity. Groundwater was pumped for a month with a total capacity of 470 L/s. During the experiment, sampling for chemical and isotopic composition of groundwater and surface water was carried out. Intensive pumping in dry meteorological conditions caused a lowering of the water table and changes in the chemical and isotopic composition of pumped water. Local meteoric waters are infiltrated into the aquifer at a lower mean altitude; therefore the {delta}{sup 18}O is enriched with the heavy oxygen isotope. The duration of pumping resulted in changes in the isotopic composition of oxygen due to a greater impact of the intergranular Soca River aquifer on the karst aquifer. On the basis of isotope composition it was possible to quantify the impact of the Soca River on the karst aquifer. (author)

  20. Grain size effect on Sr and Nd isotopic compositions in eolian dust. Implications for tracing dust provenance and Nd model age

    International Nuclear Information System (INIS)

    Feng Jinliang; Zhu Liping; Zhen Xiaolin; Hu Zhaoguo

    2009-01-01

    Strontium (Sr) and neodymium (Nd) isotopic compositions enable identification of dust sources and reconstruction of atmospheric dispersal pathways. The Sr and Nd isotopic compositions in eolian dust change systematically with grain size in ways not yet fully understood. This study demonstrates the grain size effect on the Sr and Nd isotopic compositions in loess and 2006 dust fall, based on analyses of seven separated grain size fractions. The analytical results indicate that Sr isotopic ratios strongly depend on the grain size fractions in samples from all types of eolian dust. In contrast, the Nd isotopic ratios exhibit little variation in loess, although they vary significantly with grain size in samples from a 2006 dust fall. Furthermore, Nd model ages tend to increase with increasing grain size in samples from all types of eolian dust. Comparatively, Sr isotopic compositions exhibit high sensitively to wind sorting, while Nd isotopic compositions show greater sensitively to dust origin. The principal cause for the different patterns of Sr and Nd isotopic composition variability with grain size appears related to the different geochemical behaviors between rubidium (Rb) and Sr, and the similar geochemical behaviors between samarium (Sm) and Nd. The Nd isotope data indicate that the various grain size fractions in loess have similar origins for each sample. In contrast, various provenance components may separate into different grain size fractions for the studied 2006 dust fall. The Sr and Nd isotope compositions further confirm that the 2006 dust fall and Pleistocene loess in Beijing have different sources. The loess deposits found in Beijing and those found on the Chinese Loess Plateau also derive from different sources. Variations between Sr and Nd isotopic compositions and Nd model ages with grain size need to be considered when directly comparing analyses of eolian dust of different grain size. (author)

  1. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

    Science.gov (United States)

    Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

    2017-12-01

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  2. A numerical cloud model to interpret the isotope content of hailstones

    International Nuclear Information System (INIS)

    Jouzel, J.; Brichet, N.; Thalmann, B.; Federer, B.

    1980-07-01

    Measurements of the isotope content of hailstones are frequently used to deduce their trajectories and updraft speeds within severe storms. The interpretation was made in the past on the basis of an adiabatic equilibrium model in which the stones grew exclusively by interaction with droplets and vapor. Using the 1D steady-state model of Hirsch with parametrized cloud physics these unrealistic assumptions were dropped and the effects of interactions between droplets, drops, ice crystals and graupel on the concentrations of stable isotopes in hydrometeors were taken into account. The construction of the model is briefly discussed. The resulting height profiles of D and O 18 in hailstones deviate substantially from the equilibrium case, rendering most earlier trajectory calculations invalid. It is also seen that in the lower cloud layers the ice of the stones is richer due to relaxation effects, but at higher cloud layers (T(a) 0 C) the ice is much poorer in isotopes. This yields a broader spread of the isotope values in the interval 0>T(a)>-35 0 C or alternatively, it means that hailstones with a very large range of measured isotope concentrations grow in a smaller and therefore more realistic temperature interval. The use of the model in practice will be demonstrated

  3. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic

    Science.gov (United States)

    Lowe, David C.; Brenninkmeijer, Carl A. M.; Tyler, Stanley C.; Dlugkencky, Edward J.

    1991-01-01

    A procedure for establishing the C-13/C-12 ratio and the C-14 abundance in the atmospheric methane is discussed. The method involves air sample collection, measurement of the methane mixing ratio by gas chromotography followed by quantitative conversion of the methane in the air samples to CO2 and H2O, and analysis of the resulting CO2 for the C-13/C-12 ratio by stable isotope ratio mass spectrometry and measurement of C-14 content by accelerator mass spectrometry. The carbon isotropic composition of methane in air collected at Baring Head, New Zealand, and in air collected on aircraft flights between New Zealand and Antarctica is determined by the method, and no gradient in the composition between Baring Head and the South Pole station is found. As the technique is refined, and more data is gathered, small seasonal and long-term variations in C-13 are expected to be resolved.

  4. Isotopic composition of steam samples from Lanzarote, Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Arana, V. (CSIC, Madrid); Panichi, C.

    1974-12-01

    The isotopic analysis of the steam samples collected in the geothermal area of Lanzarote show that the values of delta D are practically constant, and those of delta /sup 18/O range in a shift of 17 /sup 0///sub 00/ reaching a maximum of +14.7 /sup 0///sub 00/ versus SMOW, this last value being the highest found in steam samples. This composition can be explained as a consequence of the isotopic exchange at high temperature between limestones and a mixture of marine and local meteoric waters. This interpretation agrees with previous geological and geophysical studies which consider that a promising geothermal field could exist in Lanzarote. (auth)

  5. Isotopic composition and origin of the precipitation in Northern Chile

    International Nuclear Information System (INIS)

    Aravena, R.; Pena, H.; Grilli, A.; Pollastri, A.; Fuenzalida, H.

    1997-01-01

    Full text: A three years isotope data on precipitation collected in northern Chile show a very distinct pattern, with depleted δ 18 and -150/00 observed at high altitude stations, compared to δ 18 0 values ranging between - 10 and -6/00 measured at the lower altitude areas. The depleted δ 0 values observed in the high altitude area, the Altiplano, are related to different processes that affect the air masses as moved from the Atlantic, crossed the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated to air masses from the Pacific, explained the enriched isotopic values observed in the lower altitude areas. Similar isotopic pattern, documented in springs and groundwater, indicates that the rain data presented in this paper is an accurate representation of the long term behavior of the isotopic composition of the rain in northern Chile

  6. Changes in soil water availability in vineyards can be traced by the carbon and nitrogen isotope composition of dried wines.

    Science.gov (United States)

    Spangenberg, Jorge E; Zufferey, Vivian

    2018-04-13

    The grapevine is one of the most important edible fruit plants cultivated worldwide, and it is highly sensitive to changes in the soil water content. We studied the total carbon and nitrogen contents and stable isotope compositions (C/N WSR , δ 13 C WSR and δ 15 N WSR values) of the solid residues obtained by freeze-drying wines produced from two white grapevine cultivars (Vitis vinifera L. cv Chasselas and Petite Arvine) field grown under different soil water regimes while maintaining other climatic and ecopedological conditions identical. These experiments simulated the more frequent and extended climate change-induced periods of soil water shortage. The wines were from the 2009-2014 vintages, produced using the same vinification procedure. The plant water status, reflecting soil water availability, was assessed by the predawn leaf water potential (Ψ pd ), monitored in the field during the growing seasons. For both wine varieties, the δ 13 C WSR values are highly correlated with Ψ pd values and record the soil water availability set by soil water holding capacity, rainfall and irrigation water supply. These relationships were the same as those observed for the carbon isotope composition of fruit sugars (i.e., must sugars) and plant water status. In Chasselas wines, the nitrogen content and δ 15 N WSR values decreased with soil water deficit, indicating control of the flux of soil-water soluble nutrients into plants by soil water availability. Such a correlation was not found for Petite Arvine, probably due to different N-metabolism processes in this genetically atypical cultivar. The results presented in this study confirm and generalize what was previously found for red wine (Pinot noir); the carbon isotope composition of wine solid residues is a reliable indicator of the soil and the plant water status and thus can be used to trace back local climatic conditions in the vineyard's region. In most wines (except Petite Arvine) the C/N WSR and δ 15 N WSR

  7. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    Science.gov (United States)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  8. Essential oil content and composition of aniseed

    Directory of Open Access Journals (Sweden)

    Aćimović Milica G.

    2015-01-01

    Full Text Available The field experiments were carried out during 2011 and 2012 in three localities in Vojvodina (Serbia with the application of six different fertilizer regimes aimed at determining the content and composition of the aniseed essential oil. It was found that the average essential oil content of aniseed, obtained by hydrodistillation, was 3.72%. The weather conditions during the year and the locality had a statistically significant effect on the essential oil content, while different source of fertilizers was not statistically significant for the essential oil content and its composition. Essential oil composition was determined using GC-MS technique, and a total of 15 compounds were identified. It was found that the major component was trans-anethole, 94.78% on the average, and the coefficient of variation was 2%. The second most abundant component was γ-himachalene with 2.53% (CV 28%. All other components were present in less than 1%.

  9. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  10. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  11. The hydrogen isotopic composition of kaolin minerals in Japan

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Nagasawa, Keinosuke; Kuroda, Yoshimasu.

    1979-01-01

    Hydrogen isotopic composition (D/H ratio) was determined for kaolin minerals from geothermal areas and sedimentary and hydrothermal kaolin deposits in Japan. On the Ohnuma, Matsukawa, and Ohtake geothermal areas, the hydrogen isotopic fractionation factor between kaolin minerals and water was calculated to fall between 0.97 and 0.99 for the temperature range of 50 to 200 0 C, a fact which shows that the temperature of formation has no important effect on the D/H ratio of kaolin minerals. D/H ratio of kaolinites and dickites from many kaolin deposits shows local variation, and seems to correlate with isotopic variation of the present-day meteoric surface water. Exceptions are seen in some kaolin deposits such as Shokozan, Hiroshima Prefecture, where kaolinite and dickite have considerably high values of D/H ratio, and seem to have reacted with water rich in deuterium. D/H ratio of halloysite is not correlated with that of the present-day meteoric surface water. As Lawrence and Taylor (1971) pointed out, the original D/H ratio of constitutional water of halloysite is not preserved because of the isotopic exchange between the interlayer water and the constitutional water. (author)

  12. Stable-carbon isotopic composition of maple sap and foliage

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1985-01-01

    The 13 C/ 12 C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13 C/ 12 C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13 C/ 12 C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13 C/ 12 C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. (author)

  13. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    International Nuclear Information System (INIS)

    Cortini, M.; De Vivo, B.; Somma, R.; Ayuso, R.A.; Holden, P.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: 'Protohistoric' (3550 y B.P. to 79 A.D.), 'Ancient Historic' (79 to 472 A.D.) and 'Medieval' (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analyzed for Th isotopes. 232 Th/ 238 U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the earth; they range from 3.9 to 4.1. 232 Th/ 238 U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behavior of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic

  14. Interpretation of groundwater origin in the Velenje coal mine on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janko Urbanc

    2002-12-01

    Full Text Available The aim of the investigation was to determine the isotopic properties of cave waters from the Velenje coal mine and define the recharge areas of individual aquifers. With regard to the oxygen isotope composition, groundwater in the Velenje coal mine can beclassified into three types. Typical d18O values of the first type are around -9 ‰ and are found in surface waters in the vicinity of the mine, therefore it is supposed that these waters are recharged locally. The second type is represented mainly by waters from thelower part of the pliocene aquifer. The average oxygen composition of these waters is about -11 ‰. This isotope composition is considerably different from the isotope composition of recent waters from the mine’s vicinity, which leads to the conclusion that these are older, fossile waters. These waters also have a very high degree of mineralization and consequently conductivity. Waters of the third type have average δ18O values around -10 ‰ and originate mainly from triassic dolomites. These waters could be a mixture of recentand old waters, but it is also possible that they flow into the coal mine from the higher areas of Paški Kozjak.

  15. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  16. Influence of size and surface structure of microparticles on accuracy of measurements of its uranium isotopic composition

    International Nuclear Information System (INIS)

    Stebelkov, V.; Kolesnikov, O.; Moulenko, D.; Sokolov, A.; Pavlov, A.; Simakin, S.

    2002-01-01

    Full text: One of the elements of the scheme for complex analysis of environmental samples, collected in the regions of location of nuclear facilities, is mass-spectrometry of microparticles of nuclear materials implemented for determination of isotopic composition of these materials. Widely used technique of mass-spectrometry of particles is secondary ion mass-spectrometry. This technique is characterized by successive acquisition of ions from different isotopes under gradual sputtering of microparticle during analysis. The purpose of this work was investigation of kinetic of size changing and changing of measured values of uranium-235 concentration as well as investigation of influence of size and surface structure of microparticle on measurement results. Method of investigation had been comprised to several sequential measurements of uranium isotopes content in the same particle and photography of this particle before every sequential measurement by using electron microscope. Analysis of each particle was finished when this particle was fully sputtered. There were investigated 33 particles of irregular shape and initial sizes from 0.5 μm to 3.5 μm. These particles had different types of surface structure and different isotopic composition. Besides there were investigated 22 spherical particles of UO 2 with 3.7% uranium-235 abundance with sizes from 0.7 μm to 2.4 μm. Thirteen particles of irregular shape were sputtered fully during first measurement of isotopic composition. Two sequential measurements were implemented for 12 particles, three sequential measurements were implemented for 7 particles. For 2 particles of sizes 3.5 μm x 2 μm and 1.2 μm there were implemented four sequential measurements of isotopic composition. During these investigations it was determined that the number of sequential measurements depends not only on size but also on surface structure of particle. With rare exception the sequential values of concentrations of uranium-235

  17. Chemical analyses and calculation of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Tetsuo; Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-08-01

    Chemical analysis activities of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  18. Boron Isotopic Composition of Metasomatized Mantle Xenoliths from the Western Rift, East Africa

    Science.gov (United States)

    Hudgins, T.; Nelson, W. R.

    2017-12-01

    The Western Branch of the East African Rift System is known to have a thick lithosphere and sparse, alkaline volcanism associated with a metasomatized mantle source. Recent work investigating the relationship between Western Branch metasomatized mantle xenoliths and associated lavas has suggested that these metasomes are a significant factor in the evolution of the rift. Hydrous/carbonated fluids or silicate melts are potent metasomatic agents, however gaining insight into the source of a metasomatic agent proves challenging. Here we investigate the potential metasomatic fluid sources using B isotope analysis of mineral separates from Western Branch xenoliths. Preliminary SIMS analyses of phlogopite from Katwe Kikorongo and Bufumbira have and average B isotopic composition of -28.2‰ ± 5.1 and -16.4‰ ± 3.6, respectively. These values are are dissimilar to MORB (-7.5‰ ± 0.7; Marschall and Monteleone, 2015), primitive mantle (-10‰ ± 2; Chaussidon and Marty, 1995), and bulk continental crust (-9.1‰ ± 2.4; Marschall et al., 2017) and display significant heterogeneity across a relatively short ( 150km) portion of the Western Branch. Though displaying large variability, these B isotopic compositions are indicative of a metasomatic agent with a more negative B isotopic composition than MORB, PM, or BCC. These results are consistent with fluids that released from a subducting slab and may be related to 700 Ma Pan-African subduction.

  19. Coexistence of galenas with different Pb isotopic composition in Los Pedroches batholith area (Spain)

    Science.gov (United States)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Larrea, F. J.; Carracedo, M.; Gil Ibarguchi, J. I.

    2003-04-01

    The Los Pedroches batholith region (S Spain) includes three separated mining districts: Linares, La Carolina and Los Pedroches. The Pb isotopic composition of thirty-three galenas from this sector has been measured. On the basis of the Pb data two types of mineralization are established. A first type including: (i) the Linares and La Carolina districts where ore-bearing filons cut Hercynian granites or their hostrocks (SE of the batholith), and (ii) the so-called "peribatholithic" ore bodies represented by scarce mines in the host-rock of the batholith; all of them exhibit homogeneous Pb isotopic compositions of: 206Pb/204Pb = 18.236, 207Pb/204Pb = 15.615, 208Pb/204Pb = 38.347 and a model age of ca. 324 Ma. The second type is represented by a huge N120^oE hydrotermal vein (the El Zumajo vein) intrusive in granitoid bodies of the batholith; the Pb isotopic composition of the vein is: 206Pb/204Pb = 18.457, 207Pb/204Pb = 15.636, 208Pb/204Pb = 38.611 and a model age of ca. 201 Ma. Analysed K-feldspars from batholithic granodiorite and granites have Pb isotopic compositions similar to those reported previously from Hercynian granites of the area (1) and to the galenas of Linares, La Carolina and "peribatholithic" ores. The whole dataset reveals a Pb evolution curve with μ_2 = 9.8 and ω_2 = 38.3, close to the model curve for the "orogen" (2). This suggests for Linares, La Carolina and the "peribatholithic" mineralizations a Pb source related to that of the granites. The pre-Tremadoc metasedimentary rocks of the area, with Pb isotopic composition (3) very close to that of feldspars and galenas studied is proposed as a possible source of Pb for both the granites and associated mineralizations, although the Pb isotopic composition of El Zumajo calls for a different origin. The observed difference in Pb isotopic ratios of the studied galenas points to, at least, two ore-forming events: (i) one relating older mineralizations and granitoid intrusives, in agreement with

  20. Isotopic composition on ground ice in Western Yamal (Marre-Sale

    Directory of Open Access Journals (Sweden)

    I. D. Streletskaya

    2013-01-01

    Full Text Available The profile of Quaternary sediments near Marre-Salle polar station, Western Yamal Peninsula, has large bodies of tabular ground ice. This profile is considered strata-typical and critical in understanding of paleogeographic conditions of the Arctic in Pleistocene-Holocene. However, interpretation of the profile is under discussion. It consists of two distinct strata: upper layer of 10–15 m thick represented by continental sediments and lower one with a thickness of more than 100 m represented by marine sediments. Lower layer of saline marine clays has lenses of tabular ground ice (more than 20 m thick, the bases of which are below the sea level. Upper continental layer is characterized by syngenetic ice-wedges of different generations. Samples were collected from ice-wedges and tabular ground ice for chemical and isotope analysis. The results of the analysis allow to reconstruct paleogeographic conditions of the sedimentation and freezing of Quaternary sediments. Heavy stable isotope content and relationship between oxygen and hydrogen isotopes show that the ice bodies in the lower layer were formed in-situ within the ground. In the upper layer, heavier isotope content found in younger ice-wedges relative to the old-generation wedges. Formation of massive syngenetic Upper-Pleistocene ice-wedges occurred in conditions of colder winter temperatures than at present. Syngenetic Holocene wedges were formed after Holocene Optimum under winter conditions similar to present. Younger ice wedges formed smaller polygons, were smaller and often were developing in the locations of the degraded old wedges. Results of the isotope analysis of various types of ground ice near Marre-Sale allow reconstructing changes of marine sedimentation to continental one around Kargino time (MIS 3 and changes in climatic conditions in Arctic in Late Pleistocene and Holocene.

  1. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    Science.gov (United States)

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (solar system (solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  2. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    Science.gov (United States)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary

  3. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  4. Seasonal variation in the distribution and isotopic composition of phytoplankton in an amazon floodplain lake, Brazil

    International Nuclear Information System (INIS)

    Caraballo, Pedro; Forsberg, Bruce R; Leite, Rosseval G

    2014-01-01

    To evaluate the seasonal variation and isotopic composition of phytoplankton, water samples were collected monthly between October 2007 and November 2008 in Lake Catalao, a floodplain lake at the confluence between rivers Negro and Amazon. Analyses of total chlorophyll concentration and δ"13C and δ"15N isotopic abundances were made from particulate size fractions of 30-60, 10-30 and <10 μm in the littoral, pelagic, and floating meadows regions. Chlorophyll concentration was found to be inversely associated to lake depth, and high concentrations of chlorophyll in the floating meadows zone were significant. The fraction <10 μm was the most abundant representing in average more than 40% of the particulate matter. The δ3 13C values were relatively constant during the study (-25.1% -34.0%), whereas the δ"15N values showed strong variability (15.6% 2.4%), which has been attributed to the resuspension of sediments during mixing of the water column. Mixing associated to the sudden drop in temperature during the rising water period was an important event in the trophic and isotopic dynamics of the lake. Variations in chlorophyll content were generally associated with the dilution process, in which concentration was inversely correlated to the water level, whereas abundance was directly correlated to the water level.

  5. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Pribil, Michael J.; Van Metre, Peter C.; Borrok, David M.; Thapalia, Anita

    2013-01-01

    Highlights: ► Hg and Pb concentration and isotopic compositions traced anthropogenic sources. ► Concentrations and metal loadings of Hg and Pb increased during the smelting period. ► Hg isotopic compositions changed during smelting compared to the pre-smelting period. ► Data indicate mass independent fractionation of Hg isotopes. - Abstract: Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ 202 Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ 202 Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206 Pb/ 207 Pb and 208 Pb/ 207 Pb isotopic compositions during these periods. Data for Δ 199 Hg and Δ 201 Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ 199 Hg and Δ 201 Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger

  6. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii

    Science.gov (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.

    2004-01-01

    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  7. Extermination Of Uranium Isotopes Composition Using A Micro Computer With An IEEE-488 Interface For Mass Spectrometer Analysis

    International Nuclear Information System (INIS)

    Prajitno; Taftazani, Agus; Yusuf

    1996-01-01

    A mass spectrometry method can be used to make qualitative or quantitative analysis. For qualitative analysis, identification of unknown materials by a Mass Spectrometer requires definite assignment of mass number to peak on chart. In quantitative analysis, a mass spectrometer is used to determine isotope composition material in the sample. Analysis system of a Mass Spectrometer possession of PPNY-BATAN based on comparison ion current intensity which enter the collector, and have been used to analyse isotope composition. Calculation of isotope composition have been manually done. To increase the performance and to avoid manual data processing, a micro computer and IEEE-488 interface have been installed, also software packaged has been made. So that the determination of the isotope composition of material in the sample will be faster and more efficient. Tile accuracy of analysis using this program on sample standard U 3 O 8 NBS 010 is between 93,87% - 99,98%

  8. Magma crust interaction at Merapi volcano, Java Indonesia: insights from crystal isotope stratigraphy

    NARCIS (Netherlands)

    Chadwick, J.P.; Troll, V.R.; Ginibre, C.; Morgan, D.; Gertisser, R.; Waight, T.; Davidson, J.P.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An

  9. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  10. Modelling the regional climate and isotopic composition of Svalbard precipitation using REMOiso

    DEFF Research Database (Denmark)

    Divine..[], D.V.; Sjolte, Jesper; Isaksson, E.

    2011-01-01

    Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958-2001 are compared with the two instrumental climate and four isotope series (d18O) from western Svalbard. We examine the data from ice cores drilled...... than summer. The simulated and measured Holtedahlfonna d18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent...... in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter...

  11. The precise measurement of TL isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites.

    Science.gov (United States)

    Rehkämper, Mark; Halliday, Alex N.

    1999-07-01

    The precision of Tl isotopic measurements by thermal ionization mass spectrometry (TIMS) is severely limited by the fact that Tl possesses only two naturally occurring isotopes, such that there is no invariant isotope ratio that can be used to correct for instrumental mass discrimination. In this paper we describe new chemical and mass spectrometric techniques for the determination of Tl isotopic compositions at a level of precision hitherto unattained. Thallium is first separated from the geological matrix using a two-stage anion-exchange procedure. Thallium isotopic compositions are then determined by multiple-collector inductively coupled plasma-mass spectrometry with correction for mass discrimination using the known isotopic composition of Pb that is admixed to the sample solutions. With these procedures we achieve a precision of 0.01-0.02% for Tl isotope ratio measurements in geological samples and this is a factor of ≥3-4 better than the best published results by TIMS. However, without adequate precautions, experimental artifacts can be generated that result in apparent Tl isotopic fractionations of up to one per mil. Analysis of five terrestrial samples indicate the existence of Tl isotopic variations related to natural fractionation processes on the Earth. Two of the three igneous rocks analyzed in this study display Tl isotopic compositions indistinguishable from our laboratory standard, the reference material NIST-997 Tl. A third sample, however, is characterized by ɛ Tl ≈ 2.5 ± 1.5, where ɛ Tl represents the deviation of the 205Tl/ 203Tl ratio of the sample relative to NIST-997 Tl in parts per 10 4. Even larger deviations were identified for two ferromanganese crusts from the Pacific Ocean, which display ɛ Tl-values of +5.0 ± 1.5 and +11.7 ± 1.3. We suggest that the large variability of Tl isotopic compositions in the latter samples are caused by low-temperature processes related to the formation of the Fe-Mn crusts by precipitation and

  12. Precipitation, groundwater and surface waters. Control of climate parameters on their isotopic composition and their utilization as palaeoclimatological tools

    International Nuclear Information System (INIS)

    Gat, J.R.

    1983-01-01

    The isotopic composition of precipitation is correlated with climatic parameters such as mean temperature and humidity both in the source areas of the atmospheric moisture and along the storm trajectories. However, additional meteorological variables such as seasonal distributions of rainfall, convection patterns in the cloud and intensity, duration and intermittency of rain influence the isotopic composition. It is shown in this context that the isotopic composition of Negev and Sinai palaeowaters is consistent with the notion of summer rains in this area arising from Atlantic-based storm centres. (author)

  13. Sm-Nd isotope system of oldest granulites of Anabar Shield

    International Nuclear Information System (INIS)

    Spiridonov, V.G.; Sukhanov, M.K.; Karpenko, S.F.; Lyalikov, A.V.; AN SSSR, Moscow

    1991-01-01

    The first results of applying Sm-Nd method for dating the oldest basic and ultrabasic rocks of the Anabar Shield are presented. The content and isotopic composition of Sm and Nd were determined by the methods of mass-spectroscopy with isotopic dilution. The obtained values of metamorphic ages (3063 ± 80 million years) are in good agreement with U-Pb method data for zircon

  14. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  15. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    Science.gov (United States)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  16. Strontium and neodymium isotopic compositions in sediments from Godavari, Krishna and Pennar rivers

    International Nuclear Information System (INIS)

    Masood Ahmad, S.; Padmakumari, V.M.; Anil Babu, G.

    2009-01-01

    We report here strontium (Sr) and neodymium (Nd) isotopic compositions in bed sediments from the Godavari, Krishna and Pennar rivers, draining into the Bay of Bengal. The isotopic compositions of these sediments range from 0.7190 to 0.7610 for 87 Sr/ 86 Sr and -12.04 to -23.68 for ε Nd . This wide range in Sr and Nd isotopes is derived from variable proportions of sediments from different rock types in their drainage basins. All the three rivers have their characteristic isotopic signatures. The results display highest 87 Sr/ 86 Sr (0.7610) and most negative ε Nd values (-23.68) for the sediments of Pennar river. This is attributed to the chemical weathering of gneisses and granites in its drainage basin. The 87 Sr/ 86 Sr and ε Nd values for the Godavari river sediments range from 0.7196 to 0.7210 and -15.31 to -18.22 respectively. 87 Sr/ 86 Sr and ε Nd values in Krishna river sediments lie from 0.7217 to 0.7301 and -12.04 to -12.78 respectively. Our results show that the sedimentary load from the Godavari and Krishna rivers is primarily derived from the older rocks in their drainage basins. It is possible that the sediments transported through peninsular Indian rivers predominantly control Sr and Nd isotope sedimentary budget in the western Bay of Bengal. (author)

  17. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition.

    Science.gov (United States)

    Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan

    2018-06-19

    Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non

  18. Isotopic evolution of aqueous sulphate in northern Chile water

    International Nuclear Information System (INIS)

    Aravena, R.; Suzuki, O.; Fritz, P.; Pena, H.; Rauert, W.

    1987-01-01

    Full text: The extremely arid condition of northern Chile is the main obstacle to the present and future development of urban centres and economic activities in the region. The existing water resources are scarce. During the last decade, isotope techniques have been applied to investigate aspects such as the origin and residence time of the groundwater, these being extremely important for water development and water management. This paper presents 18 O and 34 S data in aqueous sulphate, as well as 18 O, 2 H, and 3 H from springs, rivers and groundwater samples of the Pampa del Tamarugal and Salar de Llamara basins. The principal aim of this study was to investigate the isotope evolution of the sulphate, the origin of the sulphur, the groundwater flow path, and the possibility of using the 18 O of the sulphate as a tracer for estimation of the residence time of the groundwater. Springs that have their recharge area in the high Altiplano (Salar del Huasco basin) show δ values between +5.0 per mille and +6.0 per mille for the 18 O and +5.0 per mille and +9.0 per mille for the 34 S isotope. Springs from lower altitude, show an isotope content between + 8.6 per mille and + 10.6 per mille for 18 O and +7.4 per mille and + 11.7 per mille for 34 S. The groundwaters in the Pampa aquifers, based on their hydrogen and oxygen isotope composition, are associated with different recharge areas. However, these waters show an isotope range for the sulphate similar to .he one of the springs, and no clear relationships are observed between isotope content, flow path and residence time. This pattern could be related to the poorly defined aquifer systems present in the Pampa. The Llamara groundwaters have a uniform isotope content and are the most enriched in the region (δ 18 O = -6.0 per mille and δ 2 H = -50 per mille). The isotope composition of their sulphate compares well with the Pampa groundwater, indicating a similar sulphate source. The isotope composition of gypsum

  19. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    Science.gov (United States)

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  20. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  1. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: Implications for biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Naqvi, S.W.A.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Naik, H.

    , 767–779, 2017 www.biogeosciences.net/14/767/2017/ doi:10.5194/bg-14-767-2017 © Author(s) 2017. CC Attribution 3.0 License. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications... basis. Samples for nitrate isotopic measurements were col- lected from 2011. The facility for nitrate isotope analysis was Biogeosciences, 14, 767–779, 2017 www.biogeosciences.net/14/767/2017/ P. Bardhan et al.: Isotopic composition of nitrate and POM...

  2. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO_3"-) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ"1"5N and δ"1"8O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  3. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO 3 - ) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ 15 N and δ 18 O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  4. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  5. Isotopic composition of water in precipitation due to seasonal variation and variation in intensity of rain fall at a place

    International Nuclear Information System (INIS)

    Singh, B.P.

    2015-01-01

    An attempt has been made to analyze the data to find the original precipitate on GMWL, when there is seasonal variation and variations in intensity of rain fall at the same longitude, latitude and altitude. This has been done using the data as available for each month, weighted average of month and individual year for δ 2 H and δ 18 O for a 10-year periods. Correlation equations between δ 2 H and δ 18 O are available giving slopes and intercepts on the δ 2 H axis for 10-year periods. The data of slope versus intercept for each month, weighted monthly average value and individual year are plotted to arrive at isotope composition of meteoric water δ 18 O and δ 2 H, the method suggested by (Singh B.P. 2013, Isotopic composition of water in precipitation in a region or place, Applied Radiation and Isotopes, vol. 75, pp. 22–25; Singh B.P. 2014, Isotopic composition of river water across a continent, Applied Radiation and Isotopes, vol. 85, pp. 14–18). The results of the original meteoric isotopic composition of water are within the experimental errors as analyzed on a yearly basis, the average of each month of yearly basis and on the basis of each month and also some different amounts of precipitation giving the same value of δ 18 O=−16.72 and δ 2 H=−129.86 on GMWL. - Highlights: • New pattern, plot of slope versus intercept between δ 18 O and δ 2 H at the same location for seasons and rainfall are given. • These patterns are analyzed to arrive at the original isotopic composition to be on GMWL. • It is found that the original isotopic composition is same for different seasons and amount of rainfall

  6. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  7. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  8. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  9. Heterogeneity of the Caribbean plateau mantle source: Sr, O and He isotopic compositions of olivine and clinopyroxene from Gorgona Island

    Science.gov (United States)

    Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.

    2002-12-01

    The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3

  10. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  11. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  12. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology

    Science.gov (United States)

    Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.

    2018-05-01

    The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.

  13. ISOTOPIC CHARACTERIZATION OF ORGANIC MATERIALS LEACHED FROM LEAVES IN WATER OF MUNDARING WEIR DAM

    Directory of Open Access Journals (Sweden)

    Markus Heryanto Langsa

    2010-06-01

    Full Text Available This study examined the organic constituents aquatically leached from leaf components of two tree species (wandoo eucalyptus and pinus radiate. In particular this study aimed to assess the stable isotope composition behaviour of dissolved organic carbon (DOC from the residue leaves after leaching over five months. The changes in the stable carbon and nitrogen isotope compositions of the leached leaves materials were investigated using an elemental analyzer-isotope ratio mass spectrometry (EA-irMS. The stable isotope compositions were found to vary according to microbially-mediated alteration and decomposition. The average  d13C content of the raw plant elements was consistent with the  d13C values of terrestrial plants using a C3 photosynthetic pathway. The isotope compositions of leached materials of wandoo eucalyptus fresh leaf were continually depleted in d13C over the leaching period of three months. These variations correlated well with its DOC profile. Changes in  d13C values may also relate to the differential leaching of the macromolecular precursors of the original material. Lignin, for example, has a typically low  d13C and probably contributed to the decrease of  d13C in residue of the plant materials.   Keywords: isotope composition, leached materials, C3 plant

  14. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  15. Determination of uranium isotopic composition and {sup 236}U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Central Department for Analytical Chemistry, Research Centre Juelich (Germany)

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10{sup -4} and 10{sup -3} counts per atom were achieved for {sup 238}U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH{sup +}/U{sup +} was 1.2 x 10{sup -4} and 1.4 x 10{sup -4}, respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 {mu}g L{sup -1} NBS U-020 standard solution was 0.11% ({sup 238}U/{sup 235}U) and 1.4% ({sup 236}U/{sup 238}U) using a MicroMist nebulizer and 0.25% ({sup 235}U/{sup 238}U) and 1.9% ({sup 236}U/{sup 238}U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. Results obtained with ICP-MS, {alpha}- and {gamma}-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  16. Soil moisture effects on the carbon isotopic composition of soil respiration

    Science.gov (United States)

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  17. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    International Nuclear Information System (INIS)

    Streletskiy, Dmitry A; Shiklomanov, Nikolay I; Nyland, Kelsey E; Tananaev, Nikita I; Opel, Thomas; Streletskaya, Irina D; Tokarev, Igor’; Shiklomanov, Alexandr I

    2015-01-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months. (letter)

  18. The isotopic composition of precipitation on the Andes and Amazon of Bolivia

    International Nuclear Information System (INIS)

    Roche, M.A.; Gonfiantini, R.; Fontes, J.C.; Abasto, N.; Noriega, L.

    1999-01-01

    In the years 1983-1985, the isotopic composition of precipitation was determined in monthly and annual samples collected from stations at different altitude along two transects from the Bolivian Altiplano to the Amazon basin. The data show variations with amount (in rainy season δ-values are more negative) and altitude. The isotopic gradient with altitude changes seasonally, being higher (in absolute value) in rainy months (January-February). The influence of the 1983 drought is clearly shown, with less negative δ-values and smaller isotopic gradients vs. altitude with respect to 1984. The drought was supposed to be connected with El Nino, very strong in 1982-1983, but this has not been confirmed in 1997-1998, when El Nino was even stronger. The isotopic contrast between the dry 1983 and the very humid 1984 can be identified in the ice core from the Sahama glacier. (author)

  19. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    The physical characteristics (thousand seed and hectolitre mass), chemical composition (dry matter, ash, crude protein (CP), ether extract, acid detergent fibre, neutral detergent fibre and mineral content), energy values (nitrogen corrected true metabolisable energy content (TMEn for roosters)) as well as the lysine and ...

  20. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  1. Petrol with isotopically differentiated lead added

    International Nuclear Information System (INIS)

    Magi, F.; Facchetti, S.; Garibaldi, P.

    1975-01-01

    An experiment is proposed aimed at determining the role of motor traffic in the pollution of the environment by lead, in particular of air, soil, vegetation, food and the human body. The technique of determining the isotopic composition of lead, used in the right way, should enable the whole problem to be solved. It is intended to add lead with a constant isotopic composition different from that of normally occuring lead, whether natural in origin or otherwise, to petrol in at least two regions of Italy. Analyses of lead samples taken from the principal mines have shown that Australian lead (Broken Hill Mine) has quite a different isotopic composition. This lead will therefore be used to prepare the antiknock additives for petrol sold in the regions in question. Adequate sampling should make it possible to determine the contribution to pollution of lead from motor vehicle exhausts. The regions chosen for the experiment are Piedmont (city and province of Turin) and Sardinia (city and province of Cagliari) - the first because of its high traffic density and level of industrialization, the second because of its remoteness and the lead content of the soil, which may affect food. Both regions present favourable conditions for supplying petrol of the intended type. The experiment is intended to last three years; the petrol with Australian lead will be marketed for a period of 18 months. The first results of analyses of the isotopic composition of lead contained in atmospheric dust in the city of Turin and of lead from a number of blood samples are reported in the paper

  2. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M. F. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Castano, S. [Geological Survey of Spain (IGME), Madrid (Spain)

    2013-07-15

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  3. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  4. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    Science.gov (United States)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  5. Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite

    Science.gov (United States)

    Gyngard, Frank; Amari, Sachiko; Zinner, Ernst; Marhas, Kuljeet Kaur

    2018-01-01

    We report correlated Si, and Ti isotopic compositions and elemental concentrations of 238 presolar SiC grains from the Murchison CM2 meteorite. Combined with measurements of the C and N isotopic compositions of these 238 grains, 220 were determined to be of type mainstream, 10 type AB, 4 type Y and 4 type Z. SiC grains of diameter ≳2.5 μm, to ensure enough material to attempt Ti measurements, were randomly chosen without any other prejudice. The Ti isotopic compositions of the majority of the grains are characterized by enrichments in 46Ti, 47Ti, 49Ti, and 50Ti relative to 48Ti, and show linear isotopic correlations indicative of galactic chemical evolution and neutron capture of the grains parent stars. The variability in the observed Ti signal as a function of depth in most of the grains indicates the presence of distinct subgrains, likely TiC that have been previously observed in TEM studies. Vandium-51 concentrations correlate with those of Ti, indicating V substitutes for Ti in the TiC matrix in many of the grains. No isotopic anomalies in 52Cr/53Cr ratios were observed, and Cr concentrations did not correlate with those of either Ti or V.

  6. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China

    International Nuclear Information System (INIS)

    Li Siliang; Liu Congqiang; Patra, Sivaji; Wang Fushun; Wang Baoli; Yue Fujun

    2011-01-01

    Highlights: → Changjiang Estuary plays an important role in transportation of the water and solute. → The dual isotopic method could be used to understand sulfate biogeochemistry in estuaries. → Mixing processes should be a major factor involved in the distribution of water and sulphate. → Sulphate in the Changjiang River mainly derived from atmospheric deposition, evaporite dissolution and sulphide oxidation. - Abstract: The dual isotopic compositions of dissolved SO 4 2- in aquatic systems are commonly used to ascertain SO 4 2- sources and possible biogeochemical processes. In this study, the physical parameters, major anions and isotopic compositions of SO 4 2- in water samples from Changjiang River (Nanjin) to the East Sea in Changjiang Estuary were determined. The salinity ranged from 0 per mille to 32.3 per mille in the estuary water samples. The Cl - ,SO 4 2- concentrations and δ 18 O-H 2 O values followed the salinity variations from freshwater to seawater, which indicated that mixing processes might be a major factor involved in the distribution of water and solutes. The contents and isotopic compositions of SO 4 2- suggested that atmospheric deposition, evaporite dissolution and sulphide oxidation were the major sources of dissolved SO 4 2- in the freshwater of Changjiang River. In addition, the mixing model calculated by contents and isotopic compositions of SO 4 2- indicated that the mixing of freshwater and sea water was the major factor involved in SO 4 2- distribution in Changjiang Estuary. However, slightly elevated δ 18 O-SO 4 values were observed in the turbidity maximum zone, which suggested that biological processes might affect the O isotopic compositions of SO 4 2- there.

  7. Using semi-continuous, in-situ measurements of nitrous oxide isotopic composition at a suburban site to track emission processes

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn

    2017-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance emitted this century. The atmospheric N2O mole fraction has been increasing at a rate of 0.2-0.3% per year over the past decades due to anthropogenic emissions; in addition, recent results suggest that the rate of increase is rising - therefore effective mitigation of N2O emissions is a critical point for environmental policy. However, N2O sources are poorly defined and disperse, complicating the development of targeted mitigation strategies. Online isotopic measurements using preconcentration and laser spectroscopy [1,2,3] have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of trace gases such as N2O. Semi-continuous, real-time measurements of N2O isotopic composition (δ18O, site preference [SP = 14N15N16O - 15N14N16O] and δ15Nbulk) were performed at the suburban site of Dübendorf, Switzerland, for 19 months between July 2014 and February 2016. The data precision reached 0.1‰ in the final months, thus the results could clearly identify nocturnal build-up of N2O, with a corresponding decrease in δ18O, SP and δ15Nbulk due to isotopically depleted anthropogenic sources. Daily mean source isotopic composition was calculated by considering the measured and the background mole fraction and isotopic composition. Delta values of the mean emission source were highest in winter, with a seasonal cycle of 12, 8 and 5‰ for δ18O, SP and δ15Nbulk respectively. The chemical and meteorological parameters controlling source isotopic composition were considered using data from the Swiss National Air Pollution Monitoring Network (NABEL) as well as a transport regime cluster analysis. A clear spatial distribution for source isotopic composition was observed for δ18O, as well as a significant relationship with the level of urban pollution, indicating δ18O may be a strong indicator of combustion/industrial vs. agricultural N2O. In contrast

  8. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-01-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH 4 + and Ca 2+ , whereas the main anion was HCO 3 − , which constituted approximately 69% of the anions, followed by NO 3 − , SO 4 2− and Cl − . Data analysis suggested that Na + , Cl − and K + were derived from the long-range transport of marine aerosols. Ca 2+ , Mg 2+ and HCO 3 − were related to rock and soil dust contributions and the NO 3 − and SO 4 2− concentrations were derived from anthropogenic sources. Furthermore, NH 4 + was derived from gaseous NH 3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ 18 O, and from − 0.8 to − 174‰ in δ 2 H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha −1 y −1 ) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO 3

  9. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)

    Science.gov (United States)

    Zambardi, T.; Sonke, J. E.; Toutain, J. P.; Sortino, F.; Shinohara, H.

    2009-01-01

    Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed gaseous fumarole Hg (fum)T, plume gaseous elemental Hg (g)0 and plume particulate Hg (p)II were obtained at fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on Hg T/SO 2 in condensed fumarolic gases and plumes, range from 2.5 to 10.1 kg y - 1 , in agreement with published values [Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Sci. Total Environ. 259(1-3), 115-121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO 2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg (p)II increases with distance from the fumarole vent, at the expense of Hg (g)0 and indicates significant in-plume oxidation and condensation of fumarole Hg (fum)T. Relative to the NIST SRM 3133 Hg standard, the stable isotopic compositions of Hg are δ 202Hg (fum)T = - 0.74‰ ± 0.18 (2SD, n = 4) for condensed gaseous fumarole Hg (fum)T, δ 202Hg (g)0 = - 1.74‰ ± 0.36 (2SD, n = 1) for plume gaseous elemental Hg (g)0 at the F0 fumarole, and δ 202Hg (p)II = - 0.11‰ ± 0.18 (2SD, n = 4) for plume particulate Hg (p)II. The enrichment of Hg (p)II in the heavy isotopes and Hg (g)0 in the light isotopes relative to the total condensed fumarolic Hg (fum)T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas expulsion in ambient T° atmosphere. A first order Rayleigh equilibrium condensation isotope fractionation model yields a fractionation factor α cond-gas of 1.00135 ± 0.00058.

  10. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    Science.gov (United States)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  11. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  12. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2016-08-01

    Full Text Available High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS and a quantum cascade laser absorption spectroscopy (QCLAS-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands and performed in situ, high-frequency (approx. hourly measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04 ‰ for δ13C and (−4.3 ± 0.4 ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for

  13. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were

  14. FY 2005 annual report. 21st century COE program isotope science and engineering from basics to applications

    International Nuclear Information System (INIS)

    2006-09-01

    The 05' activity on 21st century COE program, Nagoya University, Isotopes open the future' is reported. The contents are: Research and educational execution planning; Operational reports (research activities, educational activities, international conferences, etc.); Research activities (1. the basic research field...isotope separation, isotope production, isotope measurement, and isotope materials, 2. the composite and development field...isotopes in biology, cultural science, and environment, 3. research contributions); Educational activities (1. programs for assist of young research students, 2. lectures on English, 3. lectures for postgraduate students). (M.H.)

  15. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 ± 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 ± 0.0006 wt. % 234 U, 19.8336 ± 0.0059 wt. % 235 U, 0.1337 ± 0.0006 wt. % 236 U, and 79.9171 ± 0.0057 wt. % 238 U

  16. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter

    Science.gov (United States)

    Alexander, C. M. O.'D.; Fogel, M.; Yabuta, H.; Cody, G. D.

    2007-09-01

    Extraterrestrial organic matter in meteorites potentially retains a unique record of synthesis and chemical/thermal modification by parent body, nebular and even presolar processes. In a survey of the elemental and isotopic compositions of insoluble organic matter (IOM) from 75 carbonaceous, ordinary and enstatite chondrites, we find dramatic variations within and between chondrite classes. There is no evidence that these variations correlate with the time and/or location of chondrite formation, or with any primary petrologic or bulk compositional features that are associated with nebular processes (e.g., chondrule and volatile trace element abundances). Nor is there evidence for the formation of the IOM by Fischer-Tropsch-Type synthesis in the nebula or in the parent bodies. The elemental variations are consistent with thermal maturation and/or oxidation of a common precursor. For reasons that are unclear, there are large variations in isotopic composition within and between chondrite classes that do not correlate in a simple way with elemental composition or petrologic type. Nevertheless, because of the pattern of elemental variations with petrologic type and the lack of any correlation with the primary features of the chondrite classes, at present the most likely explanation is that all IOM compositional variations are the result of parent body processing of a common precursor. If correct, the range of isotopic compositions within and between chondrite classes implies that the IOM is composed of several isotopically distinct components whose relative stability varied with parent body conditions. The most primitive IOM is found in the CR chondrites and Bells (CM2). Isotopically, the IOM from these meteorites resembles the IOM in interplanetary dust particles. Chemically, their IOM resembles the CHON particles of comet Halley. Despite the large isotopic anomalies in the IOM from these meteorites, it is uncertain whether the IOM formed in the interstellar medium or

  17. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Science.gov (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  18. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  19. Applications of stable Isotope ratios determinations in fruit juice authentication

    International Nuclear Information System (INIS)

    Magdas, Dana Alina; Dehelean, Adriana; Voica, Cezara; Puscas, Romulus

    2010-01-01

    Full text: Adulteration of a product consists in making it impure by fraudulent addition of a foreign or inferior substance. The result is either an alteration of the product and of its quality or a falsification. The falsification is a voluntary act with the intention of abuse. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. Vacuum concentration with aroma does not affect the chemical composition of fruit juices and therefore the determination of deuterium (D) and oxygen-18 content in waters is the most confident procedure for differentiating between a natural single strength juice and a juice rediluted from a concentrate. This technique is based on the fact that when absorbed by a plant, the rainwater or the irrigation water is fractionated by evapotranspiration, and enriched in the heavy isotopes (deuterium and oxygen-18) with respect to the light isotope (hydrogen and oxygen-16, respectively). It is known that climatic conditions affect the isotope content of rain waters and therefore that of fruit juices waters: the warmer climate, the higher the deuterium and oxygen-18 contents in water. Rainwater and tap water have nearly the same isotopic content and the water of fruit juices derived from concentrate by dilution with tap water has an isotopic content close to that of tap water. This makes it easy to distinguish diluted concentrates from the isotopically more enriched water of authentic single strength juice. In this study, single strength juice, in Romanian fruits, were investigated by mean of stable isotope measurements (oxygen, hydrogen and carbon) in order to offer a discussion basis for the authenticity of some fruit juices currently available on Romanian market. (authors)

  20. Isotopic composition and origin of the precipitation in Northern Chile

    International Nuclear Information System (INIS)

    Aravena, R.; Suzuki, O.; Pena, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A.

    1999-01-01

    A 3 a data set of isotopes in precipitation from northern Chile show a very distinct pattern, with δ 18 O values ranging between -18 and -15per thousand at high altitude stations, compared to δ 18 O values between -10 and -6per thousand at the lower altitude areas. The 18 O-depleted values observed in the high altitude area, the Altiplano, are related to processes that affect the air masses that originated over the Atlantic, cross the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated with air masses from the Pacific, may contribute to the 18 O-enriched values observed in the lower altitude areas. Similar isotopic patterns are documented in springs and groundwater indicating that the data presented in this paper are an accurate representation of the long term behavior isotopic composition of rain in northern Chile. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Isotopic composition and origin of the precipitation in Northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Aravena, R. [Department of Earth Sciences, University of Waterloo, Waterloo (Canada); Suzuki, O. [Exploracion y Desarrollo de Recursos Hidricos, Santiago (Chile); Pena, H. [Direccion General de Aguas, Ministerio de Obras Publicas, Santiago (Chile); Pollastri, A. [Comision Chilena de Energia Nuclear, Santiago (Chile); Fuenzalida, H. [Departamento de Geofisica, Universidad of Chile, Santiago (Chile); Grilli, A. [Empresa Metropolitana de Obras Sanitarias, Santiago (Chile)

    1999-06-01

    A 3 a data set of isotopes in precipitation from northern Chile show a very distinct pattern, with {delta}{sup 18}O values ranging between -18 and -15per thousand at high altitude stations, compared to {delta}{sup 18}O values between -10 and -6per thousand at the lower altitude areas. The {sup 18}O-depleted values observed in the high altitude area, the Altiplano, are related to processes that affect the air masses that originated over the Atlantic, cross the Amazon Basin (continental effect), ascend the Andes (altitude effect) and precipitated (convective effect) in the Altiplano. It is postulated that a second source of moisture, associated with air masses from the Pacific, may contribute to the {sup 18}O-enriched values observed in the lower altitude areas. Similar isotopic patterns are documented in springs and groundwater indicating that the data presented in this paper are an accurate representation of the long term behavior isotopic composition of rain in northern Chile. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  3. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    Science.gov (United States)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  4. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  5. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  6. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size

  7. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M.F.; Castano, S.

    2011-01-01

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over Spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a Digital Elevation Model using GIS tools. Application of the resulting map to several case studies in Spain has shown it to be useful as a reference of the isotope input function to groundwater recharge and surface runoff. The results obtained so far show a good fit between modelled stable isotope values and those measured in surface and ground waters from different aquifers and recharge areas. The GIS tools applied to a continuous digital layer of spatial isotope are able to provide accurate information at detailed scales that are not affordable by other means. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is going on.

  8. Isotopic composition of cosmic ray nuclei

    International Nuclear Information System (INIS)

    Enge, W.

    1976-01-01

    A review will be given on the role of cosmic ray isotopes as tracers of the astrophysical nucleo-synthesis. The products of every nuclear burning chain are first of all isotopes and not elements. Thus, it is the study of the isotopes rather than that of the elements that responds to the questions on these nucleo-synthetic reactions. The problems concerning the solar system isotopic abundances and the cosmic ray isotopic abundances as well as a comparison between both will be presented. Furthermore the present stage of the experimental techniques and the latest results will be discussed. (orig.) [de

  9. Environmental isotopes in the aquifers of the North Western Sahara

    International Nuclear Information System (INIS)

    Conrad, G.

    1975-09-01

    The isotopic composition of single rains at Beni-Abbes (Algeria) has been determined from 1964 to 1975. The weighed mean delta 18 O value is -3.54 %o vs. SMOW for all rains, -6.29 for rains higher than 10 mm. Only these more intense rains are believed to contribute significantly to groundwater recharge. Tritium content of precipitation varies from 900 TU in a 1964 rain, to 235 in 1967, 215 in 1968 and about 50 in 1972. The isotopic and chemical composition of water from a small salt lake nearby Beni-Abbes show variations depending on the evaporation rate and on the amount and origin of inflow. Groundwater in the Western Ground Erg contain significant amount of tritium, indicating recent recharge. The water is however submitted to evaporation as indicated by its 18 O and deuterium content. The so-called Continental Intercalaire aquifer, which extends over most of the Sahara desert, appears to be presently recharged in the outcropping areas like in Tidikelt, as shown by tritium and 14 C, and by the Western Ground Erg aquifer in the Gourara area, as shown by stable isotopes

  10. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  11. Proximate composition and antinutrient content of pumpkin ...

    African Journals Online (AJOL)

    Proximate composition and antinutrient content of pumpkin ( Cucurbita pepo ) and sorghum ( Sorghum bicolor ) flour blends fermented with Lactobacillus plantarum , Aspergillus niger and Bacillus subtilis.

  12. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  13. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  14. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  15. Proximate composition and nutrient content of some wild and ...

    African Journals Online (AJOL)

    Proximate composition and nutrient content of some wild and cultivated ... Ca, P, K), one minor mineral (Fe) constituent and vitamin C content were determined. ... Mineral content (P and K) in the mushroom sporophores were found to be ...

  16. Laboratory-grown coccoliths exhibit no vital effect in clumped isotope (Δ47) composition on a range of geologically relevant temperatures

    Science.gov (United States)

    Katz, Amandine; Bonifacie, Magali; Hermoso, Michaël; Cartigny, Pierre; Calmels, Damien

    2017-07-01

    The carbonate clumped isotope (or Δ47) thermometer relies on the temperature dependence of the abundance of 13C18O16O22- ion groups within the mineral lattice. This proxy shows tremendous promise to reconstruct past sea surface temperatures (SSTs), but requires calibration of the relationship between Δ47 and calcification temperatures. Specifically, it is important to determine whether biologically-driven fractionation (the so-called "vital effect") overprints Δ47 values, as reported in some biominerals such as the foraminifera and the coccoliths for the carbon and oxygen isotope systems. Despite their abundance in the pelagic environment, coccolithophores have not been comprehensively investigated to test the reliability of coccolith Δ47-inferred temperatures. In this study, we cultured three geologically-relevant coccolith species (Emiliania huxleyi, Coccolithus pelagicus, and Calcidiscus leptoporus) at controlled temperatures between 7 and 25 ± 0.2 °C. Other variables such as pCO2, pH, alkalinity, nutrient concentrations and salinity were kept constant at mean present-day oceanic conditions. Although cultured coccoliths exhibit substantial species-specific oxygen and carbon isotope vital effects, we found that their Δ47 composition follows a statistically indistinguishable relationship with 1/T2 for all three species, indicating a lack of interspecific vital effects in coccoliths. Further, the Δ47 composition of coccolith calcite is identical to inorganic calcite precipitated at the same temperature, indicating an overall absence of clumped isotope vital effect in coccolith biominerals. From a paleoceanographic perspective, this study indicates that the Δ47 values of sedimentary coccoliths - even from highly diverse/mixed assemblages - can be analyzed to reconstruct SSTs with confidence, as such temperature estimates are not biased by taxonomic content or changing interspecies vital effects through time.

  17. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  18. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    International Nuclear Information System (INIS)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John; Clark, David Lewis

    2016-01-01

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  19. Pb, Sr and Nd isotope geological characteristics and its evolution of Jianchaling rock

    International Nuclear Information System (INIS)

    Pang Chunyong; Chen Minyang; Xu Wenxin

    2003-01-01

    It has been a long time debatable subject on the raw material source and its genesis of Jianchaling ultrabasic rock, because the original rock phases, the original mineral compositions, texture and structure, even part of the chemical components of the rocks had been changed completely after many periods and phases of metamorphism. According to the content of Pb, Rb, Sr, Nd elements and their Pb, Sr, Nd isotope compositions of the rocks, together with the isotope geological age of late magmatic activities, the authors analyze the evolution of Pb, Sr, Nd isotope compositions, The inferred initiate Nd isotope ratio of ultrabasic rocks is 0.510233, lower than that of meteorite unity at a corresponding period, its ε Nd(T)>O; The initiate Sr ratios inferred by the isotope geological age ranges from 0.702735 to 0.719028; Projecting the lead isotope compositions on the Pb tectonic evolution model, the result indicates that the raw material of Jianchaling ultrabasic rock coming from the deplete upper mantle. The ultrabasic magma which enrich of Mg, Ni and less S intruded the crust and formed the Jianchaling ultrabasic rock at late Proterozoic era (927 Ma±). The forming time of serpentinite is mostly equal to the granitoid intruding time, showing the intrusion o flate acidic magma caused a large scale alteration of the ultrabasic rocks and formed the meta-ultrabasic phase rock observed today. (authors)

  20. Application of the mass spectrometry-isotope dilution technique for the determination of uranium contents in rocks

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Iyer, S.S.

    1980-01-01

    Application of the spectrometric isotope dilution technique for the accurate determination of parts per million range of uranium in rock samples is described. The various aspects of the method like sample dissolution, ion exchange separation, mass spectrometric procedures are discussed. A single filament ionization source was employed for the isotope analysis. A carbon reduction method was used to reduce uranium oxide ions to uranium metal ions. The tracer solution for isotope dilution was prepared from National Bureau of Standards uranium isotopic Standard NBS U-970. Uranium contents are meassured for nine rock samples and the values obtained are compared with the uranium values measured by others workers. Errors caused in the uranium determination due to sample splitting problems as well as the incomplete acid digestion of the samples are discussed. (Author) [pt

  1. Isotopic study of water evaporation in a clayey soil, experimentation and modelling

    International Nuclear Information System (INIS)

    Mathieu, R.; Bariac, T.

    1995-01-01

    The isotopic theory of soil water evaporation in steady-state was applied to the quantification of shallow water table discharge rates in arid and semi-arid climates. This approach is limited by the time needed by the soil to reach the steady state after the last significant rain event. The 1D numerical model ''Moise'', proposed here, was developed for the simulation of the vertical profiles of water and stable isotope contents in a drying soil for any initial profile and atmospheric condition. Six non-perturbed soil columns of 1.1 m length were taken from Barogo, Burkina Faso and were saturated in the laboratory by infiltration and free drainage of pounding water and then allowed to evaporate freely. The columns were then sequentially sampled after 11, 42, 92, 162 and 253 days of drying for 18 O and 2 H isotopic analyses. 18 O profiles show an exponential shape during the first drying stage with a maximum isotopic enrichment at the surface. During the second drying stage, the penetration of very depleted atmospheric vapor tends to lower the isotopic content at the surface. The water and isotopic content were simulated with the Moise model. The model satisfactory reproduces the hydrodynamic evolution and the qualitative evolution of soil water isotopic content, but it largely overestimates the overall enrichment. It is thus plausible that a fraction of the soil water may keep its own isotopic composition with restricted exchanges with the surrounding mobile water and vapor, while a mobile phase can be affected by the isotopic enrichment. (J.S.). 27 refs., 6 figs., 3 tabs

  2. Strontium isotope fractionation in soils and pedogenic processes

    Energy Technology Data Exchange (ETDEWEB)

    Shalev, Netta [Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Geological Survey of Israel, 30 Malkhe Israel Street, 95501 Jerusalem (Israel); Lazar, Boaz [Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Halicz, Ludwik; Stein, Mordechai; Gavrieli, Ittai; Sandler, Amir; Segal, Irena [Geological Survey of Israel, 30 Malkhe Israel Street, 95501 Jerusalem (Israel)

    2013-07-01

    The stable isotope composition of strontium (the ratio {sup 88}Sr/{sup 86}Sr expressed as δ{sup 88/86}Sr) showed significant fractionation in mountain soils of the Judea Highland. In order to understand this phenomenon, we studied the elemental composition and the stable and radiogenic Sr isotopic composition in soil transects conducted from semi-arid (desert fringe) to wetter (Mediterranean) climate zones. These transects were selected because the degree of soil leaching depends on the amount of precipitation and the permeability of the underlying bedrock. These soils are the pedogenic products of leaching of the accumulated desert dust and the underlying carbonate bed-rocks resulting in, among others, enrichment of the residual soils in Al-clays. A clear negative correlation was found between the δ{sup 88/86}Sr and Al{sub 2}O{sub 3} (Al-clay content) values of the soils, the high δ{sup 88/86}Sr-low Al{sub 2}O{sub 3} being the dust end-member. This preliminary study demonstrates the feasibility of using stable {sup 88}Sr-{sup 86}Sr isotopes as tracers of terrestrial weathering processes. (authors)

  3. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  4. Results of the international Pu-2000 exercise for plutonium isotopic composition measurements

    International Nuclear Information System (INIS)

    Morel, J.; Bickel, M.; Hill, C.; Verbruggen, A.

    2004-01-01

    An international comparison for plutonium isotopic composition measurement, known as the Pu-2000 exercise, was organized by the ESARDA NDA-WG (European Safeguards Research and Development Association, Working Group on Techniques and Standards for Non-Destructive Assay). The aim of this comparison was to test X- and γ-ray spectrometry methods over a large range of isotopic ratios. These methods are based on the complex analysis of several X- and γ-rays in the KX region of the plutonium spectrum and also in the 120-700 keV energy range. The results obtained by the participants with their corresponding uncertainties are presented in this document and compared to the declared values. The main conclusions of the work are also given. No important bias due to an inadequate knowledge of the nuclear data for plutonium isotopes was observed

  5. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  6. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    International Nuclear Information System (INIS)

    Freeman, K.H.; Ricci, S.A.; Studley, A.; Hayes, J.M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values

  7. Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity

    Science.gov (United States)

    Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus

    2018-05-01

    Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.

  8. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    Deines, P.

    1984-01-01

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta 13 C P-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta 13 C E-type diamonds tend to have inclusions lower in SiO 2 , Al 2 O 3 , MgO, Mg/(Mg + Fe), Na 2 O, K 2 O, TiO 2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  9. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums.

    Science.gov (United States)

    Krings, Thomas; Mauerhofer, Eric

    2012-07-01

    Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Measurement of isotopic composition of lanthanides in reprocessing process solutions by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICP-MS)

    International Nuclear Information System (INIS)

    Okano, Masanori; Jitsukata, Shu; Kuno, Takehiko; Yamada, Keiji

    2011-01-01

    Isotopic compositions of fission products in process solutions and wastes in a reprocessing plant are valuable to proceed safety study of the solutions and research/development concerning treatment/disposal of the wastes. The amount of neodymium-148 is a reliable indication to evaluate irradiation history. The isotopic compositions of samarium and gadolinium in high radioactive wastes are referred to as essential data to evaluate environmental impact in geological repositories. However, pretreatment of analysis must be done with complicated chemical separation such as solvent extraction and ion exchange. The actual measurement data of isotopic compositions of lanthanides comparable to the one of actinides in spent fuel reprocessing process has not been obtained enough. Rapid and high sensitive analytical technique based on high-performance liquid chromatography (HPLC) with an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the measurement of isotopic compositions of lanthanides in spent fuel reprocessing solutions. HPLC/ICP-MS measurement system was customized for a glove-box to be applied to the radioactive solutions. The cation exchange chromatographic columns (Shim-pack IC-C1) and injection valve (20μL) were located inside of the glove-box except the chromatographic pump. The elements of lanthanide group were separated by a gradient program of HPLC with α-hydroxyisobutyric acid. Isotopic compositions of lanthanides in eluate was sequentially analyzed by a quadruple ICP-MS. Optimization of parameter of HPLC and ICP-MS measurement system was examined with standard solutions containing 14 lanthanide elements. The elements of lanthanides were separated by HPLC and detected by ICP-MS within 25 minutes. The detection limits of Nd-146, Sm-147 and Gd-157 were 0.37 μg L -1 , 0.69 μg L -1 and 0.47 μg L -1 , respectively. The analytical precision of the above three isotopes was better than 10% for standard solutions of 100 μg L -1 with

  11. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  12. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  13. Report of International Workshop on tracing isotopic composition of past and present precipitation - opportunities for climate and water studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Workshop on Tracing Isotopic Composition of Past and Present Precipitation - Opportunities for Climate and Water Studies, was jointly organized by the World Meteorological Organization (WMO), the International Atomic Energy Agency (IAEA), Past Global Changes (PAGES) - a core project of the International Geosphere - Biosphere Programme (IGBP), and the International Association of Hydrological Sciences (IAHS). The Global Network ``Isotopes in Precipitation`` (GNIP) was initiated by IAEA in 1958 and became operational in 1961. The main objective was to collect systematic data on isotopic content of precipitation on a global scale and to establish temporal and spatial variations of environmental isotopes in precipitation. The network is now expected to serve additional purposes, namely as a benchmark for the interpretation of paleo-records, as a validation tool for Global Circulation Models, and for establishing large-scale regional (and continental-scale) waster balances. Furthermore, the structure of GNIP should be strengthened. This includes the build-up of: stations located close to major natural climatic archives (e.g. Greenland, mountain areas); stations which represent climatically sensitive areas (indicated by GCM`s and biome models). Isotope monitoring of river outflow from major continental basins should be initiated. This could be realized in co-operation with the UNEP/WHO Global Environmental Monitoring System-Water (GEMS-Water). The deuterium excess parameter ({delta}) is of particular importance in climate modelling and in the understanding of hydro-meteorological pathways. The use of the deuterium excess imposes strict requirements on the accuracy of deuterium and oxygen-18 analysis. A GNIP-based worldwide documentation of quality control regarding sampling, shipping and measurements is needed. The IAEA/WMO database and other isotope data sets should be included in the World Data Center A for palaeo-climatology. Refs, figs, tabs.

  14. Report of International Workshop on tracing isotopic composition of past and present precipitation - opportunities for climate and water studies

    International Nuclear Information System (INIS)

    1995-01-01

    The Workshop on Tracing Isotopic Composition of Past and Present Precipitation - Opportunities for Climate and Water Studies, was jointly organized by the World Meteorological Organization (WMO), the International Atomic Energy Agency (IAEA), Past Global Changes (PAGES) - a core project of the International Geosphere - Biosphere Programme (IGBP), and the International Association of Hydrological Sciences (IAHS). The Global Network ''Isotopes in Precipitation'' (GNIP) was initiated by IAEA in 1958 and became operational in 1961. The main objective was to collect systematic data on isotopic content of precipitation on a global scale and to establish temporal and spatial variations of environmental isotopes in precipitation. The network is now expected to serve additional purposes, namely as a benchmark for the interpretation of paleo-records, as a validation tool for Global Circulation Models, and for establishing large-scale regional (and continental-scale) waster balances. Furthermore, the structure of GNIP should be strengthened. This includes the build-up of: stations located close to major natural climatic archives (e.g. Greenland, mountain areas); stations which represent climatically sensitive areas (indicated by GCM's and biome models). Isotope monitoring of river outflow from major continental basins should be initiated. This could be realized in co-operation with the UNEP/WHO Global Environmental Monitoring System-Water (GEMS-Water). The deuterium excess parameter (δ) is of particular importance in climate modelling and in the understanding of hydro-meteorological pathways. The use of the deuterium excess imposes strict requirements on the accuracy of deuterium and oxygen-18 analysis. A GNIP-based worldwide documentation of quality control regarding sampling, shipping and measurements is needed. The IAEA/WMO database and other isotope data sets should be included in the World Data Center A for palaeo-climatology. Refs, figs, tabs

  15. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  16. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  17. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.; Kasprzyk, G.; Gumolka, L.; Staedter, W.

    1993-01-01

    The 13 C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H 3 PO 4 has been studied in the temperature interval of 60-150 deg C. The values of the 13 C (1) isotope effects in the decarbonylation of lactic acid in 100% H 3 PO 4 , in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C (1)- OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13 C fractionation factors determined in concentrated PA approach quite closely the 13 C fractionation corresponding to C (2)- C (1) bond scission. The 13 C (1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13 C isotope effects calculated assuming that the frequency corresponding to the C (1) -OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H 3 PO 4 has been suggested. A possible secondary 18 O and a primary 18 O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  18. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  19. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  20. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    DEFF Research Database (Denmark)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.

    2017-01-01

    -NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100...... it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies...... - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C...

  1. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review.

    Science.gov (United States)

    Wang, Zhuhong; Chen, Jiubin; Zhang, Ting

    2017-05-18

    Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ 65 Cu (-16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems.

  2. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Zhuhong Wang

    2017-05-01

    Full Text Available Copper (Cu is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰ in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals behaviors in the environment and biological systems.

  3. The carbon isotope ratios and contents of mineral elements in leaves of Chinese medicinal plants

    International Nuclear Information System (INIS)

    Lin Zhifang; Sun Guchou; Wang Wei

    1989-01-01

    Leaf carbon isotope ratios and 13 kinds of mineral elements were measured on 36 species of common Chinese medicinal plants in a subtropical monsoon forest of Ding Hu Shan in Guangdong Province. The .delta.13C value were from -26.4 to -32.6%, indicating that all of the species belonged the photosynthetic C3 types. The relative lower value of δ13C was observed in the life form of shrubs. The contents of 7 elements (N, P, K, Ca, Na Mg, Si) were dependent upon the species, life form, medicinal function and medicinal part. Herb type medicine and the used medicinal part of leaves or whole plant showed higher levels of above elements than the others. Among the nine groups with different medicinal functions, it was found that more nitrogen was in the leaves of medicinal plants for hemophthisis, hypertension and stomachic troubles, more phosphorus and potassium were in the leaves for cancer and snake bite medicines, but more calcium and magnesium were in the leaves for curing rheumatics. Ferric, aluminium and manganese were the main composition of microelements in leaves. There were higher content of ferric in leaves for hemophthisis medicine, higher zinc in leaves for cold and hypertension medicine, and higher Cup in leaves of stomachic medicine. It was suggested that the pattern of mineral elements in leaves of Chinese medicinal plants reflected the different properties of absorption and accumulation. Some additional effect due to the high content of certain element might be associated with the main function of that medicine

  4. A discussion for the evolution model of Pb isotope of the upper mantle in western Yunnan and its interpretation to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks

    International Nuclear Information System (INIS)

    Wu Kaixing; Hu Ruizhong; Bi Xianwu; Zhang Qian; Peng Jiantang

    2003-01-01

    Thirty Pb isotope data of the upper mantle in the area of western Yunnan have the similar trends with the Stacey-Kramers' two stage model growth curves but apparently deviate from it on the lead isotope composition programs, which may suggest Pb isotope of the upper mantle in the area of western Yunnan might have two stage evolution history though not fit very well to the Stacey-Kramers' two stage model growth curves. In this paper, a two-stage growth curves which can better fit the Pb isotope data was constructed based on the lead isotope data of the upper mantle in western Yunnan and the principle that Stacey and Kramers constructed the two-stage model and a reasonable interpretation was given to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks using the model. (authors)

  5. Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin.

    Science.gov (United States)

    Mulholland, Daniel S; Poitrasson, Franck; Boaventura, Geraldo R

    2015-11-15

    Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to

  6. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    Science.gov (United States)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  7. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  8. Advanced Collimators for Verification of the Pu Isotopic Composition in Fresh Fuel by High Resolution Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lebrun, Alain; Berlizov, Andriy

    2013-06-01

    IAEA verification of the nuclear material contained in fresh nuclear fuel assemblies is usually based on neutron coincidence counting (NCC). In the case of uranium fuel, active NCC provides the total content of uranium-235 per unit of length which, combined with active length verification, fully supports the verification. In the case of plutonium fuel, passive NCC provides the plutonium-240 equivalent content which needs to be associated with a measurement of the isotopic composition and active length measurement to complete the verification. Plutonium isotopic composition is verified by high resolution gamma spectrometry (HRGS) applied on fresh fuel assemblies assuming all fuel rods are fabricated from the same plutonium batch. For particular verifications when such an assumption cannot be reasonably made, there is a need to optimize the HRGS measurement so that contributions of internal rods to the recorded spectrum are maximized, thus providing equally strong verification of the internal fuel rods. This paper reports on simulation work carried out to design special collimators aimed at reducing the relative contribution of external fuel rods while enhancing the signal recorded from internal rods. Both cases of square lattices (e.g. 17x17 pressurized water reactor (PWR) fuel) and hexagonal compact lattices (e.g. BN800 fast neutron reactor (FNR) fuel) have been addressed. In the case of PWR lattices, the relatively large optical path to internal pins compensates for low plutonium concentrations and the large size of the fuel assemblies. A special collimator based on multiple, asymmetrical, vertical slots allows recording a spectrum from internal rods only when needed. In the FNR case, the triangular lattice is much more compact and the optical path to internal rods is very narrow. However, higher plutonium concentration and use of high energy ranges allow the verification of internal rods to be significantly strengthened. Encouraging results from the simulation

  9. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  10. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  11. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Celo, V.; Dabek-Zlotorzynska, E.

    2009-01-01

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM 2.5 ) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  12. Temporal variations of methane concentration and isotopic composition in groundwater of the St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-01

    Dissolved methane concentrations in shallow groundwater are known to vary both spatially and temporally. The extent of these variations is poorly documented although this knowledge is critical for distinguishing natural fluctuations from anthropogenic impacts stemming from oil and gas activities. This issue was addressed as part of a groundwater research project aiming to assess the risk of shale gas development for groundwater quality over a 500-km2 area in the St. Lawrence Lowlands (Quebec, Canada). A specific study was carried out to define the natural variability of methane concentrations and carbon and hydrogen isotope ratios in groundwater, as dissolved methane is naturally ubiquitous in aquifers of this area. Monitoring was carried out over a period of up to 2.5 years in seven monitoring wells. Results showed that for a given well, using the same sampling depth and technique, methane concentrations can vary over time from 2.5 to 6 times relative to the lowest recorded value. Methane isotopic composition, which is a useful tool to distinguish gas origin, was found to be stable for most wells, but varied significantly over time in the two wells where methane concentrations are the lowest. The use of concentration ratios, as well as isotopic composition of methane and dissolved inorganic carbon (DIC), helped unravel the processes responsible for these variations. This study indicates that both methane concentrations and isotopic composition, as well as DIC isotopes, should be regularly monitored over at least 1 year to establish their potential natural variations prior to hydrocarbon development.

  13. Sulfur Isotope Composition of Some Polymetallic Deposits in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Serafimovski, Todor; Tasev, Goran

    2005-01-01

    The attempt to obtain an exact information about the origin of sulfur and other metals present in polymetallic deposits at the territory of the Republic of Macedonia have resulted in a detailed sulfur isotope composition study, which have enclosed the following deposits: Toranica, Sasa, Zletovo, Buchim and Alshar deposit. Results obtained for the formerly mentioned deposits have shown that sulfur isotope composition β 34 S is in the range -7.52 to +2.18 per mils in Toranica, -1.22 -- +6.94 per mils in Sasa, -3.12 -- +3.40 per mils in Zletovo (without ore associated barites), +0.00 to +2.53 per mils in Buchim (the narrowest range of all studied deposits) and -6.84 to +0.351 per mils β 34 S in Alshar. Therefore, the most probably origin of primary sulfur in studied deposits from Earth's crust or eventually Upper Mantle. Such sources of sulfur and other mineralizing metals confirmed the theories about the endo gene origin of mineralization fluids, which have formed studied deposits. (Author)

  14. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    Science.gov (United States)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  15. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe

    Science.gov (United States)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2018-06-01

    The stable isotope composition of precipitation records processes taking place within the hydrological cycle. Potentially, moisture sources are important controls on the stable isotope composition of precipitation, but studies focused on this topic are still scarce. We studied the moisture sources contributing to precipitation at Postojna (Slovenia) from 2009 to 2013. Back trajectory analyses were computed for the days with precipitation at Postojna. The moisture uptake locations were identified along these trajectories using standard hydrometeorological formulation. The moisture uptake locations were integrated in eight source regions to facilitate its comparison to the monthly oxygen isotope composition (δ18O values) of precipitation. Nearly half of the precipitation originated from continental sources (recycled moisture), and >40% was from central and western Mediterranean. Results show that moisture sources do not have a significant impact on the oxygen isotope composition at this site. We suggest that the large proportion of recycled moisture originated from transpiration rather than evaporation, which produced water vapour with less negative δ18O values. Thus the difference between the oceanic and local vapour source was reduced, which prevented the distinction of the moisture sources based on their oxygen isotope signature. Nevertheless, δ18O values of precipitation are partially controlled by climate parameters, which is of major importance for paleoclimate studies. We found that the main climate control on Postojna δ18O values of precipitation is the surface temperature. Amount effect was not recorded at this site, and the winter North Atlantic Oscillation (NAO) does not impact the δ18O values of precipitation. The Western Mediterranean Oscillation (WeMO) was correlated to oxygen stable isotope composition, although this atmospheric pattern was not a control. Instead we found that the link to δ18O values results from synoptic scenarios affecting We

  16. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    International Nuclear Information System (INIS)

    Arneth, J.D.; Matzigkeit, U.; Boos, A.

    1985-01-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters - the carbonate content (Csub(carb)), its isotopic composition (delta 13 Csub(carb),delta 18 Osub(carb)) as well as the organic carbon content (Csub(org)), its isotopic composition (delta 13 Csub(org)) and the H/C ratio of the sedimentary organic matter - display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in delta 13 Csub(carb) and delta 13 Csub(org) are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking. (orig.)

  17. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  18. The evaporation pan technique revisited: Old theory and a new application for time-weighted synoptic tracing of the isotopic composition of atmospheric vapour

    International Nuclear Information System (INIS)

    Gibson, J.J.; Edwards, T.W.D.

    1999-01-01

    Reliable and consistent characterization of the stable isotope composition of atmospheric water vapour and its temporal variability are important prerequisites to the wider application of isotope mass balance methods in atmospheric and water balance studies. A new approach is proposed which utilizes standard class-A evaporation pans, which have sufficient volume to buffer short-term transient variations in atmospheric conditions, justifying the assumption of constant kinetic isotopic fractionation effects in concert with precisely measured temperature and relative humidity to derive vapour isotopic composition. The results of the studies suggest that isotopic sampling of existing, conventionally operated class-A evaporation pans could offer a straightforward and cost-effective solution to the problem of documenting the shifting isotopic distribution in atmospheric moisture

  19. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  20. Isotopic composition of reduced and oxidized sulfur in the Canary Islands: implications for the mantle S cycle

    Science.gov (United States)

    Beaudry, P.; Longpre, M. A.; Wing, B. A.; Bui, T. H.; Stix, J.

    2017-12-01

    The Earth's mantle contains distinct sulfur reservoirs, which can be probed by sulfur isotope analyses of volcanic rocks and gases. We analyzed the isotopic composition of reduced and oxidized sulfur in a diverse range of volcanically derived materials spanning historical volcanism in the Canary Islands. Our sample set consists of subaerial volcanic tephras from three different islands, mantle and sedimentary xenoliths, as well as lava balloon samples from the 2011-2012 submarine El Hierro eruption and associated crystal separates. This large sample set allows us to differentiate between the various processes responsible for sulfur isotope heterogeneity in the Canary archipelago. Our results define an array in triple S isotope space between the compositions of the MORB and seawater sulfate reservoirs. Specifically, the sulfide values are remarkably homogeneous around d34S = -1 ‰ and D33S = -0.01 ‰, while sulfate values peak at d34S = +4 ‰ and D33S = +0.01 ‰. Lava balloons from the El Hierro eruption have highly enriched sulfate d34S values up to +19.3 ‰, reflecting direct interaction between seawater sulfate and the erupting magma. Several sulfate data points from the island of Lanzarote also trend towards more positive d34S up to +13.8 ‰, suggesting interaction with seawater sulfate-enriched lithologies or infiltration of seawater within the magmatic system. On the other hand, the modal values and relative abundances of S2- and S6+ in crystal separates suggest that the Canary Island mantle source has a d34S around +3 ‰, similar to the S-isotopic composition of a peridotite xenolith from Lanzarote. We infer that the S2- and S6+ modes reflect isotopic equilibrium between those species in the magmatic source, which requires 80 % of the sulfide to become oxidized after melting, consistent with measured S speciation. This 34S enrichment of the source could be due to the recycling of hydrothermally-altered oceanic crust, which has been previously suggested

  1. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  2. Three New Offset {delta}{sup 11}B Isotope Reference Materials for Environmental Boron Isotope Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); IsoAnalysis UG, Berlin (Germany); Vogl, J. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2013-07-15

    The isotopic composition of boron is a well established tool in various areas of science and industry. Boron isotope compositions are typically reported as {delta}{sup 11}B values which indicate the isotopic difference of a sample relative to the isotope reference material NIST SRM 951. A significant drawback of all of the available boron isotope reference materials is that none of them covers a natural boron isotope composition apart from NIST SRM 951. To fill this gap of required {delta}{sup 11}B reference materials three new solution boric acid reference materials were produced, which cover 60 per mille of the natural boron isotope variation (-20 to 40 per mille {delta}{sup 11}B) of about 100 per mille . The new reference materials are certified for their {delta}{sup 11}B values and are commercially available through European Reference Materials (http://www.erm-crm.org). The newly produced and certified boron isotope reference materials will allow straightforward method validation and quality control of boron isotope data. (author)

  3. [Monosaccharide composition analysis and its content determination of polysaccharides from Rhaponticum uniforum].

    Science.gov (United States)

    Li, Fa-Sheng; Xu, Heng-Gui; Yan, Xiao-Mei; Li, Ming-Yang; Liu, Hui

    2008-06-01

    To analyze the monosaccharide composition in the polysaccharides from Rhaponticum uniforum, determine the content of monosaccharide, and provide some references for further research. The monosaccharide composition was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Phenol-sulfuric acid method was used for the determination of the content of polysaccharide. The monosaccharides composition in polysaccharides from R. uniforum are glucose, arabonose and fructose. Their molar ratios are 1 : 1.61 : 2.21. The content of polysaccharide is 95.78%, taking the mixture of monosaccharide compositions as reference substances. HPAEC-PAD can be used to analyze the monosaccharide composition in the polysaccharide with high precision, and the method of phenol-sulfuric acid is simple, convenient and reliable.

  4. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    International Nuclear Information System (INIS)

    Tang, Shunlin; Feng, Chaohui; Feng, Xinbin; Zhu, Jianming; Sun, Ruoyu; Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua; Zhou, Ting

    2017-01-01

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ 202 Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ 202 Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  5. Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shunlin, E-mail: tangshunlin@hpu.edu.cn [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Chaohui [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Feng, Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Zhu, Jianming [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100086 (China); Sun, Ruoyu, E-mail: ruoyu.sun@tju.edu.cn [CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fan, Huipeng; Wang, Lina; Li, Ruiyang; Mao, Tonghua [Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan Province, 454000 (China); Zhou, Ting [State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China)

    2017-04-15

    Highlights: • The first speciated Hg isotope ratios in coal combustion flue gases are presented. • Significant Hg isotope kinetic MDF was observed during Hg forms transformation. • Emitted gaseous Hg highly enriches in heavy Hg isotopes relative to feed coal. - Abstract: Mercury forms emitted from coal combustion via air pollution control devices are speculated to carry different Hg isotope signatures. Yet, their Hg isotope composition is still not reported. Here, we present the first onsite Hg isotope data for gaseous elemental Hg (GEM) and gaseous oxidized Hg (GOM) of flue gases from a typical lignite-fired power plant (CFPP). Significant mass dependent fractionation (MDF) and insignificant mass independent fractionation (MIF) are observed between feed coal and coal combustion products. As compared to feed coal (δ{sup 202}Hg = −2.04 ± 0.25‰), bottom ash, GEM and GOM in flue gases before and after wet flue gas desulfurization system significantly enrich heavy Hg isotopes by 0.7–2.6‰ in δ{sup 202}Hg, while fly ash, desulfurization gypsum and waste water show slight but insignificant enrichment of light Hg isotopes. GEM is significantly enriched heavy Hg isotopes compared to GOM and Hg in fly ash. Our observations verify the previous speculation on Hg isotope fractionation mechanism in CFPPs, and suggest a kinetically-controlled mass dependent Hg isotope fractionation during transformation of Hg forms in flue gases. Finally, our data are compared to Hg isotope compositions of atmospheric Hg pools, suggesting that coal combustion Hg emission is likely an important atmospheric Hg contributor.

  6. ISOBORDAT: An Online Data Base on Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, M.; Adorni-Braccesi, A.; Andreani, D.; Gori, L.; Gonfiantini, R. [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Sciuto, P. F. [Servizio Geologico, Sismico e dei Suoli, D.G. Ambiente e Difesa del Suolo e della Costa, Regione Emilia Romagna, Bologna (Italy)

    2013-07-15

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on {delta}{sup 11}B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  7. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  8. The genesis and isotopic composition of carbonates associated with some Permian Australian coals

    International Nuclear Information System (INIS)

    Gould, K.W.; Smith, J.W.

    1979-01-01

    Siderite and calcite are the two forms of carbonate commonly associated with Permian Australian coals. The former occurs as disseminated spherulites and is a product of the early post-depositional environment. Isotopic measurements show that the CO 2 fixed as siderite did not result from the direct oxidation of photosynthetically derived materials, but rather from the anaerobic fermentation of these. The higher concentrations of calcite are generally found towards the roofs of coal seams and are characterized by isotopic enrichments to delta 13 C values of +25% PDB. Isotopic exchange between CO 2 and CH 4 within the coal seam is postulated as the mechanism which leads to the formation of isotopically heavy CO 2 . At sites along the seam margins where the CO 2 escapes, interaction with circulating metal ions or preexisting calcite results in the deposition of ''heavy'' calcite. With increasing alteration of coal by thermal metamorphism, the 13 C content of calcites and finally siderites decreases so that it more nearly approaches that of the associated coal. (Auth.)

  9. Controlling Factors of the Stable Isotope Composition in the Precipitation of Islamabad, Pakistan

    Directory of Open Access Journals (Sweden)

    Shakir Hussain

    2015-01-01

    Full Text Available Significant temporal variations in δ18O and deuterium isotopes were found in the rainfall water of Islamabad, Pakistan, over a 15-year period (1992–2006. The data were obtained from the International Atomic Energy Agency/Global Network of Isotopes in Precipitation (IAEA/GNIP database, and statistical correlations were investigated. In particular, this study provides the first detailed analysis of GNIP data for Islamabad. Both dry (1999-2000 and wet years (1994, 1997, and 2000 were chosen to investigate the correlations between precipitation amount, vapor flux, and temperature. We observed obvious differences between the dry and wet years and among seasons as well. Long-term features in the isotope composition agreed with the global meteorological water line, whereas short-term values followed rainfall amounts; that is, a total of 72% of the precipitation’s isotopic signature was dependent on the rainfall amount, and temperature controlled 73% of the isotopic features during October to May. The lower d-excess values were attributed to conditions during the spring season and a secondary evaporation boost during dry years; precipitation originating from the Mediterranean Sea showed high d-excess values. Overall, the results of this study contribute to the understanding of precipitation variations and their association with water vapor transport over Islamabad, Pakistan.

  10. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

    Science.gov (United States)

    Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff

    2009-03-01

    In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios ( 3He/ 4He = 4-6 Ra, 40Ar/ 36Ar = 20,000-30,000, δ 13C = -4.5‰ to -6.9‰ and δ 15N = -1.2‰ to -8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10 -9 cm 3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ˜0.6 × 10 -12 cm 3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.

  11. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas

    2015-10-01

    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of

  12. Isotopic composition of past precipitation

    International Nuclear Information System (INIS)

    Edwards, T.W.D.

    1998-01-01

    The distribution of stable isotopes in precipitation provides critical quantitative information about the global water cycle. The first PAGES/IAEA ISOMAP workshop was held at the IAEA headquarters in Vienna, 24-26 August 1998, which gathered 32 participants. The presentation and discussions demonstrated that a high level of sophistication already exists in the development of transfer functions between measured parameters and precipitation, as a result of the extensive use of water isotope tracers in paleo-environmental investigations, but a major challenge facing both producers and users of paleo-isotope data is the effective management of data and meta-data, to permit ready retrieval of raw and inferred data for comparison and reinterpretation. This will be in important goal of future ISOMAP activities. The critical need for more paleo-data from low latitudes was clearly recognized

  13. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  14. Determining origin of underground water in coal mines by means of natural isotopes and other geochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, T; Pezdic, J; Herlec, U; Kuscer, D; Mitrevski, G [Institut Josef Stefan, Ljubljana (Yugoslavia)

    1989-07-01

    Presents a preliminary report on origin of water in Slovenian brown coal mines. Water, coal and strata samples from the Hrastnik and Ojstro mines were analyzed for changes in chemical composition. Water samples were also analyzed for changes in isotopic composition and inorganic carbon and sulfur contents. Chemical, isotopic and geochemical techniques are described and results are presented with 21 diagrams. An attempt is made to explain the origin and age of water flowing from mine aquifers into mine rooms, and to explain the interdependence of surface and underground water flow. 10 refs.

  15. Physics with isotopically controlled semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1994-08-01

    Control of the isotopic composition of semiconductors offers a wide range of new scientific opportunities. In this paper a number of recent results obtained with isotopically pure as well as deliberately mixed diamond and Ge bulk single crystals and Ge isotope superlattices will be reviewed. Isotopic composition affects several properties such as phonon energies, bandstructure and lattice constant in subtle but theoretically well understood ways. Large effects are observed for thermal conductivity, local vibrational modes of impurities and after neutron transmutation doping (NTD). Several experiments which could profit greatly from isotope control are proposed

  16. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Science.gov (United States)

    Le Duy, Nguyen; Heidbüchel, Ingo; Meyer, Hanno; Merz, Bruno; Apel, Heiko

    2018-02-01

    This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R2 = 0.8) compared to single-factor linear regression (R2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (˜ 70 %) compared to local climatic conditions (˜ 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally

  17. Isotopic study of Karst water

    International Nuclear Information System (INIS)

    Leskovsek-Sefman, H.

    1985-01-01

    Measurement of the isotopic composition of water formed part of an extended investigation of the water drainage system in the Slovenian Karst. These studies were planned to complement geological and speleological investigations which are already being performed in this area, with the knowledge of the mechanism of changes in the isotopic composition of water in the natural environment on some smaller locations, Planina cave near Postojna where the vertical percolation of meteoric water through the karstified carbonate ceiling was studied and the water catchment areas of some small rivers, Ljubljanica, Rizana and Idrijca. Mass spectrometric investigations of the isotopic composition of some elements ( 18 O, D, 13 C and T) in water and in dissolved carbonates, as well as the isotopic composition of 18 O and 13 C in cave carbonates were performed. The results allow to conclude that the waters in karst aquifers in spite of producing the homogenisation to a great extent, qualitative determination of the retention time and of the prevailing sources for some springs and surface and underground water flows is nevertheless possible. The isotopic composition of 18 O in water and of 18 O and 13 C in dissolved carbonates depends on climatic conditions and on denudation processes. The investigation of cave carbonates revealed that they have different isotopic compositions of 18 O and 13 C because of different locations and also different ages

  18. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ' ' Federico II' ' , I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  19. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions.

    Science.gov (United States)

    Hu, Xin; Sun, Yuanyuan; Ding, Zhuhong; Zhang, Yun; Wu, Jichun; Lian, Hongzhen; Wang, Tijian

    2014-04-01

    Lead levels and isotopic compositions in atmospheric particles (TSP and PM2.5), street dust and surface soil collected from Nanjing, a mega city in China, were analyzed to investigate the contamination and the transfer of lead in urban environmental compartments. The lead contents in TSP and PM2.5 are significantly higher than them in the surface soil and street dust (p lead to the major crustal elements (Al, Sr, Ti and Fe) indicates significant lead enrichment in atmospheric particles. The plots of (206)Pb/(207)Pb vs.(208)Pb/(206)Pb and (206)Pb/(207)Pb vs. 1/Pb imply that the street dust and atmospheric particles (TSP and PM2.5) have very similar lead sources. Coal emissions and smelting activities may be the important lead sources for street dust and atmospheric particles (TSP and PM2.5), while the deposition of airborne lead is an important lead source for urban surface soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization

    Science.gov (United States)

    Loge, G.

    1994-09-01

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U3O8. Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF4 were found to be a kinetic bottleneck to the formation of UF6. This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid.

  1. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.; Puscas, R.; Radu, S.; Mirel, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Cordea, D. V.; Mihaiu, M. [University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania)

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  2. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    International Nuclear Information System (INIS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-01-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ 18 O and δ 2 H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ 18 O and δ 2 H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source

  3. Isotopic hydrological studies carried out on the Karst water system

    International Nuclear Information System (INIS)

    Longinelli, A.

    1988-03-01

    The isotopic composition and temperature of many karst springs in the area of Trieste (Italy) have been measured for about three and a half years. During the same period the isotopic composition of precipitation has also been systematically studied. The isotopic composition of springs generally shows variations which are markedly shifted in time with respect to those of precipitation. In most of the springs the heavy isotope contents of winter samples are the highest of the whole year. On the contrary, summer samples normally show quite negative δ-values, the most negative of which often refer to the last summer months. The data obtained are explained in terms of variable mixing of waters from two main reservoirs. The less negative reservoir (in terms of δ) is recharged by ''local'' meteoric waters falling on the westernmost section of the karst area whose mean elevation is about 400 m a.s.l. The most negative reservoir is probably recharged by meteoric waters falling on the Slovenian section of the karst, whose mean elevation is about 800-900 m a.s.l. At least in the case of some of the northernmost karst springs, it is likely that a third water system, basically fed by the Isonzo river, flowing north of the karst area, could interfere with the previously mentioned reservoirs, partially controlling the outflow of some springs. 6 figs

  4. A measurement of the carbon isotopic composition in primary cosmic radiation

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N.Y.; Jacobsson, L.; Joensson, G.; Kristiansson, K.

    1975-01-01

    The isotopic composition is measured in a stack of nuclear emulsions exposed in a balloon flight from Fort Churchill. The masses of the carbon nuclei have been determined from photometric track width measurements in the residual range interval 1 13 C/( 12 C + 13 C) = 0.10 +- 0.04 at the measuring point. The result indicates that 13 C will only be present in the cosmic ray source matter in small amounts. (orig./BJ) [de

  5. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    Science.gov (United States)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by

  6. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  7. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios

    Directory of Open Access Journals (Sweden)

    Jie Lin

    2016-06-01

    Full Text Available LA-ICP-MS and LA-MC-ICP-MS have been the techniques of choice for achieving accurate and precise element content and isotopic ratio, the state-of-the-art technique combines the advantages of low detection limits with high spatial resolution, however, the analysis accuracy and precision are restricted by many factors, such as sensitivity drift, elemental/isotopic fractionation, matrix effects, interferences and the lack of sufficiently matrix-matched reference materials. Thus, rigorous and suitable calibration and correction methods are needed to obtain quantitative data. This review systematically summarized and evaluated the interference correction, quantitative calculation and sensitivity correction strategies in order to provide the analysts with suitable calibration and correction strategies according to the sample types and the analyzed elements. The functions and features of data reduction software ICPMSDataCal were also outlined, which can provide real-time and on-line data reduction of element content and isotopic ratios analyzed by LA-ICP-MS and LA-MC-ICP-MS.

  8. An IBM-1620 code for calculation of isotopic composition of irradiated thorium (ISOCOM-2)

    International Nuclear Information System (INIS)

    Soliman, R.H.; Karchava, G.; Hamouda, I.

    1978-01-01

    The present work gives a description of an IBM-1620 code to calculate the isotopic composition during the irradiation of a nuclear fuel, which initially contains 232 Th. The numerical results on test calculations are presented. The code has been in operation since 1968

  9. Isotopic investigation of the late neoproterozoic and early cambrian carbon cycle on the northern Yangtze platform, south China

    International Nuclear Information System (INIS)

    Guo Qingjun; Liu Congqiang; Harald Strauss; Tatiana Goldberg

    2003-01-01

    The Precambrian-Cambrian transition is one of the critical time intervals in Earth history. Profound geotectonic, climatic and biological changes occur during the late Neoproterozoic and its transition into the early Cambrian. This study has researched on paired carbonate and organic carbon isotope determinations from Nanjiang, Sichuan Province of the Yangtze Platform, and provided a preliminary geochemical explanation for environmental variations and bio-events observed on the northern Yangtze Platform during the Precambrian-Cambrian transitional interval and their causal relationship. Organic carbon isotopic compositions on sediments vary from -35.8 to -30.1‰ at Nanjiang section; carbonate carbon isotopic compositions change between -3.5 and +0.5‰. Various carbon and sulphur isotopic compositions, different pyrite and organic matter content reflect changing environment and burial of organic matter in the Dengying Fm., the lower and upper part of Niutitang Fm. Anoxic conditions result in widespread preservation of organic rich sediments and pyrites in the black shales on the Yangtze Platform. (authors)

  10. The effect of petrographical composition of coals and bituminous sediments on the material and isotopic composition of dry natural gases from artificial recoalification reactions. 2

    International Nuclear Information System (INIS)

    Maass, I.; Huebner, H.; Nitzsche, H.-M.; Schuetze, H.; Zschiesche, M.

    1975-01-01

    Experimental results indicate that on the basis of the material and isotopic composition of natural gases conclusions can be drawn with regard to the character (humic or bituminous) of the parent rock. Thus, genetic relations assumed to exist between humic sediments (e.g. coal seams) and dry natural gases as well as bituminous rocks and wet natural gases are experimentally confirmed. In addition, from analyses of the materials approximate data can be derived on the degree of carbonization of coal or bituminous sediments in the main phase of gas separation. Furthermore, these analyses were used to elucidate the question whether authochthonous or allochthonous deposits are present. It could be shown that the maceral composition of coals and of the organo-petrographical inclusions in bituminous sediments determines the isotopic composition of methane in recoalification gases to a considerable degree. (author)

  11. The isotopic composition of soil organic carbon on a north - south transect in western Canada

    Czech Academy of Sciences Publication Activity Database

    Bird, M.; Šantrůčková, Hana; Lloyd, J.; Lawson, E.

    2002-01-01

    Roč. 53, - (2002), s. 393-403 ISSN 1351-0754 Institutional research plan: CEZ:AV0Z6066911 Keywords : isotopic composition * soil organic carbon * western Canada Subject RIV: EH - Ecology, Behaviour Impact factor: 1.452, year: 2002

  12. Carbon-13 isotopic composition of distillation fractions of some Egyptian crude oils

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Hamza, M.S.; Abd Elsamie, S.G.

    1991-01-01

    13 C/ 13 C ratios were determined for some crude oil fields in the Gulf of Suez and Western Desert provinces. The crude oil was subjected to distillation at atmospheric pressure and subsequently under vacuum. Distillation fractions were collected at 25 degree C intervals. Carbon-13 content of these distillation fractions showed some differences in the degree of isotopic fractionation. The results were interpreted in view of the age of the source rocks and the degree of maturation process. The carbon-13 content of distillation fractions may be helpful in revealing petroleum mechanisms which can be exploited in exploration.4 fig

  13. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  14. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  15. Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya

    International Nuclear Information System (INIS)

    Arneth, J.D.; Schidlowski, M.; Sarbas, B.; Goerg, U.; Amstutz, G.C.

    1985-01-01

    Amphibolite-grade metasediments from the Mgama Hills region, Kenya, contain conspicuous quantities of graphite, most probably derived from organic progenitor materials,. The highest graphite contents are found in schists whereas calcite marbles intercalated in the sequence contain relatively low amounts. The graphitic constituents are consistently enriched in 13 C relative to common sedimentary organic material, with the highest isotopic ratios in graphite from the marbles. Carbon isotope fractionations between calcite and graphite mostly vary between 3.3 and 7.1 per mille, which comes close to both empirically recorded and thermodynamically calculated fractionations in the temperature range of the upper amphibolite facies. However, larger values occasionally encountered in the marbles suggest that complete isotopic equilibrium is not always attained in amphibolite-facies metamorphism. (author)

  16. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  17. The isotope composition of inorganic germanium in seawater and deep sea sponges

    Science.gov (United States)

    Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.

    2017-09-01

    Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. >1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31‰ (2SD, n = 9) and 2.93 ± 0.10‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data

  18. Inter- and intra-storm variability of the isotope composition of precipitation in Southern Israel: Are local or large-scale factors responsible?

    International Nuclear Information System (INIS)

    Gat, J.R.; Adar, E.; Alpert, P.

    2002-01-01

    A detailed sequential rain sampling of rainstorms was carried out during the 1989/90 and 1990/91 rainy season in the coastal plain of Israel with an annual average of 530 mm of rain and in the western Negev where the average annual rainfall is 93 mm. On four occasions, rain was concurrently available at both stations. The variability of the isotope composition within a rainy spell is quite considerable but falls short of the range of isotopic values encountered during the total season. Different rainy episodes show distinguishable isotope compositions, which evidently are characteristic of a larger time/space niche than that of the momentary, local, rain event. This is confirmed by the good correlation between the mean isotope composition of concurrently sampled events at both stations. A 'rain amount effect' is not apparent when the amount-weighted data for each complete rain episode are compared, because any possible effect is masked by the inter-storm variability. However by singling out the data within each storm sequence separately, a moderate effect is seen. On the whole, the results seem to support the notion that the isotope data are determined by the large, synoptic scale, situation. However within the range of values characteristic of the origin of the air masses there is a pronounced dependence of the isotope composition on the extent of the cloud field associated with each event, which is interpreted as a measure of the degree of rainout from the air mass, i.e. a typical Rayleigh effect. Local effects related to momentary rain intensity contribute only to a residual modulation of the above-mentioned effects. (author)

  19. It takes time to see the menu from the body: an experiment on stable isotope composition in freshwater crayfishes

    Directory of Open Access Journals (Sweden)

    Jussila J.

    2015-01-01

    Full Text Available For many applications and ecological studies in which wild individuals are brought to laboratory it would be essential to know accurately how fast novel diet is reflected in composition of different tissues. To study the effects of two different diets on the stable isotope composition of freshwater crayfish muscle and hemolymph, we conducted a three month experiment on noble crayfish (Astacus astacus and signal crayfish (Pacifastacus leniusculus by feeding them sweet corn (Zea mays or Baltic herring (Clupea harengus membras as novel food. During the experiment, the crayfish were given 0.4 g of selected food daily and the amount consumed was recorded. The samples for the stable isotope analyses were taken at the commencement of the experiment (initial control and three times (hemolymph or twice (muscle tissue during the experiment. We found that stable isotope changes can be similarly, and rather slowly, detected from muscle tissue and hemolymph under studied conditions. Hemolymph sampling, being non-lethal, can be recommended as a practical sampling method. Our results confirm earlier reports according to which diet changes reflect to crayfish isotope ratios slowly implying that isotope ratios indicate long-term diet.

  20. Influence of temporal variations in water chemistry on the Pb isotopic composition of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Miller, Jerry R.; Anderson, Jamie B.; Lechler, Paul J.; Kondrad, Shannon L.; Galbreath, Peter F.; Salter, Emory B.

    2005-01-01

    Field and laboratory investigations were undertaken to determine (1) the relations between discharge, Pb concentration, and the Pb isotopic composition of the dissolved load in Richland Creek, western North Carolina, and (2) the potential influence of varying Pb water chemistry on the Pb isotopic abundances in liver and bone tissues of rainbow trout (Oncorhynchus mykiss). Stream waters were characterized by relatively low Pb concentrations during periods of base flow exceeding 10 days in length. Moreover, greater than 65% of the Pb was derived from orchard soils located upstream of the monitoring site which are contaminated by lead arsenate. During small to moderate floods, the dissolved load exhibited Pb concentrations more than twice as high as those measured during base flow, but the contribution of Pb from lead arsenate was relatively low and varied directly with discharge. In contrast to smaller events, Pb from lead arsenate in an 8- to 10-year (overbank) event in May 2003 was minimal during peak flow conditions, suggesting that discharge-source relations are dependent on flood magnitude. The hydrologic and geochemical data demonstrate that aquatic biota in Richland Creek are subjected to short-term variations in Pb concentrations and Pb isotopic abundances within the dissolved load ranging from a few hours to few a weeks. Laboratory studies demonstrated that when rainbow trout were exposed to elevated Pb concentrations with a distinct isotopic fingerprint, the bone and liver rapidly acquire isotopic ratios similar to that of the water. Following exposure, bone retains Pb from the contaminant source for a period of months, while the liver excreted approximately 50% of the accumulated Pb within a few days and nearly all of the Pb within a few weeks. Differences in the rates of excretion resulted in contrasting isotopic ratios between the tissues. It seems plausible, then, that previously observed differences between the isotopic composition of bone and liver in

  1. Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil.

    Science.gov (United States)

    Gastmans, Didier; Santos, Vinícius; Galhardi, Juliana Aparecida; Gromboni, João Felipe; Batista, Ludmila Vianna; Miotlinski, Konrad; Chang, Hung Kiang; Govone, José Silvio

    2017-10-01

    Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ 18 O and δ 2 H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.

  2. Coffee seeds isotopic composition as a potential proxy to evaluate Minas Gerais, Brazil seasonal variations during seed maturation

    Science.gov (United States)

    Rodrigues, Carla; Maia, Rodrigo; Brunner, Marion; Carvalho, Eduardo; Prohaska, Thomas; Máguas, Cristina

    2010-05-01

    Plant seeds incorporate the prevailing climate conditions and the physiological response to those conditions (Rodrigues et al., 2009; Rodrigues et al., submitted). During coffee seed maturation the biochemical compounds may either result from accumulated material in other organs such as leafs and/or from new synthesis. Accordingly, plant seeds develop in different stages along a particular part of the year, integrating the plant physiology and seasonal climatic conditions. Coffee bean is an extremely complex matrix, rich in many products derived from both primary and secondary metabolism during bean maturation. Other studies (De Castro and Marraccini, 2006) have revealed the importance of different coffee plant organs during coffee bean development as transfer tissues able to provide compounds (i.e. sugars, organic acids, etc) to the endosperm where several enzymatic activities and expressed genes have been reported. Moreover, it has been proved earlier on that green coffee bean is a particularly suitable case-study (Rodrigues et al., 2009; Rodrigues et al., submitted), not only due to the large southern hemispheric distribution but also because of this product high economic interest. The aim of our work was to evaluate the potential use of green coffee seeds as a proxy to seasonal climatic conditions during coffee bean maturation, through an array of isotopic composition determinations. We have determined carbon, nitrogen, oxygen and sulfur isotopic composition (by IRMS - Isotope Ratio Mass Spectrometry) as well as strontium isotope abundance (by MC-ICP-MS; Multicollector Inductively Coupled Plasma Mass Spectrometry), of green coffee beans harvested at different times at Minas Gerais, Brazil. The isotopic composition data were combined with air temperature and relative humidity data registered during the coffee bean developmental period, and with the parent rock strontium isotopic composition. Results indicate that coffee seeds indeed integrate the interactions

  3. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Directory of Open Access Journals (Sweden)

    N. Le Duy

    2018-02-01

    Full Text Available This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i MLR can better explain the isotopic variation in precipitation (R2  =  0.8 compared to single-factor linear regression (R2  =  0.3; (ii the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (∼ 70 % compared to local climatic conditions (∼ 30 %; (iii the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v secondary fractionation processes (e.g., sub-cloud evaporation can be identified through the d-excess and take

  4. Iodine-129 in thyroids and tellurium isotopes in meteorites by neutron activation analysis

    International Nuclear Information System (INIS)

    Ballad, R.V.

    1978-06-01

    A combination of neutron activation and mass spectrometry has been used to determine the concentration of fissiogenic 129 I and the value of the 129 I/ 127 I ratio in thyroids of man, cow, and deer from Missouri. Deer thyroids show an average value of 129 I/ 127 I = 1.8 x 10 -8 and an average concentration of 3 x 10 -3 pCi 129 I per gram of thyroid (wet weight). Thyroids of cows and humans show successively lower values for the 129 I/ 127 I ratio and the 129 I content because their diets dilute fission-produced 129 I in the natural iodine cycle with mineral iodine. The results of analyses on a few thyroids from other geographic areas are also reported. The isotopic compositions of tellurium, krypton, and xenon were determined in acid-resistant residues of the Allende meteorite. Neutron activation and γ-counting were used to determine the relative abundances of six tellurium isotopes, and mass spectrometry was used to determine the isotopic compositions of krypton and xenon in aliquots of the same residues. Nucleogenetic anomalies were observed in the isotopic compositions of these three elements. The presence of isotopically distinct components of tellurium, krypton, and xenon in these residues provides strong support for the suggestion that our solar system formed directly from the debris of a supernova

  5. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  6. Designing novel bulk metallic glass composites with a high aluminum content.

    Science.gov (United States)

    Chen, Z P; Gao, J E; Wu, Y; Wang, H; Liu, X J; Lu, Z P

    2013-11-27

    The long-standing challenge for forming Al-based BMGs and their matrix composites with a critical size larger than 1 mm have not been answered over the past three decades. In this paper, we reported formation of a series of BMG matrix composites which contain a high Al content up to 55 at.%. These composites can be cast at extraordinarily low cooling rates, compatible with maximum rod diameters of over a centimetre in copper mold casting. Our results indicate that proper additions of transition element Fe which have a positive heat of mixing with the main constituents La and Ce can appreciably improve the formability of the BMG matrix composites by suppressing the precipitation of Al(La,Ce) phase resulted from occurrence of the phase separation. However, the optimum content of Fe addition is strongly dependant on the total amount of the Al content in the Al-(CoCu)-(La,Ce) alloys.

  7. Oxigen isotope compositions as indicators of epidote granite genesis in the Borborema Provinces, NE Brazil

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Valley, J.W; Sial, A.N; Spicuzza, M.J

    2001-01-01

    Neoproterozoic magmatic epidote-bearing granitoids intrude low-grade metapelites in the Cachoeirinha-Salgueiro terrane (CST), and gneisses and migmatites in the Serido terrane (ST), in the Borborema structural province, northeastern Brazil. Granitoids in both terranes contain biotite and hornblende, and are metaluminous, calc-alkalic, and oxidized I-type granites according to White's (1992) classification. However, in spite of these similarities, this work shows that mineral oxygen isotope data from plutons of the two terranes indicate different magma sources, and that magmatic epidote besides crystallizing at different pressure conditions, can have variable isotopic composition (au)

  8. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  9. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  10. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi

    International Nuclear Information System (INIS)

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K.; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in "2"0"6Pb/"2"0"7Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi "2"0"6Pb/"2"0"7Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region. - Highlights: • Total lead and isotopic composition can be measured in historic lichen and fungi. • Historic lichen and fungi samples can distinguish polluted and unpolluted areas. • Former leaded petrol depositions remain a significant environmental contaminant. - Analysis of a 120-year record of lichens and fungi from the Greater Sydney basin reveal marked shifts in total lead concentrations and lead isotope ratios in response to geogenic inputs

  11. Structure and content of competitive group compositions in sports aerobics

    Directory of Open Access Journals (Sweden)

    Tetiana Moshenska

    2017-02-01

    Full Text Available Purpose: to make the analysis of modern competitive group compositions in sports aerobics. Material & Methods: pedagogical, sociological and methods of mathematical statistics were used. 10 coaches took part in the experimental part; analysis of protocols and video records of competitions of the aged category of children of 9–11 years old, who perform in the nomination of triplets and quintuples (group exercises, is carried out. Results: the content of competitive compositions and the allocated indicators are studied which defined it. Conclusions: the basic structural elements, which characterize competitive compositions, are allocated. Their components, quantity and time of performance are defined. It is established that variety of aerobic contents, spaces, and means of registration, musical compliance and logicality of creation of the whole competitive composition at high quality of performance characterizes teams – winners.

  12. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria

    Science.gov (United States)

    Adedosu, Taofik A.; Sonibare, Oluwadayo O.; Tuo, Jincai; Ekundayo, Olusegun

    2012-05-01

    Coal and carbonaceous shale samples were collected from two boreholes (BH 94 and BH 120) in Awgu formation of Middle Benue Trough, Nigeria. Source rock potentials of the samples were studied using biomarkers and carbon isotopic composition. Biomarkers in the aliphatic fractions in the samples were studied using Gas Chromatography-Mass Spectrometry (GC-MS). The Carbon isotope analysis of individual n-alkanes in the aliphatic fraction was performed using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (GC-IRMS). The abundance of hopanes, homohopanes (C31-C35), and C29 steranes in the samples indicate terrestrial plant, phytoplankton and cyanobacteria contributions to the organic matter that formed the coal. High (Pr/Ph) ratio (3.04-11.07) and isotopic distribution of individual alkanes showed that the samples consisted of mixed terrestrial/marine organic matter deposited under oxic condition in lacustrine-fluvial/deltaic depositional environment. The maturity parameters derived from biomarker distributions showed that the samples are in the main phase of oil window.

  13. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  14. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  15. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    Science.gov (United States)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  16. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  17. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  18. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes

    Science.gov (United States)

    Patterson, William P.; Smith, Gerald R.; Lohmann, Kyger C.

    To investigate the applicability of oxygen isotope themometry using fish aragonite, the δ18O values of paired otolith and water samples were analyzed from six large modem temperate lakes. Otoliths are accretionaiy aragonitic structures which are precipitated within the sacculus of fish ears. Deep-water obligate benthic species from the hypolimnion of the Laurentian Great Lakes of North America and Lake Baikal, Siberia, provided cold-water end member values for aragonite δ18O. Warm-water values were obtained from naturally grown warm-water stenothermic species and from fish grown in aquaria under controlled conditions. These two groups, which represent growth over a temperature range of 3.2-30.3°C. were employed to determine the oxygen isotope temperature fractionation relationship for aragonite-water: 103lnα = 18.56 (±0.319)·(103)T-1 K -33.49 (±0.307). Empirical calibration of a fish aragonite thennometry equation allows its direct application to studies of paleoclimate. For example, high-resolution sampling of shallow-water eurythermic species coupled with a knowledge of the isotopic composition of meteoric waters can be used to determine seasonal temperature variation. This approach was tested using a modem shallow-water eurythermic species from Sandusky Bay, Lake Erie. Temperatures calculated from carbonate composition agree with meteorological records from the Sandusky Bay weather station for the same time period.

  19. Isotopic composition of precipitations in Brazil: isothermic models and the influence of evapotranspiration in the Amazonic Basin

    International Nuclear Information System (INIS)

    Dall'Olio, Attilio.

    1976-11-01

    The simplest theoretical models of the isotopic fractionation of water during equilibrium isothermical processes are analized in detail. The theoretical results are applied to the interpretation of the stable isotope concentrations in the precipitations of 11 Brazilian cities that belong to the international network of IAEA/WMO. The analysis shows that the experimental data are fairly consistent with such equilibrium models; no non-equilibrium processes need to be assumed. The study of the stable isotope content of precipitations in the Amazonic Basin suggests some modifications to the models in order that the evapotranspiration contribution to the vapour balance be taken into account [pt

  20. Lead isotope analyses of standard rock samples

    International Nuclear Information System (INIS)

    Koide, Yoshiyuki; Nakamura, Eizo

    1990-01-01

    New results on lead isotope compositions of standard rock samples and their analytical procedures are reported. Bromide form anion exchange chromatography technique was adopted for the chemical separation lead from rock samples. The lead contamination during whole analytical procedure was low enough to determine lead isotope composition of common natural rocks. Silica-gel activator method was applied for emission of lead ions in the mass spectrometer. Using the data reduction of 'unfractionated ratios', we obtained good reproducibility, precision and accuracy on lead isotope compositions of NBS SRM. Here we present new reliable lead isotope compositions of GSJ standard rock samples and USGS standard rock, BCR-1. (author)

  1. Geochemical character of Southern African Kimberlites: a new approach based on isotopic constraints

    International Nuclear Information System (INIS)

    Smith, C.B.; Gurney, J.J.; Ebrahim, N.

    1985-01-01

    Major and trace element compositions of southern African kimberlite samples previously analysed for isotopic compositions confirm that isotopically defined Group I (basaltic) and Group II (micaceous) variants have distinctive geochemical signatures. These signatures are generally consistent with geochemical variation in petrographically defined types. Stepwise discriminant function analysis is used to define the most important geochemical distinctions at the group level and to derive a procedure which successfully classifies a large number of unknowns based on chemical composition only. In comparison to Group I, Group II kimberlites have consistently higher abundances of SiO 2 , K 2 O, Pb, Rb, Ba and LREE, and lower abundances of TiO 2 and Nb. In conjunction with isotopic results, the distinctions in incompatible element contents in particular are believed to reflect broad differences in source rock character. Results are consistent with derivation of Group I kimberlites from asthenospheric-like sources similar to those from which oceanic island basalts are produced. In contrast, Group II kimberlites are inferred to originate from sources within ancient stabilized subcontinental lithosphere characterized by time-averaged incompatible element enrichment. Group I kimberlites can be further subdivided into two isotopically similar types to some degree correlative with tectonic environment. Compared to subgroup IA (on-craton), IB kimberlites have lower SiO 2 and higher CaO, FeO + Fe 2 O 3 and volatile contents in addition to somewhat greater TiO 2 , P 2 O 5 , Nb, Zr and Y abundances, and tend to occur outside the inferred boundaries of the Kaapvaal Craton though exceptions are present and new unpublished data suggest that this group may be relatively common on the craton

  2. Distribution of stable isotopes in arid storms . I. Relation between the distribution of isotopic composition in rainfall and in the consequent runoff

    Science.gov (United States)

    Adar, E. M.; Dody, A.; Geyh, M. A.; Yair, A.; Yakirevich, A.; Issar, A. S.

    Temporal distributions of the isotopic composition in arid rain storms and in the associated runoff were investigated in a small arid rocky basin in Israel. Customized rain and runoff samplers provided sequential water samples hermetically sealed in high-density PVC bags. In several storms where the runoff was isotopically depleted, compared with the rainfall, the difference could not be explained by fractionation effects occurring during overland flow. A water-balance study relating the runoff discharge to rainfall over a rocky watershed showed that the entire discharge is produced by a very small segment (1-2mm) of the rain storm. The major objective, therefore, was to provide quantitative relations between segments of rainfall (rain showers and rain spells) and runoff. The time distribution of the composition of stable isotopes (oxygen and hydrogen) was used to quantify the correlation between the rain spell's amount and the consequent runoff. The aim of this work was to (a) utilize the dynamic variations in the isotopic composition in rainfall and runoff and model the magnitude of surface-storage capacity associated with runoff processes of overland flow, and (b) characterize the isotopic composition of the percolating water with respect to the isotopic distribution in rainfall and runoff events. The conceptual model postulates an isotopic mixing of overland flow with water within the depression storage. A transport model was then formulated in order to estimate the physical watershed parameters that control the development of overland flow from a certain rainfall period. Part I (this paper) presents the results and the assessment of the relative depression storage obtained from oxygen-18 and deuterium analyses that lead to the physical and mathematical formulation of a double-component model of kinematic-wave flow and transport, which is presented in Part II (accompanying paper). Résumé Les variations temporelles, en zone aride, de la composition isotopique

  3. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Nurgul Balci

    2017-08-01

    Full Text Available Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62− and elemental sulfur (S° to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6 by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4 from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2. During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4

  4. Uncoupling between soil and xylem water isotopic composition: how to discriminate mobile and tightly-bound water?

    Science.gov (United States)

    Martín Gómez, Paula; Aguilera, Mònica; Pemán, Jesús; Gil Pelegrín, Eustaquio; Ferrio, Juan Pedro

    2014-05-01

    As a general rule, no isotopic fractionation occurs during water uptake and water transport, thus, xylem water reflects source water. However, this correspondence does not always happen. Isotopic enrichment of xylem water has been found in several cases and has been either associated to 'stem processes' like cuticular evaporation 1 and xylem-phloem communication under water stress 2,3 or to 'soil processes' such as species-specific use of contrasting water sources retained at different water potential forces in soil. In this regard, it has been demonstrated that mobile and tightly-bound water may show different isotopic signature 4,5. However, standard cryogenic distillation does not allow to separate different water pools within soil samples. Here, we carried out a study in a mixed adult forest (Pinus sylvestris, Quercus subpyrenaica and Buxus sempervirens) growing in a relatively deep loamy soil in the Pre-Pyrenees. During one year, we sampled xylem from twigs and soil at different depths (10, 30 and 50 cm). We also sampled xylem from trunk and bigger branches to assess whether xylem water was enriched in the distal parts of the tree. We found average deviations in the isotopic signature from xylem to soil of 4o 2o and 2.4o in δ18O and 18.3o 7.3o and 8.9o in δ2H, for P.sylvestris, Q.subpyrenaica and B.sempervirens respectively. Xylem water was always enriched compared to soil. In contrast, we did not find clear differences in isotopic composition between xylem samples along the tree. Declining the hypothesis that 'stem processes' would cause these uncoupling between soil and xylem isotopic values, we tested the possibility to separate mobile and tightly-bound water by centrifugation. Even though we could separate two water fractions in soils close to saturation, we could not recover a mobile fraction in drier soils. In this regard, we welcome suggestions on alternatives to separate different soil fractions in order to find the correspondence between soil and

  5. IDMS analysis of blank swipe samples for uranium quantity and isotopic composition

    International Nuclear Information System (INIS)

    Ryjinski, M.; Donohue, D.

    2001-01-01

    Since 1996 the IAEA has started routine implementation of environmental sampling. During the last 5 years more than 1700 swipe samples were collected and analyzed in the Network of Analytical Laboratories (NWAL). One sensitive point of analyzing environmental samples is evidence of the presence of enriched U. The U content on swipes is extremely low and therefore there is a relatively high probability of a false positive, e.g. small contamination or a measurement bias. In order to avoid and/or control this the IAEA systematically sends to the laboratories blind blank QC samples. In particular more than 50 blank samples were analyzed during the last two years. A preliminary analysis of blank swipes showed the swipe material itself contains up to 10 ng of NU per swipe. However, about 50% of blind blank swipes analyzed show the presence of enriched uranium. A source of this bias has to be clarified and excluded. This paper presents the results of modeling of IDMS analysis for quantity and isotopic composition of uranium in order to identify the possible contribution of different factors to the final measurement uncertainty. This modeling was carried out based on the IAEA Clean Laboratory measurement data and simulation technique

  6. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing.

    Science.gov (United States)

    Bi, Xiang-Yang; Li, Zhong-Gen; Wang, Shu-Xiao; Zhang, Lei; Xu, Rui; Liu, Jin-Ling; Yang, Hong-Mei; Guo, Ming-Zhi

    2017-11-21

    Lead (Pb) pollution emission from China is becoming a potential worldwide threat. Pb isotopic composition analysis is a useful tool to accurately trace the Pb sources of aerosols in atmosphere. In this study, a comprehensive data set of Pb isotopes for coals, Pb/Zn ores, and fuels from China was presented. The ratios of 206 Pb/ 207 Pb and 208 Pb/ 206 Pb in the coals were in the range of 1.114-1.383 and 1.791-2.317, similar to those from Europe, Oceania, and South Asia, but different from those from America (p fuels from in coals. Urban aerosols demonstrated similar Pb isotopic compositions to coals, Pb/Zn ores, and fuels in China. After removing the leaded gasoline, the Pb in aerosols is more radiogenic, supporting the heavy contribution of coal combustion to the atmospheric Pb pollution.

  7. The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths

    NARCIS (Netherlands)

    Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R.

    2002-01-01

    12th Annual V.M. Goldschmidt Conference Davos Switzerland, The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths (DTM, Carnegie Institution of Washington), Pearson, D.G. (University of Durham)

  8. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands.

    Science.gov (United States)

    Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R

    2014-02-15

    In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The atomic weight and isotopic composition of boron and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1993-01-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation

  10. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  11. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  12. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  13. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  14. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří

    2012-01-01

    Roč. 47, č. 6 (2012), s. 1010-1028 ISSN 1086-9379 R&D Projects: GA ČR GA205/09/0991 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : moldavites * geochemistry * ries * carbon stable isotopes * moldavites (Germany) Subject RIV: DD - Geochemistry Impact factor: 2.800, year: 2012

  15. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    116. Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. T.S. Brand. 1, 2,3#. , D.A. Brandt. 1, 2,4 and C.W. ... alternatives (Wiseman, 1987; Brand et al., 1995). ..... The Ca, P and trace element concentrations for lupins, faba beans and peas recorded in the present.

  16. Spatial and temporal variability of stable isotope composition of precipitation over the south american continent

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available VARIABILITE SPATIALE ET TEMPORELLE DE LA COMPOSITION EN ISOTOPES STABLES DE LA PRECIPITATION SUR LE CONTINENT SUDAMERICAIN. L’Agence Internationale de l’Energie Atomique, en coopération avec l’Organisation Météorologique Mondiale, exploite un réseau mondial de stations pour la prise d’échantillons mensuels de précipitation. Actuellement, à peu près 60 stations fournissent des informations sur la composition isotopique de la précipitation sur le continent sudaméricain. Ces dernières années plusieurs réseaux d’échantillonnage d’un caractère national (Argentine, Brésil, Chili, Equateur, Pérou ont été initiés. Les données apportées par ces réseaux contribuent au réseau mondial de l’AIEA/OMM. Ces travaux se concentrent sur l’étude de la variabilité spatiale et temporelle de la composition isotopique stable de la précipitation sur le continent. Dans cette étude, est examinée en détail la relation entre la composition isotopique de la précipitation dans la région et quelques paramètres climatiques, tels que la quantité de précipitation et la température de l’air. VARIABILIDAD ESPACIAL Y TEMPORAL DE LA COMPOSICIÓN DE ISÓTOPOS ESTABLES DE LA PRECIPITACIÓN EN EL CONTINENTE SUDAMERICANO. El Organismo Internacional de Energía Atómica (OIEA, en colaboración con la Organización Meteorológica Mundial (OMM, está llevando a cabo un estudio a escala global de la composición isotópica de la precipitación a partir de muestras mensuales de lluvia recogidas en estaciones meteorológicas. En la actualidad alrededor de 60 estaciones proporcionan información sobre la composición isotópica de la precipitación en el continente sudamericano. Durante los últimos años se han establecido en la región varias redes de control con carácter nacional (Argentina, Brasil, Chile, Ecuador, Perú. Los datos aportados por estas redes representan una valiosa contribución a la red mundial del OIEA/OMM. Este trabajo se

  17. The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso

    Directory of Open Access Journals (Sweden)

    K. Yoshimura

    2012-02-01

    Full Text Available Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.

  18. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  19. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions

    Science.gov (United States)

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the

  20. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions.

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    Full Text Available The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China, were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils. Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern

  1. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  2. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, N., E-mail: n.walraven@geoconnect.nl [GeoConnect, Meester Dekkerstraat 4, 1901 PV Castricum (Netherlands); Os, B.J.H. van, E-mail: b.vanos@rce.nl [Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, P.O. Box 1600, 3800 BP Amersfoort (Netherlands); Klaver, G.Th., E-mail: g.klaver@brgm.nl [BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Middelburg, J.J., E-mail: j.b.m.middelburg@uu.nl [University Utrecht, Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht (Netherlands); Davies, G.R., E-mail: g.r.davies@vu.nl [VU University Amsterdam, Faculty of Earth and Life Sciences, Petrology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2014-02-01

    In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ({sup 206}Pb/{sup 207}Pb = 1.12–1.14) differs from the deeper soil samples ({sup 206}Pb/{sup 207}Pb = 1.20–1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. {sup 206}Pb/{sup 207}Pb ratios demonstrate that the roadside soils were polluted to a depth of ∼ 15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ∼ 15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths > 15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of > 15 cm. The Pb isotope composition of the groundwater ({sup 206}Pb/{sup 207}Pb = 1.135–1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ∼ 30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m{sup −2} y{sup −1}. Assuming that the downward Pb flux is constant over time, it is calculated that 35–90% of the atmospherically delivered Pb has migrated to the groundwater. - Highlights: • Lead isotope composition of litter and topsoil differs from the deeper soil samples. • Litter and topsoil contain anthropogenic Pb, with gasoline Pb as main source. • Anthropogenic Pb is strongly associated with organic matter in litter and topsoil. • Approximately 35–90% of

  3. Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems

    Science.gov (United States)

    Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.

    2018-05-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many isotopic systems. However, most of the isotopic data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the isotopic composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm isotopic compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable isotopic compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm isotopic composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm isotopes when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same isotopic reservoir.

  4. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.

    2015-01-01

    origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages...

  5. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  6. Normality test for determining the correction factor of isotopic composition in PWR spent fuel

    International Nuclear Information System (INIS)

    Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.

    2001-01-01

    Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality

  7. Gas chromatographic/mass spectrometric determination of carbon isotope composition in unpurified samples: methamphetamine example.

    Science.gov (United States)

    Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L

    1986-10-01

    A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.

  8. TRANSFORMATION OF THE INITIAL ISOTOPIC COMPOSITION OF PRECIPITATION IN CAVES OF THE SOUTH-WESTERN CAUCASUS

    Directory of Open Access Journals (Sweden)

    Vladimir Mikhalenko

    2015-01-01

    Full Text Available The paper presents preliminary results and interpretation from an ongoing research project in the Novy Afon and Abrskil caves of Abkhazia. The research have demonstrated that δ18O and δD analyses of drip and ground waters in two caves in the South-Western Caucasian region allows to better understand interaction between isotopic composition of precipitation, soil, and vadose zone. Drip and ground water samples from the caves were compared with the present-day Global (GMWL and the Local Meteoric Water Lines (LMWL. They fall along the GMWL and LMWL and are tied by equation δD = 5.74δ18O - 6.98 (r2 = 0.94. Drip water isotopic composition is similar to that from lakes and pools. The incline of δ18O - δD line differs from GMWL and LMWL. It reflects a possible result from secondary condensation and evaporation and water-rock interaction, and depends on the climate aridity level.

  9. Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics

    Energy Technology Data Exchange (ETDEWEB)

    Svedkauskaite-LeGore, J. [European Commission, Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements; Institute of Physics, Vilnius (Lithuania); Mayer, K.; Millet, S.; Nicholl, A.; Rasmussen, G. [European Commission, Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements; Baltrunas, D. [Institute of Physics, Vilnius (Lithuania)

    2007-07-01

    Lead is contained as trace element in uranium ores and propagates throughout the production process to intermediate products like yellow cake or uranium oxide. The lead isotopes in such material originate from two sources: natural lead and radiogenic lead. The variability of the isotopic composition of lead in ores and yellow cakes was studied and the applicability of this parameter for nuclear forensic investigations was investigated. Furthermore, the chemical impurities contained in these materials were measured in order to identify characteristic differences between materials from different mines. For the samples investigated, it could be shown, that the lead isotopic composition varies largely from mine to mine and it may be used as one of the parameters to distinguish between materials of different origins. Some of the chemical impurities show a similar pattern and support the conclusions drawn from the lead isotope data. (orig.)

  10. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization. Final report

    International Nuclear Information System (INIS)

    Loge, G.

    1994-01-01

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U 3 O 8 . Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF 4 were found to be a kinetic bottleneck to the formation of UF 6 . This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid

  11. Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinization or mixing with brine?

    International Nuclear Information System (INIS)

    Boschetti, Tiziano; Etiope, Giuseppe; Pennisi, Maddalena; Romain, Millot; Toscani, Lorenzo

    2013-01-01

    Highlights: ► First data on boron and lithium isotope on waters from ophiolites are described. ► High boron and lithium isotope composition may be related to terrestrial serpentinization. ► Methane isotope data show unusual biotic signature. - Abstract: Spring waters issuing from serpentinized ultramafic rocks of the Taro-Ceno Valleys (Northern Apennine, Emilia-Romagna region, Italy) were analyzed for major element, trace element and dissolved gas concentrations and δ 11 B, δ 7 Li, δ 18 O(H 2 O), δ 2 H(H 2 O), δ 13 C(CH 4 ) and δ 2 H(CH 4 ) isotope compositions. Similar to other springs worldwide that issue from serpentinites, the chemical composition of the waters evolves with water–rock interaction from Ca-HCO 3 , through Mg-HCO 3 and ultimately to a hyperalkaline Na-(Ca)-OH composition. Most of the Ca- and Mg-HCO 3 springs have δ 11 B ranging between +16.3‰ and +23.7‰, consistent with the range of low P–T serpentinites. Very high δ 11 B in two springs from Mt. Prinzera (PR10: +39‰; PR01: +43‰) can be related to isotopic fractionation during secondary phase precipitation, as also inferred from δ 7 Li values. In contrast to typical abiogenic isotope signatures of CH 4 from serpentinized rocks, dissolved CH 4 from the Taro-Ceno hyperalkaline springs has an apparent biotic (thermogenic and/or mixed thermogenic-microbial) signature with δ 13 C(CH 4 ) ranging from −57.5‰ to −40.8‰, which is similar to that of hydrocarbons from production wells and natural seeps in adjacent hydrocarbon systems. The data suggest that CH 4 in the hyperalkaline springs investigated in this study may derive from organic matter of the sedimentary (flysch and arenaceous) formations underlying the ophiolite unit. However, small amounts of H 2 were detected in one hyperalkaline spring (PR10), but for two springs with very low CH 4 concentrations (PR01 and UM15) the δ 2 H value could not be measured, so the occurrence of some abiotic CH 4 cannot be excluded

  12. Models for the runoff from a glaciated catchment area using measurements of environmental isotope contents

    International Nuclear Information System (INIS)

    Behrens, H.; Moser, H.; Oerter, H.; Rauert, W.; Stichler, W.; Ambach, W.; Kirchlechner, P.

    1979-01-01

    For several years, in the glaciated catchment area of the Rofenache (Oetztal Alps, Austria), measurements have been made of the environmental isotopes 2 H, 18 O and 3 H in precipitation, snow and ice samples and in the runoff. Furthermore, the electrolytic conductivity of runoff samples was measured and tracing experiments were made with fluorescent dyes. From core samples drilled in the accumulation area of the Vernagtferner, the gross beta activity was investigated and compared with the data from 2 H, 3 H and 18 O analyses and the data from mass balance studies. It is shown that the annual net balance from previous years can be recovered on temperate glaciers using environmental isotope techniques. From the diurnal variations of the 2 H and 3 H contents and the electrolytic conductivity, the following proportions in the runoff of the Vernagtferner catchment area were obtained during a 24-hour interval at a time of strong ablation (August 1976): about 50% ice meltwater, 25% direct runoff of firn and snow meltwater, and 7% of mineralized groundwater. The rest of the runoff consists of non-mineralized meltwater seeping from the glacier body. The annual variations of the 2 H and 3 H contents in the runoff of the glaciated catchment area permit conclusions on the time sequence of the individual ablation periods, and on the residence time, on the basis of model concepts. The residence times of approximately 100 days or four years, respectively, are obtained from the decrease in the 2 H content at the end of the ablation period and from the variation of the 3 H content in the winter discharge. (author)

  13. Winter diets of immature green turtles (Chelonia mydas) on a northern feeding ground: integrating stomach contents and stable isotope analyses

    Science.gov (United States)

    Williams, Natalie C.; Bjorndal, Karen A.; Lamont, Margaret M.; Carthy, Raymond R.

    2015-01-01

    The foraging ecology and diet of the green turtle, Chelonia mydas, remain understudied, particularly in peripheral areas of its distribution. We assessed the diet of an aggregation of juvenile green turtles at the northern edge of its range during winter months using two approaches. Stomach content analyses provide a single time sample, and stable isotope analyses integrate diet over a several-month period. We evaluated diet consistency in prey choice over time by comparing the results of these two approaches. We examined stomach contents from 43 juvenile green turtles that died during cold stunning events in St. Joseph Bay, Florida, in 2008 and 2011. Stomach contents were evaluated for volume, dry mass, percent frequency of occurrence, and index of relative importance of individual diet items. Juvenile green turtles were omnivorous, feeding primarily on seagrasses and tunicates. Diet characterizations from stomach contents differed from those based on stable isotope analyses, indicating the turtles are not feeding consistently during winter months. Evaluation of diets during warm months is needed.

  14. Establishing Ideal Conditions for Complete Denitrification by Pseudomonas Aureofaciens - An Update on Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification and Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yi, Amelia Lee Zhi; Heiling, Maria; Toloza, Arsenio; Heng, Lee K.

    2017-01-01

    This serves as update on research entitled “Determining isotopic composition of dissolved nitrate using bacterial denitrification and laser spectroscopy” first published in the Vol. 39, No. 1, July 2016 SWMCN Soils Newsletter. In this research, isotopic δ"1"5N and δ"1"8O composition of dissolved nitrates is measured by laser spectroscopy after reduction of nitrate to N_2O by Pseudomonas aureofaciens. Quantifying the isotopic composition of nitrates in aqueous samples allows for better identification of potential nitrate sources, which in turn assists in remediation of nitrate-contaminated water and design of future agricultural management practises. The overall objective of the project is to establish a technical guide in the form of a standard operating procedure outlining best practises for denitrification method.

  15. An IBM-1620 code for calculaton of isotopic composition of irradiated uranium (ISOCOM-1)

    International Nuclear Information System (INIS)

    Soliman, R.H.; Karchava, G.; Hamouda, I.

    1974-01-01

    The present work gives a description of an IBM-1620 code to calculate the isotopic composition during the irradiation of a nuclear fuel, which initially consists of 235 U and 238 U. The numerical results of test calculations as well as the ET-RR-1 reactor calculations are presented. The code is in operation since 1968

  16. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  17. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in

  18. Stable Isotope Group 1984 progress report

    International Nuclear Information System (INIS)

    Lyon, G.L.

    1985-04-01

    The work of the group in 1984 is described and includes studies in isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation. Geothermal studies have decreased compared to other years, but major data summaries were made for Wairakei and Ngawha. The hydrology of Whakarewarewa and Rotorua is being elucidated using water isotopes. Models of the subsurface flows at Kawerau and Ngawha are being made to relate fluid to mineral isotope compositions. A study of the δ 13 C and δ 34 S compositions of New Zealand oils has been started. Groups of oils of related origin are being defined, and compositions will be compared with those of potential source rocks. A method was developed for isotope analysis of sulphur in rocks. The isotopic composition of water is being used to identify and characterise groundwater aquifers in the Wairarapa and at Poverty Bay. Stable carbon isotopes have been used to identify food sources for invertebrates, and to show biochemical pathways in lactation by cows. The geochronology group is involved in major studies in Antarctica, using U-Pb, Rb-Sr and K-Ar methods. Rocks from North Victoria Land, Marie Byrd Land and the USARP mountains are being compared with possible correlatives in New Zealand and Argentina. Strontium isotope data is being applied to the origin of magmas in several regions of New Zealand. The K-Ar data is being stored on computer files. Fission track measurements are being applied to unravel uplift histories in Westland and Taranaki

  19. Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach contents and stable isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Stomach contents and stable isotope analyses were used to determine the diet of lionfish in the warm-temperate hard bottom reef community in theSoutheast US Atlantic...

  20. The isotopic composition of lead in man and the environment in Finland: isotope ratios of lead as indicators of pollutant source

    International Nuclear Information System (INIS)

    Keinonen, M.

    1989-01-01

    The isotopic composition of lead was determined in samples from the Helsinki area: in emission sources (gasoline, incinerator and lead smelter emissions, coal), in sources of intake to man (air, diet), in samples representing long-term deposition (lichen, soil, lake sediments) and in human tissue. The measurements of the isotope ratios 206 Pb/ 204 Pb and 206 Pb/ 207 Pb were done by thermal ionization mass spectrometry after chemical separation of lead by anion exchange and cathodic electrodeposition. The origin of lead in man and the environment in the Helsinki area was evaluated by using the differences in the measured isotope ratios as an indicator. The means of the ratios in gasoline ( 206 Pb/ 207 Pb 1.124+-0.026, 206 Pb/ 204 Pb 17.45+-0.42) and the ratios in other emission sources in Helsinki ( 206 Pb/ 207 Pb 1.149-1.226, 206 Pb/ 204 Pb 17.94-19.24) were significantly different. Lead in air samples from Helsinki (1.123+-0.013) could be attributed to gasoline, as lead in soil near a highway (1.136+-0.003). By contrast, isotope ratios measured in lichen (1.148+-0.006) indicated considerable amounts of lead from sources with higher 206 Pb abundances, evidently industrial sources. The isotope ratios in human liver, lung, and bone ( 206 Pb/ 207 Pb 1.142+-0.015, 1.151+-0.011, and 1.156+-0.013, respectively and 206 Pb/ 204 Pb 17.76+-0.28, 17.91+-0.20, and 17.96+-0.09, respectively) were practically the same and no significant dependence of the isotope ratios on age or concentration of lead was seen. In lake sediment cores a correlation was found between the isotope ratios, lead concentration, and depth. The non-anthropogenic lead of high isotope ratios from bedrock was the major component at depths dated older than 100 years. At the surface of the sediment atmospheric lead prevailed, with ratios similar to those of gasoline, air samples and lichen. In the post-1900 layers, anthropogenic lead made up about 40-60% of the total sedimentary lead

  1. A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    Science.gov (United States)

    Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.

    2014-01-01

    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.

  2. Development and validation of an analytical method for the determination of lead isotopic composition using ICP-QMS

    OpenAIRE

    Rodríguez-Salazar, M. T.; Morton Bermea, O.; Hernández-Álvarez, E.; García-Arreola, M. E.; Ortuño-Arzate, M. T.

    2010-01-01

    This work reports a method for the precise and accurate determination of Pb isotope composition in soils and geological matrices by ICP-QMS. Three reference materials (AGV-2, SRM 2709 and JSO-1) were repeatedly measured, using ICP-QMS instruments in order to assess the quality of this analytical procedure. Mass discrimination was evaluated for Pb/Pb with Pb isotope reference material NIST SRM 981, and the correction applied to the above mentioned reference materials to achieve good accuracy o...

  3. Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains.

    Science.gov (United States)

    Vaiglova, Petra; Snoeck, Christophe; Nitsch, Erika; Bogaard, Amy; Lee-Thorp, Julia

    2014-12-15

    Stable isotope analysis of archaeological charred plants has become a useful tool for interpreting past agricultural practices and refining ancient dietary reconstruction. Charred material that lay buried in soil for millennia, however, is susceptible to various kinds of contamination, whose impact on the grain/seed isotopic composition is poorly understood. Pre-treatment protocols have been adapted in distinct forms from radiocarbon dating, but insufficient research has been carried out on evaluating their effectiveness and necessity for stable carbon and nitrogen isotope analysis. The effects of previously used pre-treatment protocols on the isotopic composition of archaeological and modern sets of samples were investigated. An archaeological sample was also artificially contaminated with carbonates, nitrates and humic acid and subjected to treatment aimed at removing the introduced contamination. The presence and removal of the contamination were investigated using Fourier transform infrared spectroscopy (FTIR) and δ(13)C and δ(15)N values. The results show a ca 1‰ decrease in the δ(15)N values of archaeological charred plant material caused by harsh acid treatments and ultra-sonication. This change is interpreted as being caused by mechanical distortion of the grains/seeds rather than by the removal of contamination. Furthermore, specific infrared peaks have been identified that can be used to detect the three types of contaminants studied. We argue that it is not necessary to try to remove humic acid contamination for stable isotope analysis. The advantages and disadvantages of crushing the grains/seeds before pre-treatment are discussed. We recommend the use of an acid-only procedure (0.5 M HCl for 30 min at 80 °C followed by three rinses in distilled water) for cleaning charred plant remains. This study fills an important gap in plant stable isotope research that will enable future researchers to evaluate potential sources of isotopic change and pre

  4. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes.

    Science.gov (United States)

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E; Zhang, Zhao-feng

    2016-03-18

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0-2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes.

  5. Habitat use and trophic position effects on contaminant bioaccumulation in fish indicated by stable isotope composition

    Science.gov (United States)

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in a Great Lakes coastal food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Bl...

  6. Isotopic evidence for the past climates and vegetation of southern Africa

    Directory of Open Access Journals (Sweden)

    J. C. Vogel

    1983-11-01

    Full Text Available The stable isotopes of hydrogen, oxygen and carbon can potentially provide evidence of past climates. The most detailed information has been obtained from variations in the oxygen-18 content of foraminifera from ocean floor cores, the analysis of which has produced a record of ocean temperature changes through the Quaternary and beyond. The use of isotope analysis of continental materials to reveal climatic change is more limited, but some advances have been made in recent years. One approach has been to utilize the variations in the isotopic composition of precipitation as recorded in ancient groundwater. Thus groundwater samples from a confined aquifer on the southern Cape coast show a marked rise in temperature since the Last Glacial maximum. The temperature changes during the Upper Pleistocene and Holocene are also reflected in the oxygen-18 content of stalagmites from the Cango caves in the same region. The widespread occurrence of C4 grasses in the warmer summer rainfall areas of southern Africa provides a novel possibility of observing temporal shifts of climatic boundaries. The distinctly high carbon-13 content of C4 plants is clearly reflected in the skeletons of grazers so that faunal material from suitably situated archaeological sites can be used to observe changes in the composition of the local grass-cover. The evidence thus far accumulated suggests only minor changes since the Upper Pleistocene. The combined evidence to date indicates that temperatures and also precipitation in southern Africa have changed since the Last Glacial maximum, about 18 000 years ago, but that shifts in the boundaries of the various veld-types were probably not very extensive.

  7. The effect of soll water conditions on carbon isotope discrimination and minerals contents in spring-planted wheat

    International Nuclear Information System (INIS)

    Zhu Lin; Liang Zongsuo; Xu Xing; Li Shuhua

    2008-01-01

    Carbon isotope discrimination (triangle open 13 C) has been proposed as indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for triangle open 13 C analysis, attempts have been made to identify alternative screening criteria. Ash content (m a ) has been proposed as an alternative criterion for triangle open 13 C in wheat and barley. A pot experiment with three water treatments (45% ± 5% FC, 55% ± 5% FC and 75% ± 5%FC) was conducted and flag leaf triangle open 13 C (triangle openL a ), contents of ash, potassium (K), magnesium (Mg) and calcium (Ca) were measured to study the relationships between triangle open, mineral composition in spring planted bread wheat (Triticum aestivum L.). In the light of the results obtained in this research, the traits measured showed significant differences among the three water treatments. There were variations in triangle openL a between the genotypes derived from contrasting environments. The improved varieties or advanced lines bred in irrigated areas displayed higher triangle open 13 C values, while the improved and local varieties bred in rain-fed areas exhibited lower triangle open 13 C values Significant positive correlations were found between triangle open 13 C and m a in seedlings and second fully developed leaves at elongation stage and in flag leaves at anthesis stage in severe drought treatment (T 1 ) (r=0.790, P 13 C was negatively associated with potassium (K) content in flag leaves in T 2 (r=0.813, P 2 and T 3 (r=0.725, P 13 C and calcium (Ca) content in flag leaves in T 3 (r=0.708, P a is a possible alternative criterion of triangle open 13 C in vegetative organs especially in stressed environments. K, Mg and Ca contents in flag leaf under moderate water stress or feasible water conditions might be new predictive criteria of triangle openL a . (authors)

  8. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  9. Carbon stable isotope composition of charophyte organic matter in a small and shallow Spanish water body as a baseline for future trophic studies

    Directory of Open Access Journals (Sweden)

    María Antonia Rodrigo

    2015-12-01

    Full Text Available Quantitative descriptions of foodweb structure based on isotope niche space require knowledge of producers’ isotopic signatures. In freshwater ecosystems charophytes are one of the main components of submerged vegetation and the feeding base for many herbivorous consumers, but knowledge about their organic carbon isotopic signatures is sparse. In this study, the δ13C organic values (and organic %C and %N of the four species of submerged macrophytes (three charophytes - Chara hispida, Nitella hyalina and Tolypella glomerata - and one angiosperm, Myriophyllum spicatum growing in a newly created shallow pond were measured monthly over a period of one year, to discern if i all charophyte species susceptible to being food for consumers and growing in the same waterbody have the same C isotopic composition; ii the δ13C values of a charophyte species change on a seasonal and spatial scale; iii the different parts (apical nodes, internodes, rhizoids, reproductive organs, oospores of a charophyte species have the same isotopic composition. The δ13C, %C and %N values of organic matter in the sediments where the plants were rooted were also measured as well as several limnological variables. The δ13C values for the angiosperm (-13.7±0.7‰ indicated 13C-enrichment, whereas the N. hyalina δ13C values were the most negative (-22.4±0.7‰. The mean δ13C value for C. hispida was -19.0±1.0‰ and -20.7±0.8‰ for T. glomerata. C. hispida δ13C values had a significant seasonal variation with 13C-poor values in the cold season, and slight spatial differences. Statistically significant differences were found between charophyte rhizoids (13C-enriched and the other parts of the thalli. The δ13C values in the sediments varied throughout time (-13‰ to -26‰. The C content was lower in the charophytes than in the angiosperm and there were no large differences among the charophytes. Charophyte fructifications were enriched in organic C compared to the

  10. Changes in fatty acid content and composition in silage maize during grain filling

    NARCIS (Netherlands)

    Khan, N.A.; Cone, J.W.; Pellikaan, W.F.; Khan, M.A.; Struik, P.C.; Hendriks, W.H.

    2011-01-01

    Background: The stage of maturity at harvest has a major effect on the fatty acid (FA) content and composition of forage plants consumed by dairy cows. The present study investigated the dynamics of FA content and composition in stover (leaves and stem) and ears (cob, shank and husks) of two maize

  11. Determination of the isotopic composition of natural and slightly enriched uranium by alpha-spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar

    1968-01-01

    Determinations of the isotope contents of 238U, 235U and 234U in five uranium samples containing 0–5 at% 235U were carried out on the basis of a least-squares fit of the α-spectra from the samples, measured with a semiconductor detector, to the theoretically expected α-spectra. With a simple source...

  12. Isotope effects on the optical spectra of semiconductors

    Science.gov (United States)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  13. BENCHMARKING ORTEC ISOTOPIC MEASUREMENTS AND CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R; Raymond Sigg, R; Vito Casella, V; Nitin Bhatt, N

    2008-09-29

    these cases the ISOTOPIC analysis program is especially valuable because it allows a rapid, defensible, reproducible analysis of radioactive content without tedious and repetitive experimental measurement of {gamma}-ray transmission through the sample and container at multiple photon energies. The ISOTOPIC analysis technique is also especially valuable in facility holdup measurements where the acquisition configuration does not fit the accepted generalized geometries where detector efficiencies have been solved exactly with good calculus. Generally in facility passive {gamma}-ray holdup measurements the acquisition geometry is only approximately reproducible, and the sample (object) is an extensive glovebox or HEPA filter component. In these cases accuracy of analyses is rarely possible, however demonstrating fissile Pu and U content within criticality safety guidelines yields valuable operating information. Demonstrating such content can be performed with broad assumptions and within broad factors (e.g. 2-8) of conservatism. The ISOTOPIC analysis program yields rapid defensible analyses of content within acceptable uncertainty and within acceptable conservatism without extensive repetitive experimental measurements. In addition to transmission correction determinations based on the mass and composition of objects, the ISOTOPIC program performs finite geometry corrections based on object shape and dimensions. These geometry corrections are based upon finite element summation to approximate exact closed form calculus. In this report we provide several benchmark comparisons to the same technique provided by the Canberra In Situ Object Counting System (ISOCS) and to the finite thickness calculations described by Russo in reference 10. This report describes the benchmark comparisons we have performed to demonstrate and to document that the ISOTOPIC analysis program yields the results we claim to our customers.

  14. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  15. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  16. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru [Russian Academy of Sciences, Space Materials Science Laboratory, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Kaluga Branch (Russian Federation); Voloshin, A. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Ralchenko, V. G.; Bolshakov, A. P. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Romanov, D. A. [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation); Khomich, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Sozontov, E. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  17. Stable isotope and chemical compositions of European and Australasian ciders as a guide to authenticity.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-01-28

    This paper presents a data set derived from the analysis of bottled and canned ciders that may be used for comparison with suspected counterfeit or substitute products. Isotopic analysis of the solid residues from ciders (predominantly sugar) provided a means to determine the addition of C4 plant sugars. The added sugars were found to comprise cane sugar, high-fructose corn syrup, glucose, or combinations. The majority of ciders from Australia and New Zealand were found to contain significant amounts of added sugar, which provided a limited means to distinguish these ciders from European ciders. The hydrogen and oxygen isotopic compositions of the whole ciders (predominantly water) were shown to be controlled by two factors, the water available to the parent plant and evaporation. Analysis of data derived from both isotopic and chemical analysis of ciders provided a means to discriminate between regions and countries of manufacture.

  18. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    Science.gov (United States)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  19. Hafnium isotope stratigraphy of ferromanganese crusts

    Science.gov (United States)

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  20. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  1. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  2. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  3. Isotope analysis by emission spectroscopy; Analyse isotopique par spectroscopie d'emission

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Blaise, J [Centre National de la Recherche Scientifique (CNRS), Lab. Aime Cotton, 92 - Meudon-Bellevue (France)

    1959-07-01

    Quantitative analysis of isotope mixtures by emission spectroscopy is resulting from the phenomenon called 'isotope shift', say from the fact that spectral lines produced by a mixture of isotopes of a same element are complex. Every spectral line is, indeed, resulting from several lines respectively corresponding to each isotope. Then isotopic components are near one to others, and their separation is effected by means of Fabry-Perot calibration standard: the apparatus allowing to measure abundances is the Fabry-Perot photo-electric spectrometer, designed in 1948 by MM. JACQUINOT and DUFOUR. This method has been used to make abundance determination in the case of helium, lithium, lead and uranium. In the case of lithium, the utilised analysis line depends on the composition of examined isotopic mixture. For mixtures containing 7 to 93 pour cent of one of isotopes of lithium, this line is the lithium blue line: {lambda} = 4603 angstrom. In other cases the red line {lambda} = 6707 angstrom is preferable, though it allows to do easily nothing but relative determinations. Helium shows no particular difficulty and the analysis line selected was {lambda} = 6678 angstrom. For lead the line {lambda} = 5201 angstrom gives the possibility to determine the isotope abundance for the four isotopes of lead notwithstanding the presence of hyperfine structure of {sup 207}Pb. For uranium, line {lambda} 5027 angstrom is used, and this method allows to determine the composition of isotope mixtures, the content of which in {sup 235}U may shorten to 0,1 per cent. Relative precision is about 2 per cent for contents in {sup 235}U over 1 per cent. For lower contents, this line {lambda} = 5027 angstrom will allow relative measures when using previously dosed mixtures. (author) [French] L'analyse quantitative des melanges isotopiques par spectroscopie d'emission doit son existence au phenomene appele 'deplacement isotopique', c'est-a-dire au fait que les raies spectrales emises par un

  4. Variation in oil content and fatty acid composition of sesame accessions from different origins

    Directory of Open Access Journals (Sweden)

    C. Kurt

    2018-03-01

    Full Text Available Oil content and fatty acid composition are very important parameters for the human consumption of oilseed crops. Twenty-four sesame accessions including seven collected from various geographical regions of Turkey and 11 from different countries were investigated under field conditions for two consecutive years (2015 and 2016. The sesame accessions varied widely in their oil content and fatty acid compositions. The oil content varied between 44.6 and 53.1% with an average value of 48.15%. The content of oleic acids, linoleic acid, linolenic acid, palmitic acid,and stearic acid varied between 36.13–43.63%, 39.13–46.38%, 0.28–0.4%, 8.19–10.26%, and 4.63–6.35%, respectively. When total oil content and fatty acid composition were compared, Turkish sesame showed wide variation in oil and fatty acid compositions compared to those from other countries. However, the accessions from other countries were fewer compared to those from Turkey. It is essential to compare oil and fatty acid composition using a large number of germ plasm from different origins. In sesame oil, the average contents of oleic acid and linoleic acid were 39.02% and 43.64%, respectively, and their combined average content was 82.66%, representing the major fatty acid components in the oil from the sesame accessions used in the present study. The results obtained in this study provide useful information for the identification of better parents with high linoleic and oleic acid contents for developing elite sesame varieties with traits which are beneficial to consumer health.

  5. Paloma: an instrument to measure the molecular, elemental and isotopic composition of the mars atmosphere from a landed platform (MSL 09, EXOMARS)

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch

    2003-07-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (Payload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astro-biological interest, like CH{sub 4}, H{sub 2}CO, N{sub 2}O, H{sub 2}S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest. Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. (author)

  6. Paloma: an instrument to measure the molecular, elemental and isotopic composition of the mars atmosphere from a landed platform (MSL 09, EXOMARS)

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.

    2003-01-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (Payload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astro-biological interest, like CH 4 , H 2 CO, N 2 O, H 2 S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest. Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. (author)

  7. C4 plant isotopic composition ((delta)13C) evidence for urban CO2 pollution in the city of Cotonou, Benin (West Africa)

    International Nuclear Information System (INIS)

    Kelome, Nelly C.; Leveque, Jean; Andreux, Francis; Milloux, Marie-Jeanne; Oyede, Lucien-Marc

    2006-01-01

    The carbon isotopic composition ((delta) 13 C) of plants can reveal the isotopic carbon content of the atmosphere in which they develop. The (delta) 13 C values of air and plants depend on the amount of atmospheric fossil fuel CO 2 , which is chiefly emitted in urban areas. A new indicator of CO 2 pollution is tested using the (delta) 13 C variation in a C 4 grass: Eleusine indica. A range of about 4%% delta units was observed at different sites in Cotonou, the largest city in the Republic of Benin. The highest (delta) 13 C values, from -12%% to -14%%, were found in low traffic zones; low (delta) 13 C values, from -14%% to -16%%, were found in high traffic zones. The amount of fossil fuel carbon assimilated by plants represented about 20% of the total plant carbon content. An overall decrease in plant (delta) 13 C values was observed over a four-year monitoring period. This decrease was correlated with increasing vehicle traffic. The (delta) 13 C dataset and the corresponding geographical database were used to map and define zones of high and low 13 C-depleted CO 2 emissions in urban and sub-urban areas. The spatial distribution follows dominant wind directions, with the lowest emission zones found in the southwest of Cotonou. High CO 2 emissions occurred in the north, the east and the center, providing evidence of intense anthropogenic activity related to industry and transportation. (author)

  8. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  9. Models for the runoff from a glacierized catchment area using measurements of environmental isotope contents

    International Nuclear Information System (INIS)

    Behrens, H.; Moser, H.; Oerter, H.; Rauert, W.; Stichler, W.; Ambach, W.; Kirchlechner, P.

    1978-01-01

    In the glacierized catchment area of the Rofenache (Oetztal Alps, Austria) during several years measurements have been made of the environmental isotopes 2 H, 18 O and 3 H in the precipitation, in snow and ice samples and in the runoff. Furthermore the electrolytic conductivity of runoff samples was measured and tracing experiments were made with fluorescent dyes. From core samples drilled in the accumulation area of the Vernagtferner, the gross beta activity was investigated and compared with both, the data from 2 H, 3 H und 18 O analyses and the data from mass balance studies. It is shown that the annual net balance from previous years can be recovered on temperate glaciers using environmental isotope techniques. From the diurnal variations of the 2 H and 3 H contents and the electrolytic conductivity the following proportions in the runoff of the Vernagtferner catchment area were obtained during a 24-hour interval at a time of strong ablation (August 1976): about 50% of ice melt water, 25% of direct runoff fo firn- and snow melt water, and 7% of mineralized groundwater. The rest of the runoff consists of not mineralized melt water seeping from the glacier body. The annual variations of the 2 H and 3 H contents in the runoff of the glacierized catchment area permit conclusions on the time sequence of the individual ablation periods and on the residence time on the basis of model concepts. The residence times of approximately 100 days or 4 years, respectively, are obtained from the decrease in the 2 H content at the end of the ablation period and from the variation of the 3 H content in the winter discharge. (orig.) [de

  10. The CN/C15N isotopic ratio towards dark clouds

    Science.gov (United States)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  11. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  12. Isotopic anomalies - chemical memory of Galactic evolution

    International Nuclear Information System (INIS)

    Clayton, D.D.

    1988-01-01

    New mechanisms for the chemical memory of isotopic anomalies are proposed which are based on the temporal change during the chemical evolution of the Galaxy of the isotopic composition of the mean ejecta from stars. Because of the differing temporal evolution of primary and secondary products of nucleosynthesis, the isotopic composition of the bulk interstellar medium changes approximately linearly with time, and thus any dust component having an age different from that of average dust will be isotopically anomalous. Special attention is given to C, O, Mg, Si, and isotopically heavy average-stellar condensates of SiC. 20 references

  13. Influence of the balance of the intertropical front on seasonal variations of the isotopic composition in rainfall at Kisiba Masoko (Rungwe Volcanic Province, SW, Tanzania).

    Science.gov (United States)

    Nivet, Fantine; Bergonzini, Laurent; Mathé, Pierre-Etienne; Noret, Aurélie; Monvoisin, Gaël; Majule, Amos; Williamson, David

    2018-08-01

    Tropical rainfall isotopic composition results from complex processes. The climatological and environmental variability in East Africa increases this complexity. Long rainfall isotope datasets are needed to fill the lack of observations in this region. At Kisiba Masoko, Tanzania, rainfall and rain isotopic composition have been monitored during 6 years. Mean year profiles allow to analyse the seasonal variations. The mean annual rainfall is 2099 mm with a rain-weighted mean composition of -3.2 ‰ for δ 18 O and -11.7 ‰ for δ 2 H. The results are consistent with available data although they present their own specificity. Thus, if the local meteoric water line is δ 2 H = 8.6 δ 18 O + 14.8, two seasonal lines are observed. The seasonality of the isotopic composition in rain and deuterium excess has been compared with precipitating air masses backtracking trajectories to characterize a simple scheme of vapour histories. The three major oceanic sources have two moisture signatures with their own trajectory histories: one originated from the tropical Indian Ocean at the beginning of the rainy season and one from the Austral Ocean at its end. The presented isotopic seasonality depends on the balance of the intertropical front and provides a useful dataset to improve the knowledge about local processes.

  14. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    Science.gov (United States)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a

  15. Isotope ratio of carbon in lipids of the zooplankton from the Kuril-Kamchatka region of the Pacific Ocean

    International Nuclear Information System (INIS)

    Bordovskij, O.K.; Shirinskij, V.G.; Akhmet'eva, E.A.; AN SSSR, Novosibirsk. Inst. Geokhimii)

    1976-01-01

    Isotopic composition has been studied of carbon of lipids of zooplancton in Kuril-Kamchatka region in the depth range from the surface down to 7km. The main task of the research is the investigation of isotopic composition variations along the vertical line - in producing and consuming zones under fairly uniform thermal conditions. The study has revealed that biochemical content of plancton in Kuril-Kamchatka region is characterized by elevated content of organic matter, the quantity of which, expressed in Csup(org), comprises from 41.9 to 59.5% of the dry weigth, that is 1.5-2 times more than Csup(org) preservation in zooplancton in the tropical part of the Indian Ocean. The plancton at the depth of 100-200 m from the cold intermediate layer and from that of 1000-2000 m has proved to be the richest in organic matter and lipids. As for the lipids content and fractionation, the greatest differences are observed between the surface plancton and that located lower, including the maximal depth, that is, between the producing and consuming zones

  16. Isotopic characterization of targets for nuclear measurements at CBNM

    International Nuclear Information System (INIS)

    Bievre, P. de

    1985-01-01

    Nuclear measurements for which ''nuclear'' targets are prepared are almost always isotope-specific i.e. they are normally related to a particular nuclide in the target. The amount of this nuclide must be accurately assessed. There are essentially two ways to determine the number of atoms of this particular nuclide. (1) By determination of the amount of element, to which the nuclide belongs, on the target via classsical means; weighing substraction of impurities, calculation of element amount using known of the chemical compound in which the element is incorporated and, finally, measurement of the isotopic composition in order to determine the fraction of the nuclide concerned in the element. An alternative way may be to perform an elemental assay on the target followed by determination of the isotopic composition. (2) Another approach is isotope dilution mass spectrometry where a change in the isotopic composition of the ''target'' is induced by adding a known number of atoms (called ''spike'') of the element with a quite different composition. Measurement of the resulting change in isotopic composition yields directly the number of atoms of the nuclide under investigation. The method is highly selective, accurate and isotope-specific. (orig.)

  17. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    Science.gov (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  18. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    concentrations of all the ultramafic xenoliths of 40-400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113-180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal-silicate fractionation. An identical isotopic composition might result from core-mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.

  19. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  20. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    Science.gov (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects