WorldWideScience

Sample records for contaminated subsurface soil

  1. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  2. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  3. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  4. Frozen Soil Barrier. Subsurface Contaminants Focus Area. OST Reference No. 51

    International Nuclear Information System (INIS)

    1999-01-01

    Problem: Hazardous and radioactive materials have historically been disposed of at the surface during operations at Department of Energy facilities. These contaminants have entered the subsurface, contaminating soils and groundwater resources. Remediation of these groundwater plumes using the baseline technology of pump and treat is expensive and takes a long time to complete. Containment of these groundwater plumes can be alternative or an addition to the remediation activities. Standard containment technologies include slurry walls, sheet piling, and grouting. These are permanent structures that once installed are difficult to remove. How It Works: Frozen Soil Barrier technology provides a containment alternative, with the key difference being that the barrier can be easily removed after a period of time, such as after the remediation or removal of the source is completed. Frozen Soil Barrier technology can be used to isolate and control the migration of underground radioactive or other hazardous contaminants subject to transport by groundwater flow. Frozen Soil Barrier technology consists of a series of subsurface heat transfer devices, known as thermoprobes, which are installed around a contaminant source and function to freeze the soil pore water. The barrier can easily be maintained in place until remediation or removal of the contaminants is complete, at which time the barrier is allowed to thaw.

  5. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  6. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  8. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  9. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    International Nuclear Information System (INIS)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10 -4 , 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10 -4 , 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents

  10. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  11. Subsurface Contaminants Focus Area annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line

  12. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling subsurface contamination at Fernald

    International Nuclear Information System (INIS)

    Jones, B.W.; Flinn, J.C.; Ruwe, P.R.

    1994-01-01

    The Department of Energy's Fernald site is located about 20 miles northwest of Cincinnati. Fernald produced refined uranium metal products from ores between 1953 and 1989. The pure uranium was sent to other DOE sites in South Carolina, Tennessee, Colorado,and Washington in support of the nation's strategic defense programs. Over the years of large-scale uranium production, contamination of the site's soil and groundwater occurred.The contamination is of particular concern because the Fernald site is located over the Great Miami Aquifer, a designated sole-source drinking water aquifer. Contamination of the aquifer with uranium was found beneath the site, and migration of the contamination had occurred well beyond the site's southern boundary. As a result, Fernald was placed on the National Priorities (CERCLA/Superfund) List in 1989. Uranium production at the site ended in 1989,and Fernald's mission has been changed to one of environmental restoration. This paper presents information about computerized modeling of subsurface contamination used for the environmental restoration project at Fernald

  14. Cold war legacy: sub-surface investigation of unsaturated prairie soil radiologically contaminated in 1951

    International Nuclear Information System (INIS)

    Sims, D.J.; Andrews, W.S.; Wang, Z.; Creber, K.A.M.

    2003-01-01

    An unintentional release of fission products (FPs) from a buried storage tank in 1951 resulted in 6.7 L of liquid, bearing radioactive material, being spilled into unsaturated prairie soil at a depth of 3.7 m. Since then, the site has been undisturbed. In October 2001, boreholes were drilled and soil samples were recovered for analysis. Gamma well logging showed higher than background radiation readings at a depth of 3.5 m (corresponding to the storage container location) and a peak reading at 4.7 m (attributed to the breakthrough curve). The soil was determined to be predominantly lean clay with a silty sand layer between 4.4 and 5.1 m. Future work includes radiochemical analysis, soil column simulation, determination of distribution coefficients and transport modelling. (author)

  15. Contaminant geochemistry. Interactions and transport in the subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Environmental Sciences and Energy Research

    2008-07-01

    This book combines earth science, subsurface hydrology and environmental geochemistry, providing a comprehensive background for specialists interested in the protection and sustainable management of the subsurface environment. The reader is introduced to the chemistry of contaminants, which usually disturb the natural equilibrium in the subsurface as a result of human activity. The major focus of the book is on contaminant reactions in soil solutions, groundwater and porous media solid phases, accounting for their persistence and transformation in the subsurface, as they are transported from the land surface into groundwater. Discussions on selected case studies are provided. (orig.)

  16. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  17. Subsurface biogenic gas rations associated with hydrocarbon contamination

    International Nuclear Information System (INIS)

    Marrin, D.L.

    1991-01-01

    Monitoring the in situ bioreclamation of organic chemicals in soil is usually accomplished by collecting samples from selected points during the remediation process. This technique requires the installation and sampling of soil borings and does not allow for continuous monitoring. The analysis of soil vapor overlying hydrocarbon-contaminated soil and groundwater has been used to detect the presence of nonaqueous phase liquids (NAPL) and to locate low-volatility hydrocarbons that are not directly detected by more conventional soil gas methods. Such soil vapor sampling methods are adaptable to monitoring the in situ bioremediation of soil and groundwater contamination. This paper focuses on the use of biogenic gas ratio in detecting the presence of crude oil and gasoline in the subsurface

  18. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  19. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  20. Uranium interaction with soil minerals in the presence of co-contaminants: Case Study- subsurface sediments at or below the water table

    Energy Technology Data Exchange (ETDEWEB)

    Gartman, Brandy N.; Qafoku, Nikolla

    2016-03-09

    Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) is the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.

  1. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  2. Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis.

    Science.gov (United States)

    Xie, Haijian; Chen, Yunmin; Thomas, Hywel R; Sedighi, Majid; Masum, Shakil A; Ran, Qihua

    2016-02-01

    A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport

  3. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    Bachhuber, H.; Bunzl, K.; Dietl, F.; Kretner, R.; Schimmack, W.; Schultz, W.

    1981-08-01

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP) [de

  4. Contaminant geochemistry. Interactions and transport in the subsurface environment. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Earth and Planetary Sciences

    2014-07-01

    In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of ''emerging contaminants'' that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a ''human lifetime scale''.

  5. Bioremediation of contaminated soil

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1992-01-01

    Microorganisms, especially bacteria, yeast and fungi are capable of degrading many kinds of xenobiotic compounds and toxic chemicals such as petroleum hydrocarbon compounds. These microorganisms are ubiquitous in nature and, despite their enormous versatility, there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of microorganisms to metabolize these compounds under the prevailing environmental condition. This paper reports on biological remediation of contaminated sites which can be accomplished by using naturally-occurring microorganisms to treat the contaminants. The development of a bioremediation program for a specific contaminated soil system usually includes: A thorough site/soil/waste characterization; Treatability studies

  6. Surface and subsurface characterization of uranium contamination at the Fernald environmental management site

    International Nuclear Information System (INIS)

    Schilk, A.J.; Perkins, R.W.; Abel, K.H.; Brodzinski, R.L.

    1993-04-01

    The past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils, and the three-dimensional distribution of the uranium at these sites must be thoroughly characterized before any effective remedial protocols can be established. To this end, Pacific Northwest Laboratory (PNL) has been tasked by the DOE's Office of Technology Development with adapting, developing, and demonstrating technologies for the measurement of uranium in surface and subsurface soils at the Fernald Uranium in Soils Integrated Demonstration site. These studies are detailed in this report

  7. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  8. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.

    1992-01-01

    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  9. Electrokinetic remediation of contaminated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1991-01-01

    Electrokinetic remediation of contaminated soil has been demonstrated for saturated and unsaturated sand in preliminary experiments using a novel transport visualization technique. Large anionic organic dyes were mixed with a portion of soil and the rate of electromigration of the dye in an imposed electric field was monitored photographically. One of the fastest current-normalized electromigration rates was measured in the driest sand, which contained 7% water by weight. This moisture content is typical of the moisture content in the unsaturated zone of subsurface native soils found in New Mexico. The characteristics of the electromigration were similar in both the saturated and unsaturated sand. The leading edge of the dye migration front was diffuse while the trailing edge was sharp and concentrated. This and other observed behavior may indicate a concentration effect, where the electromigration rate of dilute dye is greater than that of concentrated dye. The soil left after the trailing edge passed seemed to contain no residual dye in both the saturated and unsaturated cases. The success of demonstrating electromigration of large molecules in unsaturated soil is encouraging and indicates that it may be feasible to remediate in situ anionic heavy metals such as chromate from unsaturated soil with electrokinetic techniques. 23 refs., 7 figs

  10. Electrokinetic remediation of contaminated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1991-01-01

    Electrokinetic remediation of contaminated soil has been demonstrated for saturated and unsaturated sand in preliminary experiments using a novel transport visualization technique. Large anionic organic dyes were mixed with a portion of soil and the rate of electromigration of the dye in an imposed electric field was monitored photographically. One of the fastest current-normalized electromigration rates was measured in the driest sand, which contained 7% water by-weight. This moisture content is typical of the moisture content in the unsaturated zone of subsurface native soils found in New Mexico. The characteristics of the electromigration were similar in both the saturated and unsaturated sand. The leading edge of the dye migration front was diffuse while the trailing edge was sharp and concentrated. This and other observed behavior may indicate a concentration effect, where the electromigration rate of dilute dye is greater than that of concentrated dye. The soil left after the trailing edge passed seemed to contain no residual dye in both the saturated and unsaturated cases. The success of demonstrating electromigration of large molecules in unsaturated soil is encouraging and indicates that it may be feasible to remediate in situ anionic heavy metals such as chromate from unsaturated soil with electrokinetic techniques

  11. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  12. Subsurface Contamination Focus Area technical requirements. Volume 1: Requirements summary

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This document summarizes functions and requirements for remediation of source term and plume sites identified by the Subsurface Contamination Focus Area. Included are detailed requirements and supporting information for source term and plume containment, stabilization, retrieval, and selective retrieval remedial activities. This information will be useful both to the decision-makers within the Subsurface Contamination Focus Area (SCFA) and to the technology providers who are developing and demonstrating technologies and systems. Requirements are often expressed as graphs or charts, which reflect the site-specific nature of the functions that must be performed. Many of the tradeoff studies associated with cost savings are identified in the text

  13. Soil contamination studies

    International Nuclear Information System (INIS)

    1997-06-01

    The objective of this project was to develop a quick screening method that accurately identifies and quantifies the amount of alpha-emitting radionuclides in infinitely-thick soil samples using a Frisch grid ionization chamber. An additional objective of the work was to provide the US Department of Energy, Nevada Operations Office and its contractors with information on the theoretical and actual measured results of atmospheric testing contamination of soil and water at the Nevada Test Site through a comprehensive search of existing literature

  14. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  15. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  16. Surfactant flooding of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.A.

    1991-01-01

    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  17. SoilCAM: soil contamination: advanced integrated characterisation and time-lapse monitoring

    NARCIS (Netherlands)

    French, H.K.; Zee, van der S.E.A.T.M.; Meju, M.

    2009-01-01

    The SoilCAM project is aimed at improving current methods for monitoring contaminant distribution and biodegradation in the subsurface. Currently proven methods, based on invasive sampling of soil, soil water and gaseous phase, are unable to provide sufficiently accurate data with high enough

  18. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  19. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  20. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  1. High Nitrogen Fertilization of Tobacco Crop in Headwater Watershed Contaminates Subsurface and Well Waters with Nitrate

    Directory of Open Access Journals (Sweden)

    D. R. Kaiser

    2015-01-01

    Full Text Available Our hypothesis was that subsurface and well waters in watershed with shallow, stony soils, steep landscapes, and cropped to tobacco are contaminated by nitrate. Nitrate in soil solution was monitored in (0.20 m and below (0.5 m root zone with tension lysimeters, in five transects. Water from two wells (beneath tobacco field and in native forest used for human consumption was also analyzed for nitrate. Soil bulk density, porosity, and saturated hydraulic conductivity were evaluated. Soil physical and hydrological properties showed great variation at different landscape positions and soil depths. Soil coarse grain size, high porosity, and saturated hydraulic conductivity favored leaching nitrate. Nitrate in soil solution from tobacco fields was greater than in natural environment. Nitrate reached depths bellow rooting zone with values as high as 80 mg L−1 in tobacco plantation. Water well located below tobacco plantation had high nitrate concentration, sometimes above the critical limit of 10 mg L−1. Tobacco cropping causes significant water pollution by nitrate, posing risk to human health. A large amount of nitrogen fertilizers applied to tobacco and nitrate in subsurface waters demonstrate the unsustainability of tobacco production in small farming units on steeps slopes, with stony and shallow soils.

  2. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    Science.gov (United States)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data

  3. The Feasibility of Tree Coring as a Screening Tool for Selected Contaminants in the Subsurface

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen

    Chemical release resulting from inadequate care in the handling and storage of compounds has ultimately led to a large number of contaminated sites worldwide. Frequently found contaminants in the terrestrial environment include BTEX (benzene, toluene, ethylbenzene, and xylenes), heavy metals, PAH...... sampling density. This, together with a relatively large soil volume represented by a tree core, has shown to reduce the risk of overlooking contaminated areas and is a valuable method for the identification of previously unknown source areas within a short time period....... (polycyclic aromatic hydrocarbons) and chlorinated solvents. The large number of contaminated sites has created a need for effective and reliable site investigations. In this PhD project the feasibility of tree coring as a screening tool for selected contaminants in the subsurface has been investigated...... to obtain more efficient site investigations. Trees have a natural ability to take up water and nutrients from the subsurface; consequently, contaminants can also enter the roots and be translocated to plant parts above ground where they will be absorbed, degraded or phytovolatilized depending...

  4. DNA-labeled micro- and nanoparticles: a new approach to study contaminant transport in the subsurface

    Science.gov (United States)

    McNew, C.; Wang, C.; Kocis, T. N.; Murphy, N. P.; Dahlke, H. E.

    2017-12-01

    Though our understanding of contaminant behavior in the subsurface has improved, our ability to measure and predict complex contaminant transport pathways at hillslope to watershed scales is still lacking. By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labeled micro- and nanoparticles for use in a myriad of environmental systems. Control of the fabrication procedure allows us to produce particles of custom size, charge, and surface functionality to mimic the transport properties of the particulate contaminant or colloid of interest. The use of custom sequenced DNA allows for the fabrication of an enormous number of unique particle labels (approximately 1.61 x 1060 unique sequences) and the ability to discern between varied spatial and temporal applications, or the transport effect of varied particle size, charge, or surface properties. To date, this technology has been utilized to study contaminant transport from lab to field scales, including surface and open channel flow applications, transport in porous media, soil retention, and even subglacial flow pathways. Here, we present the technology for production and detection of the DNA-labeled particles along with the results from a current hillslope study at the Sierra Foothills Research and Extension Center (SFREC). This field study utilizes spatial and temporal variations in DNA-labeled particle applications to identify subsurface pollutant transport pathways through the four distinct soil horizons present at the SFREC site. Results from this and previous studies highlight the tremendous potential of the DNA-labeled particle technology for studying contaminant transport through the subsurface.

  5. Environmental projects. Volume 14: Removal of contaminated soil and debris

    Science.gov (United States)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  6. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-12-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  7. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-01-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  8. A convenient method for estimating the contaminated zone of a subsurface aquifer resulting from radioactive waste disposal into ground

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Uchida, Shigeo.

    1981-01-01

    Studies were conducted to estimate the contamination spread resulting from the radioactive waste disposal into a subsurface aquifer. A general equation, expressing the contaminated zone as a function of radioactive decay, the physical and chemical parameters of soil is presented. A distribution coefficient was also formulated which can be used to judge the suitability of a site for waste disposal. Moreover, a method for predicting contaminant concentration in groundwater at a site boundary is suggested for a heterogeneous media where the subsurface aquifer has different values of porosity, density, flow velocity, distribution coefficient and so on. A general equation was also developed to predict the distribution of radionuclides resulting from the disposal of a solid waste material. The distributions of contamination was evaluated for 90 Sr and 239 Pu which obey a linear adsorption model and a first order kinetics respectively. These equations appear to have practical utility for easily estimating groundwater contamination. (author)

  9. Water Table Recession in Subsurface Drained Soils

    OpenAIRE

    Moustafa, Mahmoud Mohamed; Yomota, Atsushi

    1999-01-01

    Theoretical drainage equations are intensively tested in many parts of humid and arid regions and are commonly used in drainage design. However, this is still a great concern in Japan as the drainage design is exclusively based on local experiences and empirical basis. There is a need therefore to evaluate the theoretical drainage equations under Japanese field conditions to recommend equations for design of subsurface drainage systems. This was the main motivation for this study. While drain...

  10. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  11. Subsurface contaminant transport from the liquid disposal area, CRNL

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Munch, J.H.

    1984-01-01

    This report summarizes geologic, hydrogeologic and geochemical information obtained from a detailed study of the aquifer receiving contaminated waste-waters from the Chemical Pit. Geologically, the study area features wind-deposited sand overlying a continuous lacustrine clayey silt and a bouldery basal till. Medium to coarse sands locally found at the base of the sand sequence appear to represent stream channel deposits following a buried drainage course towards Perch Lake. These channel sands significantly influence groundwater flow; 3-dimensional models will be required to mathematically simulate the system. Based on the subsurface data, calculated groundwater residence times between the infiltration pit and points of discharge to surface into the East Swamp range from 4 to 22 months. The shortest observed residence time for a non-reactive radio-nuclide is 5 months. Tritium data confirm that contamination is confined to the sands, but show that within the sand aquifer there is considerable heterogeneity in the distribution and rates of groundwater flow. Samples of contaminated groundwaters collected during this study featured increased redox potentials, increased acidity, and minor increases in some major ions relative to local uncontaminated groundwater. Extensive oxidation of the sands in contaminated portions of the aquifer may reflect much greater chemical differences in plume groundwaters in the past

  12. USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William D. Bostick

    2003-05-01

    Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

  13. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.......Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  14. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  15. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  16. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    Science.gov (United States)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  17. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    International Nuclear Information System (INIS)

    Audibert, J.M.E.; Lew, L.R.

    1994-01-01

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public

  18. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  19. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  20. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  1. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.

    Science.gov (United States)

    Nambi, Indumathi M; Rajasekhar, Bokam; Loganathan, Vijay; RaviKrishna, R

    2017-04-01

    Incidences of leakages of chemicals from underground oil storage tanks or oil-carrying pipelines have posed huge threat to the coastal aquifers around the world. One such leak was recently identified and notified by the people of Tondiarpet, Chennai, India. The assessment of the contamination level was done by obtaining electrical resistivity maps of the subsurface, drilling of 20 new borewells for soil and water analysis, and testing the water quality of 30 existing borewells. Samples were collected from the borewells, and observations were made that included parameters such as odor, moisture, contamination characteristics, lithology, groundwater level, thickness of the free product that are used to demarcate the extent of soil, and water contamination. Furthermore, a multigas detector was used to detect hydrocarbon presence as soil vapor. Moreover, to capture the transport of dissolved hydrocarbons, 10 samples were collected in the periphery of the study area and were analyzed for the presence of petroleum hydrocarbon and polyaromatic hydrocarbon. Analysis of the data indicated the presence of free-phase hydrocarbon in soil and groundwater close to the junction of Thiruvottiyur high (TH) road (TH) and Varadaja Perumal Koil (VPK) street. Although the contaminant plume is confined to a limited area, it has spread more to the southern and eastern side of the pipeline possibly due to continuous abstraction of groundwater by residential apartments. After cutting a trench along the VPK street and plotting of the plume delineation map, observations indicated that the source of the hydrocarbon leak is present in VPK street close to TH road. A multipronged strategy was suggested targeting the remediation of oil in various phases.

  2. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  3. Pollution of soil and groundwater from infiltration of highly contaminated stormwater - a case study

    DEFF Research Database (Denmark)

    Mikkelsen, P.S.; Häfliger, M.; Ochs, M.

    1997-01-01

    and subsurface sediments and some even exceeded guidelines fixed to preserve the fertility of soil. However, the contamination decreased rapidly with depth. None of the measured metal concentrations in simulated soil solutions exceeded defined drinking water quality standards. Surprisingly, the surface......A surface and a sub-surface infiltration system that received runoff water from trafficked roads for several decades was dug up and the contamination with heavy metals, PAH and AOX was investigated. Most measured solid phase concentrations exceeded background concentrations in nearby surface soils...... contamination due to stormwater infiltration, but highlights that well absorbable contaminants readily available in urban stormwater runoff eventually build up in surface soils and sub-surface sediments to environmentally critical concentration levels. Thus, on the one hand stormwater infiltration systems may...

  4. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  5. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  6. Contaminant resorption during soil washing

    International Nuclear Information System (INIS)

    Gombert, D.

    1993-01-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine

  7. Characterization of subsurface sediments at a site of gasoline contamination

    International Nuclear Information System (INIS)

    Bishop, D.J.; Krauter, P.W.; Jovanovich, M.C.; Lee, K.; Nelson, S.C.; Noyes, C.

    1992-02-01

    The Dynamic Underground Stripping Project combines monitored steam injection and electrical heating to treat in situ a gasoline plume resulting from leakage of an underground storage tank. A preliminary field demonstration of this system was performed at an uncontaminated site (Clean Site) a few hundred feet away with similar geology to that at the Gasoline Spill (GS) area. This paper describes characterization efforts at both sites and highlights what we rearmed at the Clean Site that helped us plan our operations more effectively at the GS. To validate the success of the Dynamic Underground Stripping Project, we require a detailed understanding of the physical, geological, hydrological, chemical, and biological nature of the demonstration sites and how these parameters change as a result of the Dynamic Stripping processes. The characterization process should also provide data to estimate the masses of contaminants present and their spatial distribution before and after the remedial process to (1) aid in the planning for placement of injection and extraction wells, (2) provide physical data to develop conceptual models, (3) validate subsurface imaging techniques, and (4) confirm regulatory compliance

  8. Subsurface contamination focus area technical requirements. Volume II

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This is our vision, a vision that replaces the ad hoc or open-quotes delphiclose quotes method which is to get a group of open-quotes expertsclose quotes together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm

  9. Subsurface contamination focus area technical requirements. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

  10. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address

  11. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY 2007

    International Nuclear Information System (INIS)

    MANN, F.M.

    2007-01-01

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will

  12. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  13. Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination

    International Nuclear Information System (INIS)

    Wright, J. A. Jr.; Corey, J. C.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and

  14. Remediation of lead contaminated soil

    International Nuclear Information System (INIS)

    Urban, W.; Krishnamurthy, S.

    1992-01-01

    Lead contaminated soil in urban area is of major concern because of the potential health risk to children. Many studies have established a direct correlation between lead in soil and elevated blood lead levels in children. In Minneapolis, Minnesota, Mielke et al. (1983) reported that 50% of the Hmong children with lead poisioning were in areas where soil lead levels were between 500 and 1000 micrograms per gram (ug/g), and 40% of the children suffering from lead poisioning lived in areas where soil lead levels exceeded 1000 ug/g. In urban areas, lead pollution in soil has come from many different sources. The sources include lead paint, lead batteries and automobile exhaust. Olson and Skogerbee (1975) found the following lead compounds in soils where the primary source of pollution was from automobiles: lead sulfate, lead oxide, lead dioxide, lead sulfide, and metallic lead. The primary form of lead found was lead sulfate. Lead sulfate, lead tetraoxide, white lead, and other forms of lead have been used in the manufacture of paints for houses. At present, two remediation techniques, solidification and Bureau of Mines fluosilicic acid leaching, are available for lead-contaminated sites. The objective of the present investigation at the Risk Reduction Engineering Laboratory (RREL), Edison, was to try to solubilize the lead species by appropriate reagents and then recover the contaminants by precipitation as lead sulfate, using environmentally acceptable methods. The apparatus used for mixing was a LabMaster mixer, with variable speed and high-shear impeller. Previous work had used nitric acid for dissolving metallic lead. Owing to the environmental concerns, it was decided to use acetic acid in the presence of oxygen. The theoretical justification for this approach is the favorable redox potential for the reaction between metallic lead, acetic acid, and gaseous oxygen

  15. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  16. Review of soil contamination guidance

    International Nuclear Information System (INIS)

    Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1981-08-01

    A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable

  17. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  18. Wet–dry cycles impact DOM retention in subsurface soils

    Directory of Open Access Journals (Sweden)

    Y. Olshansky

    2018-02-01

    Full Text Available Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment. Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR and near-edge X-ray absorption fine structure (NEXAFS spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil

  19. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  20. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  1. Decontamination of Soil Contaminated with Bacillus anthracis ...

    Science.gov (United States)

    Technical Brief This technical summary will provide decontamination personnel rapid access to information on which decontamination approaches are most effective for soils contaminated with B anthracis.

  2. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    Lyons, K.A.; Leavitt, M.E.; Graves, D.A.; Stanish, S.M.

    1993-01-01

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO 2 , and the SVE unit is evacuating the accumulated CO 2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  3. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  4. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    Science.gov (United States)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

  5. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  6. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  7. Options for cleaning up subsurface contamination at Alberta sour gas plants

    International Nuclear Information System (INIS)

    Hardisty, P.; Dabrowski, T.L.

    1992-01-01

    At the conclusion of two major phases of a study on subsurface treatment technologies for Alberta sour gas plants, a candidate site was selected for a remediation technologies demonstration project. The plant has an extensive groundwater monitoring network in place, monitoring records for a period exceeding 10 years, ten recovery wells with aquifer test data and four reinjection wells. Hydrogeological exploration determined the presence and delineated a plume of free phase natural gas condensate. Aquifer remediation efforts at the site began in 1990 with the installation of recovery wells. Recovered groundwater was treated using a pilot scale air stripping system with pretreatment for iron, manganese and hardness. Dual pump system, water depression and free product skimmers were installed in the wells and tested. The nature and extent of contamination, study methodology, technology-dependent criteria, assessment of technology, and conceptual design are discussed for the three demonstration projects selected, which are enhanced soil vapour extraction with off-gas treatment, pump-and-treat with soil vapour extraction, biological treatment and air sparging, and treatment of dissolved process chemicals by advanced oxidation. 5 refs., 1 fig., 1 tab

  8. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    Science.gov (United States)

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  9. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  10. Remediation of soil contaminated with polycyclic aromatic ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The aim of this study was to determine ways of remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs) associated with crude oil. The study involves the use of planted cowpeas, mushrooms, algae, dead vegetable and live earthworm, and fire-heating of the contaminated garden soil ...

  11. Remediation of contaminated soil by cement treatment

    International Nuclear Information System (INIS)

    Dimovic, S.

    2004-01-01

    This manuscript presents the most applicable remedial technologies for contaminated soil with focus on cement stabilisation/solidification treatment. These technologies are examined in the light of soil contamination with depleted uranium in the large area of south Serbia,after Nato bombing 1999. (author) [sr

  12. Modeling Catalytic Destruction of Subsurface Contaminants in Recirculating Wells

    National Research Council Canada - National Science Library

    Cadena, Kerry

    2003-01-01

    ... (National Research Council, 1994). Examples of groundwater contaminants of special interest to DoD and AF installations include fuel hydrocarbons, chlorinated hydrocarbons, and nitroaromatic compounds...

  13. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    Beeson, D.L.; Hogue, J.I.; Peterson, J.C.; Guerra, G.W.

    1994-01-01

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  14. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  15. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  16. Transformers as a potential for soil contamination

    Directory of Open Access Journals (Sweden)

    N. Stojić

    2014-10-01

    Full Text Available The aim of this paper is to investigate the presence of PCBs and heavy metals in the surrounding soil and also in the soil of the receiving pit located below the PCB contaminated transformer. Concentrations of PCBs in our samples are ranged from 0,308 to 0,872 mg/kg of absolutely dry soil.

  17. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  18. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  19. Uranium-contaminated soil pilot treatment study

    International Nuclear Information System (INIS)

    Turney, W.R.J.R.; Mason, C.F.V.; Michelotti, R.A.

    1996-01-01

    A pilot treatment study is proving to be effective for the remediation of uranium-contaminated soil from a site at the Los Alamos National Laboratory by use of a two-step, zero-discharge, 100% recycle system. Candidate uranium-contaminated soils were characterized for uranium content, uranium speciation, organic content, size fractionization, and pH. Geochemical computer codes were used to forecast possible uranium leach scenarios. Uranium contamination was not homogenous throughout the soil. In the first step, following excavation, the soil was sorted by use of the ThemoNuclean Services segmented gate system. Following the sorting, uranium-contaminated soil was remediated in a containerized vat leach process by use of sodium-bicarbonate leach solution. Leach solution containing uranium-carbonate complexes is to be treated by use of ion-exchange media and then recycled. Following the treatment process the ion exchange media will be disposed of in an approved low-level radioactive landfill. It is anticipated that treated soils will meet Department of Energy site closure guidelines, and will be given open-quotes no further actionclose quotes status. Treated soils are to be returned to the excavation site. A volume reduction of contaminated soils will successfully be achieved by the treatment process. Cost of the treatment (per cubic meter) is comparable or less than other current popular methods of uranium-contamination remediation

  20. Speciation of zinc in contaminated soils

    International Nuclear Information System (INIS)

    Stephan, Chadi H.; Courchesne, Francois; Hendershot, William H.; McGrath, Steve P.; Chaudri, Amar M.; Sappin-Didier, Valerie; Sauve, Sebastien

    2008-01-01

    The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn 2+ , soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K d ) for Zn ranged from 17 to 13,100 L kg -1 soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn 2+ varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn 2+ , dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils. - We studied the relationships among the chemical speciation of Zn in soil solution extracts from 66 contaminated soils and various physicochemical properties of the soils

  1. Analysis of soils contaminated with petroleum constituents

    International Nuclear Information System (INIS)

    O'Shay, T.A.; Hoddinott, K.

    1994-01-01

    This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases

  2. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  3. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  4. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  5. A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.; Hazen, T.

    1994-01-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation

  6. Subsurface Contamination In The Vadose Zone By Leachate At Four ...

    African Journals Online (AJOL)

    These are University of Maiduguri (Unimaid), Lamisula, Wulari and the Kasuwa Shanu (Cattle Market) refuse dump sites. The first three are domestic solid waste dumps while the latter is an animal market waste dump. Soil samples were collected from these four dump sites. From each site was taken background sample at ...

  7. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  8. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  9. Spatial variation in herbicide leaching from a marine clay soil via subsurface drains

    Science.gov (United States)

    Ulén, Barbro M; Larsbo, Mats; Kreuger, Jenny K; Svanbäck, Annika

    2013-01-01

    Background Subsurface transport via tile drains can significantly contribute to pesticide contamination of surface waters. The spatial variation in subsurface leaching of normally applied herbicides was examined together with phosphorus losses in 24 experimental plots with water sampled flow-proportionally. The study site was a flat, tile-drained area with 60% marine clay in the topsoil in southeast Sweden. The objectives were to quantify the leaching of frequently used herbicides from a tile drained cracking clay soil and to evaluate the variation in leaching within the experimental area and relate this to topsoil management practices (tillage method and structure liming). Results In summer 2009, 0.14, 0.22 and 1.62%, respectively, of simultaneously applied amounts of MCPA, fluroxypyr and clopyralid were leached by heavy rain five days after spraying. In summer 2011, on average 0.70% of applied bentazone was leached by short bursts of intensive rain 12 days after application. Peak flow concentrations for 50% of the treated area for MCPA and 33% for bentazone exceeded the Swedish no-effect guideline values for aquatic ecosystems. Approximately 0.08% of the glyphosate applied was leached in dissolved form in the winters of 2008/2009 and 2010/2011. Based on measurements of glyphosate in particulate form, total glyphosate losses were twice as high (0.16%) in the second winter. The spatial inter-plot variation was large (72–115%) for all five herbicides studied, despite small variations (25%) in water discharge. Conclusions The study shows the importance of local scale soil transport properties for herbicide leaching in cracking clay soils. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23658148

  10. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    DEFF Research Database (Denmark)

    Maurya, P. K.; Balbarini, Nicola; Møller, I.

    2018-01-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time...... geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging...

  11. Waste management of actinide contaminated soil

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.; Kochen, R.L.

    1978-01-01

    Waste management processes have been developed to reduce the volume of Rocky Flats soil contaminated with plutonium and americium and to prepare the contaminated fraction for terminal storage. The primary process consists of wet-screening. The secondary process uses attrition scrubbing and wet screening with additives. The tertiary process involves volume reduction of the contaminated fraction by calcination, or fixation by conversion to glass. The results of laboratory scale testing of the processes are described

  12. Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment

    International Nuclear Information System (INIS)

    Qafoku, Nikolla P.; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noémie; Yabusaki, Steve; Long, Philip E.

    2014-01-01

    Highlights: • Subsurface naturally reduced zones (NRZ) contain U and other potential co-contaminants. • The NRZ has a remarkable assortment of chemically complex, potential U hosts. • Micron-scale, multi-contaminant areas were discovered in NRZ. • U(IV) occurs as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%). • NRZs may exhibit contaminant sink-source complex behavior. - Abstract: Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via

  13. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  14. Biological detoxification of a hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Fabbri, F.; Lucchese, G.; Nardella, A.

    2005-01-01

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and Microtox TM assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C 18 disks

  15. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    OpenAIRE

    P. Bala Ramudu; R. P. Tiwari; R. K. Srivastava

    2007-01-01

    This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself wa...

  16. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    International Nuclear Information System (INIS)

    David Watson

    2005-01-01

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  17. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    Delwiche, M.E.; Wey, J.E.; Torma, A.E.

    1994-01-01

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  18. Phytoremediation of soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Yamaguchi, Isamu

    2004-01-01

    Aiming at efficient phytoremediation of soils contaminated with radionuclides, we examined the effect of soil microbes on the uptake ability of plants using the multitracer technique to find that tomato rhizofungi in Fusarium spp. can stimulate the uptake of 85 Sr and 137 Cs by the plants. The synergic effect of a nonpathogenic strain of F. oxysporum on the uptake of radionuclides by plants proved to be enhanced by introducing a phytochelatin synthase gene into the fungus. Since soil contamination by radionuclides is still an unsolved problem in many parts of the world. Studies on phytoremediation of polluted soil environment will be important for developing effective strategies and devising adequate techniques to reduce human risks caused by food contamination of radionuclides. (author)

  19. Flotation separation of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Misra, M.; Mehta, R.; Garcia, H.; Chai, C.D.; Smith, R.W.

    1995-01-01

    The volume of low-level contaminated soil at the Department of Energy's Nuclear Weapon Sites are in the order of several million tons. Most of the contaminants are uranium, plutonium, other heavy metals and organic compounds. Selected physical separation processes have shown demonstrated potential in concentrating the radionuclides in a small fraction of the soil. Depending upon the size, nature of bonding and distributions of radionuclides, more than 90% of the radionuclide activity can be concentrated in a small volume of fraction of the soil. The physico-chemical separation processes such as flotation in a mechanical and microbubble tall column cell have shown promising applications in cleaning up the high volume contaminated soil

  20. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  1. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  2. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    International Nuclear Information System (INIS)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-01-01

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  3. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ecological Role of Soils upon Radioactive Contamination

    Science.gov (United States)

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  5. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  6. Studies on soil contamination due to used motor oil and its remediation

    International Nuclear Information System (INIS)

    Singh, S.K.; John, S.; Srivastava, R.K.

    2009-01-01

    Used motor oil (UMO) contains lead, chromium, cadmium, naphthalene, chlorinated hydrocarbons and sulphur. Although UMO can be recycled if safely and properly collected, in many cases it is poured into open drains or thrown into the trash where it can contaminate the subsurface soil and ground water. A study was conducted to evaluate the changes in behaviour of soils due to interaction with UMO followed by its remediation. Different types of soils classified as clay with low plasticity, clay with high plasticity, and poorly graded sand were used for the study. Used motor oil was the contaminant and sodium dedecyl sulphate (SDS) was used as the surfactant for decontamination. In order to compare the geotechnical properties before and after contamination, laboratory studies were conducted on uncontaminated soil samples as well as on soil samples simulated to varying degrees of contamination. The contaminants in the soil matrix were held either by chemical adsorption or entrained within the pore space surrounding the soil grains. The study showed that the sensitivity of soil to the contaminants depends not only on the local environment, but also on the mineral structure, particle size, bonding and ion exchange capacity. It was observed that the original geotechnical properties of soils could be almost restored upon decontamination with SDS washing at an optimum dosage. 31 refs., 7 tabs., 3 figs

  7. Remediation of lead-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.

    1992-01-01

    Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations)

  8. Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. A. Jr.; Middleman, L. I.

    2002-02-27

    The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

  9. Phytoremediation of soils contaminated by cadmium

    Science.gov (United States)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  10. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  11. Radionuclide characterization of subsurface soil on the site of building 3505 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Alexander, W.A.; Oakes, T.W.; Eldridge, J.S.; Huang, S.; Hubbard, H.M.

    1982-12-01

    Ninety-two samples at varying depths were collected from 25 cores. Sample tubes were driven into the ground and segments of soil cores were retrieved at depths from the ground surface to subsurface consolidated material. forty samples of the 92 collected had detectable gamma activities [i.e., > 2 x 10 - 2 Bq/g (0.5 pCi/g)] of 137 Cs. However, only four samples, all from the same borehole, were found to have significant amounts of 137 Cs with a maximum of 1.7 x 10 3 Bq/g (4.6 x 10 4 pCi/g). These four samples also contained the highest activities of other radionuclides ( 60 Co, 90 Sr, 235 U, 238 U, 239 Pu, and 241 Am). These subsamples came from core number 4DD, which was the deepest core collected. Core 4DD was taken at the southwest corner of the site, which is at the lower elevation of the site. Since most of the activity in this core was found below the bedrock (or shale) in the groundwater region, the contamination is probably not from Building 3505. Additional investigation in the area around core location 4DD will be required to determine the extent of contamination

  12. Technical Targets - A Tool to Support Strategic Planning in the Subsurface Contaminants Focus Area

    International Nuclear Information System (INIS)

    Looney, B.B.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA) is supported by a lead laboratory consisting of technical representatives from DOE laboratories across the country. This broadly representative scientific group has developed and implemented a process to define Technical Targets to assist the SCFA in strategic planning and in managing their environmental research and development portfolio. At an initial meeting in Golden Colorado, an initial set of Technical Targets was identified using a rapid consensus based technical triage process. Thirteen Technical Targets were identified and described. Vital scientific and technical objectives were generated for each target. The targets generally fall into one of the following five strategic investment categories: Enhancing Environmental Stewardship, Eliminating Contaminant Sources, Isolating Contaminants, Controlling Contaminant Plumes, Enabling DOEs CleanUp Efforts. The resulting targets and the detail they comprise on what is, and what is not, needed to meet Environmental Management needs provide a comprehensive technically-based framework to assist in prioritizing future work and in managing the SCFA program

  13. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  14. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  15. Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer

    Science.gov (United States)

    Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.

    2001-12-01

    We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of

  16. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  17. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    This paper is concerned principally with the application of ANN model in geotechnical engineering. In particular the application for subsurface soil layering and landslide analysis is discussed in more detail. Three ANN models are trained using the required geotechnical data obtained from...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....

  18. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  19. Regional hydrocarbon contaminated soil recycling facility standards

    International Nuclear Information System (INIS)

    Warren, R.

    1992-01-01

    In an effort to protect the environment from uncontrolled releases of petroleum products, the Canadian Petroleum Products Institute member companies have initiated environmental upgrading programs for their underground fuel storage systems in British Columbia. These programs have been restricted in recent years as a result of environmental regulations targeting contaminated soil, which is generated when underground storage tanks are upgraded to current standards. The soil requiring treatment is typically sand backfill containing a nominal value of petroleum product. These soils can be treated in an engineered basin using bioremediation technology to reduce the level of contamination. Depending on the degree of treatment, the soil can be recycled as backfill or reused as landfill cover. An overview is presented of the basin treatment process and design. Natural bioremediation is enhanced with nutrients, water and oxygen addition. 4 figs

  20. Soil contamination standards for protection of personnel

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1998-01-01

    The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. External dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers

  1. Bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    Pearce, K.; Snyman, H.G.; Oellermann, R.A.; Gerber, A.

    1995-01-01

    A pilot-scale study was conducted to evaluate the application of land-farming techniques in bioremediating a soil highly contaminated with petroleum products. A commercial biosupplement, and one prepared with indigenous microorganisms from the contaminated soil, were tested. Application of either of the biosupplements, in addition to the control of pH, moisture, and oxygen levels, resulted in a 94% reduction of the initial total petroleum hydrocarbon concentration (TPHC) (32% mass/mass) over a 70-day period. Implementation of these findings at full scale to bioremediate highly weathered petroleum products showed an average reduction of 89% over 5.5 months. Target levels of 1,400 mg/kg soil were reached from an initial average TPHC concentration of 12,200 mg/kg soil

  2. Soil contamination standards for protection of personnel

    Energy Technology Data Exchange (ETDEWEB)

    Rittmann, P.D.

    1998-04-16

    The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. External dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.

  3. Plant uptake of radiocesium from contaminated soils

    International Nuclear Information System (INIS)

    Pipiska, M.; Lesny, J.; Hornik, M.; Augustin, J.

    2004-01-01

    Phytoextraction field experiments were conducted on soil contaminated with radiocesium to determine the capacity of autochthonous grasses and weeds to accumulate 137 Cs. The aim of the study was to evaluate the potential of spontaneously growing vegetation as a tool for decontamination of non-agricultural contaminated land. As a test field, the closed monitored area of the radioactive wastewater treatment plant of the Nuclear Power Plant in Jaslovskie Bohunice, Slovakia was used. contamination was irregularly distributed from the level of background to spots with maximal activity up to 900 Bq/g soil. Sequential extraction analysis of soil samples showed the following extractability of radiocesium (as percent of total): water 2 = 0.3-1.1%; 1M CH 3 COONa = 0.3-0.9%; 0.04 M NH 4 Cl (in 25% CH 3 COOH) = 0.9-1.4% and 30% H 2 O 2 - 0.02 M HNO 3 = 4.5-9.0%.Specific radioactivity of the most efficiently bioaccumulating plant species did not exceed 4.0 BqKg -1 (dry weight biomass). These correspond to the soil-to-plant transfer factor (TF) values up to 44.4x10 -4 BqKg -1 crop, d.w.)/(BqKg -1 soil d.w). Aggregated transfer factor (T ag ) of the average sample of the whole crop harvested from defined area was 0.5x10 -5 (Bqkg -1 d.w. crop)/(Bqm -2 soil). It can be concluded that low mobility of radiocesium in analysed soil type, confirmed by sequential extraction analyses, is the main hindrance for practical application for autochthonous plants as a phytoremediation tool for aged contaminated area of non-cultivated sites. Plant cover can efficiently serve only as a soil surface-stabilising layer, mitigating the migration of radiocesium into the surrounding environment. (author)

  4. Bioremediation of oil%contaminated soil

    OpenAIRE

    Marchenko1, M.; Shuktueva, M.; Vinokurov, V.; Krasnopolskaya, L.

    2011-01-01

    Stocks of crude oil remains at a high level, does not stop the construction of new pipelines, increasing the output and at the same time the transportation of oil. At the same time, it gives rise to accidents resulting in oil and oil products fall in different ecosystems: the atmosphere, soil, waters. This paper provides an overview of the mechanical, physical, chemical, and biological methods for the elimination of oil-contaminated soils. Create optimal conditions for growth and development ...

  5. Methods of contaminated soil rehabilitation

    International Nuclear Information System (INIS)

    Sharovarov, G.A.; Minyuk, Z.P.

    2007-01-01

    The results of the investigations of rehabilitation soil polluted with radioactive nuclides carried out in Joint Institute for Power and Nuclear Research - Sosny (Minsk, Belarus) are represented in the report. Methods of soil rehabilitation are analysed. It has been made a conclusion that bioremediation is the only possible method for the cleaning of the large territories. The opportunity of usage a principle of the biopump for cleaning of the large territories polluted with radioactive nuclides and other harmful substances is proved in the report. (authors)

  6. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  7. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  8. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    International Nuclear Information System (INIS)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-01-01

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  9. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  10. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  11. Nondestructive analysis of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Smith, H.E.; Taylor, L.H.

    1977-01-01

    Plutonium contaminated soil is currently being removed from a covered liquid waste disposal trench near the Pu Processing facility on the Hanford Project. This soil with the plutonium is being mined using remote techniques and equipment. The mined soil is being packaged for placement into retrievable storage, pending possible recovery. To meet the requirements of criticality safety and materials accountability, a nondestructive analysis program has been developed to determine the quantity of plutonium in each packing-storage container. This paper describes the total measurement program: equipment systems, calibration techniques, matrix assumption, instrument control program and a review of laboratory operating experience

  12. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  13. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  14. Phyto-remediation of contaminated soils

    International Nuclear Information System (INIS)

    Chagvardieff, P.

    2014-01-01

    Some plants can be selected for their capacity to extract radionuclides from the soil, on the contrary other plants can be chosen for being able to produce food grade products in a contaminated environment. Modern genetic methods can be used to enhance these abilities and turn some plants into an efficient means in the managing of contaminated areas. The DEMETERRES project that gathers different research organisations like CEA, IRSN and INRA and industrial partners like AREVA and VEOLIA aims at developing innovative bio-technologies like phyto-extraction and environment friendly physico-chemical technologies for the remediation of contaminated soils. This project was launched in 2013 on a 5-year scheme and is expected to lead to industrial applications. (A.C.)

  15. Radioactive elements and earthworms in contaminated soils

    International Nuclear Information System (INIS)

    Suleymanova, A.S.; Abdullayev, A.S.; Ahmadov, G.S.; Naghiyev, J.A.; Samadov, P.A.

    2010-11-01

    Earthworms are one of the indispensable soil animals which treat soil with letting it through their gut and help increasing soil fertility. The effect of radioactive elements and comparative effect of heavy metals to the vital functions of earthworms were determined in laboratory conditions. Experiments were continued for a month, and first of all, each soil type, grey-brown soil from Ramana iodine plant territory of Baku city, brown soil from Aluminum plant territory of Ganja city, aborigine grey-brown soil of Absheron peninsula, treated with Ra and U salts as model variants and brown soil of Ganja city was analyzed by gamma-spectrometer for radionuclide determining at the beginning and at the end of the experiment. Earthworms (Nicodrilus Caliginosus Sav.trapezoides) aboriginal for Absheron peninsula and plant residues were added to the soil. At the end of the month the biomass, survival value, coprolite allocation value, food activity and catalase value in earthworms and in soil were determined. The gamma-spectrometric analysis results gave interesting values in coprolites, soils which had been treated through the earthworms' gut. In comparison with the initial variants in experimental results more percent of radioactivity was gathered in coprolites. By this way earthworms absorbed most of radioactive elements and allocated them as coprogenous substances on the upper layer of soil. During absorbing, some percents of radioactive elements were also gathered in gut cells of the earthworms. Thereby determination of some vital functions of earthworms was expedient. Thus, by the instrumentality of these experiments we can use earthworms for biodiagnosis and for bioremediation of contaminated soils with radionuclides and heavy metals.

  16. Mass separation and risk assessment of commingled contamination in soil and ground water

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Q.L.; Chau, T.S. [Alberta Environment, Red Deer, AB (Canada)

    2008-07-01

    Gasoline service stations in urban areas may be sources of groundwater pollution if petroleum hydrocarbons (PHCs) were to leak from underground storage tanks. Depending on the site-specific hydrogeologic conditions, the PHC could be retained in the soil, float on top of the groundwater table, dissolve in the groundwater or partition into soil vapour. This study focused on risk assessment and and management of soil and groundwater pollution caused by PHC releases from multiple sources which lead to commingling of subsurface plumes that require identification, assessment and control. Risk management decisions are made according to the different protection zones corresponding to different exposure pathways into which the commingled groundwater plume is divided, such as inhalation, ingestion and freshwater aquatic life. In order to effectively evaluate and manage commingled plumes, responsible parties must cooperate in sharing information on contaminated sites and developing joint programs for investigation, monitoring, remediation and risk management. This study proposed methodologies for determining mass contribution to a commingled plume from multiple contaminant sources. It was concluded that the levels of risk to human and environmental health can be determined by considering contaminant sources, migration pathways and potential receptors. Migration of PHCs in the subsurface is influenced by several uncertainties such as pollutant release and remediation histories, preferential pathways and hydrogeologic boundary conditions. Proper site characterization is necessary for reliable mass separation and to delineate contaminant plumes. Mathematical models can be used to simulate subsurface flow and transport processes. 5 refs., 4 figs.

  17. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  18. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  19. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  20. Phyto remediation of PAH contaminated soil

    International Nuclear Information System (INIS)

    Petruzzelli, G.; Pedron, F.; Barbafieri, M.; Cervelli, St.; Vigna Guidi, G.

    2005-01-01

    Phyto-remediation may enhance degradation of organic compounds promoting an adequate substrate for microbial growth. The aim of this work was to evaluate the efficiency of two plant species, Lupinus albus and Zea mais, in the bio-remediation of a PAH contaminated soil. This soil has been collected in a contaminated industrial area in Italy characterized by PAH concentrations up to 16000 mg/Kg. Microcosms experiments were carried out by planting Lupinus albus and Zea mais in the polluted soil; controls without plants were run separately. Growing period lasted by three months. Plants favoured PAH biodegradation by percentages of 32% with Lupinus albus and 22% with Zea mais, with respect to non vegetated microcosms. (authors)

  1. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  2. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  3. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  4. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    International Nuclear Information System (INIS)

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven David; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  5. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  6. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Troy, M.A.; Jerger, D.E.

    1992-01-01

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  7. Guide to treatment technology for contaminated soils

    International Nuclear Information System (INIS)

    Tran, H.; Aylward, R.

    1992-01-01

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage

  8. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  9. Risk assessment of soil contamination criteria

    International Nuclear Information System (INIS)

    King, C.M.; Marter, W.L.; Montaque, D.F.; Holton, G.A.

    1987-06-01

    Criteria have been developed to select radioactive and nonradioactive contaminants at waste sites detailed analysis and risk assessment. These criteria were based on soil and water quality guidelines developed by various government agencies to determine if the criteria were appropriate. We performed a risk assessment of a hypothetical site which contained radioactive and nonradioactive contaminants at levels equal to the criteria values. Risks to the public from atmospheric, surface water, and groundwater exposure pathways were examined. Health risks to the public from atmospheric releases of radioactive and nonradioactive materials from a waste at soil criteria contamination levels are low. Health risks to the maximally exposed individual to chemical carcinogens are considerably below traditional EPA action levels. And health risks to the maximally exposed individual to atmospherically released radioactive contaminants is 1.88 x 10 -7 , more than a factor of 5 less than 10 -6 . Based on our atmospheric exposure pathways analysis and risk assessment, the applied soil criteria are appropriate for screening out unimportant risk contributors to human health from atmospheric exposure pathways. 13 refs., 3 figs., 7 tabs

  10. Correlation of gamma spectrometer measurements at surface with concentrations and distributions of subsurface radium contamination: Development, verification and application of methodology

    International Nuclear Information System (INIS)

    McCallum, B.A.; Clement, C.H.; Huffman, D.; Stager, R.H.

    2000-01-01

    This work is a step forward in the investigation of data gathering principles and analysis tools for improved estimates of subsurface radium contamination concentrations and distributions using surface gamma radiation spectra. Techniques to solve the inverse problem of estimating surface gamma radiation spectra given a fully known subsurface radium distribution have been investigated and applied with success. These techniques fell into three broad categories: empirical (using laboratory and field data), analytical (using mathematical derivations of relationships), and computer simulation (using Monte-Carlo photon transport simulation methods). Methods of analyzing surface spectra to estimate certain source parameters have been studied. The most fully developed methods are those involving the ratio of the areas of two peaks of differing energy from the same radionuclide to determine the source depth. For a point source of radium and its progeny, these techniques are able to reliably estimate the source depth from a single gamma radiation spectrum taken at the surface directly above the source. The only significant uncertainties in this case are the soil density and uncertainties introduced as a result of counting statistics. Further work remains to fully achieve the goals of the larger project: to develop a comprehensive suite of tools for the improved interpretation of surface gamma radiation spectra from subsurface distributions of radium contaminated soil. (author)

  11. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  12. Phytoremediation of cadmium contaminated soils by tuberose

    International Nuclear Information System (INIS)

    Ramana, S.; Biswas, A.K.; Singh, A.B.; Ajay; Ahirwar, N.K.; Behera, S.K.; Subba Rao, A.; Naveen Kumar, P.

    2012-01-01

    The potential of three varieties of tuberose (Prajwal, Shringar and Mexican single) for phytoremediation of soil contaminated with cadmium was evaluated by subjecting the plants to five levels of Cd (0, 25, 50, 75 and 100 mg kg -1 soil). Applied Cd did not produce any toxic symptoms in all the three varieties of tuberose except marginal reduction in the photosynthesis rate and total dry weight beyond 50 mg Cd kg -1 soil. The study showed that tuberose possessed the typical ability of Cd hyper accumulator characterized by (1) accumulation of Cd in the shoots of the plant exceeding the critical judging standard i.e., 100 μg g -1 DW and (2) ratio of Cd in the shoots to bulbs >1. It was concluded that tuberose may be an effective accumulator plant for phytoremediation of cadmium polluted soils. (author)

  13. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  14. Removal of contaminants from fine grained soils using electrokinetic (EK) flushing. Final report, September 30, 1987--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E.; Berg, M.T.

    1993-10-01

    Recently, attention has focused on developing cost effective techniques to remove inorganic contaminants from soils in-situ. For most in-situ techniques hydraulic pressure is used to disperse the chemical additives and collect the contaminated groundwater. In-situ treatment technologies have had success at sites containing sandy soils but have not shown much promise for soils with large amounts of clay and silt. This is due primarily to difficulty in transporting groundwater, contaminants, and chemical additives through the subsurface. Unfortunately, soils high in clay and silt are known to sequester large quantities of inorganic and organic contaminants. Thus, soils having low hydraulic conductivity`s are generally efficient in sequestering pollutants but are resistant to standard in-situ remediation techniques because of the difficulty in transporting groundwater and contaminants. A candidate technology for the in-situ remediation of low permeability soils is electrokinetic (EK) soil flushing. In EK soil flushing, groundwater and contaminants are transported under an a plied voltage. The transport of groundwater electroosmotically does not depend directly on the soil`s hydraulic conductivity. Thus, soils that would otherwise require excavation and treatment can be remediated in-situ if electrokinetics is used as the driving force for liquid and contaminant transport. This report details the results from work conducted on the use of EK soil flushing to remediate a fine grained soil contaminated with lead. The first portion of the experimental work entailed soil collection and characterization, soil adsorption and desorption of lead, and EK reactor construction and testing. The second phase of the research consisted of investigating the efficacy of using EK soil flushing on an actual soil using bench-scale EK reactors. For the second phase of the research the affect of initial conditions on the efficiency of EK soil flushing was studied.

  15. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Feasilbility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  17. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  18. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  19. Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants.

    Science.gov (United States)

    Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  20. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    International Nuclear Information System (INIS)

    Kirwan-Taylor, H.; McCabe, G.H.; Lesperance, A.; Kauffman, J.; Serie, P.; Dressen, L.

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area's (SCFA) External Integration Team (EIT) in supporting DOE's technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders

  1. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    Energy Technology Data Exchange (ETDEWEB)

    Kirwan-Taylor, H.; McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Lesperance, A. [Pacific Northwest National Lab., Richland, WA (United States); Kauffman, J.; Serie, P.; Dressen, L. [EnvironIssues (United States)

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

  2. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    International Nuclear Information System (INIS)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells

  3. Superfund risk assessment in soil contamination studies

    International Nuclear Information System (INIS)

    Hoddinott, K.B.

    1992-01-01

    This symposium was held in New Orleans, Louisiana on January 30-31, 1991. The purpose of the meeting was to provide a forum for exchange of information on risk assessment associated with soil contamination. The conference included presentations in the following categories: site characterization; fate and transport; toxicity, exposures, and receptors; risk characterization/case studies; and establishing cleanup levels. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  4. Arsenic in contaminated soil and river sediment

    International Nuclear Information System (INIS)

    Bombach, G.; Pierra, A.; Klemm, W.

    1994-01-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As 3+ , As 5+ ) and the bonding types have been analyzed. (orig.)

  5. Electrokinetic remediation of contaminated soils: An update

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Electrokinetic remediation of chromium contaminated soil has been demonstrated for unsaturated 50-100 mesh sand with 10% moisture by weight. The initial region of sand contaminated with 100 ppm w chromate ions was completely cleansed of contamination. After 22 hours of treatment, chromate was found near the anode and apparently migrated at a rate of at least 0.40 cm/hr with a pore water current density of 2.26mA/cm 2 . An analogous run was made using the same sand and FD and C Red No. 40 as the contaminant at a molar concentration equivalent to the 100 ppm w Cr run. The position of the migrating dye was monitored photographically. After similar treatment conditions, the visual dye concentration profile exhibited characteristics similar to the chromate. The migration rate of the dye was slower than the chromate but the qualitative similarity of behavior in an electric field suggests the dye is an analog for chromate ions. The slower migration rate of the dye is not unexpected because the dye molecule is larger than chromate. The use of dye as an analog for chromate greatly accelerates the experimentation process in unsaturated soil because destructive sampling is not required to monitor the contaminant location. Experiments were also conducted to determine the effect of soil heterogeneities on the electrokinetic processes. Unsaturated sands in size fractions of 50-100 mesh (medium) and 100-200 mesh (fine) were studied both individually and in layers. The dye migration rate was accelerated in the tine sand and slowed in the medium sand of the layered experiment when compared with the corresponding individual experiments. This discrepancy was explained by estimating the current density in each layer which was proportionally higher in the fine layer and lower in the medium layer. These preliminary experiments illustrate the significant dependence of electromigration rates on current density. (author)

  6. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  7. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  8. Strategies for sustainable woodland on contaminated soils.

    Science.gov (United States)

    Dickinson, N M

    2000-07-01

    Extensive in situ reclamation treatment technologies are appropriate for a large proportion of contaminated land in place of total removal or complete containment of soil. In this paper, initial results are presented of site descriptions, tree survival and metal uptake patterns from two field planting trials on a highly industrially contaminated site adjacent to a metal refinery and on old sanitary landfill sites. Survival rate was high in both trials but factors besides heavy metals were particularly significant. Uptake patterns of metals into foliage and woody tissues were variable, with substantial uptake in some species and clones supporting the findings of earlier pot experiments. It is argued that there is sufficient evidence to consider the use of trees in reclamation as part of a realistic, integrated, low-cost, ecologically-sound and sustainable reclamation strategy for contaminated land. This is an opportunity to bring a large number of brownfield sites into productive use, which otherwise would be prohibitively expensive to restore.

  9. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  10. Development of Decontamination Process for Soil Contaminated Uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon

    2014-01-01

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove 238 U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing

  11. Development of Decontamination Process for Soil Contaminated Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Uk-Rang; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove {sup 238}U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing.

  12. Removal of radiocesium from contaminated agricultural soil

    International Nuclear Information System (INIS)

    Oishi, Ayumi; Yanaga, Makoto

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident occurred on March 11, 2011, led to emission of a great amount of radionuclides, and caused serious issues of contamination of our living environment. Two major radionuclides found to be widely deposited are Cs-134 and Cs-137. Because the half-lives of Cs-134 and Cs-137 are 2 years and 30 years, respectively, the decontamination of Cs is the crucial issue. Therefore, in the present work, the decontamination of Cs from the agricultural soil was attempted. For this purpose, we performed extractive test with 17 wt.% and 33 wt.% potassium iodide solution for agricultural soil collected on March 2012. The extraction rate was less than 2%, whereas the value of 20% was reported last year. This results might indicate that the cesium with soluble from have flowed or that cesium more strongly tied to soil. (author)

  13. Sorption of BTX mixtures to contaminated and uncontaminated site soils

    International Nuclear Information System (INIS)

    Uchrin, C.G.; Koshy, K.; Wojtenko, I.

    1995-01-01

    Both adsorption and desorption studies are being performed examining benzene, toluene, and meta-xylene (BTX) as single components, binary mixtures, and trinary mixture onto both existing contaminated soils as well as some uncontaminated reference soils. The contaminated soils were obtained from an oil refinery site and another industrial site in New Jersey. The oil refinery site soil did not exhibit significant amounts of either benzene, toluene or xylene but was contaminated with other compounds while the other industrial site soil was contaminated with toluene among other compounds. The organic carbon content of the soils ranged from 0.14 to 2.91 percent. Preliminary adsorption studies showed BTX to strongly sorb to these soils. The adsorption studies onto the reference soils also demonstrated the effect of organic matter on adsorption. Sequential batch desorption studies show the BTX to desorb quickly, reaching equilibrium within 48 hours. Long-term uptake and release were not noted with these soil/contaminant systems

  14. CsI(Tl) with photodiodes for identifying subsurface radionuclide contamination

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Meisner, J.E.; Nicaise, W.F.

    1994-10-01

    At the US Department of Energy's Hanford Site near Richland, Washington, underground radioactive contamination exists as the result of leaks, spills, and intentional disposal of waste products from plutonium-production operations. Characterizing these contaminants in preparation for environmental remediation is a major effort now in progress. In this paper, a cylindrical (15 x 61 mm) CsI(Tl) scintillation detector with two side-mounted photodiodes has been developed to collect spectral gamma-ray data in subsurface contaminated formations at the U.S. Department of Energy's Hanford Site. It operates inside small-diameter, thick-wall steel pipes pushed into the ground to depths up to 20 m by a cone penetrometer. The detector provides a rugged, efficient, magnetic-field-insensitive means for identifying gamma-ray-emitting contaminants (mainly 137 Cs and 60 Co). Mounting two 3 x 30-mm photodiodes end-to-end on a flat area along the detector's side provides efficient light collection over the length of the detector

  15. Microbial activity in the terrestrial subsurface

    International Nuclear Information System (INIS)

    Kaiser, J.P.; Bollag, J.M.

    1990-01-01

    Little is known about the layers under the earth's crust. Only in recent years have techniques for sampling the deeper subsurface been developed to permit investigation of the subsurface environment. Prevailing conditions in the subsurface habitat such as nutrient availability, soil composition, redox potential, permeability and a variety of other factors can influence the microflora that flourish in a given environment. Microbial diversity varies between geological formations, but in general sandy soils support growth better than soils rich in clay. Bacteria predominate in subsurface sediments, while eukaryotes constitute only 1-2% of the microorganisms. Recent investigations revealed that most uncontaminated subsurface soils support the growth of aerobic heteroorganotrophic bacteria, but obviously anaerobic microorganisms also exist in the deeper subsurface habitat. The microorganisms residing below the surface of the earth are capable of degrading both natural and xenobiotic contaminants and can thereby adapt to growth under polluted conditions. (author) 4 tabs, 77 refs

  16. Procedures for sampling radium-contaminated soils

    International Nuclear Information System (INIS)

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described

  17. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  18. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  19. Soil contamination adjacent to waste tank 8

    International Nuclear Information System (INIS)

    Odum, J.V.

    1976-11-01

    In March and April 1961, miscalibrated liquid level instrumentation resulted in an overfilling of tank 8 to about 5 in. above the fill-line entrance. The resultant liquid head caused waste to seep through an asbestos-packed sleeve to the fill-line encasement and from there into the main encasement. Most of this waste returned to primary containment (i.e., the catch tank) through a separately encased drain line. However, approximately 1500 gal of high heat waste leaked from the fill-line encasement into the ground, probably through the joint at the juncture of the fill-line encasement and the concrete encasement of the waste tank. The contamination is contained in a 1000- to 1500-ft 3 zone of soil 12 to 26 ft below grade, 18 ft above the maximum elevation of the water table, and distributed roughly symmetrically around the fill-line encasement. Estimates from a continuing monitoring program indicate that less than 5000 Ci of 137 Cs, less than 0.005 Ci of 238 239 Pu, and less than 0.5 Ci of 89 90 Sr are in the soil. Analysis indicates that the contamination presents no current or future hazard to the environment; consequently, there is no technical reason for excavation of this soil. The high cost of excavation and exposure of personnel make excavation undesirable. The contaminated soil will remain under surveillance and undisturbed at tank 8 until the tank is removed from service, at which time its disposition will be re-evaluated

  20. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  1. Mercury species in formerly contaminated soils and released soil gases

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Kučera, Jan; Drtinová, B.; Červenka, R.; Zvěřina, O.; Komárek, J.; Kameník, Jan

    2017-01-01

    Roč. 584, APR (2017), s. 1032-1039 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : mercury contaminated soils * total mercury * elemental mercury * methylmercury * phynelmercury * gaseous elemental mercury Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.900, year: 2016

  2. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  3. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    Science.gov (United States)

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.

  4. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  5. Dielectric constant and electrical conductivity of contaminated fine-grained soils and barrier materials

    International Nuclear Information System (INIS)

    Kaya, A.; Fang, H.Y.; Inyang, H.I.

    1997-01-01

    Characterization of contaminated fine-grained soils and tracking of contaminant migration within barriers have been challenging because current methods and/or procedures are labor and time-intensive, and destructive. To demonstrate the effective use of both dielectric constant and electrical conductivity in the characterization of contaminated fine-grained soils, pore fluids were prepared at different ionic strengths, and were used as permeates for kaolinite, bentonite and a local soil. Then, both dielectric constant and electrical conductivity of the soils were measured by means of a capacitor over a wide range of frequencies and moisture content. It was observed that although each soil has its unique dielectric constant and electrical conductivity at a given moisture content, increases in ionic strength cause a decrease in the dielectric constant of the system at very high frequencies (MHZ), whereas the dielectric constant increases at low frequencies (kHz). Electrical conductivity of a soil-water system is independent of frequency. However, it is a function of ionic strength of the pore fluid. It is clearly demonstrated that dielectric constant and electrical conductivity of soils are functions of both moisture content and ionic strength, and can be used to characterize the spatial and temporal levels of contamination. This method/procedure can be used in estimating the level of contamination as well as the direction of contaminant movement in the subsurface without the use of extensive laboratory testing. Based on obtained results, it was concluded that the proposed method/procedure is promising because it is non-destructive and provides a quick means of assessing the spatial distribution of contaminants in fine-grained soils and barriers

  6. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  7. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  8. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradatio...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  9. Advanced remediation of uranium-contaminated soil.

    Science.gov (United States)

    Kim, S S; Han, G S; Kim, G N; Koo, D S; Kim, I G; Choi, J W

    2016-11-01

    The existing decontamination method using electrokinetic equipment after acidic washing for uranium-contaminated soil requires a long decontamination time and a significant amount of electric power. However, after soil washing, with a sulfuric acid solution and an oxidant at 65 °C, the removal of the muddy solution using a 100 mesh sieve can decrease the radioactivity of the remaining coarse soil to the clearance level. Therefore, only a small amount of fine soil collected from the muddy solution requires the electrokinetic process for its decontamination. Furthermore, it is found that the selective removal of uranium from the sulfuric washing solution is not obtained using an anion exchanger but rather using a cation exchanger, unexpectedly. More than 90% of the uranium in the soil washing solutions is adsorbed on the S-950 resin, and 87% of the uranium adsorbed on S-950 is desorbed by washing with a 0.5 M Na 2 CO 3 solution at 60 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Integration of pneumatic fracturing with bioremediation from the enhanced removal of BTX from low permeability gasoline-contaminated soils

    International Nuclear Information System (INIS)

    Venkatraman, S.N.; Kosson, D.S.; Schuring, J.R.; Boland, T.M.

    1995-01-01

    A pilot-scale evaluation of the integrated pneumatic fracturing and bioremediation system was carried out to demonstrate the enhanced removal of BTX from a gasoline contaminated, low permeability soil formation. The fracturing enhanced subsurface permeability by an average of over 36 times, and established an extended bioremediation zone supporting aerobic, denitrifying and methanogenic populations. Subsurface amendment injections consisting of phosphate and nitrogen were made periodically over a 50-week period to stimulate microbial activity. Results indicate that 79% of the soil-phase BTX was removed during the field test, with over 85% of the mass removed attributable to bioremediation

  11. Bioremediation of crude oil contaminated tea plantation soil using ...

    African Journals Online (AJOL)

    Crude oil contamination of soil is a major concern for tea industry in Assam, India. Crude oil is a persistent organic contaminant which alters soil physical and biochemical characteristics and makes tea plants more susceptible against crude oil contamination. Therefore, two native bacterial strains designated as AS 03 and ...

  12. Statistical sampling strategies for survey of soil contamination

    NARCIS (Netherlands)

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean

  13. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen G.; Jensen, Karsten Høgh

    1998-01-01

    disturbance and compaction of the soil surface. Hypothetically introducing fully surface-connected macropores into the calibrated model resulted in a 22% increase in the loss of solute to the drain, indicating the significance of the hydraulic conditions at the soil surface and the model specification thereof......The experimental results from a field-scale tracer experiment in a subsurface-drained glacial till soil were analyzed by the application of a single/dual porosity model (MACRO), optionally accounting for concurrent and interacting flow and transport in the bulk soil porosity as well...... concentration. The exchange was overpredicted and too rapid when the soil aggregate size (distance between macropores) obtained from an image analysis of soil cores was used in the model. On this basis, the model assumption of instant equilibration of the solute across the matrix porosity, disregarding small...

  14. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2015-01-01

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14 C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  15. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  16. Production of non-constructive concrete blocks using contaminated soil

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2009-01-01

    In this research, a heavily contaminated humus-rich peat soil and a lightly contaminated humus-poor sand soil, extracted from a field location in the Netherlands, are immobilized. These two types of soil are very common in the Netherlands. The purpose is to develop financial feasible, good quality

  17. Laboratory evaluation of biodegradation of crude oil contaminated tundra soil

    International Nuclear Information System (INIS)

    Schepart, B.S.; Hyzy, J.B.; Jorgenson, M.T.

    1992-01-01

    A laboratory experiment was designed to evaluate oil degradation rates in heavily contaminated soil samples from an oil spill site under various redox and nutrient conditions. Reduction of total petroleum hydrocarbons (TPH) in the experiment by indigenous bacteria was found to be negligible under aerobic conditions for all nutrient amendments over a 12-week period. The unexpectedly poor performance of the aerobic treatment may have been due to the high concentration of TPH (153,487 ppM) and the slow rate at which indigenous bacteria grew, or the preferential use of biogenic carbon over petroleum hydrocarbons. In contrast, under anaerobic conditions TPH was reduced by 47% in high nitrogen and phosphorous microcosms. The unexpectedly good performance of anaerobic bacteria indicates that promotion of oil degradation in saturated subsurface soils is feasible. The best degradation rates, however, were achieved by application of bacterial amendments, which reduced TPH up to 60% over 12 weeks. The higher degradation rates using bacterial amendments were attributed to the relatively rapid rate at which the bacteria colonized the substrates. This result suggests that bacterial additions in the field would be useful for promoting more rapid degradation of oil, while the slower growing indigenous oil-degrading bacteria population is allowed to increase. 19 refs., 9 figs., 3 tabs

  18. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    International Nuclear Information System (INIS)

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    Current efforts to remediate subsurface contamination have spurred research in the application of in situ bioremediation. In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14 C-labeled organic compounds, and the evolution of 14 CO 2 was measured over time. Gas chromatographic analyses were used to monitor CO 2 production and O 2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14 CO 2 was measured from [ 14 C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [ 14 C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14 C label. [ 14 C]benzene and [ 14 C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO 3 , CO 2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rte of 0.099 μmol g -1 (dry weight) day -1 while oxygen concentration decreased at a rate of 0.124 μmol g -1 (dry weight) day -1 . With no added nitrate, CO 2 production was not different from that in metabolically inhibited control vials. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation

  19. Preliminary study of radium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Rodgers, J.C.

    1978-10-01

    A preliminary study was made of the potential radiation exposures to people from radium-226 contamination in the soil in order to provide guidance on limits to be applied in decontaminating land. Pathways included were inhalation of radium from resuspension; ingestion of radium with foods; external gamma radiation from radium daughters; inhalation of radon and daughter, both in the open air and in houses; and the intake of /sup 210/Pb and /sup 210/Po from both inhalation and ingestion. The depth of the contaminated layer is of importance for external exposure and especially for radon emanation. The most limiting pathway was found to be emanation of the radon into buildings with limiting values comparable to those found naturally in many areas.

  20. Preliminary study of radium-contaminated soils

    International Nuclear Information System (INIS)

    Healy, J.W.; Rodgers, J.C.

    1978-10-01

    A preliminary study was made of the potential radiation exposures to people from radium-226 contamination in the soil in order to provide guidance on limits to be applied in decontaminating land. Pathways included were inhalation of radium from resuspension; ingestion of radium with foods; external gamma radiation from radium daughters; inhalation of radon and daughter, both in the open air and in houses; and the intake of 210 Pb and 210 Po from both inhalation and ingestion. The depth of the contaminated layer is of importance for external exposure and especially for radon emanation. The most limiting pathway was found to be emanation of the radon into buildings with limiting values comparable to those found naturally in many areas

  1. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  2. METHODOLOGICAL PROPOSAL FOR CONTAMINATED SOIL RECOVERY

    Directory of Open Access Journals (Sweden)

    José Antonio Fabelo Falcón

    2017-01-01

    Full Text Available The contamination of soils, by different substances and / or products is becoming more extensive throughout the world, its determination, minimization and treatment to reach the recovery of them is a necessity, even though it is not granted the level of importance required by the countries concerned. The objective of this work is to propose a methodology for the recovery of soils with a high degree of efficiency and effectiveness in the selection of procedures, regardless of the types of pollutants and land use once recovered. The methodological proposal involves the stages of diagnosis, characterization, selection of the technology and its technical and economic validation at the laboratory and pilot plant level. Subsequently, the technology of the treatment is designed, along with the elaboration of an objective study of each particular case and an essential economic and technical feasibility analysis for the different scales of the development of the technological process.

  3. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    Science.gov (United States)

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  4. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    Lee, L.S.

    1998-04-01

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  5. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  6. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  7. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.

    2018-05-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  8. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    Science.gov (United States)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  9. Remediation of Lead contaminated Soil at Greenbury Point, Annapolis, Maryland

    National Research Council Canada - National Science Library

    Stewart, Kathryn

    1997-01-01

    .... Information includes data on lead, applicable regulatory requirements, soils types, contamination, site maps, field investigations, utility drawings, history, archeology, and natural resources...

  10. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  11. Mitigation of Ricin Contamination in Soils: Sorption and Degradation

    National Research Council Canada - National Science Library

    Zartman, R; Green, C; San Francisco, M; Zak, J; James, W; Boroda, E

    2003-01-01

    .... Soils contain a variety of inorganic minerals, organic matter and microorganisms. Soil inorganic minerals and organic matter are known to effectively sorb a wide variety of compounds, such as pesticides and other potential contaminants...

  12. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Approaches to bioremediation of fossil fuel contaminated soil: An overview. ... African Journal of Biotechnology ... neither generates waste nor pollutes the soil environment, the final products either through accidental or deliberate spillage can ...

  13. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  14. Underground waters and soil contamination studies

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Camargos, Claudio C.; Santos, Rosana A.M.

    2009-01-01

    Maybe the greatest problem associated to the nuclear energy is what to do with the waste generated. As example, in Portugal, two of the most important of uranium mines produced a significant amount of waste, now deposited in several storage facilities. To evaluate the impacts generated, samples of water, sediments and soils were analyzed. The space distribution of these samples revealed that the contamination is restricted in the vicinity of the mining areas, and the biggest problem happened due to the illegal use of waters for irrigation, originated from the mine effluents treatment stations. In Brazil, the radioactive waste remains a problem for the authorities and population, since there is not until now a final repository to storage them. The objective of this work is to do studies with the software FRAC3DVS, which simulates the contamination of soils and underground waters due to radioactive and no radioactive sources of pollution. The obtained results show that this tool can help in environmental evaluations and decision making processes in the site selection of a radioactive waste repository. (author)

  15. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  16. Radiolytic treatment of dioxin contaminated soils

    International Nuclear Information System (INIS)

    Gray, K.A.; Hilarides, R.J.

    1995-01-01

    Recent work in our laboratory has demonstrated that γ-radiolysis is a feasible method by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be converted to products of negligible toxicity. In the presence of 25% water, 2.5% non-ionic surfactant and at a dose of 800 kGy greater than 98% destruction was achieved in a standard soil artificially contaminated with 100 ppb TCDD. By-product analysis has illustrated that the destruction occurs via step-wise reductive dechlorination producing a suite of lesser chlorinated dioxins. These results in combination with scavenger studies, target theory calculations and yields indicate that direct radiation effects account for the major route of destruction. Radiolysis has also been conducted on a real soil contaminated with TCDD and other chlorinated aromatic compounds verifying the results of model studies. Based on the data of these experiments some designs of batch gamma systems are considered and a discussion of estimated capital and operating costs associated with γ-radiolysis is presented. Given the high costs of the alternatives (i.e. incineration), radiolysis appears to be not only technically feasible, but it may also be economically competitive. (author)

  17. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  18. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  19. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  20. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  1. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Labieniec, Paula Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  3. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    International Nuclear Information System (INIS)

    Labieniec, P.A.

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface

  4. Collaborative, Nondestructive Analysis of Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davidson, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parsons-Davis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turin, H. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zidi, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Belamri, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Bounatiro, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Benbouzid, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Fellouh, A. S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Idir, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Larbah, Y. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Moulay, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Noureddine, A. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Rahal, B. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France)

    2017-12-14

    This report summarizes a joint nondestructive analysis exercise that LLNL, LANL, and COMENA discussed through a collaborative meeting in July 2017. This work was performed as one part of a collaboration with Algeria under Action Sheet 7: “Technical Cooperation and Assistance in Nuclear Forensics”. The primary intent of this exercise was for US and Algerian participants to jointly share results of nondestructive analyses (NDA) of a contaminated soil sample provided by the Algerians and to discuss key observations and analytical approaches. While the two samples were analyzed blind at LLNL and LANL, the soil samples were revealed after the exercise to have a common origin, and to have originated as an IAEA soil sample (IAEA-326, Bojanowski et al., 2001) provided to COMENA as part of a previous exercise. Comparative analysis revealed common findings between the laboratories, and also emphasized the need for standardized operating procedures to improve inter-comparability and confidence in conclusions. Recommended handling practices in the presence of sample heterogeneities were also discussed. This exercise provided an opportunity to demonstrate nuclear forensics analytical capabilities at COMENA, LANL, and LLNL, and identified areas that could benefit from future technical exchanges. Plans were made for a follow-on joint exercise in 2018, involving destructive analyses of the CUP-2 uranium ore concentrate standard.

  5. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  6. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  7. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW contaminants have...... the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  8. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    Science.gov (United States)

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  9. Subsurface cadmium loss from a stony soil-effect of cow urine application.

    Science.gov (United States)

    Gray, Colin William; Chrystal, Jane Marie; Monaghan, Ross Martin; Cavanagh, Jo-Anne

    2017-05-01

    Cadmium (Cd) losses in subsurface flow from stony soils that have received cow urine are potentially important, but poorly understood. This study investigated Cd loss from a soil under a winter dairy-grazed forage crop that was grazed either conventionally (24 h) or with restricted grazing (6 h). This provided an opportunity to test the hypothesis that urine inputs could increase Cd concentrations in drainage. It was thought this would be a result of cow urine either (i) enhancing dissolved organic carbon (DOC) concentrations via an increase in soil pH, resulting in the formation of soluble Cd-organic carbon complexes and, or (ii) greater inputs of chloride (Cl) via cow urine, promoting the formation of soluble Cd-Cl complexes. Cadmium concentrations in subsurface flow were generally low, with a spike above the water quality guidelines for a month after the 24-h grazing. Cadmium fluxes were on average 0.30 g Cd ha -1  year -1 (0.27-0.32 g Cd ha -1  year -1 ), in line with previous estimates for agricultural soils. The mean Cd concentration in drainage from the 24-h grazed plots was significantly higher (P soil. Further study is warranted to confirm the mechanisms involved and quantities of Cd lost from other systems.

  10. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  11. X-231B technology demonstration for in situ treatment of contaminated soil: Contaminant characterization and three dimensional spatial modeling

    International Nuclear Information System (INIS)

    West, O.R.; Siegrist, R.L.; Mitchell, T.J.; Pickering, D.A.; Muhr, C.A.; Greene, D.W.; Jenkins, R.A.

    1993-11-01

    Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminated with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit

  12. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  13. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    Science.gov (United States)

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  14. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    OpenAIRE

    Gupta, M. K.; Srivastava, R. K.; Singh, A. K.

    2010-01-01

    Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using...

  15. The role of soil quality maps in the reuse of lightly contaminated soil

    OpenAIRE

    Lamé, F.P.J.; Leenaers, H.; Zegwaard, J.

    2000-01-01

    In 1999 the Dutch government agreed on a new policy regarding the reuse of lightly contaminated soil. From now on, lightly contaminated soil may be reused under conditions of soil-quality management. The municipal authorities supervise the reuse under this new regime. Two basic criteria need to be met before reuse of lightly contaminated soil is allowed. Firstly, the quality of the soil has to be characterised on a soil quality map. Secondly, the soil that will be reused has to be of the same...

  16. Vermiremediation of soils contaminated with mixture of petroleum ...

    African Journals Online (AJOL)

    In this paper, vermiremediation, a biological technique was utilized in order to clean-up soil contaminated with gasoline, diesel and spent engine oil using an earthworm - Eisenia fetida. The contaminated soils were analyzed for the total petroleum hydrocarbon (TPH) level every 24 hours over a period of 120 hours using ...

  17. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    OpenAIRE

    Jorfi; Rezaee; Jaafarzadeh; Esrafili; Akbari; Moheb Ali

    2014-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated ...

  18. Evaluation of copper and lead immobilization in contaminated soil ...

    African Journals Online (AJOL)

    The effectiveness of natural clay, calcium phosphate, poultry manure and rice husks as cheap and ecologically non-invasive amendments for immobilizing Cu and Pb in contaminated soil was assessed. A moderately contaminated soil was sampled from a cultivated field in the vicinity of an active waste dump, characterized ...

  19. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1991-01-01

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  20. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    International Nuclear Information System (INIS)

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  1. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    Science.gov (United States)

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (PCompressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  3. Contamination of freezing soils: Australia's Antarctic opportunity

    International Nuclear Information System (INIS)

    Williams, P.

    2002-01-01

    Last month, the Federal government announced that millions of dollars were to be spent cleaning up Antarctica, for which Australia has special responsibilities. Australia's largesse is especially interesting in a world context. Antarctica, by international agreement, is free of any industrial development - mining, storage of wastes, or any other profit-making activity that would disturb the environment (tourism is allowed under increasingly controlled conditions). The importance of the more or less pristine frigid environment lies in the wide range of scientific research that is carried out there. Sophisticated techniques to improve environmental quality are evidently in the early development stage. That cold-loving organisms can thrive in frozen ground in Antarctica and the Arctic was a discovery so unexpected that few people could grasp its importance. Only later was it found that these bugs can eat up contaminants - and the discovery assumed enormous practical significance. Little is known about how to clean up contamination in freezing soils even though there is a pressing need to solve the growing problem with military, industrial and nuclear waste in the Northern Hemisphere

  4. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Soil contamination issues at U.S. ports

    International Nuclear Information System (INIS)

    Rice, D.W.; Hagner, D.

    1991-01-01

    This paper reports that seven large and medium size west coast ports were surveyed during August 1990 to determine their involvement with hydrocarbon contaminated soils and activities associated with the characterization and remediation of these soils. All ports surveyed indicated that hey have hydrocarbon contaminated soil problems. Although other west coast ports do not have the scale of petroleum transfer and storage facilities that the Prot of Los Angeles has, all ports had tenants with bulk oil or fuel storage in aboveground tanks and were undertaking characterization and remediation work. Hydrocarbon contaminated soil problems were associated with these facilities or with decommissioned facilities of this type

  6. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  7. Bioremediation of soil contaminated with spent and fresh cutting ...

    African Journals Online (AJOL)

    Contamination of soil with industrial cutting fluids containing heavy metals and petroleum hydrocarbons has detrimental effects on ecosystems. As such contaminants constitute risk to human health; they can enter the food chain through agricultural products or contaminated drinking water. This growing concern about ...

  8. Spectral characterization of soil and coal contamination on snow

    Indian Academy of Sciences (India)

    Snow is a highly reflecting object found naturally on the Earth and its albedo is highly influenced by the amount and type of contamination. In the present study, two major types of contaminants (soil and coal) have been used to understand their effects on snow reflectance in the Himalayan region. These contaminants were ...

  9. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  10. Phytoextraction of low level U-contaminated soil

    International Nuclear Information System (INIS)

    Vandenhove, H.A.; Hees, M. van

    2002-01-01

    The nuclear fuel cycle may be a source of environmental contamination. Uranium exploitation produces large quantities of wastes but also accidental spills at nuclear fuel production, reprocessing or waste treatment plants have led to soil contamination with uranium. U-contaminated soil is generally excavated, packaged and removed which is a costly enterprise. Soil washing has also shown promising in removing U from contaminated soil, but results in the generation of liquid wastes and the deterioration of soil properties. In contrast, phytoextraction, the use of plants to remove contaminants from polluted soil, allows for in situ treatment and does not generate liquid wastes. Furthermore, the contaminated site is covered by plants during phytoextraction and wind and water erosion will be reduced. The phytoextraction potential depends on the amount of radionuclides extracted and the biomass produced. Hyper-accumulating plants often have a low biomass production. Moreover, uranium soil-to-plant transfer factors (TF: ratio of U concentration in dry plant tissue to concentration in soil) rarely exceed a value of 0.1 gg -1 . With a TF of 0.1 gg -1 and a biomass yield of 15t dry weigh ha -1 only 0.1% of the soil uranium will be annually immobilised in the plant biomass. These figures clearly show that the phytoextraction option is not a feasible remediation option, unless the uranium bioavailability could be drastically increased. It was shown that citric acid addition to highly contaminated U contaminated soil increased the U-accumulation of Brassica juncea 1000-fold. The objective of the present paper is to find out if low level U contaminated soil can be phytoextracted in order to achieve proposed release limits

  11. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    Science.gov (United States)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  12. Comparison of tree coring and soil gas sampling for screening of contaminated sites

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Stalder, Marcel; Riis, Charlotte

    and then identify high risk areas. The uptake of BTEX into trees varies to a greater extent with the tree species and the site conditions than chlorinated solvents, which lead to greater uncertainty. Both methods have their advantages and disadvantages. Hence, the methods supplement each other. Based on results......Site characterization is often time consuming and a financial burden for the site owners, which raises a demand for rapid and inexpensive (pre)screening methods. Phytoscreening by tree coring has shown to be a useful tool to detect subsurface contamination, especially of chlorinated solvents...... suitable as initial screening methods for site characterization. The aim of this study is to compare tree coring and soil gas sampling to evaluate to which extent tree coring may supplement or substitute soil gas sampling as a site contaminant screening tool. And where both methods are feasible, evaluate...

  13. Developing an integration tool for soil contamination assessment

    Science.gov (United States)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  14. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Science.gov (United States)

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  15. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Directory of Open Access Journals (Sweden)

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  16. Effect of subsurface drainage on salt movement and distribution in salt-affected soils

    International Nuclear Information System (INIS)

    Moustafa, A.T.A.; Seliem, M.H.; Bakhati, H.K.

    1983-01-01

    This study was carried out to evaluate different subsurface drainage treatments (combinations of depth and spacing) on salt movement and distribution. The soil is clay and the drainage was designed according to the steady-state condition (Hooghoudt's equation). Three spacings and two depths resulted in six drainage treatments. Soil samples represented the initial state of every treatment and after 14 months they (cotton followed by wheat) were analysed. The data show that drain depth has its effective role in salt leaching, while drain spacing has its effect on salt distribution in the soil profile. The leaching rate of each specific ion is also affected by the different drainage treatments. In general, the salt movement and distribution should be taken into consideration when evaluating the design of drainage systems. (author)

  17. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2002-01-01

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m 3 of waste off-site and disposing of it in an approved site

  18. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  19. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  20. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  1. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  2. Radionuclide contaminated micromycetes in the soil the thirty kilometer zone

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Vasilevskaya, A.I.; Redchits, T.I.; Gavrilov, V.I.; Lashko, T.N.; Luchkov, P.N.; Shcherbachenko, A.M.; AN Ukrainskoj SSR, Kiev

    1992-01-01

    From 1986 year the ecological monitoring of the soil microscopic fungi exist under conditions of the radioactive contamination in the thirty kilometer zone of the Chernobyl' NPP is conducted. As mycological isotope soil analysis the limiting factor in the ecological situation need consider the radionuclide contamination of the soils. It is shown, that the amount of fungus germs decreased by 200 times in 1986 year and increased sharp to 1989-90 years. During the first years after the accident, in the most contaminated soils dark-pigmented fungi predominated. It is due to a deep reorganization of the soil micromycete associations. Correlations is revealed in the interrelations among various species of fungi, isolated from the soils, differed in the radioactivity. Among 12 species of fungi (from 6 genuses of micromycetes) isotope accumulation is noted. There are Sr-90 and Cs-137, most widespread in the soil after the accident. 18 refs.; 8 figs

  3. The role of soil quality maps in the reuse of lightly contaminated soil

    NARCIS (Netherlands)

    Lamé, F.P.J.; Leenaers, H.; Zegwaard, J.

    2000-01-01

    In 1999 the Dutch government agreed on a new policy regarding the reuse of lightly contaminated soil. From now on, lightly contaminated soil may be reused under conditions of soil-quality management. The municipal authorities supervise the reuse under this new regime. Two basic criteria need to be

  4. Amendment of crude oil contaminated soil with sawdust and ...

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... Akonye LA, Onwudiwe IO (2004). Potential for Sawdust and. Chromolaena leaves as soil amendments for plants growth in an oil polluted soil. Niger Delta Biologia 4: 50-60. Chen ZS Lee DY (1997). Evaluation of remediation technique on two. Cadmiun polluted soil contaminated with metals. North word.

  5. Arsenic in soil and vegetation of a contaminated area

    NARCIS (Netherlands)

    Karimi, N.; Ghaderian, S.M.; Schat, H.

    2013-01-01

    Plant and soil samples were collected from one uncontaminated and four contaminated sites (in the Dashkasan mining area western Iran). Total and water-soluble arsenic in the soil ranged from 7 to 795 and from 0.007 to 2.32 mg/kg, respectively. The highest arsenic concentration in soil was found at

  6. Mechanisms of hydrologic transport of soil contaminants in Mortandad Canyon

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.

    1981-01-01

    The initial focus of this research will be on the selective sorting and transport of soil particles as they relate to altering the distribution of contaminants in soils and sediments. Several field experiments employing radionuclide-labeled soil particle size fractions are planned to accomplish research objectives

  7. Waste reduction by separation of contaminated soils during environmental restoration

    International Nuclear Information System (INIS)

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill

  8. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  9. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  10. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  11. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  12. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  13. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  14. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  15. Pleasure Boatyard Soils are Often Highly Contaminated

    Science.gov (United States)

    Eklund, Britta; Eklund, David

    2014-05-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ∑16 PAHs, and 3.8 mg/kg DW for ∑7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ∑7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ∑7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination.

  16. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  17. Selective flotation for the removal of radionuclides from contaminated soil

    International Nuclear Information System (INIS)

    Miller, J.D.; Yu, Q.; Lu, Y.Q.

    1995-01-01

    Low-level radioactive contaminated soils (10--500 pci/gm) created by defense-related activities at certain Superfund sites, such as Nevada Test Site (NTS), is a current environmental concern. Many of these contaminated sites may require appropriate cleanup and restoration, which could cost billions of dollars and put tremendous pressure on limited financial resources. Therefore, the development of a selective flotation process to separate such radionuclides from contaminated soils should be considered. In this study, both a pure depleted UO 2 sample and three synthetic UO 2 /soil mixtures were used to evaluate surface chemistry features and to examine the possibility for the flotation of fine UO 2 particles from selected soils. It was intended that this model system would be a reasonable representation of contaminated soils such as those found the Nevada Test Site which are reported to be contaminated by PuO 2 fallout. The effect of reagent schedule, particle size distribution, and surface charge are discussed with respect to the flotation separation of the UO 2 /soil mixtures. It was found that both commercial fatty acids and reagent grade sodium oleate are effective collectors for UO 2 flotation provided the pH is adjusted to the range of pH 8--9. The bench-scale flotation results successfully demonstrated that froth flotation technology can be used to remove UO 2 from such model contaminated soils with appropriate flotation chemistry conditions which depend on the soil characteristics and other pretreatment procedures

  18. Soil contamination of plant surfaces from grazing and rainfall interactions

    International Nuclear Information System (INIS)

    Hinton, T.G.; Stoll, J.M.; Tobler, L.

    1995-01-01

    Contaminants often attach to soil particles, and their subsequent environmental transport is largely determined by processes that govern soil movement. We examined the influence of grazing intensity on soil contamination of pastures. Four different grazing densities of sheep were tested against an ungrazed control plot. Scandium concentrations were determined by neutron activation analysis and was used as a tracer of soil adhesion on vegetation. Soil loadings ( g soil kg -1 dry plant) increased 60% when grazing intensity was increased by a factor of four (p 0.003). Rain and wind removed soil from vegetation in the ungrazed control plots, but when grazing sheep were present, an increase in rain from 0.3 to 9.7 mm caused a 130% increase in soil contamination. Multiple regression was used to develop an equation that predicts soil loadings as a function of grazing density, rainfall and wind speed (p = 0.0001, r 2 = 0.78). The model predicts that if grazing management were to be used as a tool to reduce contaminant intake from inadvertent consumption of resuspended soil by grazing animals, grazing densities would have to be reduced 2.5 times to reduce soil loadings by 50%. (author)

  19. Bioavailability of Fe(III) in Natural Soils and the Impact on Mobility of Inorganic Contaminants (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Kosson, David S. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Cowan, Robert M. [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Environmental Science; Young, Lily Y. [Rutgers Univ., New Brunswick, NJ (United States). Center for Agriculture and the Environment; Hatcherl, Eric L. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Scala, David J. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2005-08-02

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  20. Soil management planning for military installations: Strategy for identifying contaminated soils

    International Nuclear Information System (INIS)

    Makdisi, R.S.; Baskin, D.A.; Downey, D.; Taffinder, S.A.

    1992-01-01

    Numerous federal and state regulations mandate the proper handling and disposal and/or treatment of contaminated soils. The Land Disposal Ban and the increasing lack of new or proximal land disposal facilities, coupled with the increasing liability of off-site disposal, have created a need for altering the traditional methods of managing contaminated sods. To delineate soil management decisions, a Soil Management Plan (SMP) was developed which incorporates the substantive requirements of CERCLA/SARA and RCRA into the ongoing base activities (i.e., construction projects, utility repairs and maintenance) and other environmental projects (i.e., underground storage tank removals) that may involve contaminated soils. The decision-making process is developed to guide base personnel in recognizing contamination, following proper sampling and temporary storage procedures, preventing unnecessary human exposure and isolating soils for removal off-site or treatment on-site. The SMP also contains a comprehensive review of soil remediation technologies, such as biological treatment, soil vapor extraction, soil washing, biofiltering, thermal desorption, soil stabilization/solidification, chemical/physical treatment and incineration. Contaminant types expected at the federal military facility are cross-referenced to the appropriate remediation technologies to determine the specific base needs for a soil treatment unit. An example of a conceptual design for a hydrocarbon-contaminated soil treatment unit is presented for a base where underground fuel tanks are the principal source of soil contamination

  1. Remediation of Soil Contaminated with Uranium using a Biological Method

    International Nuclear Information System (INIS)

    Park, Hye Min; Kim, Gye Nam; Shon, Dong Bin; Lee, Ki Won; Chung, Un Soo; Moon, Jai Kwon

    2011-01-01

    Bioremediation is a method to cleanup contaminants in soil or ground water with microorganisms. The biological method can reduce the volume of waste solution and the construction cost and operation cost of soil remediation equipment. Bioremediation can be divided into natural attenuation, bioaugmentation, biostimulation. Biostimulation is technology to improve natural purification by adding nutritional substances, supplying oxygen and controlling pH. In this study, penatron, that is a nutritional substances, was mixed with soil. Optimum conditions for mixing ratios of penatron and soil, and the pH of soil was determined through several bioremediation experiments with soil contaminated with uranium. Also, under optimum experiment conditions, the removal efficiencies of soil and concrete according to reaction time were measured for feasibility analysis of soil and concrete bioremediations

  2. Long-term bioremediation of a subsurface plume in silty soil

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    2000-01-01

    In northern Virginia, a loss from a tank farm has produced two plumes, containing about 200,000 gal of diesel fuel, jet-A fuel, and gasoline. Evidence suggests that the longest part of the contamination plume moved to its present length of 2,500 ft in less than 5 years. Since natural biodegradation would require about 2,500 years to reduce the hydrocarbon contamination to the remediation endpoints, other methods have been considered. Excavation of the plumes would take an estimated 5 years. However, the tank farm is surrounded by commercial buildings and expensive homes, and many of these buildings would have to be removed to reach the plumes. Enhanced natural bioremediation would require about 200 years at a start-up cost of about $1 million dollars and recurring costs of approximately $500,000/year. Infiltration galleries and enhanced subsurface permeability could reduce the remediation time to as little as 20 years

  3. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  4. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil

    OpenAIRE

    GOVARTHANAN, Muthusamy; MYTHILI, R.; SELVANKUMAR, Thangasamy; KAMALA-KANNAN, S.; CHOI, DuBok; CHANG, Young-Cheol

    2017-01-01

    Objective of the study was to isolate heavy metal resistant bacteria from chromium-contaminated subsurface soil and investigate biosurfactant production and heavy metal bioremediation. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolate was identified as Rahnella sp. RM. The biosurfactant production by heavy metal resistant Rahnella sp. RM was optimized using Box- Behnken design (BBD). The maximum emulsification activity was obtained 66% at 6% soybean meal in pH 7.0 and 33....

  5. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  6. Progress of research and utilization of soil amendments in phytoremediation of radioactive contamination soil

    International Nuclear Information System (INIS)

    Guo Yangrui; Song Gang; Chen Yongheng

    2012-01-01

    With the increasing of soil pollution and degradation, it becomes more important to research and apply soil amendments in agriculture. This paper reviewed different kinds of soil amendments and their impacts on phytostabilization and phytoextraction techniques, and summarized the application of soil amendments in the radio-contaminated soils as well as their effects on the phytoremediation. The main repair mechanisms of the soil amendments are involved in adsorption, ion exchange, chelation, and complexation. The potential applications in the phytoremediation on radio-contaminated soils, as well as the main repair mechanisms and the existing problems were discussed. (authors)

  7. Challenges encountered in hydrocarbon contaminated soil cleanup

    International Nuclear Information System (INIS)

    Lazzarettro, A.C.

    1991-01-01

    Much of the author's experience relating to the cleanup of hydrocarbon contaminated soils has been garnered from serving the city of Santa Fe Springs, California as a redevelopment consultant and project manager. In this paper, the author's comments will be centered on that community. To set the stage the author believes it might be helpful to relate some of the history and background of Santa Fe Springs (SFS). The community was first founded as an agricultural settlement in the latter part of the nineteenth century, with virtually all of the farms and ranches either planted in orchards or engaged in raising cattle and livestock. The Southern Pacific Railroad had a line running through the area primarily to serve the needs of the ranchers and farmers. The community at the time was known as Fulton Wells in honor of a large hotel complex which had been erected around a well-known mineral spring touted for its curative value. The local population had been aware for some time of the presence of brackish water in shallow wells and of the peculiar odor which permeated much of the surrounding area

  8. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.

    Science.gov (United States)

    Jiamjitrpanich, Waraporn; Parkpian, Preeda; Polprasert, Chongrak; Laurent, François; Kosanlavit, Rachain

    2012-01-01

    This study was designed to compare the initial method for phytoremediation involving germination and transplantation. The study was also to determine the tolerance efficiency of Panicum maximum (Purple guinea grass) and Helianthus annuus (Sunflower) in TNT-contaminated soil and nZVI-contaminated soil. It was found that the transplantation of Panicum maximum and Helianthus annuus was more suitable than germination as the initiate method of nano-phytoremediation potting test. The study also showed that Panicum maximum was more tolerance than Helianthus annuus in TNT and nZVI-contaminated soil. Therefore, Panicum maximum in the transplantation method should be selected as a hyperaccumulated plant for nano-phytoremediation potting tests. Maximum tolerance dosage of Panicum maximum to TNT-concentration soil was 320 mg/kg and nZVI-contaminated soil was 1000 mg/kg in the transplantation method.

  9. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  10. CLOPYRALID DISSIPATION IN THE SOIL CONTAMINATED WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Mariusz Kucharski

    2014-12-01

    Full Text Available The aim of the studies was to determine the influence of copper and zinc contamination on clopyralid dissipation in soil. The experiment was carried out in laboratory conditions (plant growth chamber. Clopyralid was applied to three different soils [similar textures, pH, organic carbon content and contrasting copper and zinc content: soil natural contaminated with Cu and Zn (S1, soil with natural low Cu and Zn concentration (S2 and soil S21 prepared in the laboratory (S2 soil additionally contaminated with Cu and Zn salts in the amounts equivalent to contamination level of S1 soil]. Soil samples were taken for analyses for 1 hour (initial concentration and 2, 4, 8, 16, 32, 64 and 96 days after treatment. Clopyralid residue was analysed using GC/ECD (gas chromatography with electron capture detector. Good linearity was found between logarithmic concentration of clopyralid residues and time. The differences in Cu and Zn content influenced the clopyralid decay in soil. The values of DT50 obtained in the experiment ranged from 21 to 27 days. A high concentration of Cu and Zn in soil slowed down clopyralid degradation (the DT50 value was higher – 25–27 days.

  11. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    Science.gov (United States)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  12. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station

  13. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  15. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  16. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  17. The Use of Phosphate Amendments for Chemical Immobilization of Uranium in Contaminated Soil.

    Science.gov (United States)

    Baker, M.; Coutelot, F.; Seaman, J. C.

    2017-12-01

    Past Department of Energy (DOE) production of nuclear materials has resulted in uranium (U) contaminated soil and groundwater posing a significant risk to the environment and human health. In situ remediation strategies are typically less expensive and rely on the introduction of chemical additives in order to reduce contaminant migration and ultimately the associated exposure hazard. Phosphate addition to U-contaminated subsurface environments has been proposed as a U remediation strategy. Saturated and unsaturated batch experiments were performed to investigate the ability of three different phosphate source treatments: hydroxyapatite (HA), phytic acid (IP6) and sodium tripolyphosphate (TPP) to chemically immobilize U in contaminated Savannah River Site (SRS) soil (2,040 mg U/kg soil). Amendment treatments ranged from 925 to 4620 mg P /kg soil. Unsaturated test samples were equilibrated for 3 weeks at 60% of the soil's field capacity, followed by pore-water extraction by centrifugation to provide an indication of the remaining mobile U fraction. Saturated batch experiments were equilibrated on an orbital shaker for 30 days under both oxic and anoxic conditions, with aliquots taken at specific intervals for chemical analysis. In the saturated microcosms, HA decreased the mobile U concentration by 98% in both redox environments and at all treatment levels. IP6 and TPP were able to decrease the soluble U concentration at low treatment levels, but tended to release U at higher treatment levels compared to the control. Unsaturated microcosms also showed HA to be the most effective treatment for immobilizing U, but IP6 and TPP were as effective as HA at the lowest treatment level. The limited contaminant immobilization following TPP and IP6 amendments correlated with the dispersion of organic matter and organo-mineral colloids. For both experiment types, TPP and IP6 samples showed a very limited ortho-phosphate (PO4-) in the solution, indicating the slow mineralization

  18. Quantifying Diffuse Contamination: Method and Application to Pb in Soil.

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; de Caritat, Patrice

    2017-06-20

    A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.

  19. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  20. Use of Microtremor Array Recordings for Mapping Subsurface Soil Structure, Singapore

    Science.gov (United States)

    Walling, M.

    2012-12-01

    Microtremor array recordings are carried out in Singapore, for different geology, to study the influence of each site in modeling the subsurface structure. The Spatial Autocorrelation (SPAC) method is utilized for the computation of the soil profiles. The array configuration of the recording consists of 7 seismometers, recording the vertical component of the ground motion, and the recording at each site is carried out for 30 minutes. The results from the analysis show that the soil structure modeled for the young alluvial of Kallang Formation (KF), in terms of shear wave velocity (Vs), gives a good correlation with borehole information, while for the older geological formation of Jurong Formation (JF) (sedimentary rock sequence) and Old Alluvial (OA) (dense alluvium formation), the correlation is not very clear due to the lack of impedance contrast. The older formation of Bukit Timah Granite (BTG) show contrasting results within the formation, with the northern BTG suggesting a low Vs upper layer of about 20m - 30m while the southern BTG reveals a dense formation. The discrepancy in the variation within BTG is confirmed from borehole data that reveals the northern BTG to have undergone intense weathering while the southern BTG have not undergone noticeable weathering. Few sites with bad recording quality could not resolve the soil structure. Microtremor array recording is good for mapping sites with soft soil formation and weathered rock formation but can be limited in the absence of subsurface velocity contrast and bad quality of microtremor records.; The correlation between the Vs30 estimated from SPAC method and borehole data for the four major geological formations of Singapore. The encircled sites are the sites with recording error.

  1. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  2. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    Science.gov (United States)

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  3. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  4. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  5. Vermiremediation of Soils Contaminated with Mixture of Petroleum ...

    African Journals Online (AJOL)

    ADOWIE PERE

    order to clean-up soil contaminated with gasoline, diesel and spent engine oil using an earthworm - Eisenia ... hydrocarbon (TPH) level every 24 hours over a period of 120 hours using gas chromatography. ... adverse effects. The need to ...

  6. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  7. ligninolytic enzymes of the fungus isolated from soil contaminated

    African Journals Online (AJOL)

    FUTE

    aimed at isolating lignin degrading fungi from soil contaminated with cow dung ... strain was screened for production of ligninolytic enzymes using Rhemazol Brilliant blue R ... put in airtight plastic bag and carried out to ..... Enzyme Microbial.

  8. Microbial Fuel Cells for Organic-Contaminated Soil Remedial Applications

    NARCIS (Netherlands)

    Li, Xiaojing; Wang, Xin; Weng, Liping; Zhou, Qixing; Li, Yongtao

    2017-01-01

    Efficient noninvasive techniques are desired for repairing organic-contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and

  9. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    ABSTRACT. This study was carried out to determine the level of soil contamination by metals around some automobile mechanic .... and this was done all through the sample preparation. ... shaking was done by a mechanical sieve shaker and.

  10. Remediation of uranium contaminated water and soil by PIMS approach

    International Nuclear Information System (INIS)

    Raicevic, S.; Raicevic, J.; Smiciklas, I. . E-mail address of corresponding author: raich@beotel.yu; Raicevic, S.)

    2005-01-01

    Contamination of soil by uranium (U) represents a permanent threat for food and water resources. For this reason, remediation is a very important measure for protection of the health of the population living in the vicinity of these contaminated sites. Phosphate- Induced Metal Stabilization (PIMS) represents one of the powerful methods for remediation of soil and water contaminated by U, including depleted uranium (DU). By this approach it is possible to stabilize metals in the form of phosphate phases and other low soluble phases that are stable over geological time. PIMS is based on application of a special form of apatite of biological origin, Apatite II, to clean up metal and radionuclide contamination, in situ or ex situ. This biogenic apatite can be emplaced as a down-gradient permeable reactive barrier, mixed into contaminated soil or waste or used as a disposal liner. Here we will briefly describe the PIMS remediation protocol. (author)

  11. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  12. Bio-mechanical removing of contaminated soils: a field experiment

    International Nuclear Information System (INIS)

    Jouve, A.; Maubert, H.; Schulte, E.

    1992-01-01

    If, in spite of safety precautions, a major nuclear accident would occur, countermeasures should be taken to attenuate the impact of radioactive deposits. The European RESSAC program (REhabilitation of Soils and Surfaces after an ACcident) aims at studying actions for normal life return in contaminated zones. One of them, called the Decontaminating Vegetal Network (D.V.N.) associates the biological action of turfing plants, producing a dense root-network capable to trap the top contaminated soil particles, and the mechanical efficiency of a turf harvester which can remove only 1 cm of soil. This performance, not associated with other techniques of soil removal such as scrapers or bulldozers, leads to minimize the waste production. The D.V.N is a vegetal cover spread over the contaminated soil, using the hydro-seeding technique. The growing plants are forming a pleasant lawn which may have a positive impact on the public opinion compared to techniques using bitumen mixtures to cover the soil. Field experiments involving labelling solutions of stable molybdenum salts simulating the contamination of the soil have shown that this technique can be applied as well on homogeneous cultivated soil surfaces as on roughly ploughed soils. 4 refs., 3 figs., 2 tabs

  13. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  14. Remediation of diesel-oil-contaminated soil using peat

    International Nuclear Information System (INIS)

    Ghaly, R.A.; Pyke, J.B.; Ghaly, A.E.; Ugursal, V.I.

    1999-01-01

    We investigated a remediation process for diesel-contaminated soil, in which water was used to remove the diesel from the soil and peat was used to absorb the diesel layer formed on the surface of the water. The percolation of water through the soil was uniform. The time required for water to percolate the soil and for the layers (soil, water, and diesel) to separate depended on the soil depth. Both the depth of soil and mixing affected the thickness of the diesel layer and thus diesel recovery from the contaminated soil. Higher diesel recovery was achieved with smaller soil depth and mixing. The initial moisture content and the lower heating value of the peat were 7.1% and 17.65 MJ/kg, respectively. The final moisture content and lower heating value of the diesel-contaminated peat obtained from the experiment with mixing were 8.65 - 10.80% and 32.57 - 35.81 MJ/kg, respectively. The energy content of the diesel-contaminated peat is much higher than that of coal, and the moisture content is within the range recommended for biomass gasification. (author)

  15. Testing of multistep soil washing for radiocesium-contaminated soil containing plant matter

    International Nuclear Information System (INIS)

    Funakawa, Masafumi; Tagawa, Akihiro; Okuda, Nobuyasu

    2012-01-01

    Decontamination work following radiocesium exposure requires a vast reduction in the amount of contaminated soil generated. The current study subjected 4 types of contaminated soil with different properties to multistep soil washing under the same conditions. This study also determined the effectiveness of radiocesium decontamination and the extent to which the amount of contaminated soil was reduced. In addition, the effectiveness of plant matter separation, adsorbent addition, and grinding as part of multistep soil washing was determined using the same contaminated soil. Results of testing indicated that the rate of radiocesium decontamination ranged from 73.6 to 89.2% and the recovery rate ranged from 51.5 to 84.2% for twice-treated soil, regardless of the soil properties or cesium level. Plant matter in soil had a high radiocesium level. However, there was little plant matter in our soil sample. Therefore, plant matter separation had little effect on the improvement in the percentage of radiocesium decontamination of twice-treated soil. Soil surface grinding improved the rate of radiocesium decontamination of twice-treated soil. However, radiocesium in soil tightly bound with minerals in the soil; thus, the addition of an adsorbent also failed to improve the rate of radiocesium decontamination. (author)

  16. Advances in treatment methods for uranium contaminated soil and water

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2002-01-01

    Water and soil contaminated with actinides, such as uranium and plutonium, are an environmental concern at most U.S. Department of Energy sites, as well as other locations in the world. Remediation actions are on going at many sites, and plans for cleanup are underway at other locations. This paper will review work underway at Clemson University in the area of treatment and remediation of soil and water contaminated with actinide elements. (author)

  17. Effects of initial nitrogen addition on deep-soils bioventing at a fuel-contaminated site

    International Nuclear Information System (INIS)

    Ratz, J.W.; Guest, P.R.; Downey, D.C.

    1994-01-01

    A ruptured pipe at a Burlington Northern Railroad (BNRR) fueling pump house resulted in over 60,000 gallons of No. 2 diesel fuel spilling onto the surrounding soil. An initial investigation of site conditions indicated that subsurface soils were contaminated with diesel fuel to ground water, which was observed approximately 70 feet below the ground surface. State regulatory agencies requested that BNRR develop and implement a remedial action plan to treat these diesel-contaminated soils and protect local ground waters. Engineering-Science, Inc. (ES) was retained for this work and, after evaluating a variety of remediation technologies recommended using soil venting methods to enhance the immediate volatilization and long-term biodegradation of fuel residuals. ES designed and implemented a ''bioventing'' pilot test to determine soil properties such as air permeability, and to assess the potential for partial volatilization and long-term biodegradation of diesel fuel residuals at the site. Hydrocarbon concentrations, carbon dioxide, and oxygen levels were monitored at a vapor extraction well (VEW) and six vapor monitoring points (VMPs) to determine the rates of volatilization and biological degradation of fuel residuals. Pilot test results confirmed that full-scale bioventing was feasible for the remediation of this site

  18. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  20. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  1. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  2. Remediation of a radioactively contaminated soil using a mobile soil-washing system

    International Nuclear Information System (INIS)

    Grant, D.C.; Lahoda, E.J.; Dietrich, A.J.; Weigle, D.H.; Keegan, C.P.; Sachse, J.D.

    1993-01-01

    In order to obtain free-release of a former uranium mining site in Texas, it was required that the surface soil meet specific radiological guidelines. The soil has been contaminated with uranium and radium as a result of the spillage of well-drilling material, process solutions, and ion exchange resins during mining. To meet the required guidelines, the contaminated soil had to be either removed and disposed of off-site or remediated. For economic and long-term liability reasons, remediation of the soil by soil washing was performed. The remediation of this site utilizing the Scientific Ecology Group's soil washing system is discussed in this paper

  3. DEMONSTRATION BULLETIN: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM - BROWN & ROOT ENVIRONMENTAL

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System (SVVS*) is an in-situ vacuum extraction/air sparging and bioremediation technology for the treatment of subsurface organic contamination in soil and groundwater. The technology, developed by Billings and Associates, Inc., and o...

  4. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  5. Uptake by Plants of Radiostrontium from Contaminated Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1965-01-01

    In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat-treatment of the contamin......In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat......-treatment of the contaminated soil surface and heavy phosphate application might thus reduce the uptake by plants of radiostrontium more efficiently than liming, which is only effective in soils of low calcium status. In the investigation reviewed here the influence of heat treatment and superphosphate application on the plant...... uptake of radiostrontium was examined in pot experiments. For comparison the effect of applying calcium carbonate to the contaminated soil surface was also determined....

  6. Bioremediation of soil contaminated by spent diesel oil using ...

    African Journals Online (AJOL)

    Objectives: To investigate the potential of Pleurotus pulmonarius in the bioremediation of soil contaminated with spent diesel oil at 5, 10 and 15% (v/w) level of contamination over a period of one and two months of incubation. Methodology and results: A pure culture of P. pulmonarius was obtained from the Plant physiology ...

  7. Remediation of arsenic-contaminated soils and groundwaters

    Science.gov (United States)

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  8. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    Trelles, G; Pochintesta, L; Ehrlich, S.

    2008-01-01

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  9. Application of Spanish legislation on radiation protection in contaminated soils

    International Nuclear Information System (INIS)

    Trueba Alonso, C.; Robles Atienza, B.

    2013-01-01

    As the developments that have led the regulations on contaminated soils conventional pollutants are more advanced than those due to radioactive contaminants, this work is a state of the art of the current situation and is framed within the developments in R and D for radiation protection of the public and the environment. (Author)

  10. Assisted bioremediation tests on three natural soils contaminated with benzene

    OpenAIRE

    Carvalho, Maria Manuela; Vila, Maria Cristina; Matos, Cristina Delerue; Teles, Maria Teresa Oliva; Fiúza, António

    2015-01-01

    Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremedia...

  11. Characterization of soils from an industrial complex contaminated with elemental mercury

    International Nuclear Information System (INIS)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-01-01

    Historical use of liquid elemental mercury (Hg(0) l ) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0) l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0) g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0) l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0) l was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0) l in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0) l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the

  12. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil...... structure on the movement of water and Cu in a long-term polluted soil. Undisturbed soil cores collected along a Cu gradient (from about 20 to about 3800 mg Cu kg−1 soil) were scanned using X-ray computed tomography (CT). Leaching experiments were performed to analyze tracer transport, colloid leaching......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...

  13. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    Science.gov (United States)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  14. Remediation trials of crude oil contaminated soil using different ...

    African Journals Online (AJOL)

    A 3 month remediation trial of the use of detergent and sawdust in different combination forms in the restoration of a crude oil contaminated tropical soil was investigated. 8 remediation treatments labeled A – H in addition to the control (I) were used in 10 kg soil artificially polluted with 300 ml crude oil each. Remediation ...

  15. Chelate-assisted phytoextraction of lead from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, E.M.; Sims, J.T.; Cunningham, S.D.; Huang, J.W.; Berti, W.R.

    1999-12-01

    Phytoextraction, a remediation strategy for lead (Pb)-contaminated soils that removes soil Pb through plant uptake and harvest, may be enhanced by use of synthetic chelates. The authors evaluated Pb desorption from four contaminated soils by seven chelates (CDTA, DTPA, EDDHA, EFTA, HEDTA, HEIDA, and NTA) at three rates. The three most effective chelates (CDTA, DTPA, and HEDTA) were used in greenhouse studies with an uncontaminated soil and a Pb-contaminated soil to determine the effect of chelate type and rate on growth, Pb uptake, and plant elemental composition. Lead desorption varied with chelate and soil and increased with chelate rate, averaging 948 mg Pb kg{sup {minus}1} at the 20 mmol kg{sup {minus}1} rate vs. 28 mg Pb kg{sup {minus}1} by the control. The general ranking of chelate effectiveness, based on total Pb desorbed, was HEDTA > CDTA > DTPA > EGTA > HEIDA > EDDHA {approximately} NTA. Plant uptake of Pb from the contaminated soil was enhanced by CDTA, DTPA, and HEDTA, but with even the most effective treatment (corn, high CDTA rate), the amount of Pb extracted by plants was rather low. Lead extractable by the Toxicity Characteristic Leaching Procedure (TCLP) was increased from 9 mg L{sup {minus}1} in the control to from 47 to 174 mg L{sup {minus}1} in soils treated with 20 mmol kg{sup {minus}1} CDTA or DTPA and chelates generally caused a shift in Pb from resistant to more soluble chemical fractions.

  16. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  17. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    Science.gov (United States)

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  18. Trace elements contamination of soils around gold mine tailings ...

    African Journals Online (AJOL)

    This study investigated the issue of tailings dams as a potential source of trace elements contamination in soils at the Obuasi gold mine in Ghana. Soil samples taken from depths of up to 12 cm and within a radius of 400 m from the tailings dams (active and recommissioned), were analysed for As, Cu, Pb and. Zn using ...

  19. Remediation of Oil-Contaminated Soil in Greenland

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested. In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate...

  20. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  1. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1995-01-01

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  2. Use of LCA as decision support for the selection of remedial strategies for remediation of contaminated soil and groundwater

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2009-01-01

    , there is a trade-off between obtaining local beneficial effects from the remediation and generating environmental impacts on the regional and global scale due to the remedial actions. Therefore there is a need for including the impact of soil contaminants that will potentially leach to the groundwater, e......Groundwater is the dominant source of drinking water in Denmark and the general policy is to maintain the groundwater as a clean source of drinking water. The risk of groundwater contamination is therefore often the prime reason for remediating a contaminated site. Chlorinated solvents are among...... the contaminants most frequently found to be threatening the groundwater quality in Denmark and worldwide. Life cycle assessment has recently been applied as part of decision support for contaminated site management and subsurface remediation techniques. Impacts in the groundwater compartment have only gained...

  3. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  4. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  5. Uniaxial compression tests on diesel contaminated frozen silty soil specimens

    International Nuclear Information System (INIS)

    Chenaf, D.; Stampli, N.; Bathurst, R.; Chapuis, R.P.

    1999-01-01

    Results of a uniaxial, unconfined compression test on artificial diesel-contaminated and uncontaminated frozen silty soils are discussed. The testing program involved 59 specimens. The results show that for the same fluid content, diesel contamination reduced the strength of the frozen specimens by increasing the unfrozen water content. For example, in specimens containing 50 per cent diesel oil of the fluid content by weight the maximum strength was reduced by 95 per cent compared to the strength of an uncontaminated specimen. Diesel contamination was also shown to contribute to the slippage between soil particles by acting as a lubricant, thus accelerating the loss of compressive strength.13 refs., 18 figs

  6. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    Science.gov (United States)

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  7. Radioactive contamination: atlas France and Europe. French soils contamination by Chernobyl accident fallouts - The lie evidences

    International Nuclear Information System (INIS)

    Paris, Andre; Castanier, Corinne

    2002-01-01

    This document deals with the Chernobyl nuclear accident impacts and the authorities transparency. The first part is a reference document constituted by the CRIIRAD and showing how the authorities strove for minimizing the real contamination of French soils by the Chernobyl fallouts. In the second part, an atlas provides the detailed maps of the radioactive contamination of soils based on more than 3000 measurements carried out by a geologist, Andre Paris, assisted by the CRIIRAD laboratory

  8. Oak Ridge Integrated Field-Scale Research Challenge ERKP686: Multi-scale Investigations on the Rates and Mechanisms of Targeted Immobilization and Natural Attenuation of Metal, Radionuclide and Co-Contaminants in the Subsurface (project overview)

    International Nuclear Information System (INIS)

    Phil Jardine; Dave Watson; Susan Hubbard; Ken Williams; J. Chen

    2007-01-01

    Historical disposal of wastes from the operation of three industrial plant sites on the Oak Ridge Reservation (ORR) has created extensive areas of subsurface inorganic, organic, and radioactive contamination (thousands of unlined trenches, pits, ponds). These wastes have resulted in approximately 1,500 acres of contaminated groundwater on the ORR. Much of the original contamination is now present as secondary sources within the soil-rock matrix outside of the original disposal sites. The secondary source areas are extensive and encompass regions on the watershed scale (tens of km). A significant limitation in assessing remediation needs of the secondary contaminant sources is the lack of information on the rates and mechanisms of coupled hydrological, geochemical, and microbial processes that control contaminant migration. Contaminant fluxes emanating from the secondary sources are often so high as to prevent complete attenuation of the groundwater plumes. Interventions such as source actions may be a prerequisite for effective and rapid natural attenuation (source actions such as: reduction of the soluble contaminant concentration at the source or controlling the flux from the source to groundwater by decreasing recharge). The goals are to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control in situ transport, remediation and natural attenuation of metals, radionuclides, and co-contaminants (i.e. U, Tc, NO 3 ) across multiple scales ranging from molecular to watershed levels. Provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at sites throughout the DOE complex to: (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention. The objectives are: (1) quantify recharge and other hydraulic drivers for groundwater flow

  9. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Management and re-use of contaminated soils

    International Nuclear Information System (INIS)

    Nowicki, V.K.; LeBlanc, M.

    1993-01-01

    The volume occupied by petroleum-contaminated soils in landfill facilities could be totally eliminated by treatment of these soils in separate facilities. Once treated, the soils could be recycled. In New Brunswick, one such treatment facility was opened in 1992 adjacent to the Fredericton regional landfill site; a second site was opened near Moncton in 1992. These facilities receive petroleum-contaminated soil from such users as gasoline stations, bulk plants, institutions, and transport companies, as well as from oil spill sites. The types of contaminants present range from gasoline to heavy fuel oils and greases, and the soils can vary from clays to gravels. Incoming soils are layered on treatment pads and treated by bioremediation. A bionutrient mixture containing fertilizers plus an amount of adapted, naturally-occurring petroleum hydrocarbon degrading microorganisms is sprayed onto the pile layer by layer. Aeration tubing is also installed during this layering process. When the piles are complete, they are covered with black plastic and aerated. Bioremediation times vary from 10 to 24 weeks. The facility has successfully decontaminated over 20,000 tonnes of soil to date. The resulting soil can be used for such purposes as soil cover and backfill. The bioremediation process itself is portable and can be initiated at landfill sites themselves to reduce transport and handling costs. 16 refs., 4 figs

  11. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    Science.gov (United States)

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  12. Effect of biodegradable amendments on uranium solubility in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Duquene, L. [Belgian Nuclear Research Centre, Environment Health and Safety, Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)], E-mail: lduquene@sckcen.be; Tack, F.; Meers, E. [Ghent University, Laboratory for Analytical Chemistry and Applied Ecochemistry, Coupure Links 653, B-9000 Gent (Belgium); Baeten, J. [Katholieke Hogeschool Kempen, Departement of Health-Care and Chemistry, Kleinhoefstraat 4, B-2440 Geel (Belgium); Wannijn, J.; Vandenhove, H. [Belgian Nuclear Research Centre, Environment Health and Safety, Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2008-02-25

    Chelate-assisted phytoextraction has been proposed as a potential tool for phytoremediation of U contaminated sites. In this context, the effects of five biodegradable amendments on U release in contaminated soils were evaluated. Three soils were involved in this study, one with a relatively high background level of U, and two which were contaminated with U from industrial effluents. Soils were treated with 5 mmol kg{sup -1} dry weight of either citric acid, NH{sub 4}-citrate/citric acid, oxalic acid, S,S-ethylenediamine disuccinic acid or nitrilotriacetic acid. Soil solution concentration of U was monitored during 2 weeks. All amendments increased U concentration in soil solution, but citric acid and NH{sub 4}-citrate/citric acid mixture were most effective, with up to 479-fold increase. For oxalic acid, S,S-ethylenediamine disuccinic acid and nitrilotriacetic acid, the increase ranged from 10-to 100-fold. The highest concentrations were observed 1 to 7 days after treatment, after which U levels in soil solution gradually decreased. All amendments induced a temporary increase of soil solution pH and TOC that could not be correlated with the release of U in the soil solution. Thermodynamic stability constants (log K) of complexes did not predict the relative efficiency of the selected biodegradable amendments on U release in soil solution. Amendments efficiency was better predicted by the relative affinity of the chelate for Fe compared to U.

  13. Validated sampling strategy for assessing contaminants in soil stockpiles

    International Nuclear Information System (INIS)

    Lame, Frank; Honders, Ton; Derksen, Giljam; Gadella, Michiel

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The development process started with an investigation into how sample pre-treatment could be used to obtain representative results from composite samples of heterogeneous soil stockpiles. Combining a large number of random increments allows stockpile heterogeneity to be fully represented in the sample. The resulting pre-treatment method was then combined with a theoretical approach to determine the necessary number of increments per composite sample. At the second stage, the sampling strategy was evaluated using computerised models of contaminant heterogeneity in soil stockpiles. The now theoretically based sampling strategy was implemented by the Netherlands Centre for Soil Treatment in 1995. It was applied to all types of soil stockpiles, ranging from clean to heavily contaminated, over a period of four years. This resulted in a database containing the analytical results of 2570 soil stockpiles. At the final stage these results were used for a thorough validation of the sampling strategy. It was concluded that the model approach has indeed resulted in a sampling strategy that achieves analytical results representative of the mean concentration of soil stockpiles. - A sampling strategy that ensures analytical results representative of the mean concentration in soil stockpiles is presented and validated

  14. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance of these path......Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW ... particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain...

  15. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  16. Clean-up criteria for remediation of contaminated soils

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Wilson, J.R.; Sato, Chikashi

    1997-01-01

    'How clean is clean?' is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects

  17. Bioremediation of petroleum-contaminated soil: A Review

    Science.gov (United States)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  18. Remediation of Contaminated Soils by Solvent Flushing

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the

  19. Accelerated remediation of pesticide-contaminated soil with zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Shea, P.J. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States)]. E-mail: pshea@unl.edu; Machacek, T.A. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States); Comfort, S.D. [University of Nebraska-Lincoln, Lincoln, NE 68583-0915 (United States)

    2004-11-01

    High pesticide concentrations in soil from spills or discharges can result in point-source contamination of ground and surface waters. Cost-effective technologies are needed for on-site treatment that meet clean-up goals and restore soil function. Remediation is particularly challenging when a mixture of pesticides is present. Zerovalent iron (Fe{sup 0}) has been shown to promote reductive dechlorination and nitro group reduction of a wide range of contaminants in soil and water. We employed Fe{sup 0} for on-site treatment of soil containing >1000 mg metolachlor, >55 mg alachlor, >64 mg atrazine, >35 mg pendimethalin, and >10 mg chlorpyrifos kg{sup -1}. While concentrations were highly variable within the windrowed soil, treatment with 5% (w/w) Fe{sup 0} resulted in >60% destruction of the five pesticides within 90 d and increased to >90% when 2% (w/w) Al{sub 2}(SO{sub 4}){sub 3} was added to the Fe{sup 0}. GC/MS analysis confirmed dechlorination of metolachlor and alachlor during treatment. Our observations support the use of Fe{sup 0} for ex situ treatment of pesticide-contaminated soil. - Capsule: Zerovalent iron promotes pesticide degradation in highly contaminated soil.

  20. Bioventing of gasoline-contaminated soil under varied laboratory conditions

    International Nuclear Information System (INIS)

    Hallman, M.; Shewfelt, K.; Lee, H.; Zytner, R.G.

    2002-01-01

    Bioventing is becoming a popular in situ soil remediation technology for the treatment of hydrocarbon-contaminated soil. Bioventing relies on enhancing the growth of indigenous microorganisms, which can mineralize the contaminant in the presence of sufficient nutrients. Although bioventing is currently being used as a remediation technology, there are some important questions that remain to be answered in order to optimize the process. These questions include the optimum soil moisture content, type and amount of nutrients necessary, and the best means of producing these conditions in the field. To address these questions, two distinct phases of experiments were conducted. The first experimental phase was designed to determine the optimum moisture content, C:N ratio and form of nitrogen supply for this soil. Using approximately 200g of contaminated soil in each of a series of sealed respirometers, microbial degradation of gasoline under bioventing conditions was quantified for C:N ratios of 5, 10 and 20:1, using varying mixtures of NH 4 + - and NO 3 - -N. The results of the studies indicated that the optimum soil moisture content was 15 wt%, with a C:N ratio of 10:1, using a 100% ammonium application. Using the results of the first phase, a second phase of laboratory research was initiated. Five mesoscale reactors have been developed to simulate the bioventing process that takes place in the field. These reactors are filled with approximately 4kg of gasoline-contaminated soil. The initial results are favourable. (author)

  1. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  2. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  3. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  4. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Science.gov (United States)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  5. Phytoremediation of soil contaminated with low concentrations of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Entry, J A; Vance, N C; Hamilton, M A; Zabowski, D; Watrud, L S; Adriano, D C [Auburn University, Auburn, AL (United States). Dept. of Agronomy and Soils

    1996-03-01

    Ecsosytems throughout the world have been contaminated with radionuclides by above-ground nuclear testing, nuclear reactor accidents and nuclear power generation. Radioisotopes characteristics of nuclear fission, such as {sup 137}Cs and {sup 90}Sr, that are released into the environment can become more concentrated as they move up the food chain often becoming human health hazards. Natural environmental processes will redistribute long lived radionuclides that are released into the environment among soil, plants and wildlife. Numerous studies have shown that {sup 137}Cs and {sup 90}Sr are not removed from the top 0.4 metres of soil even under high rainfall, and migration rate from the top few centimetres of soil is slow. The top 0.4 meters of the soil is where plant roots actively accumulate elements. Since plants are known to take up and accumulate {sup 137}Cs and {sup 90}Sr, removal of these radionuclides from contaminated soils by plants could provide a reliable and economical method of remediation. One approach is to use fast growing plants inoculated with mycorrhizal fungi combined with soil organic amendments to maximize the plant accumulation and removal of radionuclides from contaminated soils, followed by harvest of above-ground portion of the plants. High temperature combustion would be used to oxidize plant material concentrating {sup 137}Cs and {sup 90}Sr in ash for disposal. When areas of land have been contaminated with radionuclides are large, using energy intensive engineering solutions to mediate huge volumes of soil is not feasible or economical. Plants are proposed as a viable and cost effective method to remove radionuclides from the soils that have been contaminated by nuclear testing and nuclear reactor accidents. 40 refs.

  6. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  7. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  8. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  9. Optimization of surfactant-aided remediation of industrially contaminated soils

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1996-01-01

    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions

  10. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    International Nuclear Information System (INIS)

    Koopmans, G.F.; Roemkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg -1 . A biomass production of 1 and 5 t dm ha -1 yr -1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil

  11. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Koopmans, G.F. [Department of Soil Quality, Wageningen University, Wageningen University and Research Centre (WUR), P.O. Box 47, 6700 AA, Wageningen (Netherlands)], E-mail: gerwin.koopmans@wur.nl; Roemkens, P.F.A.M.; Fokkema, M.J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Song, J.; Luo, Y.M. [Soil and Environmental Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Japenga, J. [Alterra, WUR, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Zhao, F.J. [Soil Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)

    2008-12-15

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg{sup -1}. A biomass production of 1 and 5 t dm ha{sup -1} yr{sup -1} yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production. - An experimental method is presented to be used to estimate the phytoextraction duration of a metal contaminated soil.

  12. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  13. Improvements in the biotreatment of soil contaminated by heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J. [Sanexen Environmental Services Inc., Varennes, PQ (Canada)

    2006-07-01

    This presentation discussed improvements in the biotreatment of soil contaminated by heavy hydrocarbons. The presentation provided information on the background for the investigation such as: difficulty for biotreatment in soil to deal with heavy weathered hydrocarbons and fine grained soils; the involvement of the Montreal Centre of Excellence for Brownfield Remediation (MCEBR) to develop state of the art environmental solutions; and, the selection of Sanexen as the organization with the best price and best performance warranty to perform the required decontamination. The objectives of the study were to improve the performance of biotreatment of soil contaminated with heavy petroleum hydrocarbons; reduce soil biotreatment costs by 30 per cent; improve knowledge and understanding for this type of treatment; and, better identify constraints and optimal strategies in view of these constraints. Specific objectives that were discussed included: improving the microbial flora, attaining a favorable soil temperature at a low cost, identifying the best amendments for bulking of soil, increasing bio-availability of the contaminants, and identifying optimal mechanical handling of the soil. The presentation discussed soils treated; research and development carried out; standard method of biotreatment; alternative methods tested; initial investigation by the MCEBR; pilot test carried out by Sanexen; and, results of the pilot test. As part of the research program with MCEBR, soils that received different amendments were tested at the Biotechnology Research Institute (BRI) of the National Research Council for their ability to degrade added hexadecane and naphthalene. Soil at various stages of the treatment was also sampled and tested by the (BRI). It was concluded that the biotreatment of heavy hydrocarbons in fine grained soils is feasible and that the techniques used reduced biotreatment costs by approximately 25 per cent.

  14. Release behavior of triazine residues in stabilised contaminated soils

    International Nuclear Information System (INIS)

    Ying, G.G.; Kookana, R.S.; Mallavarpu, M.

    2005-01-01

    This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed. - Stabilisation of contaminated soil with a mix of activated carbon and cement may fail to immobilise some contaminants like triazines

  15. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  16. Biological technologies for the remediation of co-contaminated soil.

    Science.gov (United States)

    Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen

    2017-12-01

    Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.

  17. Nitrate and nitrite contamination of sub-surface water in some areas of North West Frontier Province (N.W.F.P.) Pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Khawaja, M.A.; Imdadullah

    1998-01-01

    Over the past few years, nitrate and nitrite contamination of sub-surface water samples from Peshawar, Charsada, Mardan and Nowshera districts of NWFP has been studied. In all the areas under study, nitrate concentration of sub-surface water was found to be below WHO approved limit of 45 mg/l. Whereas city area after 1987 showed a decreasing level of nitrate contamination of sub-surface water, it appeared to be on the increase in water samples from the outskirts of Peshawar-Charsada road. No uniform increasing or decreasing patterns of nitrate contamination were observed for water samples from cantonment, University and Hayatabad, areas of Mardan, Charsada and Nowshera under study. The nitrate contamination of sub-surface water appeared to be due to both the agricultural activities as well as human and animal wastes. A few sub-surface water samples from Peshawar city, Mardan and Nowshera areas indicated high concentration of nitrite, which is alarming in view of the earlier reports showing absence of nitrite in water samples from these areas. However, since 1993, nitrite presence has not been detected in sub-surface water samples from all the areas under present investigation. (author)

  18. Risks, media and the social amplification of soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ouboter, S. [NOK, Networkorganisation for Environmental Quality, Gouda (Netherlands)

    2003-07-01

    Soil experts think of the risks of contaminated sites in terms of adverse effects of toxic substances on human health or environmental quality. In other words, the risk is attributed to the contamination. Social scientists define risk as a situation or event in which something of human value (including humans themselves) has been put at stake and where the outcome is uncertain. Since situations or events are constructions of the human mind, risks are also constructed. A relevant question for a psychologist is to learn how these constructions evolve in the mind of an individual and how this perceived risk influences the individuals' behaviour and well-being. A relevant question for a sociologist is how individuals with their own perceptions, feelings and behaviour interact. Many soil contamination experts experienced that one a site is seen as contaminated by a loathsome source, a chain of adverse reactions can easily put a stigma on that specific location and groups of people associated with that contaminated site. The case of Love Canal is worldwide known as an example of this phenomenon, but many countries have their own national symbol, like Lekkerkerk in the Netherlands. Modern media play an important role in this process. This process is often believed to be irrational and therefore uncontrollable. The question of this workshop is to what level technical soil experts can influence the psychological and social effects of soil contamination, using the social amplification metaphor. (orig.)

  19. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Sun, Shuyu

    2012-01-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model

  20. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The removal of plutonium contaminants from Rocky Flats Plant soil

    International Nuclear Information System (INIS)

    Sunderland, N.R.

    1987-01-01

    This research was undertaken to determine if the TRUclean process could effectively remove radioactive elements from soils other than derived coral. This is an interim report prior to the project report and discusses the outcome of the tests of the Rocky Flats Plant (RFP) soil. The soil tested contained plutonium particulates in the micron and submicron range. Volume reduction and activity removal were accomplished with an overall efficiency of greater than 90%. The TRUclean process is a very practical and economical solution to soil contamination problems at the Rocky Flats Plant

  2. Bioremediation of oil-contaminated soils by composting

    Science.gov (United States)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  3. Release of polyaromatic hydrocarbons from coal tar contaminated soils

    International Nuclear Information System (INIS)

    Priddy, N.D.; Lee, L.S.

    1996-01-01

    A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model

  4. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  5. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  6. Remediation of PCB [polychlorinated biphenyl] -contaminated soils from scrapyards

    International Nuclear Information System (INIS)

    MacKnight, S.

    1991-01-01

    Much of the recent attention on contamination of the environment by polychlorinated biphenyls (PCB) has focused on liquid PCB spills from electrical equipment. A new, and possibly more serious, source of PCB contamination is the scrap yard, typically located in or near major urban centers, where the local scrap dealer would purchase used transformers or other PCB-containing electrical equipment, recover copper and other metals, and dump the PCB-containing oils on the ground. With the rising value of urban and suburban lands, these scrap yards may be slated for redevelopment, making the cleanup of contaminated soils necessary. The heterogeneous distribution of scrap yard contaminants requires a very detailed site assessment, and the heterogeneous mixture of typical scrap yard contaminants (not only PCB) cannot be treated in a simple fashion. These problems are illustrated for the case of the assessment and cleanup of a scrap yard site in Nova Scotia. A grid block system was used to sample soil at the site, and samples were analyzed for PCB, metals, and hydrocarbons. The most severely contaminated spots were mapped; groundwater patterns were also examined. The remediation process can be divided into 5 phases: physical separation of uncontaminated material; three stages of separation of materials into those having single, several-but-similar, and multicomponent mixed contaminations; and selection of appropriate process technologies. Since there is currently no approved PCB destruction facility in Atlantic Canada, excavated soils containing PCB are stored securely on the site to await approval for some type of incineration process

  7. Bioaccumulation of radionuclides and metals by microorganisms: Potential role in the separation of inorganic contaminants and for the in situ treatment of the subsurface

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Wildung, R.E.

    1993-01-01

    Radionuclide, metal and organic contaminants are present in relatively inaccessible subsurface environments at many U.S Department of Energy (DOE) sites. Subsurface contamination is of concern to DOE because the migration of these contaminants into relatively deep subsurface zones indicates that they exist in a mobile chemical form and thus could potentially enter domestic groundwater supplies. Currently, economic approaches to stabilize or remediate these deep contaminated zones are limited, because these systems are not well characterized and there is a lack of understanding of how geochemical, microbial, and hydrological processes interact to influence contaminant behavior. Microorganisms offer a potential means for radionuclide and metal immobilization or mobilization for subsequent surface treatment. Bioaccumulation is a specific microbial sequestering mechanism wherein mobile radionuclides and metals become associated with the microbial biomass by both intra- and extracellular sequestering ligands. Since most of the microorganism in the subsurface are associated with the stationary strata, bioaccumulation of mobile radionuclides and metals would initially result in a decrease in the transport of inorganic contaminants. How long the inorganic contaminants would remain immobilized, the selectivity of the bioaccumulation process for specific inorganic contaminants, the mechanism involved, and how the geochemistry and growth conditions of the subsurface environment influence bioaccumulation are not currently known. This presentation focuses on the microbial process of immobilizing radionuclides and metals and using this process to reduce inorganic contaminant migration at DOE sites. Background research with near-surface microorganisms will be presented to demonstrate this process and show its potential to reduce inorganic contaminant migration. Future research needs and approaches in this relatively new research area will also be discussed

  8. Sustainable remediation of mercury contaminated soils by thermal desorption.

    Science.gov (United States)

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  9. Tannic acid for remediation of historically arsenic-contaminated soils.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Klik, Barbara; Kulikowska, Dorota

    2017-12-22

    Soil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent. The scope of this study included optimization of the operational conditions of As removal, determination of As distribution in soil before and after double soil washing, and measurement of TA loss during washing. The optimum conditions for As removal were 4% TA, pH 4 and 24 h washing time. The average As removal after single and double washings was 38% and 63%, respectively. TA decreased As content in amorphous and poorly crystalline oxides by >90%. Although TA increased the amount of As in the easily mobilizable As fraction, the stability of As in washed soils increased, with reduced partition indexes of 0.52-0.66 after washing. The maximum capacity of the soils to adsorb TA (q max ) was 50.2-70.4 g C/kg. TA sorption was higher at alkaline than at acidic conditions. Only TA removes As from soils effectively if the proportion of As in amorphous and poorly crystalline oxides is high. Thus, it can be considered for remediation of historically contaminated soils.

  10. Distribution and Source Identification of Pb Contamination in industrial soil

    Science.gov (United States)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb

  11. Assessment of soil contamination in area surrounding Tuwaitha nuclear facilities

    International Nuclear Information System (INIS)

    Al-Taii, A.A.F.; AI-Jobori, S.H.; Al-Maadhidi, J.F.

    2012-01-01

    The wide spread looting of the Tuwaitha Nuclear Facilities as well as damaging of some buildings in 2003, had offered possibilities of contamination of soil environment inside the Site. The objective of the present work was to investigate soil contamination to help in future decontamination programs. A total of 25 soil surface samples (including one reference sample) covered different locations in the Site were collected in March 2011. High purity Ge detector was used for gamma spectrometry of soil samples. Data of total and spectral gamma for U series, Th series, 40 K and 137 Cs are presented. Slight variations were observed in specific activity of the U series 214 Bi or 214 Pb and 226 Ra among measured soil samples where the range was 10.3-12.7 for 214 Bi as compared with 12.2-33.4 Bq/kg for 226 Ra. Values of both 214 Bi and 226 Ra are in the range of reference sample specific activity indicating that no evidence of contamination had occurred in the investigated area. Results of activity concentrations of thorium series 228 Ac or 208 Tl, 212 Pb, and 212 Bi are in the range of reference sample and close to those values given worldwide for natural uranium in soil. The levels of 40 K in soil are within the natural abundance of this isotope in the soil where the range was 207.6-266.1 with 220.3 Bq/kg for the reference sample. On the other hand, 137 Cs specific activities showed great variation among measured samples. The minimum value for 137 Cs was 0.6 and the maximum 7.6 compared with 0.8 Bq/kg for the control soil sample. The non-uniformity of radioactivity concentration of 137 Cs suggest the presence of contamination in some locations although this level is considered as an acceptable level and no hazardous effect will be generated.

  12. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    International Nuclear Information System (INIS)

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-01-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  13. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  14. Restoration of contaminated soils; Restauracion de suelos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Miranda J, Jose Eduardo

    2009-07-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [Spanish] Una gran variedad de tecnicas son utilizadas para la restauracion de suelos contaminados. La contaminacion se presenta tanto por contaminantes organicos como inorganicos. Las condiciones ambientales y caracteristicas del suelo se deben de tomar en cuenta para poder implementar una tecnica remediadora. Las tecnologias de biorremediacion son mostradas como ayuda para remover una gran variedad de contaminantes del suelo. (autor)

  15. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  16. Effects of Two Kinds of Biochars on Soil Cu Availability in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    WANG Xiao-qi

    2016-07-01

    Full Text Available This paper is aimed to research the impacts of different biochars(0,1%,2%,4%, including maize biochar and phytolacca root biochar, on rape growth and the soil Cu availability in the Cu-contaminated red soil via a series of pot experiments. The results showed that, compared with the control, the addition of two kinds of biochars could increase the biomass of the rape. In low Cu-contaminated red soil, added 4% maize biochar and phytolacca root biochar increased the biomass by 21.2 times and 67.9 times; however, the biomass were increased by 8.6 times and 109.6 times under high Cu-contaminated soil. The addition of phytolacca root biochar could increase the soil pH significantly, which has been increased by 0.4~1.6 units with the addition of phytolacca root biochar in low Cu-contaminated red soil, and it had 0.25~1.35 units more than that with maize biochar; In high Cu-contaminated red soil, with the addition of phytolacca root biochar, soil pH was increased by 0.33~1.52 units, which was 0.3~1.25 units higher than maize biochar. There was a significant effect on reducing the soil Cu availability with the addition of the two biochars. Among them, 4% addition of maize biochar and phytolacca root biochar could reduce soil available Cu content by 21.9% and 45.2% in low Cu-contaminated soil, however, it was decreased by 41.9% and 53.8% in high Cu-contaminated soil. Both of the two biochars were able to reduce the Cu accumulation in rape, where there was a decrease by 21.2% and 67.8% with he addition of 4% maize biochar and phytolacca root biochar under low Cu-contaminated soil, and it was decreased by 19.9% and 66.8% in high Cu-contaminated soil respectively. Both of the biochars could ameliorate the acidity and Cu availability in the red soil, enhance the biomass of the rape and reduce the Cu accumulation in rape, but phytolacca root biochar had more effective influence than maize biochar.

  17. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DECOMMISSIONING PROJECT. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2001-01-01

    The Brookhaven Graphite Research Reactor (BGRR), which operated from 1951--1968 is currently undergoing decontamination and decommissioning (D and D). As part of this effort, many of the major structures and facilities (e.g., Above Grade Ducts, Cooling Fans, Pile Fan Sump, Transfer Canal and Instruments Houses) are being removed to eliminate contaminants and reduce the footprint of the overall facility. However, a significant cost savings (almost $5M) can potentially be realized if the large concrete Below Grade Ducts (BGD) can be decontaminated and left in place. In order to do this, soils beneath the ducts must be fully characterized to identify areas where contaminants may have leaked, what radioactive and hazardous contaminants remain, and in what concentrations. This information will then be used to evaluate whether discrete areas of localized contaminated soil can be selectively removed or, if the contamination is significant and widespread, and whether the ducts themselves must be removed for complete cleanup. The information generated from this effort is input into the BGRR BGD Characterization Report and an Engineering Evaluation/Cost Analysis (EE/CA) currently being prepared to evaluate potential options for the ducts. This FY01 Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project combined a suite of innovative technologies to provide cost-effective characterization of the soils beneath the BGD and present the data in an easily understandable three-dimensional representation of the contaminant concentrations beneath the ducts. Conventional characterization of the soil would have required sampling a very large area in a tight grid pattern to ensure that all areas of potential contamination were evaluated. It is estimated that using baseline techniques would require approximately 2500 samples (costing ∼$1.6M), depending on the level of precision required by regulators. This massive amount of data would then be difficult to

  18. Immobilization of uranium in contaminated soil by natural apatite addition

    International Nuclear Information System (INIS)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-01-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P 2 O 5 in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P 2 O 5 in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  19. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  20. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  1. Processing plutonium-contaminated soil on Johnston Atoll

    International Nuclear Information System (INIS)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-01-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical's (TMA's) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab

  2. Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils

    OpenAIRE

    Cheung, Pui-Yi; Kinkle, Brian K.

    2001-01-01

    Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the ...

  3. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat....... Experiments have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination...

  4. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana P.

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat...... have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination....

  5. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    Directory of Open Access Journals (Sweden)

    María Alejandra Trujillo Toro

    2012-10-01

    Full Text Available This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for contaminated soils. Within Colombia, oil companies have been implementing the bioremediation of hydrocarbon contaminated soils in order to manage the waste coming from activities of oil drilling, refinement, transport and distribution.These practices must be considered viable for their ease of implementation, their low overhead costs, and for the benefits they provide towards environmental quality. Among the positive impacts that these practices have generated, it may consider the following: a solution for the problem of hydrocarbon contaminated soils, alternatives for the ultimate disposal of said waste without affecting ground, water or air resources, the low cost of the operation, and the technical experience of sustainable development which can continue to be implemented in companies dealing with dangerous waste.

  6. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  7. Amendment trials for bioremediation of sodium and chloride contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D. [Western Alfalfa Milling Co. Ltd., Norquay, SK (Canada)

    2005-06-30

    Details of a soil amendment experiment was presented. Soil samples from sodium and chloride contaminated soil were taken from a site located in southeastern Alberta. Soil amendments included high protein dehydrated alfalfa pellets, 2 types of Zeolite, and used coconut coir. The aim of the study was to find an effective in-situ method of remediating the soil while establishing the highest possible plant biomass. Preliminary trial data indicated a strong trend for high plant protein pellets to increase plant productivity on sodium and chloride contaminated soil. The addition of alfalfa increased plant height and stem diameter, as well as leaf width, which increased incrementally with higher volumes of alfalfa. Equivalent rates of .5 MT to 4 MT per acre application rates were used in the trial. Coconut coir was used at a rate of 30 per cent of the volume of the growing medium and also showed increased growth. An experiment was conducted using harvested plant matter from the samples to determine the effect of the 3 amendments on sodium uptake by the plants. Results showed that the sodium uptake significantly increased with the application of soil amendments, particularly when alfalfa pellets were applied, with percentages of sodium found in the plant tissue almost twice as high as percentages found in the control sample. Sodium levels also increased in the plant tissues where coconut coir was used, although to a lesser degree than levels found in plants grown with the alfalfa amended soils. Zeolite did not perform as well on its own. However, it was noted that previous trials have shown good performance when Zeolite was mixed into sodium/chloride contaminated soils and combined with water filtration. It was concluded that the soil amendments improved plant growth, and increased the sodium uptake by plants. The consortium is pursuing industry support to plan larger field studies in the 2006 season. 2 tabs., 5 figs.

  8. Ecotoxicological hazard assessment of hydrocarbon contaminated soils: A case study

    International Nuclear Information System (INIS)

    Roy, Y.; Pauwels, S.J.; Chasse, R.

    1994-01-01

    The Ecotoxicological Hazard Assessment (EHA) developed by the Quebec Ministry of Environment and Wildlife was used as part of the management scheme of contaminated soils from a former refinery. The study consists of assessing five types of soils (reference, heavily contaminated, slightly contaminated, thermally-treated, and biotreated) to determine their relative intrinsic hazard. During the exploratory activities a series of ten assessment endpoints where identified to support this typical EHA. During SOURCE characterization, the physicochemical make-up of the soils is described and the presence and concentrations of priority pollutants is determined. During FATE characterization, the potential for bioconcentration, mobility, and persistence of pollutants is determined. During EFFECTS characterization, the soils and their leachates are tested using standard terrestrial and aquatic bioassays. The data from the toxicological and analytical testing program are evaluated semi-quantitatively on the basis of a scoring system developed by consensus. The discussion will highlight how data are used within an EHA to streamline the decision-making process regarding the follow-up cleanup and disposal of contaminated soils

  9. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil

    International Nuclear Information System (INIS)

    Chirakkara, Reshma A.; Reddy, Krishna R.; Cameselle, Claudio

    2015-01-01

    This study examines the effects of electrokinetic amendments for phytoremediation of mixed contaminated soil where typical silty clay soil was spiked with organic contaminants (naphthalene and phenanthrene) and heavy metal (lead, cadmium and chromium). The contaminated soil was treated with compost and placed in electrokinetic cells, which were seeded with oat plant or sunflower. Thirty days after germination, 25 V alternating current was applied to selected cells using graphite electrodes for 3 h per day. The plants were harvested after a growth period of 61 days. One cell remained unplanted to evaluate the effect of the electric current on the soil, alone. The results confirm a significant reduction of heavy metals and organic contaminants in soil. However, there was no noticeable improvement of heavy metal phytoextraction or PAH degradation due to the application of electric field despite the increase in biomass production by the plants subjected to the electric current. The electric potential application time and frequency are suggested to be increased to have noticeable effects in heavy metal uptake and PAHs degradation.

  10. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    Directory of Open Access Journals (Sweden)

    Nasser Sewalem

    2014-03-01

    Full Text Available Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower (Helianthus annuus L. plants as a potential phytoremediator to soils contaminated with cadmium (Cd and lead (Pb was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid peroxidation and membrane leakage with less affected photosynthesis in the leaves of the treated sunflower seedlings compared to the effects of Pb. The results presented here showed that a high amount of the total absorbed Cd (88.84% was accumulated in roots, while a high amount of the total absorbed Pb (71.39 was tranlocated to shoots of sunflower seedlings. Similar trends of Cd and Pb allocation between roots and shoots at the yield stage were recorded. We suggest here that sunflower plants may remediate Cd contaminated soils through phytostabilization, while may remediate Pb contaminated soils through phytoextraction. Finaly, the trace amounts of Cd and Pb that were accumulated in seeds recommends sunflower plants to be used safely and economically for cleaning up soils contaminated with Cd and/or Pb.

  11. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  12. Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils

    Science.gov (United States)

    Fernández, María D.; Babín, Mar; Tarazona, José V.

    The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.

  13. Treatment of NORM contaminated soil from the oilfields.

    Science.gov (United States)

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency....

  15. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  16. Application of autoradiographic methods for contaminant distribution studies in soils

    International Nuclear Information System (INIS)

    Povetko, O.G.; Higley, K.A.

    2000-01-01

    In order to determine physical location of contaminants in soil, solidified soil 'thin' sections, which preserve the undisturbed structural characteristics of the original soil, were prepared. This paper describes an application of different autoradiographic methods to identify the distribution of selected nuclides along key structural features of sample soils and sizes of 'hot particles' of contaminant. These autoradiographic methods included contact autoradiography using CR-39 (Homalite Plastics) plastic alpha track detectors and neutron-induced autoradiography that produced fission fragment tracks in Lexan (Thrust Industries, Inc.) plastic detectors. Intact soil samples containing weapons-grade plutonium from Rocky Flats Environmental Test Site and control samples from outside the site location were used in thin soil section preparation. Distribution of particles of actinides was observed and analyzed through the soil section depth profile from the surface to the 15-cm depth. The combination of two autoradiographic methods allowed to distinguish alpha- emitting particles of natural U, 239+240 Pu and non-fissile alpha-emitters. Locations of 990 alpha 'stars' caused by 239+240 Pu and 241 Am 'hot particles' were recorded, particles were sized, their size-frequency, depth and activity distributions were analyzed. Several large colloidal conglomerates of 239+240 Pu and 241 Am 'hot particles' were found in soil profile. Their alpha and fission fragment 'star' images were micro photographed. (author)

  17. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    International Nuclear Information System (INIS)

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-01-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10 5 Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10 4 Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  18. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, A.P. [JRC ' NIKIET' , Moscow (Russian Federation); Lebedev, N.M. [LLC ' Aleksandra-Plus' , Vologda (Russian Federation); Savkin, A.E. [SUE SIA ' Radon' , Moscow (Russian Federation)

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  19. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates

    National Research Council Canada - National Science Library

    Reynolds, Charles

    1998-01-01

    ...-landfarming, recirculating leachbeds, and infiltration galleries. Landfarming involves adding water and nutrients to contaminated soil to stimulate microbial activity and contaminant degradation...

  20. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  1. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  2. Responses of the soil decomposer community to the radioactive contamination

    International Nuclear Information System (INIS)

    Svetlana, Maksimova

    2004-01-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m 2 and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  3. Responses of the soil decomposer community to the radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Svetlana, Maksimova [Institute of Zoology of National Academy of Sciences of Belarus, Minsk (Belarus)

    2004-07-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m{sup 2} and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  4. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-01-01

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared

  5. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    ... followed in the order of their increasing molecular weight. The synergy of the bacterial isolates and the biosurfactant produced from B. vulgaris agrowaste could be used in environmental bioremediation of PAHs even in silty soil. Keywords: Benz(a)anthracene, benzo(a)pyrene, bioremediation, biosurfactant, Beta vulgaris, ...

  6. Magnetic study of weakly contaminated forest soils

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Jordanova, Neli; Petrovský, Eduard; Podrázský, V.

    2003-01-01

    Roč. 148, 1/4 (2003), s. 31-44 ISSN 0049-6979 R&D Projects: GA AV ČR IAA3012905 Institutional research plan: CEZ:AV0Z3012916 Keywords : anthropogenic ferrimagnetics * environmental magnetism * soil pollution Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.883, year: 2003

  7. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  8. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Mang [School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, Jiangxi Province (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang Zhongzhi, E-mail: zzzhang1955@hotmail.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Qiao Wei; Guan Yueming; Xiao Meng; Peng Chong [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China)

    2010-07-15

    The degradation of bioremediation residues by hydrogen peroxide in petroleum-contaminated soil was investigated at circumneutral pH using a Fenton-like reagent (ferric ion chelated with EDTA). Batch tests were done on 20 g soil suspended in 60 mL aqueous solution containing hydrogen peroxide and Fe{sup 3+}-EDTA complex under constant stirring. A slurry reactor was used to treat the soil based on the optimal reactant conditions. Contaminants were characterized by Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. The results showed that the optimal treatment condition was: the molar ratio of hydrogen peroxide to iron = 200:1, and pH 7.0. Under the optimum condition, total dichloromethane-extractable organics were reduced from 14,800 to 2300 mg kg{sup -1} soil when the accumulative H{sub 2}O{sub 2} dosage was 2.45 mol kg{sup -1} soil during the reactor treatment. Abundance of viable cells was lower in incubated Fenton-like treated soil than in untreated soil. Oxidation of contaminants produced remarkable compositional and structural modifications. A fused ring compound, identified as C{sub 34}H{sub 38}N{sub 1}, was found to exhibit the greatest resistance to oxidation.

  9. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  10. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  11. Geophysical Methods for Monitoring Soil Stabilization Processes

    Science.gov (United States)

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  12. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  13. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha -1 and followed with four irrigation events: 3.5-h period at 10 mm h -1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO 3 -N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO 3 -N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly

  14. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Blohm, M.; Hatch, W.E.; Hoekstra, P.; Porter, D.W.

    1994-01-01

    Effective site characterization requires that many relevant geologic, hydrogeologic and biological properties of the subsurface be evaluated. A parameter that often directly influences chemical processes, ground water flow, contaminant transport, and biological activities is the lateral and vertical distribution of clays. The objective of the research an development under this contract is to improve non-invasive methods for detecting clay lenses. The percentage of clays in soils influences most physical properties that have an impact on environmental restoration and waste management. For example, the percentage of clays determine hydraulic permeability and the rate of contaminant migration, absorption of radioactive elements, and interaction with organic compounds. Therefore, improvements in non-invasive mapping of clays in the subsurface will result in better: characterization of contaminated sites, prediction of pathways of contaminant migration, assessment of risk of contaminants to public health if contaminants reach water supplies, design of remedial action and evaluation of alternative action

  15. Thermal remediation of tar-contaminated soil and oil-contaminated gravel

    International Nuclear Information System (INIS)

    Anthony, E.J.; Wang, J.

    2005-01-01

    High temperature treatments are commonly considered for the decontamination of soil as they have the advantages of reliability, high capacity, and effective destruction of hazardous materials with reduced long-term liability. This paper examined the remediation of soil contaminated by coal tar as well as gravel contaminated by oil. Pilot plant studies were conducted using 2 representative incineration technologies: rotary kiln and fluidized bed. The coal tar contaminated soil had accumulated over a few decades at a calcination plant in western Canada. The soil was sticky and could not be handled by conventional feeding and combustion systems. Crushed lignite was mixed with the soil as an auxiliary fuel and to reduce stickiness. A pilot plant furnace was used to evaluate the potential of decontamination in a rotary calciner. An analysis of both a modelling study and the test results showed that complete decontamination could be achieved in the targeted calciner. The results suggested that energy recovery was also possible, which could in turn make the remediation process more cost-effective. Decontamination of oil-contaminated gravel was conducted with a pilot plant fluidized bed combustor to study the feasibility of using incineration technology in the remediation of gravel and debris contaminated by oil spills. Results indicated that the gravel was decontaminated with acceptable emission performance. It was concluded that the study will be valuable to the application of commercial incineration processes for the remediation of polluted soils. It was observed that the weathering of the oiled gravel lowered the rate of decontamination. A small amount of salt water resulted in lowered decontamination rates, which may be an important factor for situations involving the remediation of shoreline gravel contaminated by oil. 24 refs., 6 tabs., 7 figs

  16. Application of persulfate-oxidation foam spraying as a bioremediation pretreatment for diesel oil-contaminated soil.

    Science.gov (United States)

    Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo

    2018-05-15

    This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Contaminant and other elements in soil (CCQM-K127)

    Science.gov (United States)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  18. Dual-gas tracers for subsurface characterization and NAPL detection

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Peurrung, L.M.; Mendoza, D.P.; Pillay, G.

    1994-11-01

    Effective design of in situ remediation technologies often requires an understanding of the mass transfer limitations that control the removal of contaminants from the soil. In addition, the presence of nonaqueous phase liquids (NAPLs) in soils will affect the ultimate success or failure of remediation processes. Knowing the location of NAPLs within the subsurface is critical to designing the most effective remediation approach. This work focuses on demonstrating that gas tracers can detect the location of the NAPLs in the subsurface and elucidating the mass transfer limitations associated with the removal of contaminants from soils

  19. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  20. A new risk and stochastic analysis of monitoring and remediation in subsurface contamination

    Science.gov (United States)

    Papapetridis, K.; Paleologos, E.

    2012-04-01

    Sanitary landfills constitute the most widely used management approach for the disposal of solid wastes because of their simplicity and cost effectiveness. However, historical records indicate that landfills exhibit a high failure rate of groundwater contamination. Successful detection of aquifer contamination via monitoring wells is a complicated problem with many factors, such as the heterogeneity of the geologic environment, the dispersion of contamination into the geologic medium, the quantity and nature of the contaminants, the number and location of the monitoring wells, and the frequency of sampling, all contributing to the uncertainty of early detection. Detection of contaminants, of course, is of value if remedial actions follow as soon as possible, so that the volume of contaminated groundwater to be treated is minimized. Practically, there is always a time lag between contaminant detection and remedial action response. Administrative decisions and arrangements with local contractors initiate remedial procedures introduces a time lag between detection and remediation time. During this time lag a plume continues to move into an aquifer contaminating larger groundwater volumes. In the present study these issues are addressed by investigating the case of instantaneous leakage from a landfill facility into a heterogeneous aquifer. The stochastic Monte Carlo framework was used to address, in two dimensions, the problem of evaluating the effectiveness of contaminant detection in heterogeneous aquifers by linear networks of monitoring wells. Numerical experiments based on the random-walk tracking-particle method were conducted to determine the detection probabilities and to calculate contaminated areas at different time steps. Several cases were studied assuming different levels of geologic heterogeneity, contamination dispersion, detectable contamination limits and monitoring wells' sampling frequencies. A new perspective is introduced for the correction of

  1. Phytoremediation of contaminated soils and groundwater: lessons from the field

    Energy Technology Data Exchange (ETDEWEB)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  2. Remediation Of Radioactive Contaminated Soil in Oil Fields

    International Nuclear Information System (INIS)

    Taha, A.A.; Hassib, G.M.; Ibrahim, Z.A.

    2011-01-01

    Radioactive contamination by naturally occurring radioactive materials (NORM) in evaporation pond has been evaluated. At several onshore oil field locations, the produced water is discharged to form artificial lagoons or ponds. Subsequently, the released waters drain to the ground leaving radioactive deposits associated with the soil that eventually require remedial action in accordance with radiation protection principles. The present study aims to investigate the remediation of contaminated soil in some oil fields and in this concern, two scenarios were proposed. The first scenario is studying the feasibility of using soil washing technique (a physical-chemical separation process) for removing radium-226 from the contaminated soil samples collected from an evaporating pond. The size/activity distribution analyses were carried out. The data obtained showed that almost 68 % of the investigated soil was coarse sand (≥ 300 μm), 28 % was medium and fine sand (≤300 μm and (≥75 μm) and only small fraction of 4 % was silt and clay (≤75 μm). A series of mild acids such as HCl and mild NaCl/HCl (chloride washing) were used for washing the investigated soil fractions. The obtained data showed that the coarse fraction ≥ 300 μm can be re mediated below a regulatory level of 1Bq/g. and the radium from this coarse fraction could be easily removed by screening and chloride washing. For the remediation of (≤ 300 μm and (≥ 75 μm soil fractions, a series of mild chloride washing experiments also showed that the chloride base (NaCl/HCl) was found to be potentially useful. However, there was a difficulty in achieving a low radium value in the fine (≥ 75 μm size fractions using chloride washing. The second scenario is to get rid of all contaminated soil and store it in a concrete basin through the program of radiological protection of personnel and environment. Preliminary gamma survey of contaminated soil showed that the significant area of the investigated

  3. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar

    2008-01-01

    of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  4. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  5. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  6. MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION

    Science.gov (United States)

    Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

  7. Soil Contamination from Cassava Wastewater Discharges in a Rural ...

    African Journals Online (AJOL)

    Michael Horsfall

    KEY WORDS: Soil contamination; cassava wastewater; physico-chemical characteristics; cassava ... Na (r = 0.03); P (r = 0.08); N (r = 0.40); Organic Carbon (r = 0.08) and organic matter (r .... a neutral or higher pH into to ketones and the toxic.

  8. Phytoextraction trials of cadmium and lead contaminated soil using ...

    African Journals Online (AJOL)

    Study on the phytoextraction of cadmium (Cd) and lead (Pb) artificially contaminated soil using 3 weed species (Ageratum conyzoides, Syndrella nodiflora and Cleome rutidosperma) was carried out at the Centre for Ecological Studies, University of Port Harcourt. A Randomized Complete Block Design consisting of 2 sets of ...

  9. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca...

  10. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  11. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  12. Bioremediation of soil contaminated with spent and fresh cutting ...

    Af