WorldWideScience

Sample records for contaminated streams insights

  1. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  2. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  3. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita m [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago; Heraty, Linnea J [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  4. In-stream contaminant interaction and transport

    International Nuclear Information System (INIS)

    Whelan, G.

    1983-07-01

    In order to assess contaminant exposure levels in biotic and abiotic pathways from waste-disposal sites, a comprehensive Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology using several mathematical models is being developed. Prior to a full development of the proposed methodology, a scaled-down version involving terrestrial plants, overland, and in-stream compartments was applied to an actual shallow land waste-disposal site. The purpose was to evaluate and demonstrate the attributes of the methodology. The in-stream component of the abbreviated methodology as it relates to Mortandad Canyon in Los Alamos, New Mexico is discussed herein. A two-year period was simulated consisting of six major runoff events which possessed a variety of distributions and magnitudes. The in-stream component of the methodology was composed of two models integrated to simulate the migration of radionuclides: DKWAV and TODAM. DKWAV is an unsteady, one-dimensional, second-order, explicit, finite difference, channel flow code which simulates the hydrodynamics in dendritric river systems and includes point and/or continuous lateral inflow and channel seepage. TODAM is an unsteady, one-dimensional, finite element, sediment-contaminant transport code which simulates the migration and fate of sediment and radionuclides in their dissolved and particulate phases by solving the general advection/diffusion equation with sink and source terms

  5. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  6. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    Science.gov (United States)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it

  7. Contaminants in tropical island streams and their biota.

    Science.gov (United States)

    Buttermore, Elissa N; Cope, W Gregory; Kwak, Thomas J; Cooney, Patrick B; Shea, Damian; Lazaro, Peter R

    2018-02-01

    Environmental contamination is problematic for tropical islands due to their typically dense human populations and competing land and water uses. The Caribbean island of Puerto Rico (USA) has a long history of anthropogenic chemical use, and its human population density is among the highest globally, providing a model environment to study contaminant impacts on tropical island stream ecosystems. Polycyclic Aromatic Hydrocarbons, historic-use chlorinated pesticides, current-use pesticides, Polychlorinated Biphenyls (PCBs), and metals (mercury, cadmium, copper, lead, nickel, zinc, and selenium) were quantified in the habitat and biota of Puerto Rico streams and assessed in relation to land-use patterns and toxicological thresholds. Water, sediment, and native fish and shrimp species were sampled in 13 rivers spanning broad watershed land-use characteristics during 2009-2010. Contrary to expectations, freshwater stream ecosystems in Puerto Rico were not severely polluted, likely due to frequent flushing flows and reduced deposition associated with recurring flood events. Notable exceptions of contamination were nickel in sediment within three agricultural watersheds (range 123-336ppm dry weight) and organic contaminants (PCBs, organochlorine pesticides) and mercury in urban landscapes. At an urban site, PCBs in several fish species (Mountain Mullet Agonostomus monticola [range 0.019-0.030ppm wet weight] and American Eel Anguilla rostrata [0.019-0.031ppm wet weight]) may pose human health hazards, with concentrations exceeding the U.S. Environmental Protection Agency (EPA) consumption limit for 1 meal/month. American Eel at the urban site also contained dieldrin (range island-wide; only mercury at one site (an urban location) exceeded EPA's consumption limit of 3 meals/month for this species. These results comprise the first comprehensive island-wide contaminant assessment of Puerto Rico streams and biota and provide natural resource and public health agencies here and

  8. Contaminants in tropical island streams and their biota

    Science.gov (United States)

    Buttermore, Elissa N.; Cope, W. Gregory; Kwak, Thomas J.; Cooney, Patrick B.; Shea, Damian; Lazaro, Peter R.

    2018-01-01

    Environmental contamination is problematic for tropical islands due to their typically dense human populations and competing land and water uses. The Caribbean island of Puerto Rico (USA) has a long history of anthropogenic chemical use, and its human population density is among the highest globally, providing a model environment to study contaminant impacts on tropical island stream ecosystems. Polycyclic Aromatic Hydrocarbons, historic-use chlorinated pesticides, current-use pesticides, Polychlorinated Biphenyls (PCBs), and metals (mercury, cadmium, copper, lead, nickel, zinc, and selenium) were quantified in the habitat and biota of Puerto Rico streams and assessed in relation to land-use patterns and toxicological thresholds. Water, sediment, and native fish and shrimp species were sampled in 13 rivers spanning broad watershed land-use characteristics during 2009–2010. Contrary to expectations, freshwater stream ecosystems in Puerto Rico were not severely polluted, likely due to frequent flushing flows and reduced deposition associated with recurring flood events. Notable exceptions of contamination were nickel in sediment within three agricultural watersheds (range 123–336 ppm dry weight) and organic contaminants (PCBs, organochlorine pesticides) and mercury in urban landscapes. At an urban site, PCBs in several fish species (Mountain Mullet Agonostomus monticola [range 0.019–0.030 ppm wet weight] and American Eel Anguilla rostrata [0.019–0.031 ppm wet weight]) may pose human health hazards, with concentrations exceeding the U.S. Environmental Protection Agency (EPA) consumption limit for 1 meal/month. American Eel at the urban site also contained dieldrin (range lipid content) and may be most suitable for human consumption island-wide; only mercury at one site (an urban location) exceeded EPA's consumption limit of 3 meals/month for this species. These results comprise the first comprehensive island-wide contaminant assessment of Puerto Rico

  9. Re-thinking stressor interactions: The role of groundwater contamination impacting stream ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Rønde, Vinni Kampman

    ) to quantify the contaminant discharges, and potentially link the chemical impact and stream water quality. Potential pollution sources include two contaminated sites (Grindstedfactory/landfill), aquaculture, waste water discharges, and diffuse sources from agriculture and urban areas. Datafor xenobiotic...... chronic stress level, so even small perturbations on top of changes in water flow or additional chemical stressors may be detrimental to the stream health. To address this issue, we identified contaminant sources and chemical stressors along a 16-km groundwater-fedstream stretch (Grindsted, Denmark...... organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow from three campaigns in 2012 and 2014 were assessed. The measured chemicalconcentrations were converted to toxic units (TU) based on 48-h acute toxicity tests with Daphnia magna...

  10. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  11. Toward zero waste events: Reducing contamination in waste streams with volunteer assistance.

    Science.gov (United States)

    Zelenika, Ivana; Moreau, Tara; Zhao, Jiaying

    2018-03-22

    Public festivals and events generate a tremendous amount of waste, especially when they involve food and drink. To reduce contamination across waste streams, we evaluated three types of interventions at a public event. In a randomized control trial, we examined the impact of volunteer staff assistance, bin tops, and sample 3D items with bin tops, on the amount of contamination and the weight of the organics, recyclable containers, paper, and garbage bins at a public event. The event was the annual Apple Festival held at the University of British Columbia, which was attended by around 10,000 visitors. We found that contamination was the lowest in the volunteer staff condition among all conditions. Specifically, volunteer staff reduced contamination by 96.1% on average in the organics bin, 96.9% in the recyclable containers bin, 97.0% in the paper bin, and 84.9% in the garbage bin. Our interventions did not influence the weight of the materials in the bins. This finding highlights the impact of volunteers on reducing contamination in waste streams at events, and provides suggestions and implications for waste management for event organizers to minimize contamination in all waste streams to achieve zero waste goals. Copyright © 2018. Published by Elsevier Ltd.

  12. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    I.O.OLABANJI

    3D) with 0.457 ± 0.061 and 0.364 ± 0.056 mg/L in dry and wet seasons. The mean .... safe limit clearly indicating that Cd contamination of the stream water might be ... of lead contaminant in the study area is the formation of acid mine drainage.

  13. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    Science.gov (United States)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  14. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Petroleum hydrocarbon contamination profile, heavy metals and some physicochemical parameters were investigated in Ochani Stream site in Ejamah Ebubu, Eleme Local Government Area of Rivers State. The results show that a major crude oil spillage occurred at Ejamah Ebubu, Rivers State, Nigeria approximately 30 ...

  15. Assessing the chemical contamination dynamics in a mixed land use stream system.

    Science.gov (United States)

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The

  16. Contaminant Dynamics and Trends in Hyperalkaline Urban Streams

    Science.gov (United States)

    Riley, Alex; Mayes, William

    2015-04-01

    Streams in post-industrial urban areas can have multiple contemporary and historic pressures impacting upon their chemical and ecological status. This paper presents analysis of long term data series (up to 36 years in length) from two small streams in northern England (catchment areas 0.5-0.6km2). Around 3.5 million m3 of steel making slags and other wastes were deposited in the headwater areas of the Howden Burn and Dene Burn in northeast England up to the closure of the workings in the early 1980s. This has led to streams draining from the former workings which have a hyperalkaline ambient pH (mean of 10.3 in both streams), elevated alkalinity (up to 487 mg/L as CaCO3) from leaching of lime and other calcium oxides / silicates within the slag, and enrichment of some trace elements (e.g. aluminium (Al), lithium (Li) and zinc (Zn)) including those which form oxyanions mobile at high pH such as vanadium (V). The high ionic strength of the waters and calcium enrichment also leads to waters highly supersaturated with calcium carbonate. Trace contaminant concentrations are strongly positively correlated, and concentrations generally diminish with increased flow rate suggesting the key source of metals in the system is the highly alkaline groundwater draining from the slag mounds. Some contaminants (notably Cr and ammonium) increase with high flow suggesting sources related to urban runoff and drainage from combined sewer overflows into one of the catchments. Loading estimates instream show that many of the contaminants (e.g. Al, V and Zn) are rapidly attenuated in secondary calcium carbonate-dominated deposits that precipitate vigorously on the streambeds with rates of up to 250 g CaCO3/m2/day. These secondary sinks limit the mobility of many contaminants in the water column, while concentrations in secondary deposits are relatively low given the rapid rates at which Ca is also attenuated. Long-term trend analysis showed modest declines in calcium and alkalinity over

  17. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; McKnight, Ursula S.; Sonne, Anne Thobo

    2016-01-01

    data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown...

  18. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs

    Science.gov (United States)

    Kraus, Johanna M.; Schmidt, Travis S.; Walters, David; Wanty, Richard B.; Zuellig, Robert E.; Wolf, Ruth E.

    2014-01-01

    The effects of aquatic contaminants are propagated across ecosystem boundaries by aquatic insects that export resources and contaminants to terrestrial food webs; however, the mechanisms driving these effects are poorly understood. We examined how emergence, contaminant concentration, and total contaminant flux by adult aquatic insects changed over a gradient of bioavailable metals in streams and how these changes affected riparian web-building spiders. Insect emergence decreased 97% over the metal gradient, whereas metal concentrations in adult insects changed relatively little. As a result, total metal exported by insects (flux) was lowest at the most contaminated streams, declining 96% among sites. Spiders were affected by the decrease in prey biomass, but not by metal exposure or metal flux to land in aquatic prey. Aquatic insects are increasingly thought to increase exposure of terrestrial consumers to aquatic contaminants, but stream metals reduce contaminant flux to riparian consumers by strongly impacting the resource linkage. Our results demonstrate the importance of understanding the contaminant-specific effects of aquatic pollutants on adult insect emergence and contaminant accumulation in adults to predict impacts on terrestrial food webs.

  19. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  20. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  1. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  2. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  3. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...

  4. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children.

    Science.gov (United States)

    Probert, William S; Miller, Glen M; Ledin, Katya E

    2017-07-01

    In May 2016, an outbreak of Shiga toxin-producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  5. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...... was calculated for 1 km2 catchments (produced from topographical maps) on Funen, Denmark. The physical condition (substrate, meandering etc.) of 1st and 2nd order streams (based on existing data from the National Monitoring Programme and personal exploring) draining these catchments was, additionally, assessed...

  6. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production......, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical...... stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...

  7. Mitigation of trichloroethylene contaminated air streams through biofiltration: a pilot-scale study

    International Nuclear Information System (INIS)

    Lackey, L.W.; Gamble, J.R.; Boles, J.L.

    2002-01-01

    As a result of abundant usage and improper disposal practices, trichloroethylene (TCE) is one of the most prevalent groundwater contaminants. Traditional cleanup methods of aquifers contaminated with TCE include pumping the water to the surface and treating with stripper technology, soil vapor extraction, and air sparging. As a result of each of these mitigation schemes, TCE is transferred from the aqueous to the gas phase. As regulations associated with air emission tighten, development of technologies both technically feasible and cost effective for remediating TCE laden gas streams becomes imperative. This project demonstrated the use of biofiltration technology to mitigate TCE contaminated air streams. A pilot-scale biofilter system was designed, constructed, and subsequently installed at the Anniston Army Depot (ANAD), Anniston, AL. The system was inoculated with a propane-oxidizing microbial consortium that had previously been shown to degrade TCE as well as other short-chained chlorinated aliphatics and a variety of one-and two-ring aromatic compounds. Critical process variables were identified and their effects on system performance analyzed. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. The inlet contaminant concentration as well as the loading rate also had an impact on observed TCE degradation rates. Results suggest that biofilter performance and economics are generally improved by manipulating a specific waste stream so as to increase the TCE concentration and decrease the volumetric flow rate of the contaminated air fed to the biofilter. Through manipulation of process variables, including the empty bed contact time, TCE degradation efficiencies greater than 99.9 percent were sustained. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis (ppmv). (author)

  8. Response of PCB contamination in stream fish to abatement actions at an industrial site

    International Nuclear Information System (INIS)

    Southworth, G.R.; Peterson, M.J.; McCarthy, J.F.; Milne, G.

    1995-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, used large quantities of PCBs in equipment associated with the great electric power requirements of isotopic enrichment of uranium. Historic losses of PCBs in the 1950s and 1960s have left a legacy of contamination at the site. A biological monitoring program implemented in 1987 found PCBs in PGDP effluents and in fish downstream from facility discharges. As a consequence, a fish consumption advisory was posted on Little Bayou Creek by the Commonwealth of Kentucky in 1987, and regulatory discharge limits for PCBs at PGDP were reduced. Monitoring at multiple locations in receiving streams indicated that PGDP discharges were more important than in stream sediment contamination as sources of PCBs to fish. Environmental management and compliance staff at PGDP led an effort to reduce PCB discharges and monitor the effects of those actions. The active discharge of uncontaminated process water to historically PCB-contaminated drainage systems was found to mobilize PCBs into KPDES (Clean Water Act) regulated effluents. Efforts to locate PCB sources within the plant, coupled with improvements in management practices and remedial actions, appear to have been successful in reducing PCB discharges from these sources. Actions included emplacing passive monitors in the plant drainage system to identify this as a chronic source, and consolidating and re-routing effluents to minimize flow through PCB-contaminated channels. As a consequence, PCB contamination in fish in small streams receiving plant discharges decreased 75% over from 1992--1995

  9. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams

    Science.gov (United States)

    Buxton, Herbert T.; Kolpin, Dana W.

    2002-01-01

    A recent study by the Toxic Substances Hydrology Program of the U.S. Geological Survey (USGS) shows that a broad range of chemicals found in residential, industrial, and agricultural wastewaters commonly occurs in mixtures at low concentrations downstream from areas of intense urbanization and animal production. The chemicals include human and veterinary drugs (including antibiotics), natural and synthetic hormones, detergent metabolites, plasticizers, insecticides, and fire retardants. One or more of these chemicals were found in 80 percent of the streams sampled. Half of the streams contained 7 or more of these chemicals, and about one-third of the streams contained 10 or more of these chemicals. This study is the first national-scale examination of these organic wastewater contaminants in streams and supports the USGS mission to assess the quantity and quality of the Nation's water resources. A more complete analysis of these and other emerging water-quality issues is ongoing.

  10. Contaminants as habitat disturbers: PAH-driven drift by Andean paramo stream insects.

    Science.gov (United States)

    Araújo, Cristiano V M; Moreira-Santos, Matilde; Sousa, José P; Ochoa-Herrera, Valeria; Encalada, Andrea C; Ribeiro, Rui

    2014-10-01

    Contaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil. In the laboratory, different groups of insects were exposed to PAH for 12h. Three different assays, which varied in taxa and origin of the organisms, concentrations of PAH (0.6-38.8µgL(-1)), and environment settings (different levels of refuge and flow) were performed. For Anomalocosmoecus palugillensis (Limnephilidae), drift was a major cause of population decline in low concentration treatments but at higher concentrations mortality dominated. PAH was highly lethal, even at lower concentrations, for Chironomidae, Grypopterygidae (Claudioperla sp.) and Hydrobiosidae (Atopsyche sp.), and, therefore, no conclusion about drift can be drawn for these insects. Contamination by PAH showed to be a threat for benthic aquatic insects from Ecuadorian paramo streams as it can cause a population decline due to avoidance by drift and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Distribution of radiocesium in vegetation along a contaminated stream

    International Nuclear Information System (INIS)

    Briese, L.A.; Garten, C.T. Jr.; Sharitz, R.R.

    1975-01-01

    Radiocesium concentrations in leaves from four plant species were measured at eight sites along a 20-km stream contaminated by radioactive effluent from nuclear production reactors at the Savannah River Plant in South Carolina. Leaf samples from Sagittaria latifolia, Salix nigra, Polygonum punctatum, and Scirpus cyperinus averaged 488.2, 303.2, 191.7, and 86.4 pCi/g dry weight, respectively. The distribution of radiocesium in the vegetation appeared to be species specific and independent of distance from the entry point of reactor effluent into the stream. Leaf radiocesium concentrations were generally higher in plants where the rate of streamflow decreased because of man-made impoundments, fallen trees, or increased stream width. At all sites the radiocesium levels in the plant species were lob normally distributed. A significant linear relationship existed for all species between the variance and the mean picocuries per gram, but each species appeared to have a different slope and intercept. Radiocesium concentrations in one plant species could not be used to predict concentrations in another

  12. Determination of mercury evasion in a contaminated headwater stream.

    Science.gov (United States)

    Maprani, Antu C; Al, Tom A; Macquarrie, Kerry T; Dalziel, John A; Shaw, Sean A; Yeats, Phillip A

    2005-03-15

    Evasion from first- and second-order streams in a watershed may be a significant factor in the atmospheric recycling of volatile pollutants such as mercury; however, methods developed for the determination of Hg evasion rates from larger water bodies are not expected to provide satisfactory results in highly turbulent and morphologically complex first- and second-order streams. A new method for determining the Hg evasion rates from these streams, involving laboratory gas-indexing experiments and field tracer tests, was developed in this study to estimate the evasion rate of Hg from Gossan Creek, a first-order stream in the Upsalquitch River watershed in northern New Brunswick, Canada. Gossan Creek receives Hg-contaminated groundwater discharge from a gold mine tailings pile. Laboratory gas-indexing experiments provided the ratio of gas-exchange coefficients for zero-valent Hg to propane (tracer gas) of 0.81+/-0.16, suggesting that the evasion mechanism in highly turbulent systems can be described by the surface renewal model with an additional component of enhanced gas evasion probably related to the formation of bubbles. Deliberate field tracer tests with propane and chloride tracers were found to be a reliable and practical method for the determination of gas-exchange coefficients for small streams. Estimation of Hg evasion from the first 1 km of Gossan Creek indicates that about 6.4 kg of Hg per year is entering the atmosphere, which is a significant fraction of the regional sources of Hg to the atmosphere.

  13. Removal of Cyclohexane from a Contaminated Air Stream Using a Dense Phase Membrane Bioreactor

    National Research Council Canada - National Science Library

    Roberts, Michael G

    2005-01-01

    The purpose of this research was to determine the ability of a dense phase membrane bioreactor to remove cyclohexane, a volatile organic compound in JP-8 jet fuel, from a contaminated air stream using...

  14. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  15. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  16. Comparison of active and passive sampling strategies for the monitoring of pesticide contamination in streams

    Science.gov (United States)

    Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina

    2014-05-01

    The monitoring of water bodies regarding organic contaminants, and the determination of reliable estimates of concentrations are challenging issues, in particular for the implementation of the Water Framework Directive. Several strategies can be applied to collect water samples for the determination of their contamination level. Grab sampling is fast, easy, and requires little logistical and analytical needs in case of low frequency sampling campaigns. However, this technique lacks of representativeness for streams with high variations of contaminant concentrations, such as pesticides in rivers located in small agricultural watersheds. Increasing the representativeness of this sampling strategy implies greater logistical needs and higher analytical costs. Average automated sampling is therefore a solution as it allows, in a single analysis, the determination of more accurate and more relevant estimates of concentrations. Two types of automatic samplings can be performed: time-related sampling allows the assessment of average concentrations, whereas flow-dependent sampling leads to average flux concentrations. However, the purchase and the maintenance of automatic samplers are quite expensive. Passive sampling has recently been developed as an alternative to grab or average automated sampling, to obtain at lower cost, more realistic estimates of the average concentrations of contaminants in streams. These devices allow the passive accumulation of contaminants from large volumes of water, resulting in ultratrace level detection and smoothed integrative sampling over periods ranging from days to weeks. They allow the determination of time-weighted average (TWA) concentrations of the dissolved fraction of target contaminants, but they need to be calibrated in controlled conditions prior to field applications. In other words, the kinetics of the uptake of the target contaminants into the sampler must be studied in order to determine the corresponding sampling rate

  17. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    DEFF Research Database (Denmark)

    Rønde, Vinni Kampman; McKnight, Ursula S.; Annable, Michael

    , however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark......Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation......, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed...

  18. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  19. Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms.

    Science.gov (United States)

    Aristi, I; Casellas, M; Elosegi, A; Insa, S; Petrovic, M; Sabater, S; Acuña, V

    2016-05-01

    Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3-4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the

  20. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    Non-point source contamination with agricultural pesticides is widely acknowledged as one of the greatest sources of pollution in stream ecosystems, and surface runoff is an important transport route. Consequently, maximum pesticide concentrations occur briefly during heavy precipitation events......) of agricultural pesticides originating from normal agricultural practices. We link the findings to a predictive model for pesticide surface runoff (RP) and evaluate the potential impact of pesticides on benthic macroinvertebrates. Furthermore, we apply detailed land-use data and field characteristics to identify...

  1. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Yoshimura, Mayumi; Yokoduka, Tetsuya

    2014-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ( 137 Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and 137 Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ( 137 Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of 137 Cs in brown trout was higher than in rainbow trout. • 137 Cs concentration of brown trout in a lake was higher than in a stream. • 137 Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of 137 Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat

  2. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    Science.gov (United States)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream

  3. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Mayumi, E-mail: yoshi887@ffpri.affrc.go.jp [Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyuutaro 68, Momoyama, Fushimi, Kyoto 612-0855 (Japan); Yokoduka, Tetsuya [Tochigi Prefectural Fisheries Experimental Station, Sarado 2599, Ohtawara, Tochigi 324-0404 (Japan)

    2014-06-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ({sup 137}Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and {sup 137}Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ({sup 137}Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of {sup 137}Cs in brown trout was higher than in rainbow trout. • {sup 137}Cs concentration of brown trout in a lake was higher than in a stream. • {sup 137}Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of {sup 137}Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat.

  4. Radiocesium leaching from contaminated litter in forest streams

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Naito, Risa S.; Negishi, Junjiro N.; Sasaki, Michiko; Toda, Hiroto; Nunokawa, Masanori; Murase, Kaori

    2015-01-01

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems. - Highlights: • Radiocesium in contaminated litter was leached when soaked in water. • Radiocesium in litter leached slowly compared to potassium. • Minerals adsorbed dissolved radiocesium that was leached from litter. • Vermiculite effectively adsorbed radiocesium leached from litter

  5. Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream. Contribution to diffuse pollution

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo-Roe, Barbara; Wragg, Joanna; Banks, Vanessa J. [British Geological Survey, Keyworth Nottingham (United Kingdom)

    2012-12-15

    Purpose: Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse source of contamination to water bodies in the UK and worldwide. This paper presents the results of an integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to surface water in a mining-impacted catchment. Materials and methods: The Rookhope Burn catchment, northern England, UK is affected by historical mining and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water chemistry from the stream hyporheic zone and inundation tests of bank sediments were carried out. Results and discussion: High concentrations of Pb in the sediments from the catchment, identified from the British Geological Survey Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate both the impact of mineralisation and widespread historical mining. The results from stream water show that the stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, downstream of a former mine washing plant. Concentrations of 56 {mu}g l{sup -1} of dissolved Pb in the interstitial water of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as a serious risk to the target of good ecological status as defined in the European Water Framework Directive. Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to surface water. Conclusions: The determination of Pb in the interstitial water and in the inundation water, taken with water Pb mass balance and sediment Pb distribution maps at the catchment scale, implicate the

  6. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  7. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  8. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    Science.gov (United States)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  9. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)

    2013-07-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  10. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  11. Novel insights linking ecological health to biogeochemical hotspots in mixed land use stream systems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Rasmussen, Jes J.

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead...... pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas (Sonne et al., 2017). Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities. The stream...

  12. Decreasing aqueous mercury concentrations to achieve safe levels in fish: examining the water-fish relationship in two point-source contaminated streams

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Teresa J [ORNL; Southworth, George R [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Ketelle, Richard H [ORNL; Valentine, Charles S [ORNL; Gregory, Scott M [ORNL

    2013-01-01

    East Fork Poplar Creek (EFPC) and White Oak Creek (WOC) are two mercury-contaminated streams located on the Department of Energy s Oak Ridge Reservation in east Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EFPC by 85 %. Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency s ambient water quality criterion (AWQC) of 0.3 mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WOC are an order of magnitude lower than in EFPC. Despite the lower aqueous Hg concentrations, fish fillet concentrations in WOC have also been above the AWQC, making the most recent aqueous Hg target of 200 ng/L in EFPC seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WOC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EFPC and in other point-source contaminated streams.

  13. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  14. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Freeman, Candice; Hennessey, Brian [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS

  15. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    International Nuclear Information System (INIS)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph; Freeman, Candice; Hennessey, Brian

    2013-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS

  16. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  17. Optimized open-flow mixing: insights from microbubble streaming

    Science.gov (United States)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2015-11-01

    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  18. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  19. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  20. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  1. Assessing the impact of groundwater contamination on stream water quality by multiple approaches at the groundwater-surface water interface (Invited Presentation)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rønde, Vinni Kampman; Balbarini, Nicola

    Contaminants such as chlorinated solvents and pesticides, as well as new classes of compounds or emerging micropollutants are extensively produced, utilized and then discarded in society and subsequently released to streams from multiple point and diffuse sources. Sustainable management of water...

  2. Decreasing aqueous mercury concentrations to meet the water quality criterion in fish: examining the water-fish relationship in two point-source contaminated streams.

    Science.gov (United States)

    Mathews, Teresa J; Southworth, George; Peterson, Mark J; Roy, W Kelly; Ketelle, Richard H; Valentine, Charles; Gregory, Scott

    2013-01-15

    East Fork Poplar Creek (EF) and White Oak Creek (WC) are two mercury-contaminated streams located on the United States (U.S.) Department of Energy Oak Ridge Reservation in East Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EF by 85% (from >1600 ng/L to Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency National Recommended Water Quality Criteria (NRWQC) of 0.3 mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WC are an order of magnitude lower than in EF. Despite the lower aqueous Hg concentrations (fish fillet concentrations in WC have also been above the NRWQC, making the aqueous Hg remediation goal of 200 ng/L in EF seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EF and in other point-source contaminated streams. Published by Elsevier B.V.

  3. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.

    1999-01-01

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  4. Complex contaminant mixtures in multistressor Appalachian riverscapes.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P; Maxwell, Aaron E; Ziemkiewicz, Paul F

    2015-11-01

    Runoff from watersheds altered by mountaintop mining in the Appalachian region (USA) is known to pollute headwater streams, yet regional-scale assessments of water quality have focused on salinization and selenium. The authors conducted a comprehensive survey of inorganic contaminants found in 170 stream segments distributed across a spectrum of historic and contemporary human land use. Principal component analysis identified 3 important dimensions of variation in water chemistry that were significantly correlated with contemporary surface mining (principal component 1: elevated dominant ions, sulfate, alkalinity, and selenium), coal geology and legacy mines (principal component 2: elevated trace metals), and residential development (principal component 3: elevated sodium and chloride). The combination of these 3 dominant sources of pollutants produced a complex stream-to-stream patchwork of contaminant mixtures. Seventy-five percent of headwater streams (catchments  5 km(2) ) were classified as having reference chemistries, and chemistries indicative of combined mining and development contaminants accounted for 47% of larger streams (compared with 26% of headwater streams). Extreme degradation of larger streams can be attributed to accumulation of contaminants from multiple human land use activities that include contemporary mountaintop mining, underground mining, abandoned mines, and untreated domestic wastewater. Consequently, water quality improvements in this region will require a multicontaminant remediation approach. © 2015 SETAC.

  5. Diatom, cyanobacterial and microbial mats as indicators of hydrocarbon contaminated Arctic streams and waters

    Energy Technology Data Exchange (ETDEWEB)

    Ziervogel, H.; Selann, J.; Adeney, B. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada); Nelson, J.A. [J.B. Services, Sarnia, ON (Canada); Murdock, E. [Nunavut Power, Iqaluit (Canada)

    2003-07-01

    An environmental assessment conducted at Repulse Bay, Nunavut in the summer of 2001 revealed a recent diesel spill flowing from the groundwater into a creek. The spill had not been reported. When Arctic surface waters mix with hydrocarbon impacted groundwater and sediments, distinctive mats of diatom, cyanobacteria and other bacteria are formed. These mats have the potential for phytoremediation of hydrocarbons. This paper explained the apparent dominance of mats in contaminated Arctic waters and why they promote biodegradation of hydrocarbons. Hydrocarbon-contaminated soils and groundwater are generally anaerobic. The higher dissolved carbon dioxide in polluted soils and groundwater can benefit photosynthetic cyanobacteria and diatom found in oligotrophic, lower alkalinity Arctic waters. The anaerobic and aerobic bacteria can potentially take advantage of the hydrogen substrate and the nitrogen fixing abilities of the cyanobacteria. Zooplankton predators may be killed off by the toxicity of the polluted groundwater. The paper provides examples where a microbial mat reduced the sulfate content of a hydrocarbon-impacted Arctic stream by 100 ppm, and where a pond covered in a benthic microbial mat showed no evidence of hydrocarbons in the water overlying sediments contaminated with hydrocarbons at concentrations measured at 30,000 ppm. 19 refs., 3 tabs., 8 figs.

  6. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.

    Science.gov (United States)

    Dodgen, L K; Kelly, W R; Panno, S V; Taylor, S J; Armstrong, D L; Wiles, K N; Zhang, Y; Zheng, W

    2017-02-01

    Karst aquifers are drinking water sources for 25% of the global population. However, the unique geology of karst areas facilitates rapid transfer of surficial chemicals to groundwater, potentially contaminating drinking water. Contamination of karst aquifers by nitrate, chloride, and bacteria have been previously observed, but little knowledge is available on the presence of contaminants of emerging concern (CECs), such as pharmaceuticals. Over a 17-month period, 58 water samples were collected from 13 sites in the Salem Plateau, a karst region in southwestern Illinois, United States. Water was analyzed for 12 pharmaceutical and personal care products (PPCPs), 7 natural and synthetic hormones, and 49 typical water quality parameters (e.g., nutrients and bacteria). Hormones were detected in only 23% of samples, with concentrations of 2.2-9.1ng/L. In contrast, PPCPs were quantified in 89% of groundwater samples. The two most commonly detected PPCPs were the antimicrobial triclocarban, in 81% of samples, and the cardiovascular drug gemfibrozil, in 57%. Analytical results were combined with data of local stream flow, weather, and land use to 1) characterize the extent of aquifer contamination by CECs, 2) cluster sites with similar PPCP contamination profiles, and 3) develop models to describe PPCP contamination. Median detection in karst groundwater was 3 PPCPs at a summed concentration of 4.6ng/L. Sites clustered into 3 subsets with unique contamination models. PPCP contamination in Cluster I sites was related to stream height, manganese, boron, and heterotrophic bacteria. Cluster II sites were characterized by groundwater temperature, specific conductivity, sodium, and calcium. Cluster III sites were characterized by dissolved oxygen and barium. Across all sites, no single or small set of water quality factors was significantly predictive of PPCP contamination, although gemfibrozil concentrations were strongly related to the sum of PPCPs in karst groundwater

  7. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  8. Ecological half-life of 137Cs in plants associated with a contaminated stream

    International Nuclear Information System (INIS)

    Peles, John D.; Smith, Michael H.; Lehr Brisbin, I.

    2002-01-01

    Ecological half-life (T e ) is a useful measure for studying the long-term decline of contaminants, such as radionuclides, in natural systems. The current investigation determined levels of radiocesium ( 137 Cs) in two aquatic (Polygonum punctatum, Sagittaria latifolia) and three terrestrial (Alnus serrulata, Myrica cerifera, Salix nigra) plant species from a contaminated stream and floodplain on the U.S. Department of Energy's Savannah River Site. Current 137 Cs levels in plants were used in conjunction with historical data to determine T e of 137 Cs in each species. Median concentrations of 137 Cs were highest in S. latifolia (0.84 Bq g -1 ) and lowest in M. cerifera (0.10 Bq g -1 ). T e 's ranged from 4.85 yr in M. cerifera to 8.35 yr in S. nigra, both terrestrial species. T e 's for all aquatic (6.30 yr) and all terrestrial (5.87) species combined were very similar. The T e 's of the two aquatic primary producers (P. punctatum and S. latifolia) in the Steel Creek ecosystem were somewhat longer than T e values previously reported for some consumers from this ecosystem

  9. Heavy metals in Pantanoso and Miguelete small stream

    International Nuclear Information System (INIS)

    Odino, R.; Delmonte, D.; Feola, G.; Velez, A.; Cacho, C.

    1998-01-01

    The streams Miguelete and Pantanoso in the city of Montevideo present high levels of organic and inorganic contamination. The main causes of this deterioration are: old and inadequate reparation systems and the contamination is generated by the pokers and the industry. The tanneries and laundries of wools are the highly pollutant industries. The analytic technique applied is the Fluorescence of Rays x Dispersiva in Energy (EDFRX). In the two streams a marked relationship between the levels of heavy metals and the distribution of the industries responsible for the contamination was observed. A study of the enrichment of Pb,Cu, Zn and Cr in the sediments exists. Levels of Chromium in the Pantanoso Stream is very high due to the existence of three tanneries [es

  10. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  11. Linking in situ bioassays and population dynamics of macroinvertebrates to assess agricultural contamination in streams of the Argentine pampa.

    Science.gov (United States)

    Jergentz, S; Pessacq, P; Mugni, H; Bonetto, C; Schulz, R

    2004-10-01

    The two local crustacean species Hyalella curvispina and Macrobrachium borelli were chosen for assessment of agricultural contamination in two streams (Horqueta and Maguire) in the Argentine pampa. In parallel with in situ bioassays of both species, the population dynamics and the organismic drift of H. curvispina were investigated throughout the main period of insecticide application, from December 2001 to March 2002. In Maguire none of the current-use insecticides (chlorpyrifos, alpha-cypermethrin, and endosulfan) in question were detected throughout the sampling period. During 1-week intervals with no contamination by insecticides the survival rate of H. curvispina varied between 77 +/- 6% (+/- SE, n = 4) and 85 +/- 3%. In Horqueta during a week with a peak insecticide contamination of 64 microg/kg chlorpyrifos in the suspended particles, a mortality of 100% was observed in the in situ bioassays for both species, H. curvispina and M. borelli. At the same time, in Maguire H. curvispina showed reduced survival rates of 23 +/- 5% and 25 +/- 18% at the two sites, while the survival rate of M. borelli was 60 +/- 11% upstream and 93 +/- 5% downstream, below a wetland. During the period with 100% mortality of H. curvispina in Horqueta, the population density of this species decreased correspondingly, from 106 +/- 26 to 0 individuals/m(2). We conclude that in situ bioassays can be successfully linked to in-stream population dynamics for the same species and that this link is very useful for interpreting causal exposure-effect relationships.

  12. Contaminants in stream sediments from seven United States metropolitan areas: part I: distribution in relation to urbanization

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Gilliom, Robert J.; Calhoun, Daniel L.; Ingersoll, Christopher G.; Kemble, Nile E.; Kuivila, Kathryn; Phillips, Patrick J.

    2013-01-01

    Organic contaminants and trace elements were measured in bed sediments collected from streams in seven metropolitan study areas across the United States to assess concentrations in relation to urbanization. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, the pyrethroid insecticide bifenthrin, and several trace elements were significantly related to urbanization across study areas. Most contaminants (except bifenthrin, chromium, nickel) were significantly related to the total organic carbon (TOC) content of the sediments. Regression models explained 45–80 % of the variability in individual contaminant concentrations using degree of urbanization, sediment-TOC, and study-area indicator variables (which represent the combined influence of unknown factors, such as chemical use or release, that are not captured by available explanatory variables). The significance of one or more study-area indicator variables in all models indicates marked differences in contaminant levels among some study areas, even after accounting for the nationally modeled effects of urbanization and sediment-TOC. Mean probable effect concentration quotients (PECQs) were significantly related to urbanization. Trace elements were the major contributors to mean PECQs at undeveloped sites, whereas organic contaminants, especially bifenthrin, were the major contributors at highly urban sites. Pyrethroids, where detected, accounted for the largest share of the mean PECQ. Part 2 of this series (Kemble et al. 2012) evaluates sediment toxicity to amphipods and midge in relation to sediment chemistry.

  13. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  14. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  15. Temporal Variability of Microplastic Concentrations in Freshwater Streams

    Science.gov (United States)

    Watkins, L.; Walter, M. T.

    2016-12-01

    Plastic pollution, specifically the size fraction less than 5mm known as microplastics, is an emerging contaminant in waterways worldwide. The ability of microplastics to adsorb and transport contaminants and microbes, as well as be ingested by organisms, makes them a concern in both freshwater and marine ecosystems. Recent efforts to determine the extent of microplastic pollution are increasingly focused on freshwater systems, but most studies have reported concentrations at a single time-point; few have begun to uncover how plastic concentrations in riverine systems may change through time. We hypothesize the time of day and season of sampling influences the concentrations of microplastics in water samples and more specifically, that daytime stormflow samples contain the highest microplastic concentrations due to maximized runoff and wastewater discharge. In order to test this hypothesis, we sampled in two similar streams in Ithaca, New York using a 333µm mesh net deployed within the thalweg. Repeat samples were collected to identify diurnal patterns as well as monthly variation. Samples were processed in the laboratory following the NOAA wet peroxide oxidation protocol. This work improves our ability to interpret existing single-time-point survey results by providing information on how microplastic concentrations change over time and whether concentrations in existing stream studies are likely representative of their location. Additionally, these results will inform future studies by providing insight into representative sample timing and capturing temporal trends for the purposes of modeling and of developing regulations for microplastic pollution.

  16. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1998-01-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector. (author)

  17. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1997-04-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector

  18. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  19. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  20. Waste streams from reprocessing operations

    International Nuclear Information System (INIS)

    Andersson, B.; Ericsson, A.-M.

    1978-03-01

    The three main products from reprocessing operations are uranium, plutonium and vitrified high-level-waste. The purpose of this report is to identify and quantify additional waste streams containing radioactive isotops. Special emphasis is laid on Sr, Cs and the actinides. The main part, more than 99 % of both the fission-products and the transuranic elements are contained in the HLW-stream. Small quantities sometimes contaminate the U- and Pu-streams and the rest is found in the medium-level-waste

  1. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  2. Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment.

    Science.gov (United States)

    Neill, Aaron James; Tetzlaff, Doerthe; Strachan, Norval James Colin; Hough, Rupert Lloyd; Avery, Lisa Marie; Watson, Helen; Soulsby, Chris

    2018-01-15

    An 11year dataset of concentrations of E. coli at 10 spatially-distributed sites in a mixed land-use catchment in NE Scotland (52km 2 ) revealed that concentrations were not clearly associated with flow or season. The lack of a clear flow-concentration relationship may have been due to greater water fluxes from less-contaminated headwaters during high flows diluting downstream concentrations, the importance of persistent point sources of E. coli both anthropogenic and agricultural, and possibly the temporal resolution of the dataset. Point sources and year-round grazing of livestock probably obscured clear seasonality in concentrations. Multiple linear regression models identified potential for contamination by anthropogenic point sources as a significant predictor of long-term spatial patterns of low, average and high concentrations of E. coli. Neither arable nor pasture land was significant, even when accounting for hydrological connectivity with a topographic-index method. However, this may have reflected coarse-scale land-cover data inadequately representing "point sources" of agricultural contamination (e.g. direct defecation of livestock into the stream) and temporal changes in availability of E. coli from diffuse sources. Spatial-stream-network models (SSNMs) were applied in a novel context, and had value in making more robust catchment-scale predictions of concentrations of E. coli with estimates of uncertainty, and in enabling identification of potential "hot spots" of faecal contamination. Successfully managing faecal contamination of surface waters is vital for safeguarding public health. Our finding that concentrations of E. coli could not clearly be associated with flow or season may suggest that management strategies should not necessarily target only high flow events or summer when faecal contamination risk is often assumed to be greatest. Furthermore, we identified SSNMs as valuable tools for identifying possible "hot spots" of contamination which

  3. The distribution of radionuclides between the dissolved and particulate phases of a contaminated freshwater stream

    International Nuclear Information System (INIS)

    Murdock, R.N.; Johnson, M.S.; Hemingway, J.D.

    1995-01-01

    Streamwater concentrations of the radionuclides 137 Cs, 241 Am and 239,240 Pu from a contaminated freshwater stream showed significant relationships between total concentration and flow rate. When total concentrations were divided into their dissolved and particulate components 239,240 Pu was shown to exist mainly (>80%) in the solute phase ( 137 Cs and 241 Am were distributed equally between the two phases. 137 Cs was most likely present either as the dissolved ion or as the specifically adsorbed ion on particulate sediments. Particle-associated 241 Am and the small particulate component of 239,240 Pu, were believed to be bound to sediment surface coatings, such as organic or oxide/hydroxides, rather than the truly adsorbed ion. Solute phase 239,240 Pu was most likely associated with colloidal organic carbon species (such as humic or fulvic acids). This was also apparent, but to a lesser extent, for 241 Am. Distribution coefficients were determined for a number of discrete sites and environmental conditions. The response of the stream to removal of its source of radioactivity (via a re-routing scheme) was both significant and rapid. (author)

  4. Physicochemical characteristics of radionuclides associated with sediment from a contaminated fresh water stream

    International Nuclear Information System (INIS)

    Murdock, R.N.; Hemingway, J.D.; Jones, S.R.

    1993-01-01

    The relationships between concentrations of 241 Am, 137 Cs and 239,240 Pu and sediment particle size and geochemical species were examined for sediments taken from a freshwater stream contaminated by radioactive effluent from a low-level waste disposal site. Both 137 Cs and gross alpha concentrations were strongly correlated with the silt and clay content of the sediment, radionuclide concentrations following the order: clay>silt>sand. Positive correlations with organic content were also observed for both 137 Cs and gross alpha activity. These relationships, together with erosional and depositional characteristics obtained from streamflow data, largely explained the spatial variation in radionuclide concentrations in streambed sediments. Sequential extraction experiments showed that 137 Cs was mostly ''irreversibly'' bound to sediment particle, principally illitic clays, whereas 241 Am and 239,240 Pu were associated primarily with organic and oxy-hydroxy species within the sediments. (Author)

  5. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  6. Tectonic and lithological controls on fluvial landscape development in central-eastern Portugal: Insights from long profile tributary stream analyses

    Science.gov (United States)

    Martins, António A.; Cabral, João; Cunha, Pedro P.; Stokes, Martin; Borges, José; Caldeira, Bento; Martins, A. Cardoso

    2017-01-01

    This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380-150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220-110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1-0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38-0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22-0.12 m/ky. The differential uplift inferred in the

  7. Aquatic mosses as a monitoring tool for 137Cs contamination in streams and rivers--a field study from central southern Norway

    International Nuclear Information System (INIS)

    Hongve, D.; Brittain, J.E.; Bjoernstad, H.E.

    2002-01-01

    Mosses are frequently used as biomonitors for trace element pollution in the aquatic environment. The purpose of this study was to assess their usefulness as a tool in monitoring and in regional surveys of radioactive contamination. Specimens of the aquatic mosses, Fontinalis antipyretica and F. dalecarlica, were transplanted from non-contaminated areas to streams and rivers in the Norwegian Jotunheimen Mountains and neighbouring lowland areas that had received radioactive fallout after the Chernobyl accident. Equilibrium concentrations of 137 Cs in the exposed mosses were reached after a few weeks. Two series from 20 streams in 1994 and 1996 show linear correlations between activities in water and moss samples and biomagnification ratios of 10 4 -10 5 . We conclude that mosses are better suited for monitoring purposes than water samples, because they provide values integrated over weeks while the radioactivity in surface waters can be subject to rapid variations according to hydrological events. The activity concentrations in aquatic mosses can be easily measured with good precision even when aqueous concentrations are below the limit of detection. Use of aquatic mosses also reduces the logistic problems of transporting large volumes of water, especially in areas inaccessible by road

  8. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  9. Predicting fecal indicator organism contamination in Oregon coastal streams

    International Nuclear Information System (INIS)

    Pettus, Paul; Foster, Eugene; Pan, Yangdong

    2015-01-01

    In this study, we used publicly available GIS layers and statistical tree-based modeling (CART and Random Forest) to predict pathogen indicator counts at a regional scale using 88 spatially explicit landscape predictors and 6657 samples from non-estuarine streams in the Oregon Coast Range. A total of 532 frequently sampled sites were parsed down to 93 pathogen sampling sites to control for spatial and temporal biases. This model's 56.5% explanation of variance, was comparable to other regional models, while still including a large number of variables. Analysis showed the most important predictors on bacteria counts to be: forest and natural riparian zones, cattle related activities, and urban land uses. This research confirmed linkages to anthropogenic activities, with the research prediction mapping showing increased bacteria counts in agricultural and urban land use areas and lower counts with more natural riparian conditions. - Highlights: • We modeled fecal indicator pathogens in Oregon Coast range streams. • We used machine learning tools with only publicly available data. • These models demonstrate the importance of riparian land use on water quality. • Regional water quality was characterized in streams with little to no monitoring. - A desktop approach to predict stream pathogens from exclusively publicly available data sets on a regional scale.

  10. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    Science.gov (United States)

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. © 2015, National Ground Water Association.

  11. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  12. Mining the IPTV Channel Change Event Stream to Discover Insight and Detect Ads

    Directory of Open Access Journals (Sweden)

    Matej Kren

    2016-01-01

    Full Text Available IPTV has been widely deployed throughout the world, bringing significant advantages to users in terms of the channel offering, video on demand, and interactive applications. One aspect that has been often neglected is the ability of precise and unobtrusive telemetry. TV set-top boxes that are deployed in modern IPTV systems can be thought of as capable sensor nodes that collect vast amounts of data, representing both the user activity and the quality of service delivered by the system itself. In this paper we focus on the user-generated events and analyze how the data stream of channel change events received from the entire IPTV network can be mined to obtain insight about the content. We demonstrate that it is possible to predict the occurrence of TV ads with high probability and show that the approach could be extended to model the user behavior and classify the viewership in multiple dimensions.

  13. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  14. The Pacific northwest stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Morace, Jennifer L.; Sheibley, Rich W.

    2015-01-01

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program is assessing stream quality in the Pacific Northwest. The goals of the Pacific Northwest Stream Quality Assessment (Pacific Northwest study) are to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and to evaluate the relation between these stressors and biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowlands and Willamette Valley are the focus of this regional study. Findings will provide the public and policymakers with information regarding which human and environmental factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect or improve the health of streams in the region.

  15. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    Science.gov (United States)

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  17. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    Science.gov (United States)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may

  18. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  19. Urban development results in stressors that degrade stream ecosystems

    Science.gov (United States)

    Bell, Amanda H.; Coles, James F.; McMahon, Gerard; Woodside, Michael D.

    2012-01-01

    In 2003, eighty-three percent of Americans lived in metropolitan areas, and considerable population increases are predicted within the next 50 years. Nowhere are the environmental changes associated with urban development more evident than in urban streams. Contaminants, habitat destruction, and increasing streamflow flashiness resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic biota. Every stream is connected downstream to other water bodies, and inputs of contaminants and (or) sediments to streams can cause degradation downstream with adverse effects on biological communities and on economically valuable resources, such as fisheries and tourism. Understanding how algal, invertebrate, and fish communities respond to physical and chemical stressors associated with urban development can provide important clues on how multiple stressors may be managed to protect stream health as a watershed becomes increasingly urbanized. This fact sheet highlights selected findings of a comprehensive assessment by the National Water-Quality Assessment Program of the U.S. Geological Survey (USGS) of the effects of urban development on stream ecosystems in nine metropolitan study areas.

  20. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  1. Ecological Realism of U.S. EPA Experimental Stream Facility Studies

    Science.gov (United States)

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run sectio...

  2. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  3. ECOLOGICAL EFFECTS OF METALS IN STREAMS ON A DEFENSE MATERIALS PROCESSING SITE IN SOUTH CAROLINA, USA

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.; Dyer, S.

    2009-09-01

    The Savannah River Site (SRS) is a 780 km{sup 2} U.S. Department of Energy facility near Aiken SC established in 1950 to produce nuclear materials. SRS streams are 'integrators' that potentially receive water transportable contaminants from all sources within their watersheds necessitating a GIS-based watershed approach to organize contaminant distribution data and accurately characterize the effects of multiple contaminant sources on aquatic organisms. Concentrations of metals in sediments, fish, and water were elevated in streams affected by SRS operations, but contaminant exposure models for Lontra Canadensis and Ceryle alcyon indicated that toxicological reference values were exceeded only by Hg and Al. Macroinvertebrate community structure was unrelated to sediment metal concentrations. This study indicated that (1) modeling studies and field bioassessments provide a complementary basis for addressing the individual and cumulative effects of contaminants, (2) habitat effects must be controlled when assessing contaminant impacts, (3) sensitivity analyses of contaminant exposure models are helpful in apportioning sampling effort, and (4) contaminants released during fifty years of industrial operations have not resulted in demonstrable harm to aquatic organisms in SRS streams.

  4. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    Science.gov (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  6. Mercury in the nation's streams - Levels, trends, and implications

    Science.gov (United States)

    Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.

    2014-01-01

    Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution.Three key factors determine the level of mercury contamination in fish - the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas.In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present.Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations.This report summarizes selected stream studies

  7. Two-dimensional Value Stream Mapping: Integrating the design of the MPC system in the value stream map

    DEFF Research Database (Denmark)

    Powell, Daryl; Olesen, Peter Bjerg

    2013-01-01

    Companies use value stream mapping to identify waste, often in the early stages of a lean implementation. Though the tool helps users to visualize material and information flows and to identify improvement opportunities, a limitation of this approach is the lack of an integrated method...... for analysing and re-designing the MPC system in order to support lean improvement. We reflect on the current literature regarding value stream mapping, and use practical insights in order to develop and propose a two-dimensional value stream mapping tool that integrates the design of the MPC system within...... the material and information flow map....

  8. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    Science.gov (United States)

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek

  9. THE USE OF GEOMORPHOLOGY IN THE ASSESSMENT OF STREAM STABILITY

    Science.gov (United States)

    Various applications of geomorphic data and stream stability rating systems are being considered in order to establish tools for the development of TMDLs for clean sediment in streams. The transport of "clean" sediment, as opposed to contaminated sediment, is of concern to the en...

  10. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Yu, Tsung-Hsien; Lin, Cheng-Fang

    2008-12-01

    This is a comprehensive study of the occurrence of antibiotics, hormones and other pharmaceuticals in water sites that have major potential for downstream environmental contamination. These include residential (hospitals, sewage treatment plants, and regional discharges), industrial (pharmaceutical production facilities), and agricultural (animal husbandries and aquacultures) waste streams. We assayed 23 Taiwanese water sites for 97 targeted compounds, of which a significant number were detected and quantified. The most frequently detected compounds were sulfamethoxazole, caffeine, acetaminophen, and ibuprofen, followed closely by cephalexin, ofloxacin, and diclofenac, which were detected in >91% of samples and found to have median (maximum) concentrations of 0.2 (5.8), 0.39 (24.0), 0.02 (100.4), 0.41 (14.5), 0.15 (31.4), 0.14 (13.6) and 0.083 (29.8) microg/L, respectively. Lincomycin and acetaminophen had high measured concentrations (>100 microg/L), and 35 other pharmaceuticals occurred at the microg/L level. These incidence and concentration results correlate well with published data for other worldwide locations, as well as with Taiwanese medication usage data, suggesting a human contamination source. Many pharmaceuticals also occurred at levels exceeding predicted no-effect concentrations (PNEC), warranting further investigation of their occurrence and fate in receiving waters, as well as the overall risks they pose for local ecosystems and human residents. The information provided here will also be useful for development of strategies for regulation and remediation.

  11. Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015

    Science.gov (United States)

    Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.

    2017-08-25

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete

  12. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  13. Initial field test of High-Energy Corona process for treating a contaminated soil-offgas stream

    International Nuclear Information System (INIS)

    Shah, R.R.; Garcia, R.E.; Jeffs, J.T.; Virden, J.W.; Heath, W.O.

    1995-04-01

    The High-Energy Corona (HEC) technology for treating process offgases has been under development at Pacific Northwest Laboratory (PNL) since 1991. The HEC process uses high-voltage electrical discharges in air to ionize the air, forming a low-temperature plasma that would be expected to destroy a wide variety of organic compounds in air. The plasma contains strong oxidants, possibly including hydroxyl radicals, hydroperoxy radicals, superoxide radicals, various excited as well as ionized forms of oxygen, high-energy electrons, and ultraviolet (UV) light. Because the high-voltage plasma is produced near ambient temperatures and pressures, yet exhibits extremely rapid destruction kinetics with relatively low power requirements, the HEC technique appears promising as a low-cost treatment technique (Virden et al. 1992). As part of the Volatile Organic Compound (VOC) Nonarid Integrated Demonstration (ID) at the DOE Savannah River Site, research activities were initiated in December 1991 to develop a prototype HEC process for a small-scale field demonstration to treat a soil-offgas stream contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) at varying concentrations. Over an 18-month period, the HEC technology was developed on a fast track, through bench and pilot scales into a trailer-mounted system that was tested at the Nonarid ID. Other national laboratories, universities, and private companies have also participated at the Nonarid ID to demonstrate a number of conventional, emerging and innovative approaches for treating the same soil-offgas stream

  14. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  15. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  16. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    Science.gov (United States)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  17. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology and hydrogeol...... for landfill sites so the approaches and findings from Risby Landfill can be applied to other landfill sites. The study highlights that landfills may pose a risk to surface waters and future studies should be directed towards evaluation of both chemical and ecological risk....

  18. Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R., E-mail: jgallego@uniovi.es; Rodríguez-Valdés, E.; Esquinas, N.; Fernández-Braña, A.; Afif, E.

    2016-09-01

    Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use. - Highlights: • Complex legacy of contamination afflicts 20-ha brownfield • As and Pb highest soil pollutants • Forensic study reveals main waste and spills. • Comprehensive study of pyrite ashes (multi-point source of pollution) • Co-occurrence of PAH also linked to pyrite ashes.

  19. Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach

    International Nuclear Information System (INIS)

    Gallego, J.R.; Rodríguez-Valdés, E.; Esquinas, N.; Fernández-Braña, A.; Afif, E.

    2016-01-01

    Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use. - Highlights: • Complex legacy of contamination afflicts 20-ha brownfield • As and Pb highest soil pollutants • Forensic study reveals main waste and spills. • Comprehensive study of pyrite ashes (multi-point source of pollution) • Co-occurrence of PAH also linked to pyrite ashes

  20. Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA

    Science.gov (United States)

    Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini

    2017-01-01

    We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.

  1. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  2. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  3. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina stream (Doñana National Park, SW Spain)

    OpenAIRE

    Tortosa Muñoz, Germán; Galeote, David; Sánchez-Raya, Juan A.; Delgado Huertas, Antonio; Sánchez-Monedero, Miguel Ángel; Bedmar, Eulogio J.

    2011-01-01

    Climatic influence (global warming and decreased rainfall) could lead to an increase in the ecological and toxicological effects of the pollution in aquatic ecosystems, especially contamination from agricultural nitrate (NO3 −) fertilizers. Physicochemical properties of the surface waters and sediments of four selected sites varying in NO3 − concentration along La Rocina Stream, which feeds Marisma del Rocio in Do˜nana National Park (South West, Spain), were studied. Electri...

  4. A catchment scale evaluation of multiple stressor effects in headwater streams

    DEFF Research Database (Denmark)

    Rasmussen, J. J.; McKnight, Ursula S.; Loinaz, Maria Christina

    2013-01-01

    studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities...... insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded...

  5. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  6. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Petroleum hydrocarbon contamination profile, heavy metals and .... potential conduits for oil and water migrating from the ... by Gas Chromatography: Soil / sediment / sludge ..... fractions contained in the dump pits) which have.

  7. Field methods for determining point source pollution impacts in rivers: A case study of the Grindsted stream

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Fjordbøge, Annika Sidelmann

    2013-01-01

    Water Framework Directive requires member states to evaluate all types of contamination sources within a watershed in order to assess their direct impact on water quality. Understanding and accurately characterizing groundwater-surface water interactions (GSI) and groundwater discharge is thus becoming...... was carried out in 2012, to develop the theoretical basis for conducting risk assessments for contaminated sites impacting surface waters. Grindsted stream was chosen, as groundwater flow is known to comprise an important part of the total water supply to the stream. It is also a well-studied site, affected...... a 5 km stream stretch, which were not visible at the regional scale, using systematic temperature measurements. We then correlated the two highly contaminated contact zones, using piezometers placed where streambed temperature measurements were waters...

  8. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  9. Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: open-quotes Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes (DOE-RL 1987), and open-quotes Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Siteclose quotes. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document

  10. Modelling tools for integrating geological, geophysical and contamination data for characterization of groundwater plumes

    DEFF Research Database (Denmark)

    Balbarini, Nicola

    the contaminant plume in a shallow and a deep plume. These plumes have different chemical characteristics and different migration paths to the stream. This has implications for the risk assessment of the stream and groundwater in the area. The difficulty of determining groundwater flow paths means that it is also...... receptors, including streams. Key risk assessment parameters, such as contaminant mass discharge estimates, and tools are then used to evaluate the risk. The cost of drilling often makes investigations of large and/or deep contaminant plumes unfeasible. For this reason, it is important to develop cost...... organic compounds, including pharmaceutical compounds and chlorinated ethenes. The correlation between DCIP and organic compounds is indirect and depends on the chemical composition of the contaminant plume and the transport processes. Thus, the correlations are site specific and may change between...

  11. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  12. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  14. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Dopheide, Andrew; Lewis, Gillian D.

    2013-01-01

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  15. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    Energy Technology Data Exchange (ETDEWEB)

    Sick, M. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  16. The effect of industrial effluent stream on the groundwater

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.

    2005-01-01

    This study was performed to investigate the effect of the industrial wastewater stream on the groundwater. Wastewater was characterized in terms of inorganic and organic constituents. Inorganic constituents included Na/sup +/, Ca/sup 2+/ K/sup +/, Cl/sup -/, NO/sub 3//sup -/ and SO/sub 4//sup 2-/ coupled with heavy metal elements such as, Cd, Cr, Pb, Mn, Cu, Ni, Fe and In. Organic load of the stream was determined in terms of chemical oxygen demand (COD), biological oxygen demand (BOD/sub 5/) and ammonia-nitrogen (NH/sub 3/-N) contents. Other characteristics were pH, electrical conductivity (EC) and total dissolved solids (TDS). The correlation coefficients between quality parameter pairs of stream water and groundwater were determined to ascertain the source of groundwater contamination. At station 1, BOD/sub 5/ and COD contents were 20 times and Cr concentration was 10 times higher than the permissible limits for stream water [1]. Contents of these parameters reflected the level of industrial and domestic pollution coming from India. However, large variations in the levels of these parameters at down stream sites of the drain were characteristic of type and nature of industrial effluents and domestic sewage joining the stream. Analysis results of more than one hundred groundwater samples from shallow and deep wells around the drain showed that groundwater of shallow aquifers was contaminated due to drain water. A comparison of the contents of these parameters in shallow wells with WHO standards showed that some parameters such as turbidity, TDS, Na/sup +/, F -and heavy metals like Cr were found higher than the permissible limits. (author)

  17. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  18. South Stream Project and the Ukrainian Factor

    Directory of Open Access Journals (Sweden)

    Roxana Ioana Banciu

    2015-03-01

    Full Text Available The paper seeks to develop an analysis of the South Stream project in view of the Ukrainian crisis. We cannot put aside the internal factor as Ukraine is facing serious internal issues such as corruption and instability, therefore Russia’s invasion of Ukraine can not be simply ignored in this pipeline project. The article uses mostly facts that happened throughout last years, as well as for and against declarations in the case of the South Stream project and its mother Russia. When we hear about South Stream, we think of Russia and since 2007, this pipeline has encouraged Putin’s faith in energy superpower. A good point to start with was to gather all declarations since then and cover all actions that regard the South Stream game. In Russian foreign policy for the South Stream race, Soft Power was used more than enough and it has recently made room for Hard Power, which is the Ukraine never ending episode. Insights of the South Stream story have been lately related both softly and hardly, this is the reason why I have chosen to analyse both sides in order to complete the energy landscape.

  19. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  20. LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON, USA, LOTIC FISH

    Science.gov (United States)

    Because of growing concern with widespread mercury contamination of fish tissue, we sampled 154 streams and rivers throughout Oregon using a probability design. To maximize the sample size we took samples of small and large fish, where possible, from wadeable streams and boatable...

  1. Conversion of three mixed-waste streams

    International Nuclear Information System (INIS)

    Harmer, D.E.; Porter, D.L.; Conley, C.W.

    1990-01-01

    At the present time, commercial mixed waste (containing both radioactive and hazardous components) is not handled by any disposal site in this country. Thus, a generator of such material is faced with the prospect of separating or altering the nature of the waste components. A chemical or physical separation may be possible. However, if separation fails there remains the opportunity of chemically transforming the hazardous ingredients to non-hazardous substances, allowing disposal at an existing radioactive burial site. Finally, chemical or physical stabilization can be used as a tool to achieve an acceptable waste form lacking the characteristics of mixed waste. A practical application of these principles has been made in the case of certain mixed waste streams at Aerojet Ordnance Tennessee. Three different streams were involved: (1) lead and lead oxide contaminated with uranium, (2) mixed chloride salts including barium chloride, contaminated with uranium, and (3) bricks impregnated with the barium salt mixture. This paper summarizes the approach of this mixed-waste problem, the laboratory solutions found, and the intended field remediations to be followed. Mixture (1), above, was successfully converted to a vitreous insoluble form. Mixture (2) was separated into radioactive and non-radioactive streams, and the hazardous characteristics of the latter altered chemically. Mixture (3) was treated to an extraction process, after which the extractant could be treated by the methods of Mixture (2). Field application of these methods is scheduled in the near future

  2. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    Science.gov (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  3. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    International Nuclear Information System (INIS)

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  4. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  5. Removal of heavy metals and organic contaminants from aqueous streams by novel filtration methods. 1998 annual progress report

    International Nuclear Information System (INIS)

    Rodriguez, N.M.

    1998-01-01

    'Graphite nanofibers are a new type of material consisting of nanosized graphite platelets where only edges are exposed. Taking advantage of this unique configuration the authors objective is: (1) To produce graphite nanofibers with structural properties suitable for the removal of contaminants from water. (2) To test the suitability of the material in the removal of organic from aqueous solutions. (3) To determine the ability of the nanofibers to function as an electrochemical separation medium the selective removal of metal contaminants from solutions. This report summarizes work after 1.5 of a 3-year project. During this period, efforts have been concentrated on the production, characterization and optimization of graphite nanofibers (GNF). This novel material has been developed in the laboratory from the metal catalyzed decomposition of certain hydrocarbons (1). The structures possess a cross-sectional area that varies between 5 to 100 nm and have lengths ranging from 5 to 100 mm (2). High-resolution transmission electron microscopy studies have revealed that the nanofibers consist of extremely well-ordered graphite platelets, which are oriented in various directions with respect to the fiber axis (3). The arrangement of the graphene layers can be tailored to a desired geometry by choice of the correct catalyst system and reaction conditions, and it is therefore possible to generate structures where the layers are stacked in a ribbon, herring-bone, or stacked orientation. The research has been directed on two fronts: (a) the use of the material for the removal of organic contaminants, and (b) taking advantage of the high electrical conductivity as well as high surface area of the material to use it as electrode for the electrochemical removal of metal pollutants from aqueous streams.'

  6. The Morphology of Streams Restored for Market and Nonmarket Purposes: Insights From a Mixed Natural-Social Science Approach

    Science.gov (United States)

    Singh, J.; Doyle, M.; Lave, R.; Robertson, M.

    2015-12-01

    Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide

  7. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  8. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  9. Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms

    International Nuclear Information System (INIS)

    Aristi, I.; Casellas, M.; Elosegi, A.; Insa, S.; Petrovic, M.; Sabater, S.; Acuña, V.

    2016-01-01

    Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3–4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the

  10. Identifying Sources of Fecal Contamination in Streams Associated with Chicken Farms

    Science.gov (United States)

    Poultry is responsible for 44% of the total feces production in the U.S., followed by cattle and swine. The large U.S. production of feces poses a contamination risk for affected watersheds across the country. To aid in the identification of the sources of contamination, many D...

  11. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  12. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  13. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  14. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  15. Interpretation of stream programs: characterizing type 2 polynomial time complexity

    OpenAIRE

    Férée , Hugo; Hainry , Emmanuel; Hoyrup , Mathieu; Péchoux , Romain

    2010-01-01

    International audience; We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named well-founded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These charac- terizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over th...

  16. EPA's National Reassessment of Contaminants in Fish from U.S. Rivers

    Science.gov (United States)

    Multiple EPA offices collaborated to conduct a reassessment of fish contamination in U.S. rivers as part of the Agency’s 2013-14 National Rivers and Streams Assessment (NRSA). This is the first national assessment of contamination in river fish that will generate probabili...

  17. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    Science.gov (United States)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  18. A Simple FSPN Model of P2P Live Video Streaming System

    OpenAIRE

    Kotevski, Zoran; Mitrevski, Pece

    2011-01-01

    Peer to Peer (P2P) live streaming is relatively new paradigm that aims at streaming live video to large number of clients at low cost. Many such applications already exist in the market, but, prior to creating such system it is necessary to analyze its performance via representative model that can provide good insight in the system’s behavior. Modeling and performance analysis of P2P live video streaming systems is challenging task which requires addressing many properties and issues of P2P s...

  19. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  20. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Stellar Streams Discovered in the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shipp, N.; et al.

    2018-01-09

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $\\sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $< 1 \\%$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $\\sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.

  2. Assessment of Energetic Compounds, Semi-volatile Organic Compounds, and Trace Elements in Streambed Sediment and Stream Water from Streams Draining Munitions Firing Points and Impact Areas, Fort Riley, Kansas, 2007-08

    Science.gov (United States)

    Coiner, R.L.; Pope, L.M.; Mehl, H.E.

    2010-01-01

    An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in

  3. Integrated assessment of chemical stressors and ecological impact in mixed land use stream systems

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo

    activities, including contaminated sites. To determine potential impacts, the chemical quality of both organic (i.e. pharmaceuticals, gasoline constituents, chlorinated solvents, and pesticides) and inorganic (i.e. metals, general water chemistry and macroions) compounds was assessed in all three stream...... multiple compounds (i.e. organic and inorganic chemical stressors) and stream compartments to locate key sources and risk drivers. The approaches and findings in this thesis could truly be helpful for management and future remediation of mixed land use stream systems....... of the different stream compartments thus comprises both temporal and spatial variation. Despite the growing understanding of the complexity, approaches for a holistic risk assessment of the potential impacts in the three stream compartments of a mixed land use stream system are still missing. To investigate...

  4. Treatment option evaluation for liquid effluent secondary streams on the Hanford Site

    International Nuclear Information System (INIS)

    Holter, G.M.; Triplett, M.B.; Fow, C.L.; White, M.K.

    1988-08-01

    This study, conducted by the Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC), examines the range of secondary waste types and volumes likely to result from treatment of contaminated liquid effluents. Alternatives for treatment of these effluents were considered, taking into account the implementation of the ''best-available technology'' as assumed in current and ongoing engineering studies for treating the various liquid effluent waste streams. These treatment alternatives, and potential variations in the operating schedules for Hanford Site facilities generating contaminated liquid effluents, were evaluated to project an estimated range for the volume of each of the various secondary waste streams that are likely to be generated. The conclusions and recommendations were developed, based on these estimates. 23 refs., 34 figs., 16 tabs

  5. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    Science.gov (United States)

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  6. Contaminated nickel scrap processing

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include 234 Th, 234 Pa, 137 Cs, 239 Pu (trace), 60 Co, U, 99 Tc, and 237 Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs

  7. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry.

    Science.gov (United States)

    Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke

    2012-04-01

    This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.

  8. Fractionation of chemical elements including the REEs and 226Ra in stream contaminated with coal-mine effluent

    International Nuclear Information System (INIS)

    Centeno, L.M.; Faure, G.; Lee, G.; Talnagi, J.

    2004-01-01

    Water draining from abandoned open-pit coal mines in southeastern Ohio typically has a low pH and high concentrations of Fe, Al and Mn, as well as of trace metals (Pb, Cu, Zn, Ni, Co, etc.) and of the rare earth elements (REEs). The cations of different elements are sorbed selectively by Fe and Al hydroxide precipitates which form with increasing pH. As a result, the trace elements are separated from each other when the hydroxide precipitates are deposited in the channel of a flowing stream. Therefore, the low-energy environment of a stream contaminated by mine effluent is a favorable site for the chemical fractionation of the REEs and of other groups of elements with similar chemical properties. The interpretation of chemical analyses of water collected along a 30-km-stretch of Rush Creek near the town of New Lexington, Perry County, Ohio, indicates that the abundances of the REEs in the water appear to change downstream when they are normalized to the REE concentrations of the mine effluent. In addition, the Ce/La ratios (and those of all REEs) in the water decrease consistently downstream. The evidence indicates that the REEs which remain in solution are enriched La and Ce because the other REEs are sorbed more efficiently. The solid Fe(OH) 3 precipitates in the channel of Rush Creek upstream of New Lexington also contain radioactive 226 Ra that was sorbed from the water. This isotope of Ra is a decay product of 238 U which occurs in the Middle Pennsylvanian (Upper Carboniferous) coal and in the associated shale of southeastern Ohio. The activity of 226 Ra of the Fe(OH) 3 precipitates increases with rising pH, but then declines farther downstream as the concentration of Ra remaining in the water decreases

  9. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  10. Contaminants of the bismuth phosphate process as signifiers of nuclear reprocessing history

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Sweet, Lucas E.

    2012-01-01

    Reagents used in spent nuclear fuel recycling impart unique contaminant patterns into the product stream of the process. Efforts are underway at Pacific Northwest National Laboratory to characterize and understand the relationship between these patterns and the process that created them. A main challenge to this effort, recycling processes that were employed at the Hanford site from 1944-1989 have been retired for decades. This precludes direct measurements of the contaminant patterns that propagate within product streams of these facilities. In the absence of any operating recycling facilities at Hanford, we have taken a multipronged approach to cataloging contaminants of U.S. reprocessing activities using: (1) historical records summarizing contaminants within the final Pu metal button product of these facilities; (2) samples of opportunity that represent intermediate products of these processes; and (3) lab-scale experiments and model simulations designed to replicate contaminant patterns at each stage of nuclear fuel reprocessing. This report provides a summary of the progress and results from Fiscal Year (April 1, 2010-September 30) 2011.

  11. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  12. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  13. Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China

    International Nuclear Information System (INIS)

    Li, Huizhen; Sun, Baoquan; Chen, Xin; Lydy, Michael J.; You, Jing

    2013-01-01

    Sediments collected from an urban creek in China exhibited high acute toxicity to Hyalella azteca with 81.3% of sediments being toxic. A toxic unit (TU) estimation demonstrated that the pyrethroid, cypermethrin, was the major contributor to toxicity. The traditional TU approach, however, overestimated the toxicity. Reduced bioavailability of sediment-associated cypermethrin due to sequestration explained the overestimation. Additionally, antagonism among multiple contaminants and species susceptibility to various contaminants also contributed to the unexpectedly low toxicity to H. azteca. Bioavailable TUs derived from the bioavailability-based approaches, Tenax extraction and matrix-solid phase microextraction (matrix-SPME), showed better correlations with the noted toxicity compared to traditional TUs. As the first successful attempt to use matrix-SPME for estimating toxicity caused by emerging insecticides in field sediment, the present study found freely dissolved cypermethrin concentrations significantly improved the prediction of sediment toxicity to H. azteca compared to organic carbon normalized and Tenax extractable concentrations. Highlights: •Over 80% sediments from an urban stream in China were acutely toxic to H. azteca. •Toxic unit analysis showed cypermethrin was the major contributor to toxicity. •The traditional toxic unit approach overestimated sediment toxicity. •Reduced bioavailability was the reason for overestimating sediment toxicity. •Freely dissolved cypermethrin concentrations greatly improved toxicity prediction. -- Field sediment toxicity caused by current-use pesticides could be more accurately evaluated by incorporating bioavailability measurements into the toxic unit analysis

  14. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  15. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-07

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  16. Distribution of mercury, Cesium-137, and plutonium in an intermittent stream at Los Alamos

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Gladney, E.S.; Dreicer, M.

    1980-01-01

    The results of a study on the distribution of Hg, 137 Cs, 238 Pu, and 239 240 Pu in channel sediments and adjacent bank soils in an intermittent stream used for treated liquid effluent disposal since 1963 are summarized. Concentrations of the three radionuclides and Hg in stream bank soils were comparable to adjacent channel sediments demonstrating that the stream bank serves as a deposition site for chemicals released to the channel. This finding has important implications on the long-term behavior of effluent contaminants since other studies at Los Alamos have shown that the vegetated stream banks retard downstream movement of chemicals bound to soils and provide a pathway for transport of these materials to biota. Concentrations of the radionuclides and mercury were more uniformly distributed with distance and depth in the channel sediments than in the bank soils. The action of periodic surface water in the channel partially explains those differences. Statistical analysis of the data revealed that 50 to 85% of the variability in contaminant concentrations in bank and channel locations was due to variation with distance while depth contributed relatively little to variability

  17. Summary of Pilot-Scale Activities with Mercury Contaminated Sludges (U)

    International Nuclear Information System (INIS)

    Cicero, C.A.; Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D. H.; Ritter, J.A.; Hardy, B.J.; Jantzen, C.M.

    1995-01-01

    Technologies for treatment of low level mixed wastes (LLMW) are currently being investigated by the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE). The Savannah River Technology Center (SRTC) has been chartered by the MWFA to study vitrification treatment of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC's efforts have included crucible-scale studies and pilot-scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. One of the streams to be investigated in fiscal year (FY) 1995 by SRTC was a mercury waste. In FY 1995, SRTC performed crucible-scale studies with mercury contaminated soil. This waste stream was selected because of the large number of DOE sites that have an inventory of contaminated or hazardous soil. More importantly, it was readily available for treatment. Pilot-scale studies were to be completed in FY 1995, but could not be completed due to a reduction in funding. Since the main driver for focusing on a mercury waste stream was to determine how the mercury could be treated, a compilation of pilot-scale tests with mercury sludges performed under the guidance of SRTC is provided in this report. The studies summarized in this report include several pilot-scale vitrification demonstrations with simulated radioactive sludges that contained mercury. The pilot-scale studies were performed at the SRTC in the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS). The studies involved complete glass and offgas product characterization. Future pilot-scale studies with mercury streams will likely be performed with mercury contaminated soils, sediments, or sludges because of the need to dispose of this technically challenging waste stream. (Abstract Truncated)

  18. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    Science.gov (United States)

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  19. Monte Carlo simulation of radiation streaming from a radioactive material shipping cask

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Schwarz, R.A.; Tang, J.S.

    1996-01-01

    Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs

  20. Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams.

    Science.gov (United States)

    Fox, J Tyler; Adams, Ginny; Sharum, Martin; Steelman, Karen L

    2010-12-01

    Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.

  1. A physical perspective on cytoplasmic streaming.

    Science.gov (United States)

    Goldstein, Raymond E; van de Meent, Jan-Willem

    2015-08-06

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.

  2. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  3. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    Science.gov (United States)

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics

  5. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  6. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Phillips, D.H., E-mail: d.phillips@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Bowen, J. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Sen Gupta, B. [School of the Built Environment, Hariot-Watt University, Edinburgh, Scotland (United Kingdom)

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO{sub 3}-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. - Highlights: • Tynagh silver mine in Co. Galway, Ireland is a source of

  7. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    International Nuclear Information System (INIS)

    Pestana, J.L.T.; Alexander, A.C.; Culp, J.M.; Baird, D.J.; Cessna, A.J.; Soares, A.M.V.M.

    2009-01-01

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  8. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, J.L.T., E-mail: jpestana@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Alexander, A.C., E-mail: alexa.alexander@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Culp, J.M., E-mail: jculp@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Baird, D.J., E-mail: djbaird@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Cessna, A.J., E-mail: asoares@ua.p [Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK (Canada); Soares, A.M.V.M., E-mail: asoares@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2009-08-15

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  9. Use of Continuous Magnetic Extraction for removal of feedstock contaminants in flow-through mode

    DEFF Research Database (Denmark)

    Paulus, Anja; Fischer, Ingo; Hobley, Timothy John

    2014-01-01

    for binding large amounts of product. It can also be especially interesting if obtaining a high product yield is secondary to other considerations. For example if an excess of a low value waste stream is available, it may be acceptable that some target is lost to the adsorbent during contaminant binding......During downstream processing, it may sometimes be more favorable to use adsorbents to bind the contaminants rather than the product. This so-called flow-through mode is especially useful for feed streams where contaminants are in low concentrations, because less adsorbent is required than......-Birk protease inhibitor which has an anti-carcinogenic effect. It was found that using anion exchange magnetic particles as the impurity adsorbing agent, Continuous Magnetic Extraction of contaminants led to a BBI preparation with purity approaching 97% and with yield of 55% in a 15L pilot scale system....

  10. Contaminated nickel scrap processing

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  11. Three common metal contaminants of urban runoff (Zn, Cu and Pb) accumulate in freshwater biofilm and modify embedded bacterial communities

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Lewis, Gillian D.

    2010-01-01

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health. - The rapid accumulation of metals in biofilms and their impact on bacterial communities provide new insights into how these contaminants affect freshwater ecosystems.

  12. Concentrations of cadmium, Cobalt, Lead, Nickel, and Zinc in Blood and Fillets of Northern Hog Sucker (Hypentelium nigricans) from streams contaminated by lead-Zinc mining: Implications for monitoring

    Science.gov (United States)

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2009-01-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an

  13. Tracking Gendered Streams

    Directory of Open Access Journals (Sweden)

    Maria Eriksson

    2017-10-01

    Full Text Available One of the most prominent features of digital music services is the provision of personalized music recommendations that come about through the profiling of users and audiences. Based on a range of "bot experiments," this article investigates if, and how, gendered patterns in music recommendations are provided by the streaming service Spotify. While our experiments did not give any strong indications that Spotify assigns different taste profiles to male and female users, the study showed that male artists were highly overrepresented in Spotify's music recommendations; an issue which we argue prompts users to cite hegemonic masculine norms within the music industries. Although the results should be approached as historically and contextually contingent, we argue that they point to how gender and gendered tastes may be constituted through the interplay between users and algorithmic knowledge-making processes, and how digital content delivery may maintain and challenge gender relations and gendered power differentials within the music industries. Seen through the lens of critical research on software, music and gender performativity, the experiments thus provide insights into how gender is shaped and attributed meaning as it materializes in contemporary music streams.

  14. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    Science.gov (United States)

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  15. Variability of pesticide exposure in a stream mesocosm system: Macrophyte-dominated vs. non-vegetated sections

    Energy Technology Data Exchange (ETDEWEB)

    Beketov, Mikhail A. [UFZ - Helmholtz Centre for Environmental Research, Department of System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig (Germany)], E-mail: mikhail.beketov@ufz.de; Liess, Matthias [UFZ - Helmholtz Centre for Environmental Research, Department of System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2008-12-15

    For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10 h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff). - Spatial cross-channel variability of contaminant concentrations is noteworthy and important.

  16. Variability of pesticide exposure in a stream mesocosm system: Macrophyte-dominated vs. non-vegetated sections

    International Nuclear Information System (INIS)

    Beketov, Mikhail A.; Liess, Matthias

    2008-01-01

    For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10 h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff). - Spatial cross-channel variability of contaminant concentrations is noteworthy and important

  17. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  18. A comparison of the ruggedized ZnS(Ag)/EPOXY and mylar-based alpha detectors for wastewater streams

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Salaymeh, S.R.; Moore, F.S.

    1992-01-01

    A low-level alpha radiation sensor has been designed and developed at Oak Ridge National Laboratory (ORNL) for monitoring process wastewater streams at the Westinghouse Savannah River Site (SRS). This new Ruggedized Contamination Detector (RCD) is intended to replace the fragile, mylar-based scintillators and has improved sensitivity and reliability for detecting alpha contamination. The unique entrance window invented for this sensor has considerably less mass per unit area than conventional Mylar windows currently used in wastewater streams. The thin layer deposited between the radiation detection medium and potentially contaminated wastewater makes it much easier to detect short-range alpha particles. Compared to the conventional Mylar-based detectors, the new design allows for eight times the number of 238 U alphas to penetrate the entrance window and reach the scintillation material and eliminates the need for routine replacement of the Mylar entrance window

  19. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  20. Crowdsourcing based subjective quality assessment of adaptive video streaming

    DEFF Research Database (Denmark)

    Shahid, M.; Søgaard, Jacob; Pokhrel, J.

    2014-01-01

    In order to cater for user’s quality of experience (QoE) re- quirements, HTTP adaptive streaming (HAS) based solutions of video services have become popular recently. User QoE feedback can be instrumental in improving the capabilities of such services. Perceptual quality experiments that involve...... humans are considered to be the most valid method of the as- sessment of QoE. Besides lab-based subjective experiments, crowdsourcing based subjective assessment of video quality is gaining popularity as an alternative method. This paper presents insights into a study that investigates perceptual pref......- erences of various adaptive video streaming scenarios through crowdsourcing based subjective quality assessment....

  1. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  2. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  3. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    International Nuclear Information System (INIS)

    Audibert, J.M.E.; Lew, L.R.

    1994-01-01

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public

  4. Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States

    Science.gov (United States)

    Coles, James F.; McMahon, Gerard; Bell, Amanda H.; Brown, Larry R.; Fitzpatrick, Faith A.; Scudder Eikenberry, Barbara C.; Woodside, Michael D.; Cuffney, Thomas F.; Bryant, Wade L.; Cappiella, Karen; Fraley-McNeal, Lisa; Stack, William P.

    2012-01-01

    Urban development is an important agent of environmental change in the United States. The urban footprint on the American landscape has expanded during a century and a half of almost continuous development. Eighty percent of Americans now live in metropolitan areas, and the advantages and challenges of living in these developed areas—convenience, congestion, employment, pollution—are part of the day-to-day realities of most Americans. Nowhere are the environmental changes associated with urban development more evident than in urban streams. Contaminants, habitat destruction, and increasing streamflow flashiness resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic species. Every stream is connected downstream to larger water bodies, including rivers, reservoirs, and ultimately coastal waters. Inputs of chemical contaminants or sediments at any point along the stream can cause degradation downstream with adverse effects on biological communities and on economically valuable resources, such as fisheries and tourism.

  5. Treatment options for tank farms long-length contaminated equipment

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1995-01-01

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle

  6. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions (Presentation)

    Science.gov (United States)

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  7. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    Science.gov (United States)

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  8. Performance Evaluation of Concurrent Multipath Video Streaming in Multihomed Mobile Networks

    Directory of Open Access Journals (Sweden)

    James Nightingale

    2013-01-01

    Full Text Available High-quality real-time video streaming to users in mobile networks is challenging due to the dynamically changing nature of the network paths, particularly the limited bandwidth and varying end-to-end delay. In this paper, we empirically investigate the performance of multipath streaming in the context of multihomed mobile networks. Existing schemes that make use of the aggregated bandwidth of multiple paths can overcome bandwidth limitations on a single path but suffer an efficiency penalty caused by retransmission of lost packets in reliable transport schemes or path switching overheads in unreliable transport schemes. This work focuses on the evaluation of schemes to permit concurrent use of multiple paths to deliver video streams. A comprehensive streaming framework for concurrent multipath video streaming is proposed and experimentally evaluated, using current state-of-the-art H.264 Scalable Video Coding (H.264/SVC and the next generation High Efficiency Video Coding (HEVC standards. It provides a valuable insight into the benefit of using such schemes in conjunction with encoder specific packet prioritisation mechanisms for quality-aware packet scheduling and scalable streaming. The remaining obstacles to deployment of concurrent multipath schemes are identified, and the challenges in realising HEVC based concurrent multipath streaming are highlighted.

  9. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emily Snyder; John Drake; Ryan James

    2012-02-01

    . The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

  10. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    Science.gov (United States)

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  11. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Miller, D.E.; Canter, L.W.

    1991-01-01

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  12. THE 300 km s–1 STELLAR STREAM NEAR SEGUE 1: INSIGHTS FROM HIGH-RESOLUTION SPECTROSCOPY OF ITS BRIGHTEST STAR

    International Nuclear Information System (INIS)

    Frebel, Anna; Casey, Andrew R.; Lunnan, Ragnhild; Norris, John E.; Wyse, Rosemary F. G.; Gilmore, Gerard

    2013-01-01

    We present a chemical abundance analysis of 300S-1, the brightest likely member star of the 300 km s –1 stream near the faint satellite galaxy Segue 1. From a high-resolution Magellan/MIKE spectrum, we determine a metallicity of [Fe/H] = –1.46 ± 0.05 ± 0.23 (random and systematic uncertainties) for star 300S-1, and find an abundance pattern similar to typical halo stars at this metallicity. Comparing our stellar parameters to theoretical isochrones, we estimate a distance of 18 ± 7 kpc. Both the metallicity and distance estimates are in good agreement with what can be inferred from comparing the Sloan Digital Sky Survey photometric data of the stream stars to globular cluster sequences. While several other structures overlap with the stream in this part of the sky, the combination of kinematic, chemical, and distance information makes it unlikely that these stars are associated with either the Segue 1 galaxy, the Sagittarius Stream, or the Orphan Stream. Streams with halo-like abundance signatures, such as the 300 km s –1 stream, present another observational piece for understanding the accretion history of the Galactic halo.

  13. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  14. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    2011-01-01

    According to the European Water Framework Directive, member states are obliged to ensure that all surface water bodies achieve at least good ecological status and to identify major anthropogenic stressors. Non-point source contamination of agricultural pesticides is widely acknowledged as one of ...

  15. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    International Nuclear Information System (INIS)

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors

  16. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    Science.gov (United States)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U

  17. Rechargeable particulate filter for radioactive contaminated gas streams

    International Nuclear Information System (INIS)

    Bonn, J.W.

    1976-01-01

    A system is disclosed which includes a closed housing having a plurality of rectangularly configured beds with perforated sidewalls longitudinally disposed in housing in laterally spaced disposition with each other. Alternate spaces at inlet end are closed and alternate spaces opposite the open ends are closed at exit end whereby contaminated gas is laterally squeezed through the beds filled with particulate adsorbent. The lower portions of the beds funnel into longitudinally extending discharge chutes enclosed within respective wells, the lower edges of the chutes rising at a constant angle above the well floor. An evacuation system coupled to the wells suctions the pile of particulate from the most remote portion of the chutes first. 3 claims, 7 drawing figures

  18. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  19. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA

    Science.gov (United States)

    Harte, P.T.; Trowbridge, P.R.

    2010-01-01

    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  20. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  1. The impact of Indian Ocean high pressure system on rainfall and stream flow

    International Nuclear Information System (INIS)

    Rehman, S.; Nasir, H.; Zia, S.S.; Ansari, W.A.; Salam, K.; Tayyab, N.

    2012-01-01

    Centre of Action approach is very useful in getting insight of rainfall and stream flow variability of specific region. Hameed et al. showed that Inter-annual variability of Gulf Stream north wall is influenced by low Icelandic pressure system and has more statistically significant correlation than North Atlantic Oscillation (NAO) with longitude of Icelandic low. This study also aims to explore possible relationships between rainfall and stream flow in Collie river catchment in Southwest Western Australia (SWWA) with Indian Ocean high pressure dynamics. The relationship between rainfall and stream flow with Indian Ocean high pressure system have been investigated using correlation analysis for early winter season (MJJA), lag correlation for MJJA versus SOND rainfall and stream flow are also calculated and found significant at 95% confidence level. By investigating the relationship between COA indices with rainfall and stream flow over the period 1976-2008, significant correlations suggests that rainfall and stream flow in Collie river basin is strongly influenced by COA indices. Multiple correlations between rainfall and stream flow with Indian Ocean high pressure (IOHPS and IOHLN) is 0.7 and 0.6 respectively. Centers of Action (COA) indices explain 51% and 36% of rainfall and stream flow respectively. The correlation between rainfall and stream flow with IOHPS is -0.4 and -0.3 whereas, with IOHLN is -0.47 and -0.52 respectively. (author)

  2. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  3. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-01-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase trademark, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options

  4. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  5. Incorporating evolutionary insights to improve ecotoxicology for freshwater species

    Science.gov (United States)

    Brady, Steven P.; Richardson, Jonathan L.; Kunz, Bethany K.

    2017-01-01

    Ecotoxicological studies have provided extensive insights into the lethal and sublethal effects of environmental contaminants. These insights are critical for environmental regulatory frameworks, which rely on knowledge of toxicity for developing policies to manage contaminants. While varied approaches have been applied to ecotoxicological questions, perspectives related to the evolutionary history of focal species or populations have received little consideration. Here, we evaluate chloride toxicity from the perspectives of both macroevolution and contemporary evolution. First, by mapping chloride toxicity values derived from the literature onto a phylogeny of macroinvertebrates, fish, and amphibians, we tested whether macroevolutionary relationships across species and taxa are predictive of chloride tolerance. Next, we conducted chloride exposure tests for two amphibian species to assess whether potential contemporary evolutionary change associated with environmental chloride contamination influences chloride tolerance across local populations. We show that explicitly evaluating both macroevolution and contemporary evolution can provide important and even qualitatively different insights from those obtained via traditional ecotoxicological studies. While macroevolutionary perspectives can help forecast toxicological end points for species with untested sensitivities, contemporary evolutionary perspectives demonstrate the need to consider the environmental context of exposed populations when measuring toxicity. Accounting for divergence among populations of interest can provide more accurate and relevant information related to the sensitivity of populations that may be evolving in response to selection from contaminant exposure. Our data show that approaches accounting for and specifically examining variation among natural populations should become standard practice in ecotoxicology.

  6. The dark side of suibsidies: quantifying contaminant exposure to riparian predators via stream insects

    Science.gov (United States)

    Aquatic insects provide a critical nutrient subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic (resource utilization) and contaminant exposure for a riparian invert...

  7. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Focazio, Michael J.; Meyer, Michael T.; Johnson, Heather E.; Oster, Ryan J.; Foreman, William T.

    2016-01-01

    Animal waste, stream water, and streambed sediment from 19 small (animal agriculture (control, n = 4), or predominantly beef (n = 4), dairy (n = 3), swine (n = 5), or poultry (n = 3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions

  8. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Science.gov (United States)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  9. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  10. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  11. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    Science.gov (United States)

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge

  12. Mercury-contaminated hydraulic mining debris in San Francisco Bay

    Science.gov (United States)

    Bouse, Robin M.; Fuller, Christopher C.; Luoma, Samuel N.; Hornberger, Michelle I.; Jaffe, Bruce E.; Smith, Richard E.

    2010-01-01

    The hydraulic gold-mining process used during the California Gold Rush and in many developing countries today contributes enormous amounts of sediment to rivers and streams. Commonly, accompanying this sediment are contaminants such as elemental mercury and cyanide used in the gold extraction process. We show that some of the mercurycontaminated sediment created by hydraulic gold mining in the Sierra Nevada, between 1852 and 1884, ended up over 250 kilometers (km) away in San Francisco Bay; an example of the far-reaching extent of contamination from such activities.

  13. Modelling of contaminant release from a uranium mine tailings site

    International Nuclear Information System (INIS)

    Kahnt, Rene; Metschies, Thomas

    2007-01-01

    Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m 3 . Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k d -approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)

  14. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  15. Temperature Response of a Small Mountain Stream to Thunderstorm Cloud-Cover: Application of DTS Fiber-Optic Temperature Sensing

    Science.gov (United States)

    Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.

    2014-12-01

    From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.

  16. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  17. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams.

    Science.gov (United States)

    McKnight, Ursula S; Rasmussen, Jes J; Kronvang, Brian; Binning, Philip J; Bjerg, Poul L

    2015-05-01

    We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic ecosystems. They further indicate that groundwater contaminated by legacy and contemporary pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be included in stream monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reach-scale land use drives the stress responses of a resident stream fish.

    Science.gov (United States)

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  19. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    International Nuclear Information System (INIS)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-01-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation

  20. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Energy Technology Data Exchange (ETDEWEB)

    Delva, Laurens, E-mail: Laurens.Delva@ugent.be; Ragaert, Kim, E-mail: Kim.Ragaert@ugent.be; Cardon, Ludwig, E-mail: Ludwig.Cardon@ugent.be [Centre for Polymer and Materials Technologies (CPMT), Department of Materials Science and Engineering, Ghent University, Technologiepark 915, 9052 Zwijnaarde (Belgium)

    2015-12-17

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  1. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    Science.gov (United States)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-12-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  2. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation.

    Science.gov (United States)

    Rich, Joseph O; Leathers, Timothy D; Bischoff, Kenneth M; Anderson, Amber M; Nunnally, Melinda S

    2015-11-01

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grind corn fuel ethanol facility. Among eight sites sampled in the facility, the combined liquefaction stream and yeast propagation tank were consistently contaminated, leading to contamination of early fermentation tanks. Among 768 contaminants isolated, 92% were identified as Lactobacillus sp., with the most abundant species being Lactobacillus plantarum, Lactobacillus casei, Lactobacillus mucosae, and Lactobacillus fermentum. Seven percent of total isolates showed the ability to form biofilms in pure cultures, and 22% showed the capacity to significantly inhibit ethanol production. However, these traits were not correlated. Ethanol inhibition appeared to be related to acetic acid production by contaminants, particularly by obligately heterofermentative species such as L. fermentum and L. mucosae. Published by Elsevier Ltd.

  3. Assessment of SRS radiological liquid and airborne contaminants and pathways

    International Nuclear Information System (INIS)

    Jannik, G.T.

    1997-04-01

    This report compiles and documents the radiological critical-contaminant/critical-pathway analysis performed for SRS. The analysis covers radiological releases to the atmosphere and to surface water, which are the principal media that carry contaminants off site. During routine operations at SRS, limited amounts of radionuclides are released to the environment through atmospheric and/or liquid pathways. These releases potentially result in exposure to offsite people. Though the groundwater beneath an estimated 5 to 10 percent of SRS has been contaminated by radionuclides, there is no evidence that groundwater contaminated with these constituents has migrated offsite (Arnett, 1996). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people

  4. Contaminant mass flow rates between groundwater, streambed sediments and surface water at the regionally contaminated site Bitterfeld; Schadstoffmassenstroeme zwischen Grundwasser, Flussbettsedimenten und Oberflaechenwasser am regional kontaminierten Standort Bitterfeld

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C.; Krieg, R.; Bayer-Raich, M.; Leschik, S. [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Department Hydrogeologie, Leipzig (Germany); Kalbus, E. [Eberhard-Karls-Universitaet Tuebingen, Zentrum fuer Angewandte Geowissenschaften (ZAG), Tuebingen (Germany); UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Umweltinformatik, Leipzig (Germany); Reinstorf, F. [Hochschule Magdeburg-Stendal, Fachbereich Wasser- und Kreislaufwirtschaft, Magdeburg (Germany); Martienssen, M. [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Department Hydrogeologie, Halle/Saale (Germany); Schirmer, M. [EAWAG, das Wasserforschungs-Institut des ETH-Bereichs, Abteilung Wasserressourcen und Trinkwasser, Duebendorf (Switzerland)

    2008-09-15

    As a result of intensive industrial, mining, and urban development, numerous large-scale contaminated areas exist in Germany. These so-called megasites represent a challenge to risk assessment and remediation strategies. At the Bitterfeld megasite, the contaminated groundwater interacts with the local streams. Along a stream reach 280 m long, the mass flow rates of chlorinated benzenes were estimated by combining integral pumping tests, streambed temperature mapping, and analyses of contaminant concentrations in the streambed sediments. On average, a total mass flow rate of 617 mg d{sup -1} monochlorobenzene (MCB) and 157 mg d{sup -1} dichlorobenzene (DCB) is released from the adjoining aquifer into the stream along the investigated reach. Further, the streambed sediment acts as the dominant contaminant source. Considering the streambed sediments, the contaminant mass flow rate to the river increases to values between 2,355 and 4,323 mg d{sup -1} MCB and between 892 and 3,587 mg d{sup -1} DCB. (orig.) [German] Als Folge intensiver industrieller, bergbaulicher und urbaner Nutzung gibt es in Deutschland zahlreiche grossflaechig kontaminierte Standorte. Diese so genannten Megasites stellen eine grosse Herausforderung fuer die Risikobewertung und Sanierung dar. An der Megasite Bitterfeld kommt es zudem zu Wechselwirkungen zwischen kontaminiertem Grundwasser und den lokalen Vorflutern. An einem 280 m langen Flussabschnitt wurden durch die Kombination integraler Pumpversuche, Kartierung der Flussbettsedimenttemperaturen und Analysen der Schadstoffkonzentrationen im Flussbettsediment die Schadstoffmassenstroeme chlorierter Benzole abgeschaetzt, die mit der Grundwasserstroemung aus dem Aquifer und dem Flussbettsediment in den Vorfluter gelangen. Im Mittel gelangt am untersuchten Flussabschnitt eine Fracht von 617 mg d{sup -1} Monochlorbenzen (MCB) und 157 mg d{sup -1} Dichlorbenzen (DCB) aus dem Aquifer in den Vorfluter. Das Flussbettsediment des untersuchten Vorfluters

  5. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    International Nuclear Information System (INIS)

    Jin Li; Whitehead, Paul; Siegel, Donald I.; Findlay, Stuart

    2011-01-01

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: → A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. → Road salt application is important in controlling stream chloride concentration. → INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  6. Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams

    Energy Technology Data Exchange (ETDEWEB)

    Jin Li, E-mail: li.jin@ouce.ox.ac.uk [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Whitehead, Paul [School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY (United Kingdom); Siegel, Donald I. [Earth Sciences Department, Syracuse University, Syracuse, NY 13210 (United States); Findlay, Stuart [Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545 (United States)

    2011-05-15

    A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. - Highlights: > A new Integrated Catchment Model (INCA-Cl) is developed to simulate salinity. > Road salt application is important in controlling stream chloride concentration. > INCA-Cl can be used to manage and forecast the input and transport of chloride to the rivers. - A newly developed integrated catchment model for salinity can be used to manage and forecast the inputs and transport of chloride to streams.

  7. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    Science.gov (United States)

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  8. LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON LOTIC FISH

    Science.gov (United States)

    As part of the U.S. EPA's EMAP Oregon Pilot project, we conducted a probability survey of 154 Oregon streams and rivers to assess the spatial extent of mercury (Hg) contamination in fish tissue across the state. Samples consisted of whole fish analyses of both small (< 120 mm) a...

  9. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  10. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams

    International Nuclear Information System (INIS)

    McKnight, Ursula S.; Rasmussen, Jes J.; Kronvang, Brian; Binning, Philip J.; Bjerg, Poul L.

    2015-01-01

    We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic ecosystems. They further indicate that groundwater contaminated by legacy and contemporary pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be included in stream monitoring programs. - Highlights: • Findings comprised a range of contemporary and banned legacy pesticides in streams. • Groundwater is a significant pathway for some herbicides entering streams. • Legacy pesticides increased predicted aquatic toxicity by four orders of magnitude. • Sediment-bound insecticides were identified as the primary source for ecotoxicity. • Stream monitoring programs should include legacy pesticides to assess impacts. - Legacy pesticides, particularly sediment-bound insecticides were identified as the primary source for predicted ecotoxicity impacting benthic macroinvertebrates in headwater streams

  11. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    Science.gov (United States)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  12. Integrated analysis of hydrological system, use and management. Langueyu stream basin, Tandil, Argentina

    International Nuclear Information System (INIS)

    Ruiz de Galarreta, V.A.; Banda Noriega, R.B.; Barranquero, R.S.; Diaz, A.A.; Rodriguez, C.I.; Miguel, R.E.

    2010-01-01

    This work is aim to hydrological and environmental characterization of Langueyu stream basin, where Tandil city is located. This basin is developed on northern hillside of Tandilia system, in Buenos Aires province, and it drains to NE. There are two different hydrogeological units: crystalline rocks and Cenozoic sediments, which correspond with two hydrolithological characters, fissured and clastic porous, respectively. The population is supplied by groundwater sources. Water exploitation and use were analyzed, according to the growing demands from industrial, agricultural and urban uses. The impacts of intense exploitation were evaluated. High levels of nitrate were corroborated in older wells of the city, which nowadays are in use. The hydrodynamic change in a section of the stream, where it converts to influent, was detected. This disturbance of the natural relation could be a potential source of contamination to the aquifer, due to high charges of industrial and urban effluents which the stream receives. Several population sectors, which have neither a drinking water net nor a sewer system, showed microbiological and chemical water contamination. Other water impact is constituted by several abandoned quarries which have historically received wastes, mainly from foundry industries. In conclusion, water management basin does not aim to sustainable development, due to its lack of integration. It demands the knowledge of hydrological system, according with the goal to avoid water quality degradation and to guarantee its protection. (Author).

  13. Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis

    Science.gov (United States)

    Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale me...

  14. Spatial and Seasonal Variations of Heavy Metal Loads in Uyo Urban Drainage Stream under PS and NPS Pollution

    Directory of Open Access Journals (Sweden)

    O. E. Essien

    2012-12-01

    Full Text Available The concentration of heavy metals (HM in the 4km urban drainage stream in Uyo was studied using grab and composite sampling of water from six stations on the stream, and analyzed by a multipurpose atomic absorption spectrophotometer. The data were statistically analyzed using SPSS version 17 software arid correlated between stations and among samples. HM contamination was evaluated with the coefficient and rate of dispersion between stations and the Normalized Scatter Coefficient (NSC. The seasonal distribution of metal pollution varied individually amongst metals at stations. The Fe and Pb concentrations exceeded the safe drinking water standard, rendering the water quality not acceptable for drinking; however, the quality was within the safe limit for crop production along the river bank. The relative.dominance of heavy metals followed a different sequence in upstream leachate effluent from all downstream stations. The NSC in dry-wet season was higher than in wet season, and was in the order: Fe>Cu>Zn>Pb, showing that large but variable concentration of Fe from PS and NPS contaminated the stream at faster rate in the wet season while Pb contaminated at nearly constant rate. However, in the dry season, Fe and Pb depleted at downstream at rates far higher than Zn as Cu was increasing. Fe and Pb could be good pollution monitor for total maximum daily load (TMDL pollution monitoring programme.

  15. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  16. Stream microbial diversity responds to environmental changes: Review and synthesis of existing research

    Directory of Open Access Journals (Sweden)

    Lydia eZeglin

    2015-05-01

    Full Text Available The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of the hundreds of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream organic matter compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and

  17. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Gupta, Avinash; Vidyarthi, S.R.; Sankararamakrishnan, Nalini

    2014-01-01

    Highlights: • Oxidized (CNT-OX), CNT-I, CNT-S were prepared. • Capacity of CNT-S (151.5 mg/g) was higher than other CNTs. • Applied to the removal of Hg(II) from spiked and natural coal wash waters. • Applied to the removal of Hg(0) from compact fluorescent lamps. - Abstract: Three different functionalized multiwalled carbon nanotubes were prepared, namely, oxidized CNTs (CNT-OX), iodide incorporated MWCNT (CNT-I) and sulfur incorporated MWCNT (CNT-S). The as prepared adsorbents were structurally characterized by various spectral techniques like scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infra red (FTIR) and Raman spectroscopy. Loading of iodide and sulfur was evident from the EDAX graphs. The adsorption properties of Hg 2+ as a function of pH, contact time and initial metal concentration were characterized by Cold vapor AAS. The adsorption kinetics fitted the Pseudo second order kinetics and equilibrium was reached within 90 min. The experimental data were modeled with Langmuir, Freundlich, Dubinin-Redushkevich and Temkin isotherms and various isotherm parameters were evaluated. It was found that the mercury adsorption capacity for the prepared adsorbents were in the order of CNT-S > CNT-I > CNT-OX > CNT. Studies have been conducted to demonstrate the applicability of the sorbent toward the removal of Hg(0) from broken compact fluorescent light (CFL) bulbs and Hg(II) from contaminated water streams

  18. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  19. Reproductive effects assessment of fish in streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    McCracken, M.K.; Ivey, L.J.; Niemela, S.L.; Greeley, M.S. Jr.

    1995-01-01

    The Department of Energy has three large facilities located on the Oak Ridge Reservation Site, the Y-12 Plant, and the Oak Ridge National Laboratory. Several Biological Monitoring and Abatement Programs (BMAP) monitor and assess the effects of these facilities on the aquatic and terrestrial resources of the reservation. One BMAP task concerns the potential role of contaminant-related reproductive dysfunction in shaping the composition of fish communities in creeks draining the facilities. This task addresses specific questions concerning (1) the reproductive competence of adult fish in the streams, and (2) the capacity of fish embryos and fry to survive and develop sequent reproductive cohorts. Evidence for current or potential reproductive impacts in several of the streams include abnormal fecundity at some sites, increased incidences of oocyte atresia, and a marked toxicity of surface water samples from several stream reaches to fish embryos in periodic embryo-larval tests. Recovery of certain of the monitored streams in response to ongoing remedial actions is documented by positive changes over time in many these indicators of reproductive dysfunction. These results suggest that the monitoring of reproductive indicators can be a sensitive tool for assessing the effects of both industrial discharges and remedial activities on the fish resources of receiving streams

  20. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  1. Insights gained from NRC research investigations at the Maxey Flats LLW SLB facility

    International Nuclear Information System (INIS)

    O'Donnell, E.

    1983-01-01

    The NRC funded program of research at Maxey Flats was done to assist an Agreement State in assessing the performance of the site. That program has yielded both site specific insights and generic insights which are likely to be useful in licensing future sites. They are as follows: Site Specific Insights: (1) The principal pathway of water entry into burial trenches at Maxey Flats is through the trench caps. (2) Sampling of vegetation, soils, and streams adjoining the site indicates that the small but measureable amounts of radionuclides found offsite were from surface runoff or the site evaporator. (3) There is limited onsite subsurface movement of radionuclides where open fractures intersect burial trenches. Generic Insights: (1) Tritium in the plant transpiration stream appears useful for mapping trench boundaries. (2) Trees offer a promising means of monitoring subsurface radionuclide movement in fractured rocks of low permeability. (3) Complexing with EDTA appears to be a potentially important mechanism that increases mobility of such radionuclides as Co-60, Pu-238, Am-241, and Sr-90. (4) Changes in soil solution chemistry encountered as leachate moves from trenches generally reduce the solubility of migrating radionuclides. (5) Agronomic management techniques appear promising as a means to control deep water percolation through waste burial trench caps. 18 references

  2. Diet of the crayfish Paranephrops zealandicus in bush and pasture streams : insights from stable isotopes and stomach analysis

    International Nuclear Information System (INIS)

    Hollows, J.W.; Townsend, C.R.; Collier, K.J.

    2002-01-01

    Crayfish (Paranephrops zealandicus White) stomachs from streams in both native bush (mainly tree leaves and dicotyledonous seeds) and exotic pasture settings (mainly grass stems and monocotyledonous seeds) were dominated by allochthonous material. More detritus occurred in stomachs in autumn-winter than in spring-summer, but quantities were similar in crayfish from native bush and pasture streams. The stomachs of larger crayfish contained a significantly greater proportion of detritus than smaller individuals. Aquatic invertebrates were the second most abundant dietary category by volume, with highest values in winter, but there were no significant differences between land uses or crayfish size classes. A wide range of invertebrates was eaten by crayfish, with mayfly nymphs, chironomid larvae, and snails predominating. The latter were numerically more prominent in crayfish from bush than pasture streams. Terrestrial invertebrates were recorded from 4% of stomachs, but there were no significant differences in relation to land use, season, or crayfish size class. Despite aquatic invertebrates making up 13 C and perhaps of microfloral origin, seems to be an important energy source for crayfish in both stream types. (author). 52 refs., 5 figs., 2 tabs

  3. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  4. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  5. Recovery of a mining-damaged stream ecosystem

    Science.gov (United States)

    Mebane, Christopher A.; Eakins, Robert J.; Fraser, Brian G.; Adams, William J.

    2015-01-01

    This paper presents a 30+ year record of changes in benthic macroinvertebrate communities and fish populations associated with improving water quality in mining-influenced streams. Panther Creek, a tributary to the Salmon River in central Idaho, USA suffered intensive damage from mining and milling operations at the Blackbird Mine that released copper (Cu), arsenic (As), and cobalt (Co) into tributaries. From the 1960s through the 1980s, no fish and few aquatic invertebrates could be found in 40 km of mine-affected reaches of Panther Creek downstream of the metals contaminated tributaries, Blackbird and Big Deer Creeks.

  6. Depauperate macroinvertebrates in a mine affected stream: Clean water may be the key to recovery

    International Nuclear Information System (INIS)

    Battaglia, M.; Hose, G.C.; Turak, E.; Warden, B.

    2005-01-01

    Acid mine drainage (AMD) is frequently linked with changes in macroinvertebrate assemblages, but the relative contribution of water and sediment to toxicity is equivocal. We have shown that the macroinvertebrate fauna of Neubecks Ck, a mine impacted stream in New South Wales, Australia, was much poorer than in two reference streams. Multivariate RELATE analyses indicated that the patterns in the biological data were more strongly correlated with the concentrations of common metals in the surface water than the pore water of these streams. From this we hypothesised that the water was more toxic to the biota than the sediment and we tested this hypothesis with a sediment transplant experiment. Sediment from Neubecks Ck that was placed in reference streams retained high concentrations of metals throughout the experiment, yet supported a macroinvertebrate assemblage similar to that in the reference streams. Sediment from the reference streams that was placed in Neubecks Ck supported few, if any, animals. This indicates that water in Neubecks Ck is toxic to biota, but that sediment is able to support aquatic biota in clean water. Therefore, remediation should focus on improving water quality rather than sediment quality. - Macroinvertebrates colonise contaminated sediment in clean water

  7. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  8. A catchment scale evaluation of multiple stressor effects in headwater streams.

    Science.gov (United States)

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in

  9. Biodiversity management approaches for stream-riparian areas: perspectives for Pacific Northwest headwater forests, microclimates, and amphibians.

    Science.gov (United States)

    D.H. Olson; P.D. Anderson; C.A. Frissell; H.H. Welsh; D.F. Bradford

    2007-01-01

    New science insights are redefining stream riparian zones, particularly relative to headwaters, microclimate conditions, and fauna such as amphibians. We synthesize data on these topics, and propose management approaches to target sensitive biota at reach to landscape scales.

  10. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    Science.gov (United States)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  11. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  12. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  13. Recolonization by warmwater fishes and crayfishes after severe drought in upper coastal plain hill streams

    Science.gov (United States)

    Susan B. Adams; Melvin L. Warren

    2005-01-01

    Extreme hydrologic disturbance, such as a supraseasonal drought, can dramatically influence aquatic communities. Documentation of the responses of aquatic communities after such disturbances provides insight into the timing, order, and mechanisms of recolonization. Postdisturbance recolonization of streams depends on many factors, including the region and...

  14. Innovation in radioactive wastewater-stream management: Part one

    International Nuclear Information System (INIS)

    Karameldin, A.

    2005-01-01

    Treatment of radioactive wastewater streams is receiving considerable attention in most countries that have nuclear reactors. The first Egyptian research reactor ETRR-1 has been operating for 40 years, resulting in accumulation of large quantities of wastewater collected in special drainage tanks called SDTs. Previous attempts were aimed at the volumetric reduction of streams present in SDTs, by reverse osmosis systems, which previously succeeded in reducing the water volume present in SDTs from 450 m 3 to 50 m 3 (during the period 1998-2000). The main drawbacks of the RO system are the additional amount of secondary wastes (turbidity and emulsion filters media replacement, and the excessive amounts of chemicals for the membrane cleaning, flushing and storing), and a limited contaminant release in the SDTs area, resulting in the decommissioning of the RO system. Meanwhile, the SDTs waste contents recently reached 500 m 3 . Recently, the invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilises the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs. From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs has indicated that the proposed optimal evaporating temperature is around 75 deg. C. The design curve of the daily volumetric reduction of the wastewater streams vs. the necessary volumetric airflow rates at different operating temperatures has been achieved. Recently, an experimental facility is being constructed to obtain the optimal operating parameters of the system, regarding the probable emissions of the radioactive nuclides within the permissible release limits. (author)

  15. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  16. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  17. New insights into agricultural pesticide pollution through a complete and continuous pesticide screening during one growing season in five small Swiss streams

    Science.gov (United States)

    Mangold, Simon; Doppler, Tobias; Spycher, Simon; Langer, Miriam; Junghans, Marion; Kunz, Manuel; Stamm, Christian; Singer, Heinz

    2017-04-01

    peaks reaching up to 40 μg L-1 for single active ingredients. Of 15 compounds measured at high concentrations, several measured concentrations exceeded acute EQS values in three of the five areas for a duration of up to 2.5 months. Concentration peaks were often linked to discharge events but not exclusively. These findings demonstrate that rain driven processes were important causes of the observed concentration levels but that additional (possibly point) sources need to be considered for a comprehensive understanding of pesticide exposure. Overall, the results from these five catchments provide an unique insight into the diversity of pesticide pollution of small streams across a wide range of natural conditions in Switzerland. The spatial differences indicate that the intensity of pesticide use alone cannot explain the level of exposure but point to the influence of landscape characteristics such as topography, the connectivity of field to the stream network or the number of connected farmyards.

  18. A data-stream classification system for investigating terrorist threats

    Science.gov (United States)

    Schulz, Alexia; Dettman, Joshua; Gottschalk, Jeffrey; Kotson, Michael; Vuksani, Era; Yu, Tamara

    2016-05-01

    The role of cyber forensics in criminal investigations has greatly increased in recent years due to the wealth of data that is collected and available to investigators. Physical forensics has also experienced a data volume and fidelity revolution due to advances in methods for DNA and trace evidence analysis. Key to extracting insight is the ability to correlate across multi-modal data, which depends critically on identifying a touch-point connecting the separate data streams. Separate data sources may be connected because they refer to the same individual, entity or event. In this paper we present a data source classification system tailored to facilitate the investigation of potential terrorist activity. This taxonomy is structured to illuminate the defining characteristics of a particular terrorist effort and designed to guide reporting to decision makers that is complete, concise, and evidence-based. The classification system has been validated and empirically utilized in the forensic analysis of a simulated terrorist activity. Next-generation analysts can use this schema to label and correlate across existing data streams, assess which critical information may be missing from the data, and identify options for collecting additional data streams to fill information gaps.

  19. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  20. Composition, distribution, and hydrologic effects of contaminated sediments resulting from the discharge of gold milling wastes to Whitewood Creek at Lead and Deadwood, South Dakota

    Science.gov (United States)

    Goddard, K.E.

    1989-01-01

    The Whitewood Creek-Belle Fourche-Cheyenne River stream system in western South Dakota has been extensively contaminated by the discharge to Whitewood Creek of about 100 million tons of mill tailings from gold-mining operations. The resulting contaminated sediments contain unusually large concentrations of arsenic, as much as 11,000 micrograms/g, derived from the mineral arsenopyrite, as well as potentially toxic constituents derived from the ore-body minerals or from the milling processes. Because of the anomalous arsenic concentrations associated with the contamination, arsenic was used as an indicator for a geochemically based, random, sediment-sampling program. Arsenic concentrations in shallow, contaminated sediments along the flood plains of the streams were from 1 to 3 orders of magnitude larger than arsenic concentrations in uncontaminated sediments in about 75% of the flood plains of Whitewood Creek and the Belle Fourche River. Appreciable surface-water contamination resulting from the contaminated sediments is confined to Whitewood Creek and a reach of the Belle Fourche River downstream from the mouth of Whitewood Creek. In Whitewood Creek , dissolved-arsenic concentrations vary from about 20 to 80 microgram/L during the year in response to variations in groundwater inflow and dilution, whereas total-recoverable-arsenic concentrations vary from about 20 to 8 ,000 micrograms/L during short periods in response to rapid changes in suspended-sediment concentration. Contamination of the alluvial aquifer along the stream system is limited to areas in direct contact with large deposits of contaminated sediments. Within the aquifer, arsenic concentrations are thought to be controlled by sorption-desorption on metallic hydroxides. (USGS)

  1. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  2. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  3. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Carlos Eduardo Delfino [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Costa, Patrícia Gomes [Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia — Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); Lunardelli, Bruna; Fernandes de Oliveira, Luciana [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Costa Cabrera, Liziara da [Laboratório de Análise de Compostos Orgânicos e Metais — Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); Risso, Wagner Ezequiel [Laboratório de Ecofisiologia Animal — Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná (Brazil); Primel, Ednei Gilberto [Laboratório de Análise de Compostos Orgânicos e Metais — Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande do Sul (Brazil); and others

    2016-01-15

    In order to assess the quality of streams susceptible to contamination by pesticides we apply biochemical and genotoxic biomarkers in the Neotropical fish Prochilodus lineatus submitted to in situ tests. Fish were caged, for 96 h, in two streams located in areas with intensive use of pesticides, the Apertados (AP) and the Jacutinga (JC), and in a small stream (Godoy stream — GD) found inside a forest fragment adjacent to a State Park. Biochemical parameters, such as biotransformation enzymes 7-ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST), non-protein thiols (NPSH), lipoperoxidation (LPO), protein carbonylation (PCO) and acetylcholinesterase (AChE) were evaluated in various fish organs, as well as genotoxic biomarkers (damage to DNA and occurrence of micronuclei and erythrocyte nuclear abnormalities). Samples of water and sediment were collected for analysis of metals (Cu, Cr, Pb, Ni, Mn, Cd and Zn), organochloride pesticides, and triazine and glyphosate herbicides. We observed an increase in liver GST activity in fish at AP and gill GST activity in fish at JC. An increase in liver LPO was also observed in fish exposed to AP and JC. The same animals also exhibited increased DNA damage and erythrocyte nuclear abnormalities (ENAs) compared to the fish kept in GD. A number of compounds showed concentrations higher than the permitted levels, in particular, dichlorodiphenyltrichloroethane (DDT), its metabolites dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), hexachlorocyclohexanes (HCH), heptachloride, diclofluanid and aldrins. These pesticides were detected at higher concentrations in water and sediment samples from AP, followed by JC and GD. The Integrated Biomarker Response Index (IBR) indicated that AP and JC (AP: 21.7 > JC: 18.5 > GD: 12.6) have the worst environmental quality. Integrated biomarker analysis revealed that the alterations observed related well with the levels of environmental contaminants

  4. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  5. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  6. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  7. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  8. Numerical simulation studies of the groundwater discharge to streams from abandoned uranium mill tailings

    International Nuclear Information System (INIS)

    Abdul, A.S.; Gillham, R.W.

    1984-06-01

    This report presents an evaluation of the results of simulation studies of groundwater discharge to streams from abandoned uranium mill tailings and the effects of this discharge on the flux of contaminants to surface water systems. In particular, a discussion of the sensitivity of subsurface discharge to specific geometirc, climatic and hydrogeologic factors is presented. Simulations were carried out using a two-dimensional numerical finite-element unsaturated-saturated flow model. A total of twenty-six simulations were made. The first twenty-four of these considered a tailings medium with homogeneous and isotropic hydraulic properties and with textural properties similar to those of sandy geological materials. In addition, two simulations were carried out for tailings materials with hydraulic properties that are similar to those of silt-loam. The results indicated that the actual quantity of subsurface discharge depends on many factors including rainfall rate and duration, surface slope, and texture. However, for the medium-fine sand material, subsurface discharge was always a significant component of the total discharge. Within the context of uranium tailings management this implies that large quantities of contaminants from subsurface sources of medium-textured tailings can be expected to be discharged to streams during stormflow events. Therefore there is reason to suspect that untreated runoff from such tailings will contain significant concentrations of contaminants for long periods of time

  9. Estimation of the fate of microbial water-quality contaminants in a South-African river

    CSIR Research Space (South Africa)

    Hohls, D

    1995-01-01

    Full Text Available The aim of this study was to evaluate the validity of assumptions, regarding assimilative capacity for microbial contaminants, implicit in microbial water quality management in South Africa. A one dimensional steady state stream water quality model...

  10. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  11. BEST Engineered Hyporheic Zones: Enhanced Hyporheic Exchange and Resazurin and Nitrate Cycling in Constructed Stream Experiments

    Science.gov (United States)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2016-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. To increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This research utilized two artificial stream flumes at the Colorado School of Mines in Golden, CO. Each lined stream flume was 15m long, 0.3m wide, had 0.3m sediment depth, and was continuously dosed with recycled water at 0.25 L/s. One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). NaCl breakthrough curves were monitored and analyzed using STAMMT-L, a mobile-immobile exchange model, which showed greater hyporheic exchange and residence times in the BEST stream relative to the control. This result is even more apparent when the calibrated models are used to simulate longer stream reaches. Water quality samples at the reach scale also revealed greater attenuation of nitrate and transformation of the indicator compound resazurin into resorufin. Together these compounds demonstrate that BEST can attenuate contaminants that degrade under anaerobic and aerobic conditions, respectively. These experimental results were also compared to previous numerical simulations to evaluate model accuracy, and show reasonable agreement. Altogether, these results show that BEST may be an effective novel best management practice for improving streamwater quality in urban and

  12. Perspective on US NRC Policy Issues Concerning Use of Risk Insights for Non-LWR

    International Nuclear Information System (INIS)

    Ha, Jun Su; Kim, In Goo; Huh, Chang Wook; Kim, Kyun Tae

    2011-01-01

    Since the PRA Implementation plan of US NRC (1994), PRA has been applied to all NPPs in USA and risk insights have been used for the regulation as a complement of the deterministic approaches. RIRIP (Risk-Informed Regulation Implementation Plan, 2000) and RPP (Risk-Informed and Performance-Based Plan, 2007) were announced by US NRC thereafter, which recommended enhanced use of risk insights. In the meantime, there have been lots of policy issues concerning use of risk insights for licensing Non-LWR designs, which will be discussed in this paper to understand the stream of perspectives on US NRC's approach

  13. Cu lability and bioavailability in an urban stream during baseflow versus stormflow

    Science.gov (United States)

    Vadas, T.; Luan, H.

    2012-12-01

    Urban streams are dynamic systems with many anthropogenic inputs and stressors. Existing contaminant inputs are regulated through total maximum daily loads. Techniques for assessing that load are based on a combination of acute and chronic water quality criteria, biotic ligand models, and physical, chemical and biological assessments. In addition, the apportionment of reduction in load to different sources is based on total mass and not, for example, on bioavailable fraction. Our understanding of the impact of different metal inputs to stream impairment is limited. Free metal ions are understood to play a role in direct cellular uptake, but metal speciation (e.g. free metal, labile metals, or size fractionated) is relevant to more complex stream food webs. As part of an ongoing study, this work examines dissolved and particulate Cu concentrations in the Hockanum River, Vernon, CT situated in a developed watershed. Stream samples were taken during baseflow as well as stormflow upstream and downstream of wastewater treatment plant and stormwater runoff inputs. In addition, diffusive gradient in thin-film (DGT) devices which measure labile metal concentrations and cultured periphyton were used to examine bioavailable fractions. Total and filtered Cu concentrations ranged from about 1.3 to 10.7 μg/L, and 0.9 to 5.1 μg/L, respectively. Cu concentrations always increased downstream of the wastewater treatment plant by about 1.1-2 times, and effluent accounted for about 30% of baseflow. Generally, small increases (sites downstream from the wastewater treatment plant downstream sampling point, suggesting contributions from sediment resuspension. DGT measured concentrations represented 30 to 70% of dissolved Cu concentrations, and that percentage increased in the days following a storm, suggesting more labile Cu compounds remained in the water column longer. Whereas solution metal concentrations in stormwater influenced reaches did not largely change upstream versus

  14. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  15. Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas

    Energy Technology Data Exchange (ETDEWEB)

    Montes Nieto, Rafael [Department of Biochemistry and Molecular Biology, University of Cordoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Cordoba (Spain); Garcia-Barrera, Tamara; Gomez-Ariza, Jose-Luis [Department of Chemistry and Materials Sciences, University of Huelva, Faculty of Experimental Sciences, El Carmen Campus, 21007 Huelva (Spain); Lopez-Barea, Juan, E-mail: bb1lobaj@uco.e [Department of Biochemistry and Molecular Biology, University of Cordoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Cordoba (Spain)

    2010-02-15

    Element load, conventional biomarkers and altered protein expression profiles were studied in Carcinus maenas crabs, to assess contamination of 'Domingo Rubio' stream, an aquatic ecosystem that receives pyritic metals, industrial contaminants, and pesticides. Lower antioxidative activities - glucose-6-phosphate and 6-phosphogluconate dehydrogenases, catalase - were found in parallel to higher levels of damaged biomolecules - malondialdehyde, oxidized glutathione -, due to oxidative lesions promoted by contaminants, as the increased levels of essential - Zn, Cu, Co - and nonessential - Cr, Ni, Cd - elements. Utility of Proteomics to assess environmental quality was confirmed, especially after considering the six proteins identified by de novo sequencing through capLC-muESI-ITMS/MS and homology search on databases. They include tripartite motif-containing protein 11 and ATF7 transcription factor (upregulated), plus CBR-NHR-218 nuclear hormone receptor, two components of the ABC transporters and aldehyde dehydrogenase (downregulated). These proteins could be used as novel potential biomarkers of the deleterious effects of pollutants present in the area. - Pollution assessment at 'Domingo Rubio' stream (Spain).

  16. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  17. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    International Nuclear Information System (INIS)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on 90 Sr, 3 H, and 137 Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides

  18. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  19. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.

  20. Comet 169P/NEAT(=2002 EX12): The Parent Body of the α-Capricornid Meteoroid Stream

    Science.gov (United States)

    Kasuga, Toshihiro; Balam, David D.; Wiegert, Paul A.

    2010-12-01

    The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ~4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  1. Rare Moss-Built Microterraces in a High-Altitude, Acid Mine Drainage-Polluted Stream (Cordillera Negra, Peru)

    NARCIS (Netherlands)

    Sevink, J.; Verstraten, J.M.; Kooijman, A.M.; Loayza-Muro, R.A.; Hoitinga, L.; Palomino, E.J.; Jansen, B.

    2015-01-01

    The Rio Santiago in the Cordillera Negra of Peru is severely contaminated by acid mine drainage in its headwaters. In a strongly acid stream, at about 3800 m above sea level (masl), microterraces were found with terrace walls built up of dead moss, with encrustations and interstitial fine, creamy

  2. SPEAR indicates pesticide effects in streams - Comparative use of species- and family-level biomonitoring data

    International Nuclear Information System (INIS)

    Beketov, M.A.; Foit, K.; Schaefer, R.B.; Schriever, C.A.; Sacchi, A.; Capri, E.; Biggs, J.; Wells, C.; Liess, M.

    2009-01-01

    To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEAR pesticides ) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEAR pesticides with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm) pesticides is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm) pesticides is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEAR pesticides according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies. - We show that SPEAR pesticides can be based on family-level biomonitoring data and is applicable for large-scale monitoring programmes to detect and quantify pesticide contamination.

  3. SPEAR indicates pesticide effects in streams - Comparative use of species- and family-level biomonitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Beketov, M.A., E-mail: mikhail.beketov@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig (Germany); Foit, K.; Schaefer, R.B.; Schriever, C.A. [UFZ - Helmholtz Centre for Environmental Research, Department System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig (Germany); Sacchi, A.; Capri, E. [Universita Cattolica del Sacro Cuore, Istituto di Chimica Agraria ed Ambientale, Piacenza (Italy); Biggs, J. [Pond Conservation, c/o Oxford Brookes University, Headington (United Kingdom); Wells, C. [Environment Agency of England and Wales, Science Department, Bristol (United Kingdom); Liess, M. [UFZ - Helmholtz Centre for Environmental Research, Department System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2009-06-15

    To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEAR{sub pesticides}) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEAR{sub pesticides} with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm){sub pesticides} is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm){sub pesticides} is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEAR{sub pesticides} according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies. - We show that SPEAR{sub pesticides} can be based on family-level biomonitoring data and is applicable for large-scale monitoring programmes to detect and quantify pesticide contamination.

  4. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    Science.gov (United States)

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  5. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    Science.gov (United States)

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  6. The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan.

    Science.gov (United States)

    Grattan, J P; Adams, R B; Friedman, H; Gilbertson, D D; Haylock, K I; Hunt, C O; Kent, M

    2016-12-15

    The roots of pyrometallurgy are obscure. This paper explores one possible precursor, in the Faynan Orefield in southern Jordan. There, at approximately 7000cal. BP, banks of a near-perennial meandering stream (today represented by complex overbank wetland and anthropogenic deposits) were contaminated repeatedly by copper emitted by human activities. Variations in the distribution of copper in this sequence are not readily explained in other ways, although the precise mechanism of contamination remains unclear. The degree of copper enhancement was up to an order of magnitude greater than that measured in Pleistocene fluvial and paludal sediments, in contemporary or slightly older Holocene stream and pond deposits, and in the adjacent modern wadi braidplain. Lead is less enhanced, more variable, and appears to have been less influenced by contemporaneous human activities at this location. Pyrometallurgy in this region may have appeared as a byproduct of the activity practised on the stream-bank in the Wadi Faynan ~7000years ago. Copyright © 2016. Published by Elsevier B.V.

  7. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  8. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas

    International Nuclear Information System (INIS)

    Nyhan, J.W.; White, G.C.; Trujillo, G.

    1982-01-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238 Pu, sup(239,240)Pu and 137 Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven years after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams. (author)

  9. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas.

    Science.gov (United States)

    Nyhan, J W; White, G C; Trujillo, G

    1982-10-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.

  10. Biogeochemical and engineered barriers for preventing spread of contaminants.

    Science.gov (United States)

    Baltrėnaitė, Edita; Lietuvninkas, Arvydas; Baltrėnas, Pranas

    2018-02-01

    The intensive industrial development and urbanization, as well as the negligible return of hazardous components to the deeper layers of the Earth, increases the contamination load on the noosphere (i.e., the new status of the biosphere, the development of which is mainly controlled by the conscious activity of a human being). The need for reducing the spread and mobility of contaminants is growing. The insights into the role of the tree in the reduction of contaminant mobility through its life cycle are presented to show an important function performed by the living matter and its products in reducing contamination. For maintaining the sustainable development, natural materials are often used as the media in the environmental protection technologies. However, due to increasing contamination intensity, the capacity of natural materials is not sufficiently high. Therefore, the popularity of engineered materials, such as biochar which is the thermochemically modified lignocellulosic product, is growing. The new approaches, based on using the contaminant footprint, as well as natural (biogeochemical) and engineered barriers for reducing contaminant migration and their application, are described in the paper.

  11. Relating stream function and land cover in the Middle Pee Dee River Basin, SC

    Directory of Open Access Journals (Sweden)

    A.D. Jayakaran

    2016-03-01

    Full Text Available Study region: The study region comprised sixteen stream sites and associated contributing watersheds located in the Middle Pee Dee River Basin (MPDRB of South Carolina, USA. Study focus: The study was conducted between 2008 and 2010 to quantify how indices of streamflow varied with land cover characteristics analyzed at multiple spatial scales and fluvial geomorphic characteristics of sampled streams in the MPDRB. Study objectives were to relate three indices of streamflow that reflect recent temporal flow variability in a stream, with synoptic stream geomorphological measurements, and land cover type at specific spatial domains. New hydrological insights for the region: Modifications to the landscape, hydrologic regime, and alteration to channel morphology, are major threats to the functioning of riparian ecosystem functions but can rarely be linked to a single common stressor. Results from the study showed that in the MPDRB, wetland cover in the riparian corridor was an important factor, correlating significantly with stream flashiness, channel enlargement, and bed substrate character. It was also shown that a combination of stream geomorphological characteristics when combined with landscape variables at specific spatial scales were reasonable predictors of all three indices of streamflow. The study also highlights an innovative statistical methodology to relate land cover data to commonly measured metrics of streamflow and fluvial geomorphology. Keywords: Flashiness, Stream habitat, Flow indices, Land cover analysis, Wetlands, Coastal plain, Bed material, Partial least squares regression, Pee Dee River, South Carolina

  12. Indexing contamination surveys

    International Nuclear Information System (INIS)

    Brown, R.L.

    1998-01-01

    The responsibility for safely managing the Tank Farms at Hanford belongs to Lockheed Martin Hanford Corporation which is part of the six company Project Hanford Management Team led by Fluor Daniel Hanford, Inc.. These Tank Farm Facilities contain numerous outdoor contamination areas which are surveyed at a periodicity consistent with the potential radiological conditions, occupancy, and risk of changes in radiological conditions. This document describes the survey documentation and data tracking method devised to track the results of contamination surveys this process is referred to as indexing. The indexing process takes a representative data set as an indicator for the contamination status of the facility. The data are further manipulated into a single value that can be tracked and trended using standard statistical methodology. To report meaningful data, the routine contamination surveys must be performed in a manner that allows the survey method and the data collection process to be recreated. Three key criteria are necessary to accomplish this goal: Accurate maps, consistent documentation, and consistent consolidation of data meeting these criteria provides data of sufficient quality to be tracked. Tracking of survey data is accomplished by converting the individual survey results into a weighted value, corrected for the actual number of survey points. This information can be compared over time using standard statistical analysis to identify trends. At the Tank Farms, the need to track and trend the facility's radiological status presents unique challenges. Many of these Tank Farm facilities date back to the second world war. The Tank Farm Facilities are exposed to weather extremes, plant and animal intrusion, as well as all of the normal challenges associated with handling radiological waste streams. Routine radiological surveys did not provide a radiological status adequate for continuing comparisons

  13. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    ultimate disposal at the UK LLW Repository) in November 2008. The Sellafield oil campaign has proven that high temperature incineration can be an effective and practicable treatment solution for contaminated low level waste oil. In addition the project demonstrated that the export of the oil for treatment overseas could be completed safely, efficiently and within the relevant policies and international regulations. The net result was a significantly volume reduced product that is acceptable for disposal at the UK Low Level Waste Repository. A significant amount of learning was gained from the oil incineration project with respect to the need for up-front assessment so that the characteristics of the waste-stream are fully understood, such that the effectiveness of the incineration process can be assessed against the facilities and techniques available. Ultimately, the challenges that this waste-stream presented necessitated that new techniques were developed, and implemented, at the facility in order to successfully complete the treatment. In turn this demonstrated the range of contaminated oil that could be treated through the incineration process, with the significant benefits of an inert secondary waste stream for disposal at a vastly reduced volume. (authors)

  14. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  15. To study the effects of groundwater contamination in Kasur due to Nallah Rohi

    International Nuclear Information System (INIS)

    Ghumman, A.R.; Shamim, M.A.

    2005-01-01

    Groundwater contamination is a worldwide known problem. Pakistan, being a developing country, is also facing the problem created by groundwater pollution. Disposal of domestic wastes and agricultural treatments has been reported to be a considerable factor for causing the pollution, especially the groundwater contamination. In the rural areas of Pakistan, latrines and septic tanks have become common because of the advancement in the living standards. All of the domestic wastes is disposed off into the ponds or nearby passing streams. In the similar fashion, drains in the big and well developed cities of Pakistan lead the domestic waste, along with the industrial waste, into the passing by streams, canals and rivers. All of such disposed off waste is untreated because of the lack of legislation and its improper implementation. The contaminated water affects the health of human beings and also destroys the crops when this water is used for irrigation. So this paper deals with the effects and condition of the disposal of the harmful chemicals, which ultimately through seepage reach the groundwater and make it hazardous. Also, the lateral distances of the contaminated groundwater were found out. For experimentation, major city of Kasur which is in the vicinity of Nullah Rohi, was selected. All the wastes including both the industrial as well as domestic, of the whole area, is disposed off into the Nullah. The percolation of the harmful chemicals and its mixing with groundwater has resulted in the hazardous effects on the inhabitants of the area on the irrigation land as well. So the water in the vicinity, at different locations was tested and the degree of contamination and the lateral distances of contaminated water were also worked out. (author)

  16. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  17. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  18. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  19. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  20. The influence of hydrology on lacustrine sediment contaminant records

    Science.gov (United States)

    Rosen, Michael R.

    2015-01-01

    The way water flows to a lake, through streams, as runoff, or as groundwater, can control the distribution and mass of sediment and contaminants deposited. Whether a lake is large or small, deep or shallow, open or closed, the movement of water to a lake and the circulation patterns of water within a lake control how and where sediment and contaminants are deposited. Particle-associated contaminants may stay close to the input source of contamination or be transported by currents to bathymetric lows. A complex morphology of the lake bottom or shoreline can also affect how contaminants will be distributed. Dissolved contaminants may be widely dispersed in smaller lakes, but may be diluted in large lakes away from the source. Although dissolved contaminants may not be deposited in lake sediments, the impact of dissolved contaminants (such as nitrogen) may be reflected by the ecosystem. For instance, increased phosphorus and nitrogen may increase organic content or algal biomass, and contribute to eutrophication of the lake over time. Changes in oxidation-reduction potential at the sediment-water interface may either release some contaminants to the water column or conversely deposit other contaminants to the sediment depending on the compound’s chemical characteristics. Changes in land use generally affect the hydrology of the watershed surrounding a lake, providing more runoff if soil binding vegetation is removed or if more impervious cover (roads and buildings) is increased. Groundwater inputs may change if pumping of the aquifer connected to the lake occurs. Even if groundwater is only a small portion of the volume of water entering a lake, if contaminant concentrations in the aquifer are high compared to surface water inputs, the mass of contaminants from groundwater may be as, or more, important than surface water contributions.

  1. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  2. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Scholz

    Full Text Available Several Seattle-area streams in Puget Sound were the focus of habitat restoration projects in the 1990s. Post-project effectiveness monitoring surveys revealed anomalous behaviors among adult coho salmon returning to spawn in restored reaches. These included erratic surface swimming, gaping, fin splaying, and loss of orientation and equilibrium. Affected fish died within hours, and female carcasses generally showed high rates (>90% of egg retention. Beginning in the fall of 2002, systematic spawner surveys were conducted to 1 assess the severity of the adult die-offs, 2 compare spawner mortality in urban vs. non-urban streams, and 3 identify water quality and spawner condition factors that might be associated with the recurrent fish kills. The forensic investigation focused on conventional water quality parameters (e.g., dissolved oxygen, temperature, ammonia, fish condition, pathogen exposure and disease status, and exposures to metals, polycyclic aromatic hydrocarbons, and current use pesticides. Daily surveys of a representative urban stream (Longfellow Creek from 2002-2009 revealed premature spawner mortality rates that ranged from 60-100% of each fall run. The comparable rate in a non-urban stream was <1% (Fortson Creek, surveyed in 2002. Conventional water quality, pesticide exposure, disease, and spawner condition showed no relationship to the syndrome. Coho salmon did show evidence of exposure to metals and petroleum hydrocarbons, both of which commonly originate from motor vehicles in urban landscapes. The weight of evidence suggests that freshwater-transitional coho are particularly vulnerable to an as-yet unidentified toxic contaminant (or contaminant mixture in urban runoff. Stormwater may therefore place important constraints on efforts to conserve and recover coho populations in urban and urbanizing watersheds throughout the western United States.

  3. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    Heavy-metals contamination in lakes has a negative impact on lake ecosystems This review provides an insight into possible heavy-metals remediation techniques for lake environments using different techniques, for example, physical, chemical...

  4. Stream vulnerability to widespread and emergent stressors: a focus on unconventional oil and gas

    Science.gov (United States)

    Entrekin, Sally; Maloney, Kelly O.; Katherine E. Kapo,; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.

  5. Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas.

    Science.gov (United States)

    Entrekin, Sally A; Maloney, Kelly O; Kapo, Katherine E; Walters, Annika W; Evans-White, Michelle A; Klemow, Kenneth M

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.

  6. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Gopala N.; Jayaweera, Palitha; Perez, Jordi; Hornbostel, M.; Albritton, John R.; Gupta, Raghubir P.

    2007-10-31

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700° to 900°C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700°, 750°, and 800°C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800°C. The electrical performance of SOFC

  7. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    International Nuclear Information System (INIS)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics

  8. An insight of environmental contamination of arsenic on animal health

    Directory of Open Access Journals (Sweden)

    Paramita Mandal

    2017-03-01

    Full Text Available The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Although adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues and is even increasing in some areas. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Therefore, measures should be taken to reduce arsenic exposure in the general population in order to minimize the risk of adverse health effects. Animal are being exposed to arsenic through contaminated drinking water, feedstuff, grasses, vegetables and different leaves. Arsenic has been the most common causes of inorganic chemical poisoning in farm animals. Although, sub-chronic and chronic exposure of arsenic do not generally reveal external signs or symptoms in farm animals but arsenic (or metabolites concentrations in blood, hair, hoofs and urine are remained high in animals of arsenic contaminated zones. So it is assumed that concentration of arsenic in blood, urine, hair or milk have been used as biomarkers of arsenic exposure in field animals.

  9. Methods for Sampling and Measurement of Compressed Air Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1976-10-15

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  10. Methods for Sampling and Measurement of Compressed Air Contaminants

    International Nuclear Information System (INIS)

    Stroem, L.

    1976-10-01

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  11. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  12. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    Science.gov (United States)

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  13. Modelling of flow and contaminant migration in single rock fractures

    International Nuclear Information System (INIS)

    Dahlblom, P.; Joensson, L.

    1990-03-01

    The report deals with flow and hydrodynamic dispersion of a nonreactive contaminant in a single, irregularly shaped fracture. The main purpose of the report is to describe the basis and development of a computational 'tool' for simulating the aperture geometry of a single fracture and the detailed flow in it. On the basis of this flow information further properties of the fracture can be studied. Some initial application to dispersion of a nonreactive contaminant are thus discussed. The spatial pattern of variation of the fracture aperture is considered as a two-dimensional stochastic process. A method for simulation of such a process is described. The stochastic properties can be chosen arbitrarily. It is assumed that the fracture aperture belongs to a log-normal distribution. For calculation of the flow pattern, the Navier-Stokes equations are simplified to describe low velocity and steady-state flow. These equations, and the continuity equation are integrated in the direction across the fracture plane. A stream function, which describes the integrated flow in the fracture, is defined. A second order partial differential equation, with respect to the stream function, is established and solved by the finite difference method. Isolines for the stream function define boundaries between channels with equal flow rates. The travel time for each channel can be calculated to achieve a measure of the dispersion. The impact of the aperture distribution on the ratio between the mass balance fracture aperture and the cubic law fracture aperture is shown by simple examples. (28 figs., 1 tab., 22 refs.)

  14. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  15. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  16. Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater

    International Nuclear Information System (INIS)

    Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

    1994-01-01

    Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected

  17. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  18. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    Science.gov (United States)

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Smouldering (thermal) remediation of soil contaminated with industrial organic liquids: novel insights into heat transfer and kinetics uncovered by integrating experiments and modelling

    Science.gov (United States)

    Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.

    2017-12-01

    Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant

  20. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for

  1. Mortandad Canyon: Elemental concentrations in vegetation, streambank soils, and stream sediments - 1979

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Gladney, E.S.

    1997-06-01

    In 1979, stream sediments, streambank soils, and streambank vegetation were sampled at 100 m intervals downstream of the outfall of the TA-50 radioactive liquid waste treatment facility in Mortandad Canyon. Sampling was discontinued at a distance of 3260 m at the location of the sediment traps in the canyon. The purpose of the sampling was to investigate the effect of the residual contaminants in the waste treatment facility effluent on elemental concentrations in various environmental media

  2. Locating Groundwater Pathways of Anthropogenic Contaminants Using a Novel Approach in Kānéohe Watershed, Óahu, Hawaíi

    Science.gov (United States)

    McKenzie, T.; Dulai, H.; Popp, B. N.; Whittier, R. B.

    2017-12-01

    We have applied a novel approach using radon, δ15N and δ18O values of nitrate, and contaminants of emerging concern (CECs) to identify groundwater pathways of anthropogenic contaminants. This approach was applied in Kānéohe watershed, located on the windward side of Óahu, which has been subject to persistent near shore water pollution. Previous research has indicated that there are strong seasonal differences between surface runoff and groundwater discharge into Kānéohe Bay. Three sub-watersheds of varying land-use (e.g. cesspool density, agriculture, urbanization) bordering Kānéohe Bay were studied. Seasonality, as well as spatial and temporal variations of groundwater discharge into streams and the bay were captured by a series of snapshot studies using a natural isotope of radon as a tracer for groundwater inflow. δ15N and δ18O values of nitrate were used as source tracking tools to determine the potential origin (e.g. wastewater, agriculture) of nitrate. These results were paired with spatial analysis of land-use and further coupled with CEC concentrations in order to evaluate how land-use relates to stream and groundwater contaminant distribution. Previously unrecognized groundwater pathways for contaminant transport were identified using radon in conjunction with CEC and stable isotopic techniques. We present results for stream and coastal water quality, focusing on nutrient and CEC fluxes across the land-ocean interface, as well as discuss the application of CECs as novel wastewater tracers.

  3. Spray drift of pesticides and stream macroinvertebrates: Experimental evidence of impacts and effectiveness of mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, Lorraine [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: l.maltby@sheffield.ac.uk; Hills, Louise [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-12-15

    Impoverished stream communities in agricultural landscapes have been associated with pesticide contamination, but conclusive evidence of causality is rare. We address this deficiency by adopting an experimental approach to investigate the effects of the insecticides cypermethrin and chlorpyrifos on benthic macroinvertebrates. Three treatments were established and a combination of biomarker, bioassay and biomonitoring approaches was employed to investigate, individual, population and community-level effects. Animals deployed during pesticide application had altered enzyme activity, depressed feeding rate and reduced survival, but these effects were only observed where pesticide was sprayed to the stream edge. There were no clear pesticide-related effects on macroinvertebrate community structure or on the population densities of individual species. Hence, short-term pesticide exposure did cause individual-level effects in stream macroinvertebrates, but these were not translated to effects at the population or community-level and were effectively mitigated by the adoption of a no-spray buffer zone. - Pulsed pesticide exposures via spray drift adversely affected stream invertebrates but did not cause population or community-level effects and were mitigated by no-spray buffer zones.

  4. Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Jiménez Nápoles, H; Priest, N D

    2009-04-01

    New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel'kem 1 and Tel'kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that (241)Am, (239,240)Pu and (238)U concentrations in well waters within the study area are in the range 0.04-87mBq dm(-3), 0.7-99mBq dm(-3), and 74-213mBq dm(-3), respectively, and for (241)Am and (239,240)Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01mBq dm(-3), 0.08mBq dm(-3) and 0.32mBq dm(-3) for (241)Am, (239,240)Pu and (238)U, respectively. The (235)U/(238)U isotopic ratio in almost all well and stream waters is slightly elevated above the 'best estimate' value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53-85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11-42microSv (mean 21microSv). Presently, the ground water feeding these wells would not appear to be contaminated with

  5. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    Science.gov (United States)

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  6. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  7. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  8. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  9. Perchlorate in fish from a contaminated site in east-central Texas

    International Nuclear Information System (INIS)

    Theodorakis, Christopher; Rinchard, Jacques; Anderson, Todd; Liu, Fujun; Park, June-Woo; Costa, Filipe; McDaniel, Leslie; Kendall, Ronald; Waters, Aaron

    2006-01-01

    Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water. - In perchlorate-contaminated lakes and streams, perchlorate is detected infrequently in fish heads, fillets, and whole bodies, but may be detected more often depending on species and seasonal trends, and always at concentrations higher in the fish than in the water

  10. Disinfectant properties of acid mine drainage: its effects on enteric bacteria in a sewage-contaminated stream

    Energy Technology Data Exchange (ETDEWEB)

    Keating, S.T.; Celements, C.M.; Ostrowski, D.; Hanlon, T. [St. Francis College, Loretto, PA (United States). Dept. of Biology

    1996-09-01

    Studies conducted in a Cambria County, Pennsylvania, acid mine drainage stream suggest that mine drainage rapidly reduces in situ populations of fecal bacteria associated with inputs of untreated sewage. The density of lactose-fermenting bacteria, mostly coliform species from sewage, declined 1000-fold over a distance of less than 100 m following the input of high acid (pH 3.5 to 4.0), high ferrous iron (45 mg/l) acid mine drainage. Enterobacteriaceae were isolated from the stream, identified, and tested for tolerance to acid mine drainage by exposing cells to drainage for 10 minutes at 0 or 37{degree}C. Populations of all tested isolates were reduced by this treatment, but some isolates were significantly less affected than others. Thus, while mine drainage may act as a disinfectant, it may not reduce all populations of disease-causing intestinal bacteria at an equal, rapid rate.

  11. Monitoring of Plutonium Contaminated Solid Waste Streams. A technical guide to design and analysis of monitoring systems

    International Nuclear Information System (INIS)

    Birkhoff, G.

    1985-06-01

    The basic information on the Pu content in Pu Contaminated Materials (PCM) is the measurement of radiation emitted by Pu isotopes either spontaneously or due to irradiation by external neutron or gamma-sources. Requirements on measurement accuracy and detection limits should be defined by the operator of a Pu-handling facility in accordance with monitoring objectives in the very beginning of the planning of a monitoring system. Monitoring objectives reflect nuclear safety and radiological protection regulations and the needs for Pu-accountancy of nuclear materials management and safeguards. On considering the possibilities and limitations of radiometric techniques a solution of the monitoring problem is based on appropriate segregation and packaging procedures and records upon matrix and isotopic composition of PCM-items to be measured. The general interrelations between waste item characteristics and measurement uncertainty and detection limit are outlined in the first chapter which is addressed to the system planner. Chapter 2 is devoted to the attention of instrument developers and analysts. It presents in a general approach the correlations between the observed radiation leakage rate, respectively detection signal, and the generating source, e.g. Pu-isotopic content of the examined PCM item. Some practical measurement methods are reviewed and their limitations are indicated. The possible radiometric techniques based on detection of gamma rays from alpha decay (and 241 Am), neutrons from spontaneous fission and (α,n)-reaction and from induced fission reactions by neutron irradiation of Pu isotopes are presented. The measurement uncertainty of a single PCM item measurement is estimated on the basis of the uncertainty of the spatial distributions of source (Pu) and matrix materials. For the estimation of the cumulative error over a large collection of PCM items from a defined PCM-stream a probabilistic approach is suggested

  12. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  13. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    International Nuclear Information System (INIS)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    1997-01-01

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 and RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility

  14. Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale.

    Science.gov (United States)

    Johnson, Erica; Austin, Bradley J; Inlander, Ethan; Gallipeau, Cory; Evans-White, Michelle A; Entrekin, Sally

    2015-10-15

    Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, pgas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, pgas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  16. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  17. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  18. Catalytic extraction processing of contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M. [Molten Metal Technology, Inc., Waltham, MA (United States)] [and others

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  19. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-01-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT's proprietary elemental recycling technology, to DOE's inventory of low level mixed waste. This includes DOE's inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D ampersand D) of DOE sites

  20. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    Science.gov (United States)

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  1. Linking Stream Dissolved Oxygen with the Dynamic Environmental Drivers across the Pacific Coast of U.S.A.

    Science.gov (United States)

    Araya, F. Z.; Abdul-Aziz, O. I.

    2017-12-01

    This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.

  2. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  3. A watershed-scale approach to tracing metal contamination in the environment

    Science.gov (United States)

    Church, Stanley E

    1996-01-01

    IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of

  4. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream.

    Science.gov (United States)

    Byrne, Patrick; Runkel, Robert L; Walton-Day, Katherine

    2017-07-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  5. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids.

    Directory of Open Access Journals (Sweden)

    Whitney B Hapke

    Full Text Available Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS and semipermeable membrane devices (SPMDs, were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs, and polychlorinated biphenyls (PCBs. The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1. Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion were detected at concentrations near or

  6. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  7. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  8. Efficient Estimation of Dynamic Density Functions with Applications in Streaming Data

    KAUST Repository

    Qahtan, Abdulhakim

    2016-05-11

    Recent advances in computing technology allow for collecting vast amount of data that arrive continuously in the form of streams. Mining data streams is challenged by the speed and volume of the arriving data. Furthermore, the underlying distribution of the data changes over the time in unpredicted scenarios. To reduce the computational cost, data streams are often studied in forms of condensed representation, e.g., Probability Density Function (PDF). This thesis aims at developing an online density estimator that builds a model called KDE-Track for characterizing the dynamic density of the data streams. KDE-Track estimates the PDF of the stream at a set of resampling points and uses interpolation to estimate the density at any given point. To reduce the interpolation error and computational complexity, we introduce adaptive resampling where more/less resampling points are used in high/low curved regions of the PDF. The PDF values at the resampling points are updated online to provide up-to-date model of the data stream. Comparing with other existing online density estimators, KDE-Track is often more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time). The anytime available PDF estimated by KDE-Track can be applied for visualizing the dynamic density of data streams, outlier detection and change detection in data streams. In this thesis work, the first application is to visualize the taxi traffic volume in New York city. Utilizing KDE-Track allows for visualizing and monitoring the traffic flow on real time without extra overhead and provides insight analysis of the pick up demand that can be utilized by service providers to improve service availability. The second application is to detect outliers in data streams from sensor networks based on the estimated PDF. The method detects outliers accurately and outperforms baseline methods designed for detecting and cleaning outliers in sensor data. The

  9. Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands

    Science.gov (United States)

    2010-01-01

    Sorbitol-fermenting Bifidobacteria (SFB) proved to be an excellent indicator of very recent human faecal pollution (hours to days) in the investigated tropical stream and groundwater habitats. SFB were recovered from human faeces and sources potentially contaminated with human excreta. SFB were undetectable in animal faeces and environmental samples not contaminated with human faeces. Microcosm studies demonstrated a rapid die-off rate in groundwater (T90 value 0.6 days) and stream water (T90 value 0.9–1.7 days). Discrimination sensitivity analysis, including E. coli, faecal coliforms, total coliforms and Clostridium perfringens spores, revealed high ability of SFB to distinguish differing levels of faecal pollution especially for streams although high background levels of interfering bacteria can complicate its recovery on the used medium. Due to its faster die-off, as compared to many waterborne pathogens, SFB cannot replace microbiological standard parameters for routine water quality monitoring but it is highly recommendable as a specific and complementary tool when human faecal pollution has to be localized or verified. Because of its exclusive faecal origin and human specificity it seems also worthwhile to include SFB in future risk evaluation studies at tropical water resources in order to evaluate under which situations risks of infection may be indicated. PMID:20375476

  10. Cesium-137 dynamics within a reactor effluent stream in South Carolina

    International Nuclear Information System (INIS)

    Shure, D.J.; Gottschalk, M.R.

    1975-01-01

    Cesium-137 dynamics were studied in a blackwater creek which had received production reactor effluents from the Savannah River Plant in South Carolina. Most 137 Cs in the water column is dissolved or in colloidal form and is believed to originate primarily through outflow from an upstream contaminated reservoir. All ecosystem components in the stream have high 137 Cs concentration factors. Radiocesium concentrations are highest in filamentous algae (332 pCi/g-dry) and suspended particulate matter (100 to 200 pCi/g). Other food chain bases had much lower 137 Cs levels. Most consumer populations averaged 10 to 50 pCi/g. Radiocesium concentrations decreased in transfers between food chain bases and primary consumers or filter feeders. Omnivores and small predators have similar 137 Cs concentrations with bioaccumulation occurring by top-carnivores. Radiocesium levels are around 100 pCi/g in largemouth bass and water snakes. Foodweb components in the stream have reached a dynamic equilibrium in 137 Cs concentrations despite a 10-year absence of reactor operations. Radiocesium levels are apparently being maintained through long-term 137 Cs cycling in the upstream reservoir and surrounding flood plain forest systems. Rainfall and other physical processes influence the seasonal 137 Cs fluctuations in stream components. (auth)

  11. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  12. Nature of radioactive contamination of components of ecosystems of streamflows from tunnels of Degelen massif

    International Nuclear Information System (INIS)

    Panitskiy, A.V.; Lukashenko, S.N.

    2015-01-01

    The paper provides data on environmental contamination due to radionuclides' migration with water. As a result of investigations there was obtained data on character of contamination of soil cover, surface water and underflow from tunnels of Degelen massif. Character of radionuclides' spatial distribution in environment was also shown. Mobility ranges of radionuclides' vertical and horizontal movements have been established in soils both across and along the stream flow. There was also shown a possibility to forecast radionuclides' concentration in soil by specific activity of these radionuclides in water. Different concentrations of radionuclides in associated components of the ecosystem (surface waters – ground waters – soils) have shown disequilibrium of their condition in this system. Generalization of investigation results for tunnel water streams' with water inflows, chosen as investigation objects in this work, allows to forecast radionuclides' behavior in meadow soils and other ecosystems of water streams from tunnels of Degelen test site. Based on analysis of curves, describing radionuclides' behavior in horizontal direction, we can forecast, that at this stage 137 Cs and 239+240 Pu would not be distributed more than 1.5 km from the access to the daylight surface, 90 Sr – not more than 2 km. - Highlights: • Contamination of soil cover, surface water and groundwater from tunnels of Degelen nuclear test area. • Radionuclides in associated components of the ecosystem showed disequilibrium. • Forecast that 137 Cs and 239+240 Pu will not be distributed more than 1.5 km from tunnel exits. • Forecast that 90 Sr will not be distributed more than 2 km

  13. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  14. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  15. The characteristic of a zooplankton in the contaminated bottom stream of the Pripyat' river and backwaters

    International Nuclear Information System (INIS)

    Zarubaw, A.I.; Malatkow, D.V.

    1994-01-01

    The researches of zooplankton are conducted on two stations on the Pripyat' river, but also on two backwaters which are in the Chernobyl NPP contamination zone. The rotifera is dominant group of zooplankton. Their quantity is more than 10 samples/litter. An absolute and relative fertility of rotifera is determined. It is established an structural and functional reorganization of the rotifera dominant complexes occurs. Any influence of contamination on a zooplankton condition is not found out. 5 refs., 2 tabs., 2 figs

  16. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

  17. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    International Nuclear Information System (INIS)

    1994-03-01

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI's access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints

  18. Dissonance and Neutralization of Subscription Streaming Era Digital Music Piracy : An Initial Exploration

    OpenAIRE

    Riekkinen, Janne

    2016-01-01

    Both legal and illegal forms of digital music consumption continue to evolve with wider adoption of subscription streaming services. With this paper, we aim to extend theory on digital music piracy by showing that the rising controversy and diminishing acceptance of illegal forms of consumption call for new theoretical components and interactions. We introduce a model that integrates insights from neutralization and cognitive dissonance theories. As an initial empirical test of th...

  19. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  20. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  1. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  2. Annuity factors, duration and convexity : insights from a financial engineering perspective

    OpenAIRE

    Ekern, Steinar

    1998-01-01

    This paper applies a unified and integrative financial engineering perspective to key derived concepts in traditional fixed income analysis, with the purpose of enhancing conceptual insights and motivating computational applications. The emphasis on annuity factors and their impact on duration and convexity differs from the focus prevailing in related discussions. By decomposing the cashflow streams of a coupon bond into different, specific, and clearly defined portfolios of component bonds w...

  3. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  4. Consideration of disposal alternatives for tritium-contaminated wastewater streams at Hanford

    International Nuclear Information System (INIS)

    Waters, E.D.

    1988-03-01

    Small quantities of tritium are produced as an undesirable by-product of the operation of light-water reactors. At the US Department of Energy Hanford Site in Washington State, some tritium has been discharged to the environment in low-level liquid and gaseous wastes from the N Reactor plant, but more than 97% of the tritium stays typically within the irradiated fuel as it is delivered for reprocessing. During fuel reprocessing, the tritium is distributed in the process streams, and most of the tritium is presently released to the soil column with excess process condensates from the Plutonium-Uranium Extraction (PUREX) Plant. On an annual basis, approximately 1 g of tritium is discharged in more than 1 x 10 6 L of process condensate water. Principal tritium release points and quantities are presented in section 4.0. The present study is intended to identify and evaluate alternate methods of tritium control and disposal that might merit additional study or development for potential application to Hanford Site effluents. 30 refs., 15 figs., 5 tabs

  5. Toxicological evaluation of a lake ecosystem contaminated with crude oil

    International Nuclear Information System (INIS)

    Twigg, D.; Ramey, B.

    1995-01-01

    Winona Lake on the Daniel Boone National Forest in Powell County, Kentucky, was used from the mid 1950's to 1987 as a water source for water-injection oil drilling and as a brine disposal site. The lake was contaminated with excessive amounts of crude oil. A multi phase investigation was conducted, including chemical analysis of water and sediment, water toxicity tests using a cladoceran, Ceriodaphnia dubia, sediment toxicity tests using an amphipod, Hyalella azteca, and a faunal survey of the communities of the lake and stream both above and below the lake. The sediment was laden with petroleum hydrocarbons (4.1 parts per thousand), while the water showed no contamination. The C dubia test results showed no significant water toxicity. The contaminated sediment adjacent to the dam produced 75% mortality in H. azteca. The faunal survey indicated little or no impact on the upstream and downstream communities but the lake community was highly impacted, especially the benthos. Pollution tolerant Chaoborus sp. were the only organisms collected from sediment samples dredged from the lake. Contamination was limited to the sediment within the lake but the impact on the entire lake community was severe

  6. Crowdsourcing Stream Stage in Data Scarce Regions: Applications of CrowdHydrology

    Science.gov (United States)

    Lowry, C.; Fienen, M. N.

    2013-12-01

    Crowdsourced data collection using citizen scientists and mobile phones is a promising way to collect supplemental information in data scarce or remote regions. The research presented here explore the possibilities and pitfalls of crowdsourcing hydrologic data via mobile phone text messaging through the example of CrowdHydrology, a distributed network of over 40 stream gages in four states. Signage at the CrowdHydrology gages ask citizen scientists to answer to a simple question via text message: 'What is the water height?'. While these data in no way replace more traditional measurements of stream stage, they do provide low cost supplemental measurements in data scarce regions. Results demonstrate the accuracy of crowdsourced data and provide insight for successful future crowdsourced data collection efforts. A less recognized benefit is that even in data rich areas, crowdsourced data collection is a cost-effective way to perform quality assurance on more sophisticated, and costly, data collection efforts.

  7. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  8. Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu mine (Sardinia, Italy)

    Science.gov (United States)

    Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk

    2018-01-01

    We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently

  9. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    Science.gov (United States)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for

  10. Frequency dependence and frequency control of microbubble streaming flows

    Science.gov (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2013-02-01

    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  11. Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal region of the Semipalatinsk Nuclear Test Site, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vintro, L. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)], E-mail: luis.leon@ucd.ie; Mitchell, P.I.; Omarova, A. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Burkitbayev, M. [Department of Inorganic Chemistry, Al-Faraby Kazakh National University, Almaty (Kazakhstan); Jimenez Napoles, H. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Priest, N.D. [School of Health and Social Sciences, Middlesex University, Enfield, EN3 4SA (United Kingdom)

    2009-04-15

    New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel'kem 1 and Tel'kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that {sup 241}Am, {sup 239,240}Pu and {sup 238}U concentrations in well waters within the study area are in the range 0.04-87 mBq dm{sup -3}, 0.7-99 mBq dm{sup -3}, and 74-213 mBq dm{sup -3}, respectively, and for {sup 241}Am and {sup 239,240}Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01 mBq dm{sup -3}, 0.08 mBq dm{sup -3} and 0.32 mBq dm{sup -3} for {sup 241}Am, {sup 239,240}Pu and {sup 238}U, respectively. The {sup 235}U/{sup 238}U isotopic ratio in almost all well and stream waters is slightly elevated above the 'best estimate' value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53-85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11-42 {mu}Sv (mean 21 {mu

  12. Subsurface contaminant transport from the liquid disposal area, CRNL

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Munch, J.H.

    1984-01-01

    This report summarizes geologic, hydrogeologic and geochemical information obtained from a detailed study of the aquifer receiving contaminated waste-waters from the Chemical Pit. Geologically, the study area features wind-deposited sand overlying a continuous lacustrine clayey silt and a bouldery basal till. Medium to coarse sands locally found at the base of the sand sequence appear to represent stream channel deposits following a buried drainage course towards Perch Lake. These channel sands significantly influence groundwater flow; 3-dimensional models will be required to mathematically simulate the system. Based on the subsurface data, calculated groundwater residence times between the infiltration pit and points of discharge to surface into the East Swamp range from 4 to 22 months. The shortest observed residence time for a non-reactive radio-nuclide is 5 months. Tritium data confirm that contamination is confined to the sands, but show that within the sand aquifer there is considerable heterogeneity in the distribution and rates of groundwater flow. Samples of contaminated groundwaters collected during this study featured increased redox potentials, increased acidity, and minor increases in some major ions relative to local uncontaminated groundwater. Extensive oxidation of the sands in contaminated portions of the aquifer may reflect much greater chemical differences in plume groundwaters in the past

  13. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    Energy Technology Data Exchange (ETDEWEB)

    Markelov, G [Advanced Operations and Engineering Services (AOES) Group BV, Postbus 342, 2300 AH Leiden (Netherlands); Endemann, M [ESA-ESTEC/EOP-PAS, Postbus 299, 2200 AG Noordwijk (Netherlands); Wernham, D [ESA-ESTEC/EOP-PAQ, Postbus 299, 2200 AG Noordwijk (Netherlands)], E-mail: Gennady.Markelov@aoes.com

    2008-03-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes.

  14. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    International Nuclear Information System (INIS)

    Markelov, G; Endemann, M; Wernham, D

    2008-01-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes

  15. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream

    Science.gov (United States)

    Byrne, Patrick; Runkel, Robert L.; Walton-Day, Katie

    2017-01-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  16. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  17. Resilience of imperilled headwater stream fish to an unpredictable high-magnitude flood

    Directory of Open Access Journals (Sweden)

    Bruce R. Ellender

    2015-05-01

    Full Text Available Headwater stream fish communities are increasingly becoming isolated in headwater refugia that are often cut off from other metapopulations within a river network as a result of nonnative fish invasions, pollution, water abstraction and habitat degradation downstream. This range restriction and isolation therefore makes them vulnerable to extinction. Understanding threats to isolated fish populations is consequently important for their conservation. Following a base-flow survey, a high-magnitude flood (peak flow of 1245 m-3s-1 provided an opportunity to investigate the response of endangered Eastern Cape redfin Pseudobarbus afer populations to a natural disturbance in the Waterkloof and Fernkloof streams, two relatively pristine headwater tributaries of the Swartkops River system within the Groendal Wilderness Area, Eastern Cape Province, South Africa. Pseudobarbus afer had limited distributions, occupying 3 km in both the Fernkloof and Waterkloof streams. Fish population assessments before and after the flood event indicated that there were no longitudinal trends in P. afer abundance before or after the flood, but overall abundance post-flooding in the Fernkloof stream was higher. There were no noticeable changes in P. afer size structure pre- and post-flood. Pseudobarbus afer showed resilience to a major flooding event most likely related to evolution in river systems characterised by environmental stochasticity. Conservation implications: This research provides insight into the population level responses of native headwater stream fishes to unpredictable natural disturbance. Of particular relevance is information on their ability to withstand natural disturbances, which provides novel information essential for their conservation and management especially as these fishes are already impacted by multiple anthropogenic stressors.

  18. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  19. Restoration of contaminated ecosystems: adaptive management in a changing climate

    Science.gov (United States)

    Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.

    2017-01-01

    Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.

  20. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  1. Risk assessing heavy metals in the groundwater-surface water interface at a contaminated site

    DEFF Research Database (Denmark)

    Bigi, Giovanni; McKnight, Ursula S.; Bjerg, Poul Løgstrup

    such as surface water and groundwater (EC, 2017). The current study quantified and assessed the contamination of As, Cd, Cr, Cu, Ni, Pb and Zn in the shallow aquifer, hyporheic zone, stream water and streambed sediments at Rådvad site, a former metal manufacturing industrial area located in Denmark, investigating...... in the soil). Stream water was sampled in 12 points, while groundwater was sampled in 4 wells close to the stream where the interaction was suspected. Sediments and hyporheic zone were sampled in pair, where upward hydraulic heads have been detected. A drain discharging in the river was also sampled....... Sediments were divided in different layers and both heavy metal total concentration and chemical partitioning were analysed. Redox species and dissolved organic matter were also analysed in the water samples, while fraction of organic carbon was investigated in the extracted sediments. Results showed a high...

  2. Commercial treatability study capabilities for application to the US Department of Energy's anticipated mixed waste streams

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE's waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE's mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters

  3. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  4. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  5. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  6. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  7. Phytoestrogens and mycotoxins in Iowa streams: An examination of underinvestigated compounds in agricultural basins

    Science.gov (United States)

    Kolpin, Dana W.; Hoerger, Corinne C.; Meyer, Michael T.; Wettstein, Felix E.; Hubbard, Laura E.; Bucheli, Thomas D.

    2010-01-01

    This study provides the first broad-scale investigation on the spatial and temporal occurrence of phytoestrogens and mycotoxins in streams in the United States. Fifteen stream sites across Iowa were sampled five times throughout the 2008 growing season to capture a range of climatic and crop-growth conditions. Basin size upstream from sampling sites ranged from 7 km2 to >836,000 km2 Atrazine (herbicide) also was measured in all samples as a frame-of-reference agriculturally derived contaminant. Target compounds were frequently detected in stream samples: atrazine (100%), formononetin (80%), equol (45%), deoxynivalenol (43%), daidzein (32%), biochanin A (23%), zearalenone (13%), and genistein (11%). The nearly ubiquitous detection of formononetin (isoflavone) suggests a widespread agricultural source, as one would expect with the intense row crop and livestock production present across Iowa. Conversely, the less spatially widespread detections of deoxynivalenol (mycotoxin) suggest a more variable source due to the required combination of proper host and proper temperature and moisture conditions necessary to promote Fusarium spp. infections. Although atrazine concentrations commonly exceeded 100 ng L-1 (42/75 measurements), only deoxynivalenol (6/56 measurements) had concentrations that occasionally exceeded this level. Temporal patterns in concentrations varied substantially between atrazine, formononetin, and deoxynivalenol, as one would expect for contaminants with different source inputs and processes of formation and degradation. The greatest phytoestrogen and mycotoxin concentrations were observed during spring snowmelt conditions. Phytoestrogens and mycotoxins were detected at all sampling sites regardless of basin size. The ecotoxicological effects from long-term, low-level exposures to phytoestrogens and mycotoxins or complex chemicals mixtures including these compounds that commonly take place in surface water are poorly understood and have yet to be

  8. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  9. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos

    International Nuclear Information System (INIS)

    Rainbow, Philip S.; Hildrew, Alan G.; Smith, Brian D.; Geatches, Tim; Luoma, Samuel N.

    2012-01-01

    It has been proposed that bioaccumulated concentrations of toxic metals in tolerant biomonitors be used as indicators of metal bioavailability that could be calibrated against the ecological response to metals of sensitive biotic assemblages. Our hypothesis was that metal concentrations in caddisfly larvae Hydropsyche siltalai and Plectrocnemia conspersa, as tolerant biomonitors, indicate metal bioavailability in contaminated streams, and can be calibrated against metal-specific ecological responses of mayflies. Bioaccumulated concentrations of Cu, As, Zn and Pb in H. siltalai from SW English streams were related to the mayfly assemblage. Mayflies were always sparse where bioavailabilities were high and were abundant and diverse where bioavailabilities of all metals were low, a pattern particularly evident when the combined abundance of heptageniid and ephemerellid mayflies was the response variable. The results offer promise that bioaccumulated concentrations of metals in tolerant biomonitors can be used to diagnose ecological impacts on stream benthos from metal stressors. - Highlights: ► Metal concentrations in caddisfly larvae can be calibrated against mayfly ecological responses. ► Cu, As, Zn and Pb concentrations in Hydropsyche siltalai were related to stream mayfly assemblages. ► Mayflies were sparse in high metal bioavailabilities, and abundant in low bioavailabilities. ► Joint heptageniid and ephemerellid mayfly abundance was the most sensitive response variable. ► Copper, arsenic and, in one catchment, lead were the primary stressors limiting mayfly abundance. - Accumulated metal concentrations in tolerant biomonitors can be used to detect and diagnose ecological impacts on freshwater stream benthos from metal stressors.

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Brownsville-McAllen NTMS Quadrangles, Texas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements, and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals

  11. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  12. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238 PuO 2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238 Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238 Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239 Pu ), makes disposal of 238 Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238 Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238 Pu-contaminated waste and recover kilogram quantities of 238 PuO 2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented

  13. Relative Linkages of Stream Dissolved Oxygen with the Hydroclimatic and Biogeochemical Drivers across the Gulf Coast of U.S.A.

    Science.gov (United States)

    Gebreslase, A. K.; Abdul-Aziz, O. I.

    2017-12-01

    Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.

  14. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  15. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  16. Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks.

    Science.gov (United States)

    Lyons, Kady; Carlisle, Aaron; Preti, Antonella; Mull, Christopher; Blasius, Mary; O'Sullivan, John; Winkler, Chuck; Lowe, Christopher G

    2013-09-01

    Organic contaminant and total mercury concentrations were compared in four species of lamniform sharks over several age classes to examine bioaccumulation patterns and gain insights into trophic ecology. Contaminants found in young of the year (YOY) sharks were assumed to be derived from maternal sources and used as a proxy to investigate factors that influence maternal offloading processes. YOY white (Carcharodon carcharias) and mako (Isurus oxyrinchus) sharks had comparable and significantly higher concentrations of PCBs, DDTs, pesticides, and mercury than YOY thresher (Alopias vulpinus) or salmon (Lamna ditropis) sharks. A significant positive relationship was found between YOY contaminant loads and maternal trophic position, suggesting that trophic ecology is one factor that plays an important role in maternal offloading. Differences in organic contaminant signatures and contaminant concentration magnitudes among species corroborated what is known about species habitat use and may be used to provide insights into the feeding ecology of these animals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Removing gaseous contaminants in 3He by cryogenic stripping

    International Nuclear Information System (INIS)

    Benapfl, M.; Biltoft, P.; Coombs, A.

    1995-01-01

    The Tritium Operations Group at LLNL, Tritium Facility has recently developed a 3 He recovery system to remove argon, xenon, neon, hydrogen, and all other contaminants from the 3 He stream in an Accelerator Production of Tritium (APT) experimental apparatus. In this paper the authors will describe in detail the background information, technical requirements, the design approach, and the results of their experimental tests. The authors believe this gas purification system may have other applications as it provides at a reasonable cost an efficient method for purification of gaseous helium

  18. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  19. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  20. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  1. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    Science.gov (United States)

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  2. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    2018-03-30

    Reprocessing of used nuclear fuel (UNF) is expected to play an important role for sustainable development of nuclear energy by increasing the energy extracted from the fuel and reducing the generation of the high level waste (HLW). However, aqueous reprocessing of UNF is accompanied by emission of off-gas streams containing radioactive nuclides including iodine, krypton, xenon, carbon, and tritium. Volatile iodine (129I), and krypton (85Kr) are long lived isotopes which have adverse effects on the environment as well as human health. Development of methods for the capture and long-term storage of radioactive gases is of crucial importance in order to manage their emissions that are anticipated to increase significantly with the growth of nuclear energy. For more than 70 years, porous solid sorbents have been in the forefront of radioactive contaminant removal due to promising results and their advantages such as high removal efficiency, low maintenance cost, simple equipment design and operation over other techniques. The research conducted in this project has focused on development of a novel nanostructured sorbent and its application for the capture of the above two contaminants of interest. Nanostructured carbon polyhedrons supported on Engelhard Titanosilicate-10 sorbent was synthesized using hydrothermal methods and subjected to structural and compositional characterization using various techniques including electron microscopy, Raman, x-ray diffraction and BET surface area analysis. Dynamic sorption experiments conducted using a flow-through column setup yielded information on the thermodynamics and kinetics of sorption in single-contaminant and multi-contaminant streams. Parameters varied in the study included carbon loading, temperature, contact time, contaminant concentration and humidity. The behavior of the system was modeled using models available in literature as well as development of a mass-transfer model from fundamental principles. Experimental

  3. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  4. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  5. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food.

    Science.gov (United States)

    Anderson, Alexandra; McMullan, Rachel

    2018-07-19

    One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Authors.

  6. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations

    Science.gov (United States)

    Wang, Ping; Pozdniakov, Sergey P.; Vasilevskiy, Peter Yu.

    2017-12-01

    infiltration in ephemeral dryland streams. Our results show that time series measurements of stream and sediment temperature and surface and groundwater head can be used to effectively determine the seasonal dynamics of streambed water exchange. Such combined heat and head monitoring at field sites is useful for calibrating regional surface-groundwater models. The results of this study may provide insights into hyporheic exchange in ephemeral dryland streams.

  7. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  8. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  9. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  10. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    International Nuclear Information System (INIS)

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs

  11. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in

  12. New streams and springs after the 2014 Mw6.0 South Napa earthquake.

    Science.gov (United States)

    Wang, Chi-Yuen; Manga, Michael

    2015-07-09

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼ 10(6) m(3), about 1/40 of the annual water use in the Napa-Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region.

  13. Design and methods of the Midwest Stream Quality Assessment (MSQA), 2013

    Science.gov (United States)

    Garrett, Jessica D.; Frey, Jeffrey W.; Van Metre, Peter C.; Journey, Celeste A.; Nakagaki, Naomi; Button, Daniel T.; Nowell, Lisa H.

    2017-10-18

    During 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Project (NAWQA), in collaboration with the USGS Columbia Environmental Research Center, the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA), and the EPA Office of Pesticide Programs assessed stream quality across the Midwestern United States. This Midwest Stream Quality Assessment (MSQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, to better understand regional stressor-effects relations. The MSQA design focused on effects from the widespread agriculture in the region and urban development because of their importance as ecological stressors of particular concern to Midwest region resource managers.A combined random stratified selection and a targeted selection based on land-use data were used to identify and select sites representing gradients in agricultural intensity across the region. During a 14-week period from May through August 2013, 100 sites were selected and sampled 12 times for contaminants, nutrients, and sediment. This 14-week water-quality “index” period culminated with an ecological survey of habitat, periphyton, benthic macroinvertebrates, and fish at all sites. Sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing. Of the 100 sites, 50 were selected for the MSQA random stratified group from 154 NRSA sites planned for the region, and the other 50 MSQA sites were selected as targeted sites to more evenly cover agricultural and urban stressor gradients in the study area. Of the 50 targeted sites, 12 were in urbanized watersheds and 21 represented “good” biological conditions or “least disturbed” conditions. The remaining 17 targeted sites were selected to improve coverage of the agricultural intensity gradient or because of historical data collection to provide temporal context for the

  14. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    Science.gov (United States)

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  15. Geochemical mapping using stream sediments in west-central Nigeria: Implications for environmental studies and mineral exploration in West Africa

    International Nuclear Information System (INIS)

    Lapworth, Dan J.; Knights, Katherine V.; Key, Roger M.; Johnson, Christopher C.; Ayoade, Emmanuel; Adekanmi, Michael A.; Arisekola, Tunde M.; Okunlola, Olugbenga A.; Backman, Birgitta; Eklund, Mikael; Everett, Paul A.; Lister, Robert T.; Ridgway, John; Watts, Michael J.; Kemp, Simon J.; Pitfield, Peter E.J.

    2012-01-01

    This paper provides an overview of regional geochemical mapping using stream sediments from central and south-western Nigeria. A total of 1569 stream sediment samples were collected and 54 major and trace elements determined by ICP-MS and Au, Pd and Pt by fire assay. Multivariate statistical techniques (e.g., correlation analysis and principal factor analysis) were used to explore the data, following appropriate data transformation, to understand the data structure, investigate underlying processes controlling spatial geochemical variability and identify element associations. Major geochemical variations are controlled by source geology and provenance, as well as chemical weathering and winnowing processes, more subtle variations are a result of land use and contamination from anthropogenic activity. This work has identified placer deposits of potential economic importance for Au, REE, Ta, Nb, U and Pt, as well as other primary metal deposits. Areas of higher As and Cr (>2 mg/kg and >70 mg/kg respectively) are associated with Mesozoic and younger coastal sediments in SW Nigeria. High stream sediment Zr concentrations (mean >0.2%), from proximal zircons derived from weathering of basement rocks, have important implications for sample preparation and subsequent analysis due to interferences. Associated heavy minerals enriched in high field strength elements, and notably rare earths, may also have important implications for understanding magmatic processes within the basement terrain of West Africa. This study provides important new background/baseline geochemical values for common geological domains in Nigeria (which extend across other parts of West Africa) for assessment of contamination from urban/industrial land use changes and mining activities. Regional stream sediment mapping is also able to provide important new information with applications across a number of sectors including agriculture, health, land use and planning.

  16. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  17. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    OpenAIRE

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in t...

  18. Contrasting habitat associations of imperilled endemic stream fishes from a global biodiversity hot spot

    Directory of Open Access Journals (Sweden)

    Chakona Albert

    2012-09-01

    Full Text Available Abstract Background Knowledge of the factors that drive species distributions provides a fundamental baseline for several areas of research including biogeography, phylogeography and biodiversity conservation. Data from 148 minimally disturbed sites across a large drainage system in the Cape Floristic Region of South Africa were used to test the hypothesis that stream fishes have similar responses to environmental determinants of species distribution. Two complementary statistical approaches, boosted regression trees and hierarchical partitioning, were used to model the responses of four fish species to 11 environmental predictors, and to quantify the independent explanatory power of each predictor. Results Elevation, slope, stream size, depth and water temperature were identified by both approaches as the most important causal factors for the spatial distribution of the fishes. However, the species showed marked differences in their responses to these environmental variables. Elevation and slope were of primary importance for the laterally compressed Sandelia spp. which had an upstream boundary below 430 m above sea level. The fusiform shaped Pseudobarbus ‘Breede’ was strongly influenced by stream width and water temperature. The small anguilliform shaped Galaxias ‘nebula’ was more sensitive to stream size and depth, and also penetrated into reaches at higher elevation than Sandelia spp. and Pseudobarbus ‘Breede’. Conclusions The hypothesis that stream fishes have a common response to environmental descriptors is rejected. The contrasting habitat associations of stream fishes considered in this study could be a reflection of their morphological divergence which may allow them to exploit specific habitats that differ in their environmental stressors. Findings of this study encourage wider application of complementary methods in ecological studies, as they provide more confidence and deeper insights into the variables that should be

  19. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    Science.gov (United States)

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial ...

  20. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  1. Engineering Hyporheic Zones to Attenuate Heavy Metals in Constructed Urban Streams: Performance Data from Constructed Stream Flumes

    Science.gov (United States)

    Halpin, B. N.; Portmann, A. C.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    Urban stormwater runoff is a major cause of water quality impairment along ocean shorelines and in rivers, lakes and estuaries across the United States. In addition to pathogens, nutrients, and organic contaminants, a variety of heavy metals are commonly found at elevated concentrations in urban runoff. Although such metals occur in both dissolved and particulate-bound phases, conventional stormwater controls are typically designed to remove suspended solids, while dissolved phase contaminants remain largely untreated. To address this gap in available stormwater controls, a novel technology, termed Biohydrochemical Enhancements for Streamwater Treatment (BEST), has been developed based on inspiration from the natural hyporheic zone (HZ). BEST utilizes a series of alternating streambed permeabilities to drive efficient surface water-HZ exchange. This is combined with reactive and/or sorptive streambed geomedia designed to remove dissolved phase contaminants from constructed urban drainage channels. Previous research at the Colorado School of Mines has shown that a 15-meter flume modified with BEST exhibits greater hyporheic exchange than an all-sand control flume, though both flumes provided greater contaminant attenuation than a selection of actual urban streams. This study again utilized the 15-meter flumes at Colorado School of Mines to evaluate two configurations of BEST for removal of heavy metals commonly found in stormwater runoff, including cadmium, copper, nickel, lead and zinc. In both BEST configurations, the geomedia consisted of a 30/70 (v/v) mix of woodchips and sand, with one configuration using coarse sand (K=0.48 cm/s) and the other using finer sand (K=0.16 cm/s). Both configurations were compared to an all-sand control. To evaluate metals removal, a suite of aqueous metals solution was spiked into each flume, and aqueous concentrations of the five metals of interest were monitored in both the surface and pore water over 24 hours. Differences in

  2. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  3. Engineering hyporheic zones for the attenuation of urban pesticides and other stormwater trace organic contaminants

    Science.gov (United States)

    Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ

  4. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  5. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  6. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  7. study on trace contaminants control assembly for sealed environment chamber

    Science.gov (United States)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  8. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  9. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  10. An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan

    Science.gov (United States)

    Shihadeh, M.; Forrester, J.; Napieralski, J. A.

    2010-12-01

    Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms

  11. Pilot study on: Modelling of the Groundwater Flow and Contaminant Transport in the Area of the Landfill Mastwijk (Linschoten, the Netherlands)

    NARCIS (Netherlands)

    Richardson-van der Poel MA; Swartjes FA; Beusen AHW; Sauter FJ; LBG; CIM

    1995-01-01

    The Mastwijk landfill can be regarded as a potential source of contaminants for the pumping water station, situated about one kilometre northeast of the landfill. With the purpose to get insight into the spreading of contaminants originating from the Mastwijk landfill, a pilot study has been

  12. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    Science.gov (United States)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the

  13. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  14. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  15. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  16. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  17. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  18. Estimation of sport fish harvest for risk and hazard assessment of environmental contaminants

    International Nuclear Information System (INIS)

    Poston, T.M.; Strenge, D.L.

    1989-01-01

    Consumption of contaminated fish flesh can be a significant route of human exposure to hazardous chemicals. Estimation of exposure resulting from the consumption of fish requires knowledge of fish consumption and contaminant levels in the edible portion of fish. Realistic figures of sport fish harvest are needed to estimate consumption. Estimates of freshwater sport fish harvest were developed from a review of 72 articles and reports. Descriptive statistics based on fishing pressure were derived from harvest data for four distinct groups of freshwater sport fish in three water types: streams, lakes, and reservoirs. Regression equations were developed to relate harvest to surface area fished where data bases were sufficiently large. Other aspects of estimating human exposure to contaminants in fish flesh that are discussed include use of bioaccumulation factors for trace metals and organic compounds. Using the bioaccumulation factor and the concentration of contaminants in water as variables in the exposure equation may also lead to less precise estimates of tissue concentration. For instance, muscle levels of contaminants may not increase proportionately with increases in water concentrations, leading to overestimation of risk. In addition, estimates of water concentration may be variable or expressed in a manner that does not truly represent biological availability of the contaminant. These factors are discussed. 45 refs., 1 fig., 7 tabs

  19. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    Science.gov (United States)

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  20. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  1. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  2. Energy efficiency in process plants with emphasis on heat exchanger networks : optimization, thermodynamics and insight

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaman, Rahul

    2011-07-01

    lower than those presented in the literature. The examples showed the efficiency of the Sequential Framework in that even though there a four nested loops in the framework, the 'best' solution is reached within a few iterations. This is primarily due to the capability of the stream match generator to identify superior Heat Load Distributions (HLDs) leading to low total heat transfer area and low Total Annualized Cost.The three sub-problems in the Sequential Framework, minimum number of units (MILP model), stream match generator ('vertical' MILP model) and network generation and optimization (NLP model), are described with details on their formulation. In the minimum number of units sub-problem, it is shown that stream supply temperature are sufficient to define temperature intervals. The importance and role of Exchanger Minimum Approach Temperature (EMAT) in the stream match generator model is shown and motivated the addition of an EMAT loop in the Sequential Framework.One of the limiting factors in the methodology is related to the computational complexity of the two MILP sub-problems where significant improvements are required to prevent combinatorial explosion. To ease this problem for the minimum number of units MILP sub-problem, it is modified to reduce the gap using physical insights and heuristics. Another novel approach tested was to reformulate some parts of the model by use of some ideas from set partitioning problems. Results show that even though both methods succeed in tightening the LP relaxation, the model solution times remain too long to overcome the size in the Sequential Framework. A problem difficulty indicator is explored to identify computationally expensive problems prior to solution. For the stream match generator MILP sub-problem, the model is modified to reduce the gap using physical insights. The objective is changed to include binary variables and priorities were set for these variables. Though these modifications showed

  3. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a

  4. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  5. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  6. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  7. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    Science.gov (United States)

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  8. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  9. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventililation System

    DEFF Research Database (Denmark)

    Qian, H.; Nielsen, Peter Vilhelm; Li, Y.

    2004-01-01

    Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventilalation System. The 2nd International Conference on Build Environment and Public Health, BEPH 2004, Shenzhen , China . ABSTRACT Displacement ventilation has not been considered to be an applicable system for hospital...... to accurately predict three-dimensional distribution of air velocity, temperature, and contaminant concentration in the ward. Indoor airflow in a displacement ventilation system involves a combination of different flow streams such as the gravity currents and thermal plumes. It is important to choose...... ventilation system in hospital wards. It is for this purpose that we study the performance of displacement ventilation in hospital wards as one of the steps to optimize the ventilation design. When the prospect of applying displacement ventilation system in a hospital ward is examined, it should be necessary...

  11. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  12. Scrubbing of iodine from gas streams with mercuric nitrate-conversion of mercuric iodate product to barium iodate for fixation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.C.; Moore, J.G.; Morgan, M.T.

    1980-06-01

    A bench-scale model of a mercuric nitrate scrubber for removal of iodine from off-gas streams was constructed and operated in conjunction with a mercuric iodate-to-barium iodate conversion system to determine the feasibility of total recycle of all processing solutions. The two main aspects of the system examined were (1) the extent of contamination of the barium iodate product, and (2) the effect of cross-contamination of various process solutions on the efficiency of the process. The experimental evidence obtained indicates that, with appropriate control, all solutions can be recycled without significant contamination of the product that would be harmful to the host concrete or to the environment. Mercury contamination was found to be less than or equal to 0.5 wt % of the barium iodate product. The most significant effect on system efficiency was determined to be barium hydroxide contamination of the sodium hydroxide solution used to convert mercuric iodate to sodium iodate. A mole ratio of barium hydroxide to sodium hydroxide of about 1:225 caused a decrease in conversion efficiency of about 45%.

  13. COMET 169P/NEAT(=2002 EX12): THE PARENT BODY OF THE α-CAPRICORNID METEOROID STREAM

    International Nuclear Information System (INIS)

    Kasuga, Toshihiro; Wiegert, Paul A.; Balam, David D.

    2010-01-01

    The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX 12 ) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ∼4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of -4 is obtained with an upper limit to the mass loss of ∼10 -2 kg s -1 . The effective radius of nucleus is found to be 2.3 ± 0.4 km. Red filter photometry yields a rotational period of 8.4096 ± 0.0012 hr, and the range of the amplitude 0.29 ± 0.02 mag is indicative of a moderately spherical shape having a projected axis ratio ∼1.3. The comet shows redder colors than the Sun, being compatible with other dead comet candidates. The calculated lost mass per revolution is ∼10 9 kg. If it has sustained this mass loss over the estimated 5000 yr age of the α-Capricornid meteoroid stream, the total mass loss from 169P/NEAT (∼10 13 kg) is consistent with the reported stream mass (∼10 13 -10 15 kg), suggesting that the stream is the product of steady disintegration of the parent at every return.

  14. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    Science.gov (United States)

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  15. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  16. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  17. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.

    Science.gov (United States)

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-03-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.

  18. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Funder, S.G.; Rasmussen, J.J.

    2010-01-01

    The practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems....... This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a TCE contaminated groundwater plume is discharging to a stream. The TCE source...... will not be depleted for many decades, however measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 300 m stream reach fails to meet surface water quality criteria...

  19. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter ex'clusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into

  20. European sites contaminated by residues from the ore extracting and processing industries

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2000-01-01

    Activities linked with the ore extraction and processing industries may lead to enhanced levels of naturally occurring radionuclides (NORs) in products, by-products and waste and at the installations and in the surroundings of the facility. In the framework of the EC-DGXI CARE project (Common Approach for REstoration of contaminated sites) nine important categories of industries were identified and discussions were summarized on the industrial processes and the levels of NORs in parent material, waste and by-products. The most contaminating industries are uranium mining and milling, metal mining and smelting and the phosphate industry. Radionuclide levels in products and/or waste products from the oil and gas extraction industry and of the rare earth, zirconium and ceramics industries may be particularly elevated, but waste streams are limited. The impact on the public from coal mining and power production from coal is commonly considered low. No typical values are available for contaminant levels in materials, buildings and surroundings of radium extraction and luminizing plants, nor for thorium extraction and processing plants. An attempt to give an overview of sites in Europe contaminated with NORs, with emphasis on past practices, was only partly successful since information was often limited or unavailable. The most prominent case of environmental contamination due to mining and processing activities (uranium, metal and coal mining) is in eastern Germany. (author)

  1. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment - Effect of sampling frequency

    International Nuclear Information System (INIS)

    Rabiet, M.; Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M.

    2010-01-01

    This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7 x 10 -3 g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream. - This work brings new insights about the fluxes of pesticides in surface water of a vineyard catchment, notably during flood events.

  2. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment - Effect of sampling frequency

    Energy Technology Data Exchange (ETDEWEB)

    Rabiet, M., E-mail: marion.rabiet@unilim.f [Cemagref, UR QELY, 3bis quai Chauveau, CP 220, F-69336 Lyon (France); Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M. [Cemagref, UR QELY, 3bis quai Chauveau, CP 220, F-69336 Lyon (France)

    2010-03-15

    This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7 x 10{sup -3} g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream. - This work brings new insights about the fluxes of pesticides in surface water of a vineyard catchment, notably during flood events.

  3. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  4. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  5. Snapping turtles (Chelydra serpentina) as biomonitors of lead contamination of the Big River in Missouri`s Old Lead Belt

    Energy Technology Data Exchange (ETDEWEB)

    Overmann, S.R.; Krajicek, J.J. [Southeast Missouri State Univ., Cape Girardeau, MO (United States). Dept. of Biology

    1995-04-01

    The usefulness of common snapping turtles (Chelydra serpentina) as biomonitors of lead (Pb) contamination of aquatic ecosystems was assessed. Thirty-seven snapping turtles were collected from three sites on the Big River, an Ozarkian stream contaminated with Pb mine tailings. Morphometric measurements, tissue Pb concentrations (muscle, blood, bone, carapace, brain, and liver), {delta}-aminolevulinic acid dehydratase ({delta}-ALAD) activity, hematocrit, hemoglobin, plasma glucose, osmolality, and chloride ion content were measured. The data showed no effects of Pb contamination on capture success or morphological measurements. Tissue Pb concentrations were related to capture location. Hematocrit, plasma osmolality, plasma glucose, and plasma chloride ion content were not significantly different with respect to capture location. The {delta}-ALAD activity levels were decreased in turtles taken from contaminated sites. Lead levels in the Big River do not appear to be adversely affecting the snapping turtles of the river. Chelydra serpentina is a useful species for biomonitoring of Pb-contaminated aquatic environments.

  6. Estimation of traveltime and longitudinal dispersion in streams in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Messinger, Terence

    2013-01-01

    Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data were not available for streams in the northwestern part of the State. Compiled data were compared with estimates determined from national equations previously published by the USGS. The evaluation summarized procedures and examples for estimating traveltime and dispersion on streams in West Virginia. National equations developed by the USGS can be used to predict traveltime and dispersion for streams located in West Virginia, but the predictions will be less accurate than those made with graphical interpolation between measurements. National equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge had root mean square errors (RMSE) of 0.426 log units (127 percent), 0.505 feet per second (ft/s), and 3.78 hours (h). West Virginia data fit the national equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge with RMSE of 0.139 log units (38 percent), 0.630 ft/s, and 3.38 h, respectively. The national equation for maximum possible velocity of the peak concentration exceeded 99 percent and 100 percent of observed values from the national data set and West Virginia-only data set, respectively. No RMSE was reported for time of passage of a dye cloud, as estimated using the national equation; however, the estimates made using the national equations had a root mean square error of 3.82 h when compared to data gathered for this study. Traveltime and dispersion estimates can be made from the plots of traveltime as a function of streamflow and location for streams with plots available, but

  7. Seiler Pollution Control Systems vitrification process for the treatment of hazardous waste streams

    International Nuclear Information System (INIS)

    Nuesch, P.C.; Sarko, A.B.

    1995-01-01

    Seiler Pollution Control Systems, Inc. (Seiler) applies an economical, transportable, compact high temperature vitrification process to recycle and/or stabilize mixed organic/inorganic waste streams. Organic components are gasified by the system and are used as an auxiliary energy source. The inorganic components are melted and bound up molecularly in a glass/ceramic matrix. These glass/ceramics are extremely stable and durable and will pass typical regulatory leachate tests. Waste types that can be processed through the Seiler vitrification system include incinerator flyash, paint sludges, plating wastes, metal hydroxide sludges, low level and mixed radioactive wastes, contaminated soils and sludges, asbestos, and various mixed organic/inorganic residues. For nonradioactive waste streams, a variety of commercially saleable glass/ceramic products can be produced. These materials are marketed either as architectural materials, abrasives, or insulating refractories. The glass/ceramics generated from radioactive waste streams can be formed in a shape that is easily handled, stored, and retrieved. The system, itself is modular and can either be used as a stand alone system or hooked-up in line to existing manufacturing and production facilities. It consists of four sections: feed preparation; preheater; vitrifier/converter, and air pollution control. The vitrification system can use oxygen enriched natural gas or fuel oil for both cost efficiency and to reduce air pollution emissions

  8. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  9. Cometabolic biotreatment of TCE-contaminated groundwater: Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Strandberg, G.W.; Morris, M.I.; Palumbo, A.V.; Boerman, P.A.; Tyndall, R.L.

    1992-01-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system

  10. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms.

    Science.gov (United States)

    Mohr, S; Berghahn, R; Feibicke, M; Meinecke, S; Ottenströer, T; Schmiedling, I; Schmiediche, R; Schmidt, R

    2007-05-01

    The chloroacetamide metazachlor is a commonly used pre-emergent herbicide to inhibit growth of plants especially in rape culture. It occurs in surface and ground water due to spray-drift or run-off in concentrations up to 100 microgL(-1). Direct and indirect effects of metazachlor on aquatic macrophytes were investigated at oligo- to mesotrophic nutrient levels employing eight stream and eight pond indoor mesocosms. Five systems of each type were dosed once with 5, 20, 80, 200 and 500 microgL(-1) metazachlor and three ponds and three streams served as controls. Pronounced direct negative effects on macrophyte biomass of Potamogeton natans, Myriophyllum verticillatum and filamentous green algae as well as associated changes in water chemistry were detected in the course of the summer 2003 in both pond and stream mesocosms. Filamentous green algae dominated by Cladophora glomerata were the most sensitive organisms in both pond and stream systems with EC(50) ranging from 3 (streams) to 9 (ponds) microgL(-1) metazachlor. In the contaminated pond mesocosms with high toxicant concentrations (200 and 500 microgL(-1)), a species shift from filamentous green algae to the yellow-green alga Vaucheria spec. was detected. The herbicide effects for the different macrophyte species were partly masked by interspecific competition. No recovery of macrophytes was observed at the highest metazachlor concentrations in both pond and stream mesocosms until the end of the study after 140 and 170 days. Based on the lowest EC(50) value of 4 microgL(-1) for total macrophyte biomass, it is argued that single exposure of aquatic macrophytes to metazachlor to nominal concentrations >5 microgL(-1) is likely to have pronounced long-term effects on aquatic biota and ecosystem function.

  11. MEKANISME SEGMENTASI LAJU BIT PADA DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    Muhammad Audy Bazly

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG- DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  12. Improved removal of sticky and light contaminants from wastepaper. Final report, April 1, 1995--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, P.; Kelly, A.

    1998-03-01

    Work under this two-year cooperative agreement addresses improved removal of light and sticky contaminants from waste paper. Such contaminants occur in ever-increasing amounts, resulting from glues, labels, book bindings, packaging tapes, etc., all associated with the waste paper stream. Despite various cleaning steps in the paper mill recycling systems, residual contamination remains, causing big problems with the product quality and with paper machine and converting operations. Some grades cannot be recycled at all. Stickies are truly a barrier against increased paper recycling. The stickies problem was attacked in four project segments--three of those have yielded tangible results. One segment has been outstanding in its success; namely, the development of a centrifugal reverse cleaning system consisting of primary and secondary stages, which have unparalleled high efficiency in the removal of light and sticky contaminants. This cleaning system, consists of primary XTREME and secondary XX-Clone units. Another segment of this work, washing wax contaminated old corrugated wastepaper (OCC), also has resulted in the new Xtrax process which was released for sale.

  13. The coupling of runoff and dissolved organic matter transport: Insights from in situ fluorescence measurements in small streams and large rivers

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Shanley, J. B.; Aiken, G.; Murdoch, P. S.

    2011-12-01

    Understanding dissolved organic matter (DOM) dynamics in streams and rivers can help characterize mercury transport, assess causes of drinking water issues, and lead to improved understanding of watershed source areas and carbon loads to downstream ecosystems. However, traditional sampling approaches that collect discrete concentration data at weekly to monthly intervals often fail to adequately capture hydrological pulses ranging from early snowmelt periods to short-duration rainfall events. Continuous measurements of chromophoric dissolved organic matter fluorescence (FDOM) in rivers and streams now provide an opportunity to more accurately quantify DOM loads and processes in aquatic ecosystems at a range of scales. In this study, we used continuous FDOM data from in situ sensors along with discharge data to assess the coupling of FDOM transport and runoff in small streams and large rivers. Results from headwater catchments in New England and California show that FDOM is tightly coupled with runoff, supporting strong linkages between watershed flow paths and DOM concentrations in streams. Results also show that the magnitude of FDOM response relative to runoff varies seasonally, with highest concentrations during autumn rainfall events (after leaf fall) and lower concentrations during peak snowmelt for equivalent runoff. In large river basins, FDOM dynamics are also coupled with runoff and exhibit the same seasonal variability in the magnitude of FDOM response relative to discharge. However, the peaks in FDOM typically lag runoff by several days, reflecting the influence of a variety of factors such as water residence times, reservoir releases, and connectivity to organic matter-rich riparian floodplains and wetlands. Our results show that in situ FDOM data will be important for understanding the coupling of runoff and DOM across multiple scales and could serve a critical role in monitoring, assessment and decision-making in both small and large watersheds.

  14. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    Science.gov (United States)

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.

  15. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document and Market Survey

    Energy Technology Data Exchange (ETDEWEB)

    Terlip, Danny [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McWhorter, Scott [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-20

    The rollout of hydrogen fueling stations, and the fuel cell electric vehicles (FCEV) they support, requires the assurance of high quality hydrogen at the dispensing point. Automotive fuel cells are sensitive to a number of chemicals that can be introduced into the dispensed fuel at multiple points. Quality assurance and quality control methods are employed by the industry to ensure product quality, but they are not completely comprehensive and can fail at various points in the hydrogen pathway from production to dispensing. This reality leaves open the possibility of a station unknowingly dispensing harmful contaminants to a FCEV which, depending on the contaminant, may not be discovered until the FCEV is irreparably damaged. This situation is unacceptable. A hydrogen contaminant detector (HCD), defined as a combination of a gas analyzer and the components necessary for fuel stream integration, installed at hydrogen stations is one method for preventing poor quality gas from reaching an FCEV. This document identifies the characteristics required of such a device by industry and compares those requirements with the current state of commercially available gas analysis technology.

  16. Mean transit times in headwater catchments: insights from the Otway Ranges, Australia

    Directory of Open Access Journals (Sweden)

    W. Howcroft

    2018-01-01

    catchments are likely to be vulnerable to decadal changes in land use or climate. Additionally, there may be considerable delay in contaminants reaching the stream. An increase in nitrate and sulfate concentrations in several catchments at high streamflows may represent the input of contaminants through the shallow groundwater that contributes to streamflow during the wetter months. Poor correlations between 3H activities and catchment area, drainage density, land use, and average slope imply that the MTTs are not controlled by a single parameter but a variety of factors, including catchment geomorphology and the hydraulic properties of the soils and aquifers.

  17. Mean transit times in headwater catchments: insights from the Otway Ranges, Australia

    Science.gov (United States)

    Howcroft, William; Cartwright, Ian; Morgenstern, Uwe

    2018-01-01

    to be vulnerable to decadal changes in land use or climate. Additionally, there may be considerable delay in contaminants reaching the stream. An increase in nitrate and sulfate concentrations in several catchments at high streamflows may represent the input of contaminants through the shallow groundwater that contributes to streamflow during the wetter months. Poor correlations between 3H activities and catchment area, drainage density, land use, and average slope imply that the MTTs are not controlled by a single parameter but a variety of factors, including catchment geomorphology and the hydraulic properties of the soils and aquifers.

  18. Bioventing of gasoline-contaminated soil: some questions to be answered

    International Nuclear Information System (INIS)

    Bezerra, S.M.C.; Zytner, R.G.

    2002-01-01

    Underground storage tank (UST) leakage is a big concern in the USA and Canada because gasoline-contaminated soil is a significant source of groundwater contamination. This threat is not confined to North America as locations like Sao Paulo (Brazil) have leakage rates similar to the North American average. The typical in-situ remediation technology used to remediate the contaminated soil is soil vapour extraction (SVE), but once tailing occurs, where the residual gasoline concentration still exceeds clean up levels, SVE becomes ineffective. Bioventing has emerged as one of the most cost-effective technologies currently available to address this tailing in the remediation of petroleum-contaminated sites. Bioventing is a source control treatment, which delivers air and nutrients through injection wells placed in contaminated areas, in order to stimulate the activity of the indigenous microorganisms. However, encouraging laboratory results have not always translated into similar outcomes when implemented in the field. A reason for this inconsistency is the scale-dependent phenomena that influence the bioventing process at the microscale, mesoscale, and macroscale. This paper intends to provide some insights about various research needs in order to improve the bioventing process, specifically related to predicting the time to reach site closure. (author)

  19. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  20. Explaining and modeling the concentration and loading of Escherichia coli in a stream-A case study.

    Science.gov (United States)

    Wang, Chaozi; Schneider, Rebecca L; Parlange, Jean-Yves; Dahlke, Helen E; Walter, M Todd

    2018-09-01

    Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R 2  = 0.85 for log (E. coli concentration) and R 2  = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak. Copyright © 2018. Published by Elsevier B.V.