WorldWideScience

Sample records for contaminant transport partnerships

  1. Monitoring of transport contamination

    International Nuclear Information System (INIS)

    Turkin, N.F.

    1980-01-01

    Organization of monitoring of transport contamination is considered. A particularly thorough monitoring is recommended to be carried out in loading-unloading operations. The monitoring is performed when leaving loading-unloading site and zone under control and prior to preventive examination, technical service or repair. The method of monitoring of auto transport contamination with high-energy β-emitters by means of a special stand permitting the automation of the monitoring process is described [ru

  2. Transportation cask contamination weeping

    International Nuclear Information System (INIS)

    Bennett, P.C.; Doughty, D.H.; Chambers, W.B.

    1993-01-01

    This paper describes the problem of cask contamination weeping, and efforts to understand the phenomenon and to eliminate its occurrence during spent nuclear fuel transport. The paper summarizes analyses of field experience and scoping experiments, and concentrates on current modelling and experimental validation efforts. (J.P.N.)

  3. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  4. Contaminant transport in Massachusetts Bay

    Science.gov (United States)

    Butman, Bradford

    Construction of a new treatment plant and outfall to clean up Boston Harbor is currently one of the world's largest public works projects, costing about $4 billion. There is concern about the long-term impact of contaminants on Massachusetts Bay and adjacent Gulf of Maine because these areas are used extensively for transportation, recreation, fishing, and tourism, as well as waste disposal. Public concern also focuses on Stellwagen Bank, located on the eastern side of Massachusetts Bay, which is an important habitat for endangered whales. Contaminants reach Massachusetts Bay not only from Boston Harbor, but from other coastal communities on the Gulf of Maine, as well as from the atmosphere. Knowledge of the pathways, mechanisms, and rates at which pollutants are transported throughout these coastal environments is needed to address a wide range of management questions.

  5. Partnerships Drive New Transportation Solutions | News | NREL

    Science.gov (United States)

    strategy to its talent base and partnerships, bringing together the best minds from the worlds of research . Farrell came to NREL after 15 years at the ExxonMobil Corporate Strategic Research Lab, where he held R closely with Xcel Energy in exploring how wind power can be used to produce hydrogen for fuel cell

  6. Idaho Transportation Department 2009 partnership survey.

    Science.gov (United States)

    2010-06-01

    The report discusses the results of an electronic survey of 1,500 individual stakeholders of the Idaho Transportation Department (ITD). The purpose of this survey, which was conducted in August and September 2009, was to gauge stakeholders satisfa...

  7. Public-Private Partnerships for Transport Infrastructure

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina; Greve, Carsten

    The provision of transport infrastructure and services creates fundamental value to society. With traditional sources of transport public funding running short, governments around the world are increasingly turning to public-private finance (PPPs) as a promising tool of public infrastructure...... of the public but of the private actor as well, to act perhaps motivated by corporate social responsibility, committing to bringing innovation and transparency in their efforts for advancing sustainability....

  8. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  9. Contaminant transport at a waste residue deposit

    DEFF Research Database (Denmark)

    Engesgaard, Peter Knudegaard; Traberg, Rikke

    1996-01-01

    Contaminant transport in an aquifer at an incinerator waste residue deposit in Denmark is simulated. A two-dimensional, geochemical transport code is developed for this purpose and tested by comparison to results from another code, The code is applied to a column experiment and to the field site...

  10. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  11. Analytical methods for predicting contaminant transport

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1989-09-01

    This paper summarizes some of the previous and recent work at the University of California on analytical solutions for predicting contaminate transport in porous and fractured geologic media. Emphasis is given here to the theories for predicting near-field transport, needed to derive the time-dependent source term for predicting far-field transport and overall repository performance. New theories summarized include solubility-limited release rate with flow backfill in rock, near-field transport of radioactive decay chains, interactive transport of colloid and solute, transport of carbon-14 as carbon dioxide in unsaturated rock, and flow of gases out of and a waste container through cracks and penetrations. 28 refs., 4 figs

  12. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  13. Flow and contaminant transport in fractured rocks

    International Nuclear Information System (INIS)

    Bear, J.; Tsang, C.F.; Marsily, G. de

    1993-01-01

    This book is a compilation of nine articles dealing with various aspect of flow in fractured media. Articles range from radionuclide waste to multiphase flow in petroleum reservoirs to practical field test methods. Each chapter contains copious figures to aid the reader, but is also a detailed in-depth analysis of some major flow problem. The subjects covered are as follows: an introduction to flow and transport models; solute transport in fractured rock with application to radioactive waste repositories; solute transport models through fractured networks; theoretical view of stochastic models of fracture systems; numerical models of tracers; multiphase flow models in fractured systems and petroleum reservoirs; unsaturated flow modeling; comparative analysis of various flow modeling techniques in fractured media; and, a summary of field methods for measuring transfers of mass, heat, contaminant, momentum, and electrical charge in fractured media

  14. Intermediate-field transport of contaminants

    International Nuclear Information System (INIS)

    Ahn, J.; Kim, C.L.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1989-06-01

    This report is about ''intermediate-field'' transport or the migration of contaminants from arrays of discrete waste packages or sources. In constructing nuclear waste repositories in rock, it may be necessary to place a waste package across a rock fracture, or a rock fracture may develop some time after waste packages have been emplaced. To predict the spatial and temporal distribution of contaminant species from a line of waste packages facing a rock fracture may be important, because such fractures may now be considered a preferential pathway for released radionuclides to re-enter the biosphere. In land disposal of hazardous wastes, individual barrels may contain especially toxic material whose dispersion special attention. We have published analytic solutions for the multidimensional advective transport of contaminants from arrays of waste packages and multiple areal sources into a planar fracture. The results show a near region in which the concentrations vary greatly in the direction transverse to ground-water flow, an intermediate region in which the array can be treated as an infinite plane source of dissolving species, and a far-field region in which the array can be treated as a plane source of finite extent. The array equations have been developed for both porous and fractured media. In this paper we summarize and compare the work with multiple areal sources facing a planar fracture and an array of point sources in porous media. 5 refs., 5 figs

  15. In-stream contaminant interaction and transport

    International Nuclear Information System (INIS)

    Whelan, G.

    1983-07-01

    In order to assess contaminant exposure levels in biotic and abiotic pathways from waste-disposal sites, a comprehensive Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology using several mathematical models is being developed. Prior to a full development of the proposed methodology, a scaled-down version involving terrestrial plants, overland, and in-stream compartments was applied to an actual shallow land waste-disposal site. The purpose was to evaluate and demonstrate the attributes of the methodology. The in-stream component of the abbreviated methodology as it relates to Mortandad Canyon in Los Alamos, New Mexico is discussed herein. A two-year period was simulated consisting of six major runoff events which possessed a variety of distributions and magnitudes. The in-stream component of the methodology was composed of two models integrated to simulate the migration of radionuclides: DKWAV and TODAM. DKWAV is an unsteady, one-dimensional, second-order, explicit, finite difference, channel flow code which simulates the hydrodynamics in dendritric river systems and includes point and/or continuous lateral inflow and channel seepage. TODAM is an unsteady, one-dimensional, finite element, sediment-contaminant transport code which simulates the migration and fate of sediment and radionuclides in their dissolved and particulate phases by solving the general advection/diffusion equation with sink and source terms

  16. Valuing public sector risk exposure in transportation public-private partnerships.

    Science.gov (United States)

    2010-10-01

    This report presents a methodological framework to evaluate public sector financial risk exposure when : delivering transportation infrastructure through public-private partnership (PPP) agreements in the United : States (U.S.). The framework is base...

  17. Packaging and transportation of radioactively contaminated lead

    International Nuclear Information System (INIS)

    Gleason, Eugene; Holden, Gerard

    2007-01-01

    Under the management of the Nuclear Decommissioning Authority (NDA) the government of the United Kingdom has launched an ambitious program to remediate the nation's nuclear waste legacy. Over a twenty-five year period NDA plans to decommission several first generation nuclear power plants and other radioactive facilities. The use innovative, safe 'fit for purpose' technologies will be a major part of this complex program. This paper will present a case study of a recently completed project undertaken in support of the nuclear decommissioning activities at the Sellafield site in the United Kingdom. The focus is on an innovative application of new packaging technology developed for the safe transportation of radioactively contaminated lead objects. Several companies collaborated on the project and contributed to its safe and successful conclusion. These companies include British Nuclear Group, Gravatom Engineering, W. F. Bowker Transport, Atlantic Container Lines, MHF Logistical Solutions and Energy Solutions. New containers and a new innovative inter-modal packaging system to transport the radioactive lead were developed and demonstrated during the project. The project also demonstrated the potential contribution of international nuclear recycling activities as a safe, economic and feasible technical option for nuclear decommissioning in the United Kingdom. (authors)

  18. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  19. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  20. Contaminant transport modeling studies of Russian sites

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu

    1993-01-01

    Lawrence Berkeley Laboratory (LBL) established mechanisms that promoted cooperation between U.S. and Russian scientists in scientific research as well as environmental technology transfer. Using Russian experience and U.S technology, LBL developed approaches for field investigations, site evaluation, waste disposal, and remediation at Russian contaminated sites. LBL assessed a comprehensive database as well as an actual, large-scale contaminated site to evaluate existing knowledge of and test mathematical models used for the assessment of U.S. contaminated sites

  1. Partnerships

    CERN Multimedia

    Staff Association

    2014-01-01

    Go Sport Free prize draw    Win Go Sport vouchers by participating in a prize draw of the Staff Association! Thanks to our partnership, 30 vouchers of 50 euros each have been offered to us. To reward you for your loyalty, the Staff Association, organizes a free prize draw for its members. The 30 people who will specify a number that comes closest to the total number of participants to this draw will win a voucher. Deadline for participation: Monday 14th July 2014 – 2 p.m. To participate: https://ap-vote.web.cern.ch/content/concours-de-lassociation-du-personnel-2014-competition-staff-association Upon presentation of the Staff Association membership card Go Sport Val Thoiry offers a 15 % discount on all purchases in the shop (excluding promotions, sale items and bargain corner, and excluding purchases using Go Sport and Kadéos gift cards. Only one discount can be applied to each purchase). The manager of Go Sport Val Thoiry hands the discount vouchers to the presid...

  2. Promoting Workforce Development for the Transportation Profession Through a Multi-University/Agency Partnership

    Science.gov (United States)

    2010-12-15

    The objective of this multi-university/agency partnership between Prairie View A&M University (PVAMU), : Texas Transportation Institute (TTI), and Texas A&M University (TAMU) is to build on the progress made : through the UTCM seed funding to produce...

  3. EVALUATION OF EFFICIENCY OF FINANCING TRANSPORT INFRASTRUCTURE PROJECTS REALIZED IN THE FRAMEWORK OF PUBLIC PRIVATE PARTNERSHIP

    Directory of Open Access Journals (Sweden)

    S. B. Vasiliev

    2015-01-01

    Full Text Available The article examines the basic approach to evaluating efficiency of financing transport infrastructure projects realized in the framework of public private partnership. The main ways of the project realization are identified, and their main advantages and disadvantages are described. Detailed elaboration and structuring of infrastructure projects are grounded.

  4. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  5. Building Partnerships to Cut Petroleum Use in Transportation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  6. Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-26

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  7. Internationally Recommended Best Practices in Transportation Financing Public-Private Partnerships (P3s)

    DEFF Research Database (Denmark)

    Martin, Lawrence; Lawther, Wendell; Hodge, Graeme

    2013-01-01

    Transportation financing public-private partnerships (P3s) are a common practice in many countries. However, they represent a relatively new approach to transportation infrastructure financing for state and local governments in the United States. In a transportation financing P3 project, a private...... sector partner designs-builds-finances-operates- maintains (DBFOM) a transportation infrastructure asset (road, highway, bridge, tunnel, etc.) with an emphasis on financing. Under this type of arrangement, the private sector partner is primarily responsible for securing all or substantially all...... of the funding necessary to construct new transportation infrastructure and/or rehabilitate existing transportation infrastructure. This study reviews the international experience of national and sub-national governments with transportation financing P3s. The primary purpose of this study is to identify...

  8. Toward a federal/state/local partnership in hazardous materials transportation safety

    International Nuclear Information System (INIS)

    1982-09-01

    In recognition of the federal government's responsibility for initiating a national strategy for hazardous materials transportation safety, the Materials Transportation Bureau (MTB) prepared an internal strategy paper for creating a federal/state/local partnership in hazardous materials transportation safety in August 1981. The paper outlined the scope of the hazardous materials transportation problem and established MTB's approach for creating an intergovernmental partnership for its resolution. This paper represents an update and refinement of the original plan, and is designed to chart the direction of the emerging federal/state/local relationship. The cornerstone of the plan remains the establishment of a single national set of safety regulations. It is on achievement of this objective that MTB's plan for development of enforcement, training, and emergency response capabilities at all levels of government is based. Chapter I introduces the problem with a desription of the economic importance of hazardous materials and discusses its implications for public safety. Chapter II defines the appropriate role for each level of government in the areas of rulemaking, enforcement, emergency response, and education. Chapter III demonstrates the need for uniform national safety standards and describes the economic and safety benefits of this approach. Chapter IV contains a detailed description of MTB's program for developing a successful intergovernmental partnership in hazardous materials transportation safety

  9. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-01-07

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  10. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-01

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  11. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  12. Sediment and contaminant transport in a marine environment

    International Nuclear Information System (INIS)

    Onishi, Y.; Thompson, F.L.

    1986-01-01

    The finite-element model FETRA is an unsteady, verically averaged two-dimensional model to simulate the transport of sediment and contaminants (radionuclides, heavy metals, pesticides, etc.) in coastal and estuarine water. The model, together with the hydrodynamic model CAFE-I, was applied to the Irish Sea to predict the migration and accumulation of sediment (both cohesive and noncohesive) and of a radionuclide (dissolved and sediment-sorbed) in a tide- and wind-driven system. The study demonstrated that FETRA is a useful tool for assessing sediment and toxic contaminant transport in a marine environment

  13. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  14. Transport of contaminated groundwater to a river

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1990-09-01

    Scenario B7 deals with the discharges of Cs-137, Sr-90, Pu-239 and Np-237 with the groundwater from an aquifer into a river, through the river sediment. The contamination of agricultural soil, brought about through the dredging of top sediment from the river, was also considered. Four models participated in this exercise, providing best estimate values. Only one model supplied uncertainty estimates. Brief descriptions of the models and their aims are given. the modelling of the processes taken into account for the computation of the radionuclide concentrations in river and soil compartments are described and the input parameter values are given. The model results are discussed and the reasons for the differences between the models are explained. Important discrepancies were observed. As far as the steady-state concentrations are concerned they were due to differences in the parameter values and transfer processes considered. The time-dependent concentration values depended strongly on the approach adopted for the modelling of the migration of the nuclides through the deep sediment in the source region. The major source of uncertainty pointed out by the model which performed an uncertainty analysis, was the distribution coefficient in the deep sediment. The conclusions and recommendations for improvement of the models, given at the end of the report, accentuate the lack of understanding of the phenomena occurring at the geosphere-biosphere interface and the importance of good communications between scientists of different disciplines. (au)

  15. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-01-01

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ( 137 Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137 Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  16. Software for modelling groundwater transport and contaminant migration

    International Nuclear Information System (INIS)

    Gishkelyuk, I.A.

    2008-01-01

    Facilities of modern software for modeling of groundwater transport and process of contaminant distribution are considered. Advantages of their application are discussed. The comparative analysis of mathematical modeling software of 'Groundwater modeling system' and 'Earth Science Module' from 'COMSOL Multiphysics' is carried out. (authors)

  17. Mechanisms of hydrologic transport of soil contaminants in Mortandad Canyon

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.

    1981-01-01

    The initial focus of this research will be on the selective sorting and transport of soil particles as they relate to altering the distribution of contaminants in soils and sediments. Several field experiments employing radionuclide-labeled soil particle size fractions are planned to accomplish research objectives

  18. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  19. The Implementation of Transportation and Transit Projects on the Basis of Public-Private Partnership in Russia

    OpenAIRE

    Valery Anatolyevich Tsevtkov; Kobilzhon Khodzhievich Zoidov; Alexey Anatolyevich Medkov

    2016-01-01

    The article considers the main directions of the implementation of the current transportation and transit projects on the basis of the institution of public-private partnership in Russia. This work is a continuation of the study of the theory and practice of the application of public-private partnership in the investment projects aimed at the development and realization of the transportation and transit potential of the country. On the methodological basis of evolutionary and institu...

  20. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  1. Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Huei [Univ. of Michigan, Ann Arbor, MI (United States); Mi, Chris [Univ. of Michigan, Ann Arbor, MI (United States); Gover, James [Univ. of Michigan, Ann Arbor, MI (United States)

    2013-06-28

    This collaborative educational project between the University of Michigan—Ann Arbor, University of Michigan—Dearborn and the Kettering University successfully executed almost all the elements we proposed to do. In the original proposal, we proposed to develop four graduate courses, six undergraduate courses, four professional short courses, a K-12 electric vehicle education kit, a Saturday morning seminar series, and a set of consumer education material to support the advancement of transportation electrification. The first four deliverables were all successfully developed and offered. When we held the kick-off meeting in NETL in Morgantown back in early 2010 with all the ten ARRA education teams, however, it quickly became clear that among the ten ARRA education grantee teams, our proposed “consume education” activities are not better or with the potential to create bigger impact than some of activities proposed in other teams. For example, the Odyssey 2010 event held by the West Virginia University team had planned and successfully reached to more than 230,000 attendees, which is way more than what our proposed 100k event could ever reach. It was under the suggestion of Joseph Quaranta, the ARRA education Program Director at that time, that we should coordinate and eliminate redundancy. The resources should then be focused on activities that have less overlap. Therefore, the originally proposed activities: Saturday morning seminar series, and a set of consumer education material were dropped from our scope. We expanded the scope of our “education kit” activity to include some educational materials, mainly in the form of videos. The target audience also changed from general public to K-12 students. The majority of the project cost (~70%) goes toward the establishment of three undergraduate laboratories, which provides critically needed hands-on learning experience for next-generation green mobility engineers. We are very proud that the ARRA money

  2. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  3. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels

    International Nuclear Information System (INIS)

    Miller Julianne J.; Mizell Steve A.; Nikolich George; Campbell Scott A.

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

  4. Contaminant geochemistry. Interactions and transport in the subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Environmental Sciences and Energy Research

    2008-07-01

    This book combines earth science, subsurface hydrology and environmental geochemistry, providing a comprehensive background for specialists interested in the protection and sustainable management of the subsurface environment. The reader is introduced to the chemistry of contaminants, which usually disturb the natural equilibrium in the subsurface as a result of human activity. The major focus of the book is on contaminant reactions in soil solutions, groundwater and porous media solid phases, accounting for their persistence and transformation in the subsurface, as they are transported from the land surface into groundwater. Discussions on selected case studies are provided. (orig.)

  5. Analysis of contamination in liquids hydrocarbons transport for pipes

    Directory of Open Access Journals (Sweden)

    Eddy Ricardo Zárate Neira

    2003-01-01

    Full Text Available Pipeline contamination is usually understood to mean both the mixing effect produced when two different products transported by the same pipeline come into contact qith each other and often product of such mixing as well. This product os often referred to as "contamination" or as "interface" Cleary such intermixing is generally less serious in crude carrying, pipelines where each batch can become somewhat polluted by the batches inmediately preceding and immediately following without significant damage. However, the situation is different in a finished products pipeline, which may carry products as different as aircraft gasoline and light fuel oils. This article presents a brief description of the main factors influencing contamination with the objective of optimize conditions operating and to drive the more important respects about them.

  6. A study on contaminant transport in indoor air

    International Nuclear Information System (INIS)

    Pujala, Usha; Sen, Soubhadra; Subramanian, V.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    In case of an accidental release of radioactive contaminant inside a well-ventilated room, the same will be transported to the different parts of the room due to the circulation of indoor air. To ensure safety of the operating personnel, it is important to identify the ideal locations for keeping the warning alarm systems. To address the problem, a detailed study is required where numerical simulation has to be supported by experimental verification. A computational methodology has already been verified for this purpose (IGC report-no.323). In this work, a study on the transport of an inert aerosol inside a well-ventilated isolated room has been carried out

  7. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-12-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  8. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-01-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  9. Simplified model for radioactive contaminant transport: the TRANSS code

    International Nuclear Information System (INIS)

    Simmons, C.S.; Kincaid, C.T.; Reisenauer, A.E.

    1986-09-01

    A simplified ground-water transport model called TRANSS was devised to estimate the rate of migration of a decaying radionuclide that is subject to sorption governed by a linear isotherm. Transport is modeled as a contaminant mass transmitted along a collection of streamlines constituting a streamtube, which connects a source release zone with an environmental arrival zone. The probability-weighted contaminant arrival distribution along each streamline is represented by an analytical solution of the one-dimensional advection-dispersion equation with constant velocity and dispersion coefficient. The appropriate effective constant velocity for each streamline is based on the exact travel time required to traverse a streamline with a known length. An assumption used in the model to facilitate the mathematical simplification is that transverse dispersion within a streamtube is negligible. Release of contaminant from a source is described in terms of a fraction-remaining curve provided as input information. However, an option included in the code is the calculation of a fraction-remaining curve based on four specialized release models: (1) constant release rate, (2) solubility-controlled release, (3) adsorption-controlled release, and (4) diffusion-controlled release from beneath an infiltration barrier. To apply the code, a user supplies only a certain minimal number of parameters: a probability-weighted list of travel times for streamlines, a local-scale dispersion coefficient, a sorption distribution coefficient, total initial radionuclide inventory, radioactive half-life, a release model choice, and size dimensions of the source. The code is intended to provide scoping estimates of contaminant transport and does not predict the evolution of a concentration distribution in a ground-water flow field. Moreover, the required travel times along streamlines must be obtained from a prior ground-water flow simulation

  10. Contamination transfers during fuel transport cask loading. A concrete situation

    International Nuclear Information System (INIS)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G.; Briquet, L.; Baubet, D.

    2002-01-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  11. Modelling contaminant transport using site specific data from Vaalputs

    International Nuclear Information System (INIS)

    Botha, J.F.

    1986-01-01

    The transport of a contaminant through the upper layers of the earth's surface is a complex phenomenon. To develop a model for this, requires a good understanding of the physical nature of the phenomenon. This paper discusses two difficulties frequently encountered in developing such a model - the nature of the subsurface and the mathematical representation of the unsaturated hydraulic parameters. It is proposed that information obtained from pump- and packer tests be used to circumvent the first difficulty, and that the unsaturated flow parameters be approximated by C -∞ continuous function

  12. Private–public partnerships: A mechanism for freight transport infrastructure delivery?

    Directory of Open Access Journals (Sweden)

    Hans W. Ittmann

    2017-02-01

    Full Text Available Background: Freight transport infrastructure is an indispensable requirement for economic growth, development and prosperity. Public–private partnerships (PPPs, as a mechanism to fund and construct freight transport infrastructure, have been suggested by many in private and public sectors. Objectives: The concept of PPPs is dealt with, and the relevance of this mechanism is expanded upon. It is clear that PPPs in the rail environment present huge challenges and complexities. The objective was to determine whether PPPs are a viable mechanism to fund freight transport infrastructure in South Africa. Method: Experiences with rail PPPs worldwide have shown that many failures occurred implementing these. The challenges and complexities of PPPs, in the freight rail environment, are highlighted together with the benefits, risks and best practices of PPPs. It is shown that suitable policies, legislation and regulations concerning PPPs are in place in South Africa. Results: A proper framework and methodology to proceed should be in place. PPPs take time and are complex. Government involvement remains essential. Firm contractual agreements between parties are essential. Risk handling, risk sharing and the magnitude of risks should be clarified with agreement on where the risks reside. Financial viability, with value for money (VfM and financial benefits for private sector role players are non-negotiable. Conclusion: Appropriate legislation for implementing PPPs must be in place while two further important elements are economic circumstances and proper project execution. Taking all these factors into consideration, the freight transport sector can only benefit from successfully negotiated and implemented PPPs.

  13. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...... to steady state versus transient flow conditions and to the amount of hydraulic and solute data used is investigated. The flow parameters, transmissivity and leakage factor, are estimated simultaneously with the transport parameters: source strength, porosity, and longitudinal dispersivity. This paper...

  14. Efficiency improvement of the investment and innovation activities in the transport facility construction field with public-private partnership involvement

    Science.gov (United States)

    Shibayeva, Marina; Serebryakova, Yelena; Shalnev, Oleg

    2017-10-01

    Growing demand to increase the investment volume in modernization and development projects for transport infrastructure define the urgency of the current study. The amount of private sector investments in the field is insufficient to implement the projects for road construction due to their significant capital intensity and long payoff period. The implementation of social significant infrastructure projects on the principles of public-private partnership is one of the key strategic directions of growth for transport facilities. The authors come up with a concept and methodology for modeling the investment and innovation activity in the transport facility construction. Furthermore, there is developed a model to find the balance between public and private sector investments in implementing construction projects for transport infrastructure with involvement of PPP (further - public-private partnership). The suggested concepts aim to improve the efficiency rate of the investment and innovation activity in the field of transport facility construction on the basis of public and private sectors collaboration.

  15. A deterministic-probabilistic model for contaminant transport. User manual

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, F W; Crowe, A

    1980-08-01

    This manual describes a deterministic-probabilistic contaminant transport (DPCT) computer model designed to simulate mass transfer by ground-water movement in a vertical section of the earth's crust. The model can account for convection, dispersion, radioactive decay, and cation exchange for a single component. A velocity is calculated from the convective transport of the ground water for each reference particle in the modeled region; dispersion is accounted for in the particle motion by adding a readorn component to the deterministic motion. The model is sufficiently general to enable the user to specify virtually any type of water table or geologic configuration, and a variety of boundary conditions. A major emphasis in the model development has been placed on making the model simple to use, and information provided in the User Manual will permit changes to the computer code to be made relatively easily for those that might be required for specific applications. (author)

  16. Benchmarking of a Markov multizone model of contaminant transport.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  18. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Sun, Shuyu

    2012-01-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model

  19. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  20. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg D. [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-06-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  1. Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tyrrell, Kimberly J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Striluk, Miranda L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-15

    A laboratory study was conducted to quantify contaminant attenuation processes and associated contaminant transport parameters that are needed to evaluate transport of contaminants through the vadose zone to the groundwater. The laboratory study information, in conjunction with transport analyses, can be used as input to evaluate the feasibility of Monitored Natural Attenuation and other remedies for the 200-DV-1 Operable Unit at the Hanford Site.

  2. Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    Science.gov (United States)

    Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis

    2018-05-01

    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full

  3. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kayla C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effort reported herein.

  4. Neural Networks Simulation of the Transport of Contaminants in Groundwater

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2009-12-01

    Full Text Available The performance assessment of an engineered solution for the disposal of radioactive wastes is based on mathematical models of the disposal system response to predefined accidental scenarios, within a probabilistic approach to account for the involved uncertainties. As the most significant potential pathway for the return of radionuclides to the biosphere is groundwater flow, intensive computational efforts are devoted to simulating the behaviour of the groundwater system surrounding the waste deposit, for different values of its hydrogeological parameters and for different evolution scenarios. In this paper, multilayered neural networks are trained to simulate the transport of contaminants in monodimensional and bidimensional aquifers. The results obtained in two case studies indicate that the approximation errors are within the uncertainties which characterize the input data.

  5. Coliform contamination of a coastal embayment: Sources and transport pathways

    Science.gov (United States)

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily by periodic tidal flooding and possibly by major rain events. Release of coliforms during resuspension of subtidal sediments was estimated to be a minor source in this system (<1.5 x 1012 FC yr-1 or < 3% of annual input), primarily associated with large storm events in the fall and winter. Based upon the relative source strengths and the spatial and temporal patterns of FC input

  6. The EU-Africa Energy Partnership: Towards a mutually beneficial renewable transport energy alliance?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Oloruntoba, Richard; Heidt, Tania von der; Ryan, Neal

    2009-01-01

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production.

  7. Deterministic sensitivity analysis for the numerical simulation of contaminants transport

    International Nuclear Information System (INIS)

    Marchand, E.

    2007-12-01

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  8. Evaluation of Triple Containment Method for Air Transport of Contaminated Human

    National Research Council Canada - National Science Library

    Neville, J

    2003-01-01

    A triple containment system intended for transport of biologically contaminated human remains was tested for its ability to maintain integrity during exposure to altitude changes representative of air transport...

  9. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and

  10. Chemical Contaminants in the Wadden Sea: sources, transport, fate and effects

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Vethaak, A.D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M.M.; Strand, J.

    2013-01-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane

  11. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  12. Contaminant transport model validation: The Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.

    1988-09-01

    In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs

  13. Contaminant transport in aquifers: improving the determination of model parameters

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.

    1998-01-01

    Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)

  14. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  15. Modeling uranium transport in acidic contaminated groundwater with base addition

    International Nuclear Information System (INIS)

    Zhang Fan; Luo Wensui; Parker, Jack C.; Brooks, Scott C.; Watson, David B.; Jardine, Philip M.; Gu Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO 3 - , SO 4 2- , U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  16. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085 (China); Luo Wensui [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Parker, Jack C. [Institute for a Secure and Sustainable Environment, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  17. Monte Carlo simulation of the turbulent transport of airborne contaminants

    International Nuclear Information System (INIS)

    Watson, C.W.; Barr, S.

    1975-09-01

    A generalized, three-dimensional Monte Carlo model and computer code (SPOOR) are described for simulating atmospheric transport and dispersal of small pollutant clouds. A cloud is represented by a large number of particles that we track by statistically sampling simulated wind and turbulence fields. These fields are based on generalized wind data for large-scale flow and turbulent energy spectra for the micro- and mesoscales. The large-scale field can be input from a climatological data base, or by means of real-time analyses, or from a separate, subjectively defined data base. We introduce the micro- and mesoscale wind fluctuations through a power spectral density, to include effects from a broad spectrum of turbulent-energy scales. The role of turbulence is simulated in both meander and dispersal. Complex flow fields and time-dependent diffusion rates are accounted for naturally, and shear effects are simulated automatically in the ensemble of particle trajectories. An important adjunct has been the development of computer-graphics displays. These include two- and three-dimensional (perspective) snapshots and color motion pictures of particle ensembles, plus running displays of differential and integral cloud characteristics. The model's versatility makes it a valuable atmospheric research tool that we can adapt easily into broader, multicomponent systems-analysis codes. Removal, transformation, dry or wet deposition, and resuspension of contaminant particles can be readily included

  18. Public-Private Partnership as the Core Form of the Implementation of Russia’s Transport and Transit Potential

    Directory of Open Access Journals (Sweden)

    Valery Anatolyevich Tsvetkov

    2017-03-01

    Full Text Available The article discusses the theory and practice of the implementation and development of transport and transit potential (TTP of Russia. This could be an effective way to replace the natural resource rent as the main source of income for the state and economic actors. For the modernization of national economic system the key importance are innovative technologies in the development of transport and transit potential through the organization of the production of goods and services with the highest added value in Russia. We proposed and substantiated the hypothesis about the necessity of creation of a Federal company responsible for the financing and implementation of Russia’s transport and transit potential development projects on the principles of public-private partnership (PPP. The authors have revealed the economic, institutional and organizational prerequisites for the establishment of such a public-private partnership company. We have provided the opinions of scientists and experts showing the urgent need to create in one form or another a single operator to transport goods on the territory of Russia and the Eurasian economic Union. To prove the hypothesis, we presented a description and analysis of the factors affecting the value of transit freight transport on Euro-Asian routes. We paid the special attention to identify the reasons of the increasing competitive advantage of Maritime transport in the world’s goods movement system. The authors based the main conclusion that, first of all, the created publicprivate partnership company should be large due to tough competition of developing transit freight by land routes with the global Maritime container services. Secondly, it needs a significant state participation since the management of the world’s cargo flows requires the effort of foreign policy and geo-economic nature. We emphasized that this business entity would become an active proponent and lobbyist of the most effective

  19. Transportation of foreign-owned enriched uranium from the Republic of Georgia. Environmental assessment for Project Partnership

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Energy (DOE) Office of Nonproliferation and National Security (NN) has prepared a classified environmental assessment to evaluate the potential environmental impact for the transportation of 5.26 kilograms of enriched uranium-235 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. The nuclear fuel consists of primarily fresh fuel, but also consists of a small quantity (less than 1 kilogram) of partially-spent fuel. Transportation of the enriched uranium fuel would occur via US Air Force military aircraft under the control of the Defense Department European Command (EUCOM). Actions taken in a sovereign nation (such as the Republic of Georgia and the United Kingdom) are not subject to analysis in the environmental assessment. However, because the action would involve the global commons of the Black Sea and the North Sea, the potential impact to the global commons has been analyzed. Because of the similarities in the two actions, the Project Sapphire Environmental Assessment was used as a basis for assessing the potential impacts of Project Partnership. However, because Project Partnership involves a small quantity of partially-spent fuel, additional analysis was conducted to assess the potential environmental impacts and to consider reasonable alternatives as required by NEPA. The Project Partnership Environmental Assessment found the potential environmental impacts to be well below those from Project Sapphire

  20. Transport and degradation of contaminants in the vadose zone

    NARCIS (Netherlands)

    Schotanus, D.

    2013-01-01

    Leaching of contaminants from the vadose zone to the groundwater depends on the soil properties and the infiltration rate. In this thesis, organic degradable contaminants were studied, such as de-icing chemicals (consisting of propylene glycol, PG) and pesticides. Heterogeneous soil properties

  1. Radioactive contamination level of vehicles resulted from transporting fine rare-earth minerals by rail

    International Nuclear Information System (INIS)

    Han Kaichun; Yu Boyong; Gao Shengwei

    1997-01-01

    This paper presents monitoring results of radioactive contamination level of steel open wagon surface resulted from transporting fine rare-earth minerals. Under promising transport conditions (the packaging consists of two layers of plastic bags and two layers of plastic net sacks, each package contains 50 kg of minerals, each vehicle carries 60 t), the surface radioactivity (total α and total β) of 16 vehicles on two lines from Baotou to Wujiachuan (924 km) and from Baotou to Sankeshu (2236 km) was measured before loading, after unloading and washing, using α and β surface contamination detector. The results showed that the radioactive contamination level of the vehicle surface after unloading appeared significantly different. The contamination level of vehicle bases was higher than that of both sides, long distance vehicles was higher than that of short distance vehicles. The radioactive contamination level of vehicles surface after washing was below the standard limits, these vehicles can be used for ordinary goods transport

  2. A simulation study of the impact of the public-private partnership strategy on the performance of transport infrastructure.

    Science.gov (United States)

    Huang, Zhengfeng; Zheng, Pengjun; Ma, Yanqiang; Li, Xuan; Xu, Wenjun; Zhu, Wanlu

    2016-01-01

    The choice of investment strategy has a great impact on the performance of transport infrastructure. Positive projects such as the "Subway plus Property" model in Hong Kong have created sustainable financial profits for the public transport projects. Owing to a series of public debt and other constraints, public-private partnership (PPP) was introduced as an innovative investment model to address this issue and help develop transport infrastructure. Yet, few studies provide a deeper understanding of relationships between PPP strategy and the performance of such transport projects (particularly the whole transport system). This paper defines the research scope as a regional network of freeway. With a popular PPP model, travel demand prediction method, and relevant parameters as input, agents in a simulation framework can simulate the choice of PPP freeway over time. The simulation framework can be used to analyze the relationship between the PPP strategy and performance of the regional freeway network. This study uses the Freeway Network of Yangtze River Delta (FN-YRD) in China as the context. The results demonstrate the value of using simulation models of complex transportation systems to help decision makers choose the right PPP projects. Such a tool is viewed as particularly important given the ongoing transformation of functions of the Chinese transportation sector, including franchise rights of transport projects, and freeway charging mechanism.

  3. Microbial behaviour and cross contamination between cargoes in containerized transportation of food

    DEFF Research Database (Denmark)

    Abban, Stephen

    Transportation is central to the global food and feed supply chain. Thus issues of safety, especially cross contamination with pathogens during food transit should be important in food handling operations. A large proportion of the worlds’ food cargo is moved using intermodal cargo containers...... chain, its role in food safety cannot be ignored. Unfortunately not much effort has been put, scientifically, into understanding the role of the various features of the transportation links in food cross contamination (compared to studies for homes, processing factories and farm yards). The PhD project...... has attempted to shed light on containerized food transport and some of its important attributes as regards hygiene and cross contamination. The overall aim of the study was to ‘identify possible microbial hazards and ways of cross contamination during containerized transportation of foods...

  4. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  5. Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers

    International Nuclear Information System (INIS)

    DALE, R.N.

    2000-01-01

    Long Length Contaminated Equipment Removal System Receiver Trailer and Transport Trailer require a configuration management plan for design, requirements and operations baseline documents. This report serves as the plan for the Trailers

  6. Effects of lag and maximum growth in contaminant transport and biodegradation modeling

    International Nuclear Information System (INIS)

    Wood, B.D.; Dawson, C.N.

    1992-06-01

    The effects of time lag and maximum microbial growth on biodegradation in contaminant transport are discussed. A mathematical model is formulated that accounts for these effects, and a numerical case study is presented that demonstrates how lag influences biodegradation

  7. The Implementation of Transportation and Transit Projects on the Basis of Public-Private Partnership in Russia

    Directory of Open Access Journals (Sweden)

    Valery Anatolyevich Tsevtkov

    2016-12-01

    Full Text Available The article considers the main directions of the implementation of the current transportation and transit projects on the basis of the institution of public-private partnership in Russia. This work is a continuation of the study of the theory and practice of the application of public-private partnership in the investment projects aimed at the development and realization of the transportation and transit potential of the country. On the methodological basis of evolutionary and institutional economics, historical approach, system-oriented analysis and the theory of firms, the main current projects for the development of Russian transportation and transit system using public-private partnership are considered. They are the construction of a high-speed line of Moscow — Kazan with subsequent extension to the Chinese border; functioning of the transport and logistics in the Chelyabinsk region; infrastructure of transit cargo by Northern Sea Route; participation of foreign investors in the development of Russian seaports and sea gates. It is shown that the competitive advantage of transit traffic by a particular route requires more traversing speed of cargo with a minimum of stops, handling and overloads in the way. Revenue from transportation and transit potential implementation can be comparable to the size of the resource rent in the case of the development in Russia of the production and transit sector of the economy, and not only of a transit one . In this regard, the emphasis is placed on the determination of the possibility and necessity of organizational changes associated with the development of a large public-private transportation company, able to compete with global sea container services of the route of Asia — Europe. The main directions and activities under the proposed national project «Development of transit economy in Russia: Uniting Eurasia» and its subprogram «Creation of innovative rolling stock for container and multimodal

  8. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  9. A model for the derivation of new transport limits for non-fixed contamination

    International Nuclear Information System (INIS)

    Thierfeldt, S.; Lorenz, B.; Hesse, J.

    2004-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn more than 40 years ago. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has now been developed which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project. The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination

  10. A model for the derivation of new transport limits for non-fixed contamination

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S. [Brenk Systemplanung GmbH, Aachen (Germany); Lorenz, B. [GNS Gesellschaft fuer Nuklearservice, Essen (Germany); Hesse, J. [RWE Power AG, Essen (Germany)

    2004-07-01

    The IAEA Regulations for the Safe Transport of Radioactive Material contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn more than 40 years ago. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has now been developed which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project. The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination.

  11. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  12. Subsurface contaminant transport from the liquid disposal area, CRNL

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Munch, J.H.

    1984-01-01

    This report summarizes geologic, hydrogeologic and geochemical information obtained from a detailed study of the aquifer receiving contaminated waste-waters from the Chemical Pit. Geologically, the study area features wind-deposited sand overlying a continuous lacustrine clayey silt and a bouldery basal till. Medium to coarse sands locally found at the base of the sand sequence appear to represent stream channel deposits following a buried drainage course towards Perch Lake. These channel sands significantly influence groundwater flow; 3-dimensional models will be required to mathematically simulate the system. Based on the subsurface data, calculated groundwater residence times between the infiltration pit and points of discharge to surface into the East Swamp range from 4 to 22 months. The shortest observed residence time for a non-reactive radio-nuclide is 5 months. Tritium data confirm that contamination is confined to the sands, but show that within the sand aquifer there is considerable heterogeneity in the distribution and rates of groundwater flow. Samples of contaminated groundwaters collected during this study featured increased redox potentials, increased acidity, and minor increases in some major ions relative to local uncontaminated groundwater. Extensive oxidation of the sands in contaminated portions of the aquifer may reflect much greater chemical differences in plume groundwaters in the past

  13. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  14. Study on Contaminant Transportation of a Typical Chemical Industry Park Based on GMS Software

    Science.gov (United States)

    Huang, LinXian; Liu, GuoZhen; Xing, LiTing; Liu, BenHua; Xu, ZhengHe; Yang, LiZhi; Zhu, HebgHua

    2018-03-01

    The groundwater solute transport model can effectively simulated the transport path, the transport scope, and the concentration of contaminant which can provide quantitative data for groundwater pollution repair and groundwater resource management. In this study, we selected biological modern technology research base of Shandong province as research objective and simulated the pollution characteristic of typicalcontaminant cis-1, 3-dichloropropene under different operating conditions by using GMS software.

  15. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    International Nuclear Information System (INIS)

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997

  16. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  17. Transport and repair of contaminated nuclear components - liabilities and insurance

    International Nuclear Information System (INIS)

    Brunego, C.; Deprimoz, J.; Engelhard, M.

    1983-01-01

    The nuclear park has been constructed fairly recently and has not yet required large-scale maintenance efforts; however account should now be taken of the fact that periodic checks of nuclear power plants will imply systematic transfers of irradiated or contaminated materials outside the plants. In this context, the paper reviews the nuclear third party liability regime under the Paris Convention and the Euratom directives on radiation protection. It then describes the cover offered by insurance pools in several European countries. (NEA) [fr

  18. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu

    2012-10-25

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study K d values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods. © 2012 Global Science Press.

  19. Analysis of heat transfer and contaminant transport in fume hoods

    International Nuclear Information System (INIS)

    Pathanjali, C.; Rahman, M.M.

    1996-01-01

    The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room

  20. Color image analysis of contaminants and bacteria transport in porous media

    Science.gov (United States)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  1. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  2. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    . Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE...... was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit...... of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant...

  3. Modelling water and contaminant transport in the Rum Jungle Mine overburden heaps

    International Nuclear Information System (INIS)

    Pantelis, G.

    1987-04-01

    An outline is given of a computer model for water and contaminant transport in and around overburden heaps, with those at the Rum Jungle mine site as a specific example. The model assumes the heaps to lie on a sloping shallow aquifer with identical hydraulic properties. The simulation is carried out for a 40 year period. After the first 20 years a cover which is effectively impermeable to infiltrating rainwater and air is introduced on the heap. The restriction of oxygen supply to the heap terminates contaminant production which results from oxidation of pyrite. Leaching of contaminants from the heap in the following 20-year period is examined

  4. Experimental and AI-based numerical modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.

    2017-10-01

    This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.

  5. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

    Science.gov (United States)

    Stovern, Michael; Betterton, Eric A; Sáez, A Eduardo; Villar, Omar Ignacio Felix; Rine, Kyle P; Russell, Mackenzie R; King, Matt

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.

  6. Impacts of Spatio-Variability of Source Morphology on Field-Scale Predictions of Subsurface Contaminant Transport

    National Research Council Canada - National Science Library

    Hatfield, Kirk

    1998-01-01

    ... (organic immiscible liquids distribution and composition) and aquifer properties on predicting solute transport in saturated groundwater systems contaminated with residual Organic Immiscible Liquids (OIL's...

  7. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  8. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  9. DNA-labeled micro- and nanoparticles: a new approach to study contaminant transport in the subsurface

    Science.gov (United States)

    McNew, C.; Wang, C.; Kocis, T. N.; Murphy, N. P.; Dahlke, H. E.

    2017-12-01

    Though our understanding of contaminant behavior in the subsurface has improved, our ability to measure and predict complex contaminant transport pathways at hillslope to watershed scales is still lacking. By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labeled micro- and nanoparticles for use in a myriad of environmental systems. Control of the fabrication procedure allows us to produce particles of custom size, charge, and surface functionality to mimic the transport properties of the particulate contaminant or colloid of interest. The use of custom sequenced DNA allows for the fabrication of an enormous number of unique particle labels (approximately 1.61 x 1060 unique sequences) and the ability to discern between varied spatial and temporal applications, or the transport effect of varied particle size, charge, or surface properties. To date, this technology has been utilized to study contaminant transport from lab to field scales, including surface and open channel flow applications, transport in porous media, soil retention, and even subglacial flow pathways. Here, we present the technology for production and detection of the DNA-labeled particles along with the results from a current hillslope study at the Sierra Foothills Research and Extension Center (SFREC). This field study utilizes spatial and temporal variations in DNA-labeled particle applications to identify subsurface pollutant transport pathways through the four distinct soil horizons present at the SFREC site. Results from this and previous studies highlight the tremendous potential of the DNA-labeled particle technology for studying contaminant transport through the subsurface.

  10. Field validation of the contaminant transport model, FEMA

    International Nuclear Information System (INIS)

    Wong, K.-F.V.

    1986-01-01

    The work describes the validation with field data of a finite element model of material transport through aquifers (FEMA). Field data from the Idaho Chemical Processing Plant, Idaho, USA and from the 58th Street landfill in Miami, Florida, USA are used. In both cases the model was first calibrated and then integrated over a span of eight years to check on the predictive capability of the model. Both predictive runs gave results that matched well with available data. (author)

  11. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  12. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  13. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    Science.gov (United States)

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  14. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    Science.gov (United States)

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  15. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  16. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NARCIS (Netherlands)

    Griffioen, J.|info:eu-repo/dai/nl/091129265; van der Grift, B.|info:eu-repo/dai/nl/373433484; Maas, D.; van den Brink, C.|info:eu-repo/dai/nl/187443416; Zaadnoordijk, J. W.

    2003-01-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated

  17. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  18. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    NARCIS (Netherlands)

    Ommen, van H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple

  19. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Science.gov (United States)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  20. Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment

    International Nuclear Information System (INIS)

    Tsuduki, Katsunori; Matsunaga, Takeshi

    2007-01-01

    A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)

  1. Contaminant transport in soils and its significance in the design of waste management facilities

    International Nuclear Information System (INIS)

    Barbour, S.L.; Krahn, J.

    1984-01-01

    Transport of contaminants in soils is governed by advection, dispersion, geochemical mass transfer and decay in the case of radioactive materials. Advection is the process whereby the contaminant is being carried along by moving water. Dispersion arises from mechanical mixing due to velocity distributions between soil particles and molecular diffusion. Geochemical mass transfer retards the migration because of adsorption and/or precipitation. Decay results in a decrease of contaminant concentrations for radioactive materials. Studies on the effectiveness of a cutoff wall in granular soils beneath a tailings dyke show that the most important parameter is the groundwater flow velocity. It not only controls the advective transport but also directly affects the dispersive component and the attenuation that may be obtained through adsorption and decay

  2. Organizational and financial mechanism of development of services of railway transport through public-private partnership

    OpenAIRE

    Fedorko, I.

    2014-01-01

    The paper developed organizational and financial mechanism development of railway transport services, which, unlike the existing ones, includes participants of investment and transportation process, the state target program, a list of potential private and public sources of financing of investment projects, the system of state financial control, which allows to provide the necessary storage the volume of investment funds, effective funding for the achievement of strategic, technical and techn...

  3. A cellular automaton simulation of contaminant transport in porous media

    International Nuclear Information System (INIS)

    Freed, D.M.; Simonson, S.A.

    1995-01-01

    A simulation tool to investigate radionuclide transport in porous groundwater flow is described. The flow systems of interest are those important in determining the fate of radionuclides emplaced in an underground repository, such as saturated matrix flow, matrix and fracture flow in the unsaturated zone, and viscous fingering in porous fractures. The work discussed here is confined to consideration of saturated flow in porous media carrying a dilute, sorptive species. The simulation technique is based on a special class of cellular automata known as lattice gas automata (LGA) which are capable of predicting hydrodynamic behavior. The original two-dimensional scheme (that of Frisch et. al. known as the FHP model) used particles of unit mass traveling on a triangular lattice with unit velocity and undergoing simple collisions which conserve mass and momentum at each node. These microscopic rules go over to the incompressible Navier-Stokes equations in the macroscopic limit. One of the strengths of this technique is the natural way that heterogeneities, such as boundaries, are accommodated. Complex geometries such as those associated with porous microstructures can be modeled effectively. Several constructions based on the FHP model have been devised, including techniques to eliminate statistical noise, extension to three dimensions, and the addition of surface tension which leads to multiphase flow

  4. Recent developments on surface contamination limits for packages and conveyances in transport regulations

    International Nuclear Information System (INIS)

    Thierfeldt, S.; Woerlen, S.; Lorenz, B.; Schwarz, W.

    2009-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material [1] contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn nearly 50 years ago [3]. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has been developed over the last 8 years which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project (see section 2). The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination. A corresponding regulatory text has been drafted by an IAEA technical meeting TM-36514, which was held in Tokyo November 10-14, 2008 (see section 4). (orig.)

  5. Recent developments on surface contamination limits for packages and conveyances in transport regulations

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S.; Woerlen, S. [Brenk Systemplanung GmbH, Aachen (Germany); Lorenz, B. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Schwarz, W. [VGB PowerTech e.V., Essen (Germany)

    2009-07-01

    The IAEA Regulations for the Safe Transport of Radioactive Material [1] contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn nearly 50 years ago [3]. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has been developed over the last 8 years which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project (see section 2). The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination. A corresponding regulatory text has been drafted by an IAEA technical meeting TM-36514, which was held in Tokyo November 10-14, 2008 (see section 4). (orig.)

  6. Simplified estimation technique for organic contaminant transport in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Piver, W T; Lindstrom, F T

    1984-05-01

    The analytical solution for one-dimensional dispersive-advective transport of a single solute in a saturated soil accompanied by adsorption onto soil surfaces and first-order reaction rate kinetics for degradation can be used to evaluate the suitability of potential sites for burial of organic chemicals. The technique can be used to the greatest advantage with organic chemicals that are present in ground waters in small amounts. The steady-state solution provides a rapid method for chemical landfill site evaluation because it contains the important variables that describe interactions between hydrodynamics and chemical transformation. With this solution, solute concentration, at a specified distance from the landfill site, is a function of the initial concentration and two dimensionless groups. In the first group, the relative weights of advective and dispersive variables are compared, and in the second group the relative weights of hydrodynamic and degradation variables are compared. The ratio of hydrodynamic to degradation variables can be rearranged and written as (a/sub L lambda)/(q/epsilon), where a/sub L/ is the dispersivity of the soil, lambda is the reaction rate constant, q is ground water flow velocity, and epsilon is the soil porosity. When this term has a value less than 0.01, the degradation process is occurring at such a slow rate relative to the hydrodynamics that it can be neglected. Under these conditions the site is unsuitable because the chemicals are unreactive, and concentrations in ground waters will change very slowly with distance away from the landfill site.

  7. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  8. The shielding properties of the newly developed container for transport of samples contaminated with CBRN substances

    International Nuclear Information System (INIS)

    Fisera, O.; Kares, J.

    2014-01-01

    A container for transport of environmental samples to the analytical laboratory is being developed as part of the development of system for collection and transport of samples contaminated with chemical, biological, radioactive and nuclear (CBRN) substances after CBRN incidents. The proposed system corresponds with current requirements of NATO publication AEP-66. The proposed container will meet the requirements of mechanical stability and tightness for the packaging of the chemical, biological and radioactive substances. Verification of shielding properties and satisfaction of requirements of radiation protection during transport of potentially relatively high active samples was the aim of this part of research. The results, together with a wall thickness of the inner steel container, the inner lining and the outer transport package, give excellent assumption that the radiation protection requirements for the proposed container and transport package will be satisfied. (authors)

  9. Contaminant transport, revegetation, and trace element studies at inactive uranium mill tailings piles

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Marple, M.L.; Kelley, N.E.

    1978-01-01

    The stabilization of inactive uranium mill tailings piles is presently under study. These studies have included investigations of stabilizing tailings by attempting to establish native vegetation without applying irrigation. Examination of processes which transport tailings or associated contaminants into the environment has been undertaken to better understand the containment provided by various stabilization methods. The uptake of toxic trace elements and radionuclides by vegetation has been examined as a mechanism of contaminant transport. The source terms of 222 Rn from inactive piles have been determined as well as the attenuation of radon flux provided by shallow soil covers. The possibility of shallow ground water contamination around an inactive pile has been examined to determine the significance of ground water transport as a mode of contaminant migration. The rationale in support of trace element studies related to uranium milling activities is presented including the enrichment, migration, and toxicities of trace elements often associated with uranium deposits. Some concepts for the stabilization of inactive piles are presented to extrapolate from research findings to practical applications. 25 references, 8 tables

  10. Metal Contamination of the Natural Environment in Norway from Long Range Atmospheric Transport

    International Nuclear Information System (INIS)

    Steinnes, E.

    2001-01-01

    Long range atmospheric transport is the most important source of contamination to the natural environment in Norway with many heavy metals. Investigations based on aerosol studies, bulk deposition measurements and moss analysis show that airborne transport from other parts of Europe is the major mode for supply of vanadium, zinc, arsenic, selenium, molybdenum, cadmium, tin,antimony, tellurium, thallium, lead, and bismuth, whereas metals such as chromium, nickel, and copper are mainly derived from point sources within Norway and in northwestern Russia close to the Norwegian border. Elements associated with long range transport show substantial enrichment in the humus horizon of natural soils in southern Norway, sometimes to levels suspected to cause effects on soil microbial processes. E.g. lead concentration values of 150-200 ppm are observed in the most contaminated areas in the south as compared to about 5 ppm in the far north. Elements such as lead and cadmium also show enrichment in some terrestrial food chains. These elements also show considerably elevated levels over background concentrations in the water and sediment of small lakes in the southern part of the country. Retrospective studies based on ombrogenous peatcores indicate that long range transport has been a significant source of heavy metal contamination in southern Norway for the last couple of centuries. The deposition of most heavy metals in Norway has been considerably reduced over the last 20 yr, with the exception of contributions in the north from Russian smelters

  11. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    International Nuclear Information System (INIS)

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L.

    1995-09-01

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were 85 Sr, 236 U, and 238 U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period

  12. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    Science.gov (United States)

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components

    International Nuclear Information System (INIS)

    Lewis, Mark S.

    2008-01-01

    The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation

  14. Analytical analysis of soil-moisture and trace-contaminant transport

    International Nuclear Information System (INIS)

    Larson, N.M.; Reeves, M.

    1976-03-01

    A transport model is presented which predicts the coupled movement of both water and trace contaminants through a layered and unsaturated soil-moisture zone. In order to achieve computation speeds suitable for watershed implementations, moisture properties are approximated as exponential functions of pressure head, and lateral flows are treated as sinks in a basically vertical one-dimensional analysis. In addition, only advection by the Darcy-flow velocities and linear adsorption by the soil matrix are considered in depicting movement of the trace contaminant. Formal solution of the resulting transport equations is obtained through use of both eigenfunction-expansion and coordinate-transformation methods. Numerical solution is effected by means of a program written in FORTRAN IV and implemented on an IBM 360/91 computer. Two example calculations illustrate both strengths and weaknesses of our model

  15. One-dimensional contaminant transport model for the design of soil-bentonite slurry walls

    International Nuclear Information System (INIS)

    Khandelwal, A.; Rabideau, A.; Su, J.

    1997-01-01

    A user oriented computer model (TRANS1D) was developed for application to the analysis and design of vertical soil-bentonite barriers. TRANS1D is a collection of analytical and numerical solutions to the one dimensional advective-dispersive-reactive (ADR) equation. The primary objective in developing TRANS1D was to enable the designer of a barrier system to evaluate the potential system performance with respect to contaminant transport, without performing difficult and time consuming field or laboratory experiments. Several issues related to model application are discussed, including identification of governing transport processes, specification of boundary conditions, and parameter estimation. Model predictions are compared with the results of laboratory column experiments conducted with soil bentonite barrier material under diffusion-dominated conditions. Good agreement between model calibrations and experimental results was noted, with calibrated diffusion coefficients for organic contaminants consistent with literature values

  16. Metropol: A computer code for the simulation of transport of contaminants with groundwater

    International Nuclear Information System (INIS)

    Sauter, F.J.; Hassanizadeh, S.M.; Leijnse, A.; Glasbergen, P.; Slot, A.F.M.

    1990-01-01

    In this report a description is given of the computer code Metropol. This code simulates the three-dimensional flow of groundwater with varying density and the simultaneous transport of contaminants in low concentration and is based on the finite element method. The basic equations for groundwater flow and transport are described as well as the mathematical techniques used to solve these equations. Pre-processing facilities for mesh generation and post-processing facilities such as particle tracking are also discussed. This work was part of the Community Mirage project Second phase, research area Calculation tools

  17. The transport of contaminants during storms in the White Oak Creek and Melton Branch Watersheds

    International Nuclear Information System (INIS)

    Solomon, D.K.; Marsh, J.D.; Wickliff, D.S.; Larsen, I.L.; Clapp, R.B.

    1989-03-01

    This report documents are transport of contaminants from SWSA 5 along two principle pathways: the saturated groundwater system and the intermittently saturated stormflow system. The results of a baseflow sampling effort and a dye tracer study, indicated that much of the transport through the saturated groundwater system occurs along discrete geologic features. These features appear to be related to the contact between the Maryville and Nolichucky members of the Conasauga shale. Three discrete sources of tritium to Melton Branch Stream (MBS) were identified and traced to SWSA 5 by measuring soil moisture and evapotranspiration along transects between MBS and SWSA 5

  18. 3-dimensional self-calibrating coastal oil spill trajectory tracking and contaminant transport using HF radar

    International Nuclear Information System (INIS)

    Ojo, T.O.; Bonner, J.S.

    2002-01-01

    A study was conducted to demonstrate the dynamic behaviour of the turbulent mixing process in coastal environments for both advection and dispersion transport. The spatial variability of the coefficients that characterize the process was also examined. Every transport model should be calibrated to include specific information regarding geomorphology and climatic conditions. HF-radar equipment eliminates the need for model-recalibration and validation for transport models of coefficients which have spatial-temporal variations. The HF-radar has a grid resolution of 1000 m, providing real-time velocity coefficients by measuring surface currents. Dispersion coefficients can be derived from velocity time-series using the principle of Autocorrelation Functions (ACF) for time series. This concept was applied to two Gulf of Mexico bays in Texas, Corpus Christi and Matagorda. It was determined that the within-bay spatial variability of dispersion coefficients were many orders of magnitude higher than between-bay variability. The proposed model effectively reduced model complexity. The results of a 3-D dimensional contaminant transport model was presented. It was successfully used in the simulation of a contaminant spill scenario in the two bays using spatially distributed time-dependent transport coefficients. 5 refs., 8 figs

  19. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    International Nuclear Information System (INIS)

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater

  20. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  1. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  2. A comprehensive worksite wellness program in Austin, Texas: partnership between Steps to a Healthier Austin and Capital Metropolitan Transportation Authority.

    Science.gov (United States)

    Davis, Lynn; Loyo, Karina; Glowka, Aerie; Schwertfeger, Rick; Danielson, Lisa; Brea, Cecily; Easton, Alyssa; Griffin-Blake, Shannon

    2009-04-01

    In 2003, Steps to a Healthier Austin was funded by the Centers for Disease Control and Prevention to implement chronic disease prevention and health promotion activities. We report Steps to a Healthier Austin's partnership with Health & Lifestyles Corporate Wellness, Inc (Health & Lifestyles), to provide a worksite wellness program for Capital Metropolitan Transportation Authority (Capital Metro), Austin's local transit authority. Capital Metro employs 1,282 people. In 2003, Health & Lifestyles was hired to help promote healthier lifestyles, increase employee morale, and combat rising health care costs and absenteeism rates. Health & Lifestyles provided consultations with wellness coaches and personal trainers, a 24-hour company fitness center, personalized health assessments, and preventive screenings. The program expanded to include healthier food options, cash incentives, health newsletters, workshops, dietary counseling, smoking cessation programs, and a second fitness center. Participants in the wellness program reported improvements in physical activity, healthy food consumption, weight loss, and blood pressure. Capital Metro's total health care costs increased by progressively smaller rates from 2003 to 2006 and then decreased from 2006 to 2007. Absenteeism has decreased by approximately 25% since the implementation of the program, and the overall return on the investment was calculated to be 2.43. Since the implementation of the wellness program in 2003, Capital Metro has seen a reduction in costs associated with employee health care and absenteeism.

  3. Safety analysis report for packaging onsite long-length contaminated equipment transport system

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1997-01-01

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks

  4. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  5. Characterization of Contaminant Transport using Naturally-Occurring U-Series Disequilibria - Final Report

    International Nuclear Information System (INIS)

    Murrell, Michael T.; Ku, Teh-Lung

    2001-01-01

    The interactions of mixed wastes containing radionuclides with solid rock surface and the mobility of the radionuclides in aquifer systems depend not only on the chemistry of the nuclides and the physico-chemical effects of radioactive decay, but also on the site-specific hydrogeology. Thus, to characterize contaminant transport, it is best to cross-check figures derived from any small-scale laboratory experiments over limited times with that obtained from field-oriented, natural analog studies. We propose such a study using the naturally-occurring U and Th decay-series disequilibria. The work of ours and other researchers have shown that the parent/daughter disequilibrium patterns existing in groundwater systems can be modeled in terms of local nuclide mass balance to arrive at such information as the rock-water contact time (fluid flow) and rates of contaminant transport, taking into account the retardation effect due to nuclide/rock interaction contaminants at INEL by grouping them into three categories, represented by isotopes of (1) Th and Pa, (2) U and (3) Ra. Mass spectrometric measurements of these elements will be emphasized in order to minimize sample size requirements and to maximize precision. Results will form the data base for a model code for computing: (1) Fluid residence time (transport rates) in the basalt aquifers at various locations, (2) The in-situ adsorption and desorption rate constants, as well as the retardation factors, of various radionuclide wastes, and (3) Rock dissolution rate and its relation to preferential flow and contamination transport in the fractured rock

  6. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    OpenAIRE

    Ommen, van, H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple incorporation of physico-chemical processes (decomposition, adsorption), as was shown by an illustrative response of the quality of groundwater to an input of a radio-active decaying solute (and its decay...

  7. Modeling hydrology and reactive transport in roads: The effect of cracks, the edge, and contaminant properties

    International Nuclear Information System (INIS)

    Apul, Defne S.; Gardner, Kevin H.; Eighmy, T. Taylor

    2007-01-01

    The goal of this research was to provide a tool for regulators to evaluate the groundwater contamination from the use of virgin and secondary materials in road construction. A finite element model, HYDRUS2D, was used to evaluate generic scenarios for secondary material use in base layers. Use of generic model results for particular applications was demonstrated through a steel slag example. The hydrology and reactive transport of contaminants were modeled in a two-dimensional cross section of a road. Model simulations showed that in an intact pavement, lateral velocities from the edge towards the centerline may transport contaminants in the base layer. The dominant transport mechanisms are advection closer to the edge and diffusion closer to the centerline. A shoulder joint in the pavement allows 0.03 to 0.45 m 3 /day of infiltration per meter of joint length as a function of the base and subgrade hydrology and the rain intensity. Scenario simulations showed that salts in the base layer of pavements are depleted by 99% in the first 20 years, whereas the metals may not reach the groundwater in 20 years at any significant concentrations if the pavement is built on adsorbing soils

  8. Approach to uncertainty assessment for fluid flow and contaminant transport modeling in heterogeneous groundwater systems

    International Nuclear Information System (INIS)

    Nelson, R.W.; Jacobson, E.A.; Conbere, W.

    1985-06-01

    There is a growing awareness of the need to quantify uncertainty in groundwater flow and transport model results. Regulatory organizations are beginning to request the statistical distributions of predicted contaminant arrival to the biosphere, so that realistic confidence intervals can be obtained for the modeling results. To meet these needs, methods are being developed to quantify uncertainty in the subsurface flow and transport analysis sequence. A method for evaluating this uncertainty, described in this paper, considers uncertainty in material properties and was applied to an example field problem. Our analysis begins by using field measurements of transmissivity and hydraulic head in a regional, parameter estimation method to obtain a calibrated fluid flow model and a covariance matrix of the parameter estimation errors. The calibrated model and the covariance matrix are next used in a conditional simulation mode to generate a large number of 'head realizations.' The specific pore water velocity distribution for each realization is calculated from the effective porosity, the aquifer parameter realization, and the associated head values. Each velocity distribution is used to obtain a transport solution for a contaminant originating from the same source for all realizations. The results are the statistical distributions for the outflow arrival times. The confidence intervals for contamination reaching the biosphere are obtained from the outflow statistical distributions. 20 refs., 12 figs

  9. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  10. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  11. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  12. Transport Limits for Non-Fixed Contamination: A Hazard to Optimization in Radioprotection

    International Nuclear Information System (INIS)

    Theis, S.; Lorenz, B.; Schwarz, W.

    2004-01-01

    Current contamination limits for packages and conveyances under routine transport conditions have been derived from the Fairbairn model more than 40 years ago. This model has proved to be effective if used with pragmatism, but conservative. In some countries the limits are handled as action levels. Actions are taken if contamination levels are exceeded, but instant reporting to authorities is only necessary if the excess is higher than a certain factor of e.g. 10. In countries like Germany the limits are regarded as strictly binding. As could be seen after contamination incidents with transport casks for spent fuel assembly, the reporting by the media and perception by the public was not in accordance with the real radiation risk, which could in any case be neglected. However, exceeding the limits by only one percent lead in some cases immediately to legal actions. To avoid such actions, any practice with relevance for possible contamination or decontamination must consider an additional safety margin which is usually a factor of 10. This results -by the definition of TS-R1 recommendations- in a complete removal of non fixed contamination. For two examples the tremendous amount of decontamination work as well as measurements, which are necessary to reach this aim, is quantified. The first example focuses on the clearance measurements of 20' standard ISO-containers, (which are used exclusively for the transport of radioactive materials,) as conveyances for shipment of radioactive packages. In the second example (a loaded cask awaiting shipment) such actions lead to a real operational exposure which -according to good health physics practice- should otherwise be subject to minimization. These information is compared with the results of an IAEA working group, which was set up in 2000 with the aim of remodeling the exposure conditions for all persons involved in the transport of radioactive material, even members of the public. This international group combined members

  13. Transport Limits for Non-Fixed Contamination: A Hazard to Optimization in Radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Theis, S.; Lorenz, B.; Schwarz, W.

    2004-07-01

    Current contamination limits for packages and conveyances under routine transport conditions have been derived from the Fairbairn model more than 40 years ago. This model has proved to be effective if used with pragmatism, but conservative. In some countries the limits are handled as action levels. Actions are taken if contamination levels are exceeded, but instant reporting to authorities is only necessary if the excess is higher than a certain factor of e.g. 10. In countries like Germany the limits are regarded as strictly binding. As could be seen after contamination incidents with transport casks for spent fuel assembly, the reporting by the media and perception by the public was not in accordance with the real radiation risk, which could in any case be neglected. However, exceeding the limits by only one percent lead in some cases immediately to legal actions. To avoid such actions, any practice with relevance for possible contamination or decontamination must consider an additional safety margin which is usually a factor of 10. This results -by the definition of TS-R1 recommendations- in a complete removal of non fixed contamination. For two examples the tremendous amount of decontamination work as well as measurements, which are necessary to reach this aim, is quantified. The first example focuses on the clearance measurements of 20' standard ISO-containers, (which are used exclusively for the transport of radioactive materials,) as conveyances for shipment of radioactive packages. In the second example (a loaded cask awaiting shipment) such actions lead to a real operational exposure which -according to good health physics practice- should otherwise be subject to minimization. These information is compared with the results of an IAEA working group, which was set up in 2000 with the aim of remodeling the exposure conditions for all persons involved in the transport of radioactive material, even members of the public. This international group combined

  14. Characterization of contaminant transport by gravity, capilliarity and barometric pumping in heterogeneous vadose regimes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.

    1997-01-01

    'Vadose regimes can be the sites of complex interactions between the atmosphere and groundwater. When a volatile contaminant exists as free product or in dissolved form in the vadose environment, upward transport can occur with the contaminant ultimately being vented as a vapor into the atmosphere. This transport happens naturally and can be enhanced by anisotropy resulting from heterogenities in the vadose regime. Several stages in the transport process are involved in going from a volatile, liquid state contaminant to a contaminant vapor vented at the surface. In a three-year effort, called the Vadose Zone Transport Study, the authors are investigating, with the aid of existing data, new field studies involving dissolved tracer gases and 3-D diagnostic computer simulations that provide a framework to interpret the observations, the detailed nature of each of these stages of transport in several different kinds of vadose regimes. They are emphasizing the impact of features specific to a site, that is, the local geology and hydrology, on each stage of the transport process. In particular they want to better understand how the time scales for (1) partitioning contaminants from the liquid to the vapor states and then (2) transporting the vapor out of the vadose regime are dependent on the specific character of a site. Such time-scale information will be important for evaluating the potential of contaminant sources as well as remediation strategies including natural remediation approaches.'

  15. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  16. A generalized model for transport of contaminants in soil by electric fields.

    Science.gov (United States)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D; Alshawabkeh, Akram N

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation that describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions, may be significant for realistic prediction of enhanced electrokinetic extraction of metals in real-world applications.

  17. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  18. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    Science.gov (United States)

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  19. Experience with contamination protection of spent fuel transport packages in Germany since 2000/2001

    International Nuclear Information System (INIS)

    Krinninger, H.; Bach, R.; Seidel, J.; Jung, P.

    2004-01-01

    On April 30, 1998 just a few days before the PATRAM 1998 conference at Paris, the French Nuclear Installations Safety Directorate (DSIN now DGSNR) published a press release, that during the year before some 35% of the spent fuel transports to the reprocessing plant of COGEMA at La Hague have non-fixed surface contamination in excess of the regulatory standard. A few day in advance DSIN informed in French Ministries and the competent foreign authorities of the customer countries of COGEMA. The consequences of this publication were multi-fold and perceived by the public as an act negligence of the nuclear industry. Because of concerns about additional radiation exposure to the railway workers by the unions the French Railway company SNCF suspended all transports by May 6, 1998 until implementation of corrective measures. This decision of SNF interupted also the spent fuel transports from continental Europe to the reprocessing plant of BNFL at Sellafield all performed across France to the port of Dunkirk. Furthermore on May 25, 1998 the German Federal Ministry of Environment, Nature Protection and Nuclear Safety (BMU) imposed a transport ban for shipment of spent fuel from commercial power plants and for high active waste returned from La Hague to the Gorleben site. The conditions for resumption of these transports were outlined by NMU in a 10-point programme. In response to these publications on contamination findings competent German State and Federal Authorities commissioned investigations by independent experts dealing with the identification of the causes, the proposal of counter measures, the investigation of shortcomings in the transport system in general and recommendations for retification of it

  20. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    Science.gov (United States)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  1. Partnership for Sustainable Communities - Grants Map -

    Data.gov (United States)

    Department of Transportation — The Partnership for Sustainable Communities is comprised of the Department of Housing and Urban Development (HUD), the US Department of Transportation (DOT), and the...

  2. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  3. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    International Nuclear Information System (INIS)

    DALE, R.N.

    2000-01-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O and M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085

  4. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    Energy Technology Data Exchange (ETDEWEB)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  5. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  6. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  7. Transport of short lived radioactive contaminants with prologed half-lives of daughters through river water

    International Nuclear Information System (INIS)

    Metwally, S.M.; Prohl, G.

    2005-01-01

    One of the main pathways for transporting contaminants to other parts in the environment, are rivers. This work is devoted for deriving and assessment the concentration of soluble radio contaminants along a river at any time after discharge, including the short-lived radionuclides in comparison with the discharge time interval, and prolonged half-life of the produced daughter nuclei. The assumed boundary conditions and deduced formulas can be applied either in case of accidental release or discharge under authority control. The formulas determining the produced daughter nuclei concentration require inequality of the parent and daughter nuclei half-lives. Because of the regional variation of river morphology, the assumed constancy of the flow velocity and dispersion coefficient requires dividing the river path into zones of similar hydrologic characteristics

  8. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A

  9. Development and applications of two finite element groundwater flow and contaminant transport models: FEWA and FEMA

    International Nuclear Information System (INIS)

    Yeh, G.T.; Wong, K.V.; Craig, P.M.; Davis, E.C.

    1985-01-01

    This paper presents the construction, verification, and application of two groundwater flow and contaminant transport models: A Finite Element Model of Water Flow through Aquifers (FEWA) and A Finite Element Model of Material Transport through Aquifers (FEMA). The construction is based on the finite element approximation of partial differential equations of groundwater flow (FEWA) and of solute movement (FEMA). The particular features of FEWA and FEMA are their versatility and flexibility for dealing with nearly all vertically integrated two-dimensional problems. The models were verified against both analytical solutions and widely used US Geological Survey finite difference approximations. They were then applied for calibration and validation, using data obtained in experiments at the Engineering Test Facility at Oak Ridge National Laboratory. Results indicated that the models are valid for this specific site. To demonstrate the versatility anf flexibility of the models, they were applied to two hypothetical, but realistic, complex problems and three field sites across the United States. In these applications the models yielded good agreement with the field data for all three sites. Finally, the predictive capabilities of the models were demonstrated using data obtained at the Hialeah Preston site in Florida. This case illustrates the capability of FEWA and FEMA as predictive tools and their usefulness in the management of groundwater flow and contaminant transport. 25 refs

  10. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A.

  11. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  12. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  13. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    International Nuclear Information System (INIS)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G.

    2012-01-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  14. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  15. Smartway Transport Partnership Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes all data collected by EPA in support of this program to address greenhouse gas emissions, fuel consumption, and criteria pollutants (NOx and PM)...

  16. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  17. Real time simulation of the release and transport of radioactive contaminants

    International Nuclear Information System (INIS)

    Popa, F.; Weber, M.

    1991-01-01

    Calculating the responses of the radiation monitoring system (RMS) remains one of the most difficult aspects of nuclear power plant simulation to bring into the post-TMI, first principles simulator era. This task requires the simulation of the transport of radioactive contaminants, the transport of the radiation itself, and the instrument channel including the detector. The complex physics and lack of knowledge of input parameters have made these models lag the general simulator trend away from logical/heuristic modeling of physical systems. This paper describes a series of advances to the modeling methodology to change this situation. The objective in the design of this real time simulation model was to always calculate qualitatively reasonable radiation detector readings

  18. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  19. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  20. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2012-04-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model in the same porous medium. Because of different sources of uncertainties, this coupled model might not be able to accurately track the contaminant state. Incorporating observations through the process of data assimilation can guide the model toward the true trajectory of the system. The Kalman filter (KF), or its nonlinear invariants, can be used to tackle this problem. To overcome the prohibitive computational cost of the KF, the singular evolutive Kalman filter (SEKF) and the singular fixed Kalman filter (SFKF) are used, which are variants of the KF operating with low-rank covariance matrices. Experimental results suggest that under perfect and imperfect model setups, the low-rank filters can provide estimates as accurate as the full KF but at much lower computational effort. Low-rank filters are demonstrated to significantly reduce the computational effort of the KF to almost 3%. © 2012 American Society of Civil Engineers.

  1. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  2. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    Science.gov (United States)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  3. The use of tracer techniques in the study of soil water flows and contaminant transport

    International Nuclear Information System (INIS)

    Reeves, A.D.; Beven, K.J.

    1990-04-01

    This report reviews the use of different types of tracers in the characterisation of soil water flows and the implications of tracer studies for modelling contaminant transport. The tracers considered are a number of different anions, stable isotopes, radioactive tracers, organic dyes, fluorocarbons, gases, solid particles and water temperature. The theoretical basis for modelling the results of tracer experiments in terms of the traditional convective-dispersion equation (CDE) is outlined. A number of alternative modelling strategies are reviewed: the mobile/immobile water extension of the CDE; the Jury Transfer Function Model (TFM); the Aggregated Mixing Zone (AMZ) model and Random Particle Tracking models. The first will form the basis of the Systeme Hydrologique Europeen (SHE) contaminant transport component. The Jury and AMZ models are both linear models and are consequently limited to applications in which the flows may be considered to be quasi-steady or repeatable. Random particle tracking models have the advantage of both flexibility and applicability to transient and spatially variable flow domains. A random particle model is being implemented on a transputer workstation at Lancaster and will be used to explore the effect of sub-grid scale complexities on effective grid-scale parameter values for distributed models such as SHE. (author)

  4. Campylobacter genotypes from poultry transportation crates indicate a source of contamination and transmission.

    Science.gov (United States)

    Hastings, R; Colles, F M; McCarthy, N D; Maiden, M C J; Sheppard, S K

    2011-01-01

    Crates used to transport live poultry can be contaminated with Campylobacter, despite periodic sanitization, and are potential vectors for transmission between flocks. We investigated the microbial contamination of standard and silver ion containing crates in normal use and the genetic structure of associated Campylobacter populations. Bacteria from crates were enumerated by appropriate culture techniques, and multilocus sequence typing (MLST) was used to determine the genetic structure of Campylobacters isolated from standard and silver ion containing crates. Compared to standard crates, counts of bacteria, including Campylobacter, were consistently lower on silver ion containing crates throughout the decontamination process. In total, 16 different sequence types were identified from 89 Campylobacter jejuni isolates from crates. These were attributed to putative source population (chicken, cattle, sheep, the environment, wild bird) using the population genetic model, structure. Most (89%) were attributed to chicken, with 22% attribution to live chicken and 78% to retail poultry meat. MLST revealed a progressive shift in allele frequencies through the crate decontamination process. Campylobacter on crates survived for at least 3 h after sanitization, a period of time equivalent to the journey from the processing plant to the majority of farms in the catchment, showing the potential for involvement of crates in transmission. Inclusion of a silver ion biocide in poultry transportation crates to levels demonstrating acceptable antibacterial activity in vitro reduces the level of bacterial contamination during normal crate use compared to standard crates. Molecular analysis of Campylobacter isolates indicated a change in genetic structure of the population with respect to the poultry-processing plant sanitization practice. The application of a sustainable antimicrobial to components of poultry processing may contribute to reducing the levels of Campylobacter

  5. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    Science.gov (United States)

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  6. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  7. Studies Related to the Role of Colloids on the Transport of Some Radio Contaminants in Groundwater

    International Nuclear Information System (INIS)

    Mekhemar, H.S.A.

    2012-01-01

    The safety of a radioactive waste repository is related to its capacity to confine radioactivity and isolate it from biosphere. The most likely process that can lead to the release of radionuclides from a repository to the geosphere is transport by groundwater. The transport and distribution of radionuclides in groundwater or through geologic media depend on the radioactive source, the physicochemical forms of radionuclides and interactions of radionuclides with other components present in the groundwater. Colloids naturally exist in groundwater aquifers and can significantly impact contaminant migration rate. The presence of colloids affects contaminant transport in aquifers either by facilitation or retardation. The effect of the presence of colloid (Al 2 O 3 ) on the sorption characteristics of Co 2+ and Cs + , as two of the most important radionuclides commonly encountered in the Egyptian waste streams, onto yellow sand and clay taken from Inshas site was studied. Based on the obtained results, the maximum sorption capacity of Cs + and Co 2+ in presence of colloid was higher than sorption in absence of colloid but the sorption capacity of clay was found to be greater than that of yellow sand for both ions in absence and presence of colloid. Sorption capacity (q) increased by increasing initial metal ion concentration. The increasing temperature from 25 to 65 degree C leads to slight decrease in the sorption of Cs ions while lead to increase in sorption of Co ions. The kinetic data could be successfully interpreted by simplified second order kinetic expression. The rate constants and the theoretical equilibrium Sorption capacities were calculated for studied cases. It was demonstrated from column experiments that colloid presence influences radionuclides transport through fixed bed yellow sand column. Al 2 O 3 and Fe 2 O 3 colloids reduce the migration of Cs + and Co 2+ ions in all studied cases. From the results of desorption experiments it can be concluded

  8. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  9. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  10. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  11. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  12. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  13. Characterization of contaminant transport by gravity, capillarity and barometric pumping in heterogeneous vadose regimes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Carrigan, C.R.; Hudson, G.B.

    1998-01-01

    'The intent of this research program is to obtain an improved understanding of vadose zone transport processes and to develop field and modeling techniques required to characterize contaminant transport in the unsaturated zone at DOE sites. For surface spills and near-surface leaks of chemicals, the vadose zone may well become a long-term source of contamination for the underlying water table. Transport of contaminants can occur in both the liquid and gas phases of the unsaturated zone. This transport occurs naturally as a result of diffusion, buoyancy forces (gravity), capillarity and barometric pressure variations. In some cases transport can be enhanced by anisotropies present in hydrologic regimes. This is particularly true for gas-phase transport which may be subject to vertical pumping resulting from atmospheric pressure changes. For liquid-phase flows, heterogeneity may enhance the downward transport of contaminants to the water table depending on soil properties and the scale of the surface spill or near-surface leak. Characterization techniques based upon the dynamics of transport processes are likely to yield a better understanding of the potential for contaminant transport at a specific site than methods depending solely on hydrologic properties derived from a borehole. Such dynamic-characterization techniques can be useful for evaluating sites where contamination presently exists as well as for providing an objective basis to evaluate the efficacy of proposed as well as implemented clean-up technologies. The real-time monitoring of processes that may occur during clean-up of tank waste and the mobility of contaminants beneath the Hanford storage tanks during sluicing operations is one example of how techniques developed in this effort can be applied to current remediation problems. In the future, such dynamic-characterization methods might also be used as part of the site-characterization process for determining suitable locations of new DOE facilities

  14. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen

    2010-12-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  15. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    International Nuclear Information System (INIS)

    King, C.M.; Wilhite, E.L.; Root, R.W. Jr.

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs

  16. Vadose Zone Contaminant Fate and Transport Analysis for the 216-B-26 Trench

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2004-10-14

    The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial

  17. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen; Sun, Shuyu

    2010-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  18. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2018-04-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017. During the FY2017 reporting period, the warmest months were June, July, and August and the coldest were December and January. Solar radiation showed the same seasonal trend, although the months with the most solar radiation were May and June. Monthly mean wind speeds were highest in the spring (April and May). Winds were generally from the southwest during the summer and from the northwest throughout the remainder of the year. The monthly average

  19. Use of Short Chained Alkylphenols (SCAP in Analysis of Transport Behaviour of Oil Contaminated Groundwater

    Directory of Open Access Journals (Sweden)

    M. Sauter

    2002-06-01

    Full Text Available Shortchained alkylphenols (SCAP represent a main constituent of crude oil and coal liquefaction products. Due to their specific oil/water partitioning behaviour and high aqueous solubility they can be detected in oil exploitation waters and groundwaters affected by various spills near oil pipelines, oil exploitation sites and coal liquefaction plants. New efficient and powerful analytical techniques have been developed that allow the identification of all 34 individual compounds (C0-C3 without derivatisation and in complex matrices. Due to the different physico-chemical properties of the SCAP, differential transport behaviour in groundwater can be observed, changing the relative concentrations of SCAP downgradient in space and time. These characteristic ratios can be employed to derive information on migration direction and the ageing of the source of contamination. A case study is presented to illustrate the use of this new tool.

  20. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    Science.gov (United States)

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  1. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    Directory of Open Access Journals (Sweden)

    Benjamin Wiseman

    Full Text Available Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12 but not with Lauryldimethylamine-N-oxide (LDAO or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  2. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  3. Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea

    Science.gov (United States)

    Unlu, S.; Alpar, B.

    2009-04-01

    Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil

  4. Application of multiple tracers (SF6 and chloride) to identify the transport by characteristics of contaminant at two separate contaminated sites

    Science.gov (United States)

    Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.

    2016-12-01

    Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".

  5. Surface contamination of spent fuel convoys - resumption of transport in France

    International Nuclear Information System (INIS)

    Pertuis, V.

    2000-01-01

    In France, 1998 was marked by the transport of spent fuel from EDF plants being suspended and then resumed. From the time the first inspections were carried out by the Nuclear Installations Safety Directorate (NISD), in charge of monitoring radioactive and fissile material for civil use since June 1997, surface contamination was found in a high percentage of packages and/or wagons containing spent fuel. The different expert appraisals showed that this had no consequences for the health of the public or of workers. Aiming at the resumption of transport, EDF and Cogema presented to the safety authority a plan of action including an increase in monitoring (number of points and cross-checking by SGS Qualitest), more widespread observance of good practices resulting from analyses by EDF and conclusions of its nuclear inspectorate, and an improvement in radiological cleanliness in the area where casks were loaded. During the inspections carried out at EDF plants, the NISD verified the application of this plan. Several observations were, nevertheless, made regarding maintenance of equipment, failure to apply procedures on a corporate level and the traceability of certain operations. The measures taken to sufficiently inform the public were applied. The NISD is continuing its monitoring actions to ensure that all EDF plants adopt best practices. However, the overall clean-up of EDF plants is a long-term operation. Finally, the NISD is continuing its monitoring of the different stages of spent fuel transport as well as other types of transport of radioactive materials associated with nuclear activities. (author)

  6. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    International Nuclear Information System (INIS)

    Woodman, N.D.; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-01-01

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study

  7. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  8. The effects of a perturbed source on contaminant transport near the Weldon Spring quarry

    International Nuclear Information System (INIS)

    Tomasko, D.

    1989-03-01

    The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs

  9. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  10. Atmospheric transport of contaminants to remote arctic wilderness areas: A pilot study

    International Nuclear Information System (INIS)

    Crayton, W.M.; Talbot, S.

    1993-01-01

    The Alaska Maritime National Wildlife Refuge includes the Tuxedni Wilderness Area (WA), which is required to meet the Class 1 air quality requirements of the Clean Air Act (42 CFT 7401 et seq.). The Act specifically protects such areas from significant deterioration; however, most Class 1 Wilderness monitoring focuses on visual impairment and traditional atmospheric pollutants such as NOx. This study was designed to assess the feasibility of also measuring atmospheric transport of potentially toxic elemental and organic contaminants to remote areas as a pilot for subsequent monitoring of Service lands to be undertaken through the Biomonitoring of Environmental Status and Trends (BEST) Program. Located on the western shore of Cook Inlet, the Tuxedni WA lies about 80 km downwind of a major petroleum complex that the City of Anchorage. Elemental contaminants emanating from the city will be studied in two species of widely distributed alpine vegetation (Cladina rangiferina, a lichen; and Hylocomium splendens, a moss) collected from elevated windward slopes on Chisik Island, a remote site in the WA. Vegetation samples will be analyzed for a suite of potentially toxic elements by inductively coupled plasma emission spectrometry and atomic absorption spectrophotometry. Polycyclic aromatic compounds originating from petroleum-related and urban sources will be studied through the deployment of lipid-containing passive accumulators and analysis by gas chromatography with photoionization detection. Reference areas will also be selected and monitored

  11. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    International Nuclear Information System (INIS)

    Wingle, W.L.; Poeter, E.P.; McKenna, S.A.

    1999-01-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. A risk-informed basis for establishing non-fixed surface contamination limits for spent fuel transportation casks

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Bogard, J.S.; Cook, J.R.

    2004-01-01

    The current limits for non-fixed contamination on packages used to transport radioactive materials were introduced in the 1961 edition of the International Atomic Energy Agency (IAEA) transport regulations and were based on radiation protection guidance and practices in use at that time. The limits were based on exposure scenarios leading to intakes of radionuclides by inhalation and external irradiation of the hands. These considerations are collectively referred to as the Fairbairn model. Although formulated over 40 years ago, the model remains unchanged and is still the basis of current regulatory-derived limits on package non-fixed surface contamination. There can also be doses that while not resulting directly from the contamination, are strongly influenced by and attributable to transport regulatory requirements for contamination control. For example, actions necessary to comply with the current derived limits for light-water-reactor (LWR) spent nuclear fuel (SNF) casks can result in significant external doses to workers. This is due to the relatively high radiation levels around the loaded casks, where workers must function during the measurement of contamination levels and while decontaminating the cask. In order to optimize the total dose received due to compliance with cask contamination levels, it is necessary to take into account all the doses that vary as a result of the regulatory limit. Limits for non-fixed surface contamination on spent fuel casks should be established by using a model that considers and optimizes the appropriate exposure scenarios both in the workplace and in the public environment. A risk-informed approach is needed to ensure optimal use of personnel and material resources for SNF-based packaging operations. This paper is a summary of a study sponsored by the US Nuclear Regulatory Commission and performed by Oak Ridge National Laboratory that examined the dose implications for removable surface contamination limits on spent fuel

  13. Characterizing, for packaging and transport, large objects contaminated by radioactive material having a limited A2 value

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Cash, J.M.; Best, R.E.

    1998-02-01

    The International Atomic Energy Agency (IAEA) Regulations for the safe packaging and transportation of radioactive materials follow a graded approach to the requirements for both packaging and controls during transport. The concept is that, the lower the risk posed to the people and the environment by the contents, (1) the less demanding are the packaging requirements and (2) the smaller in number are the controls imposed on the transport of the material. There are likely to be a great number of situations arising in coming years when large objects, contaminated with radioactive material having unlimited A 2 values will result from various decommissioning and decontamination (D and D) activities and will then require shipment from the D and D site to a disposal site. Such situations may arise relatively frequently during the cleanup of operations involving mining, milling, feedstock, and uranium enrichment processing facilities. Because these objects are contaminated with materials having an unlimited A 2 value they present a low radiological risk to worker and public safety and to the environment during transport. However, when these radioactive materials reside on the surfaces of equipment and other large objects, where the equipment and objects themselves are not radioactive, the radioactive materials appear as surface contamination and, if the contaminated object is categorized as a surface contaminated object, it would need to be packaged for shipment according to the requirements of the Regulations for SCO. Despite this categorization, alternatives may be available which will allow these contaminants, when considered by themselves for packaging and transport, to be categorized as either (1) a limited quantity of radioactive material to be shipped in an excepted package or (2) low specific activity (LSA) materials to be shipped in an IP-1 package or possibly even shipped unpackaged. These options are discussed in this paper

  14. Assessment of risks and costs associated with transportation of US Department of Energy radioactively contaminated carbon steel

    International Nuclear Information System (INIS)

    Chen, S.-Y.; Arnish, J.J.; Nieves, L.A.; Folga, S.M.

    1996-09-01

    This report provides a preliminary assessment of potential human health risks and develops unit risks and costs for transporting radioactively contaminated carbon steel (RCCS) scrap between U.S. Department of Energy (DOE) sites. The RCCS would be generated from DOE activities (current or future) and from decontamination and decommissioning of DOE facilities. The estimates of transportation system risk reflect preliminary information regarding the quantities of RCCS at some sites and the spectrum of activity in RCCS at various types of DOE facilities

  15. Tracking the origin and dispersion of contaminated sediments transported by rivers draining the Fukushima radioactive contaminant plume

    Directory of Open Access Journals (Sweden)

    H. Lepage

    2015-03-01

    Full Text Available This study was conducted in several catchments draining the main Fukushima Dai-ichi Power Plant contaminant plume in Fukushima prefecture, Japan. We collected soils and sediment drape deposits (n = 128 and investigated the variation in 137Cs enrichment during five sampling campaigns, conducted every six months, which typically occurred after intense erosive events such as typhoons and snowmelt. We show that upstream contaminated soils are eroded during summer typhoons (June–October before being exported during the spring snowmelt (March–April. However, this seasonal cycle of sediment dispersion is further complicated by the occurrence of dam releases that may discharge large amounts of contaminants to the coastal plains during the coming years.

  16. Evidence for the 'grasshopper' effect and fractionation during long-range atmospheric transport of organic contaminants

    International Nuclear Information System (INIS)

    Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N.

    2004-01-01

    Although there is indisputable evidence that long-range atmospheric transport (LRAT) of organic contaminants occurs on a global scale, uncertainties remain about the detailed mechanism and extent of this phenomenon as well as the physical-chemical properties which facilitate LRAT. In this study, we discuss how mass balance models and monitoring data can contribute to a fuller understanding of the mechanism and extent of LRAT. Specifically we address the issues of 'grasshopping' or 'hopping' (the extent to which molecules are subject to multiple hops as distinct from a single emission-deposition event) and 'global fractionation' (the differing behavior of chemicals as they are transported). It is shown that simple mass balance models can be used to assist the interpretation of monitoring data while also providing an instrument that can be used to assess the LRAT potential and the extent of hopping that organic substances may experience. The available evidence supports the notion that many persistent organic pollutants experience varying degrees of 'hopping' during their environmental journey and as a consequence become fractionated with distance from source. - Evidence for global scale fractionation and hopping of POPs is reviewed

  17. Stochastic analysis of contaminant transport in porous media: analysis of a two-member radionuclide chain

    International Nuclear Information System (INIS)

    Bonano, E.J.; Shipers, L.R.

    1987-01-01

    In this study the authors extend previous stochastic analyses of contaminant transport in geologic media for a single species to a chain of two species. The authors particular application is the quantification of uncertainties due to lack of characterization of the spatial variability of hydrologic parameters on transport of radionuclides from a high-level waste repository to the biosphere. Radionuclide chains can have a significant impact on demonstrating compliance (or violation) of standards regulating the release to the environment accessible to humans. Two approaches for determining the cross-covariance terms in the mean concentration equations are presented. One uses a Taylor expansion to obtain the cross-covariance between the velocity and concentration fluctuations, while the other is based on a Fourier-Laplace double transform method. For the conditions of interest here, the difference between these two approaches are expected to be small. In addition, the variances are calculated in a unique way by solving another associated partial differential equation. A parametric study is carried out to examine the sensitivity of the mean concentration of the two species and their corresponding variances and cross-covariance on the parameters associated with the structure of the stochastic velocity field. It is found that the dependent variables are most sensitive to the intensity and correlation length of the velocity fluctuations. The magnitude of the variances and cross-covariance of the concentrations are proportional to the magnitude of the mean concentrations which depend on inlet concentration boundary conditions

  18. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  19. Understanding Contaminant Transport Pathways at Rocky Flats - A Basis for the Remediation Strategy

    International Nuclear Information System (INIS)

    Paton, Ian

    2008-01-01

    The Rocky Flats Environmental Technology Site (RFETS) is a Department of Energy facility located approximately 16 miles northwest of Denver, Colorado. Processing and fabrication of nuclear weapons components occurred at Rocky Flats from 1952 through 1989. Operations at the Site included the use of several radionuclides, including plutonium-239/240 (Pu), americium-241 (Am), and various uranium (U) isotopes, as well as several types of chlorinated solvents. The historic operations resulted in legacy contamination, including contaminated facilities, process waste lines, buried wastes and surface soil contamination. Decontamination and removal of buildings at the site was completed in late 2005, culminating more than ten years of active environmental remediation work. The Corrective Action Decision/Record of Decision was subsequently approved in 2006, signifying regulatory approval and closure of the site. The use of RFETS as a National Wildlife Refuge is scheduled to be in full operation by 2012. To develop a plan for remediating different types of radionuclide contaminants present in the RFETS environment required understanding the different environmental transport pathways for the various actinides. Developing this understanding was the primary objective of the Actinide Migration Evaluation (AME) project. Findings from the AME studies were used in the development of RFETS remediation strategies. The AME project focused on issues of actinide behavior and mobility in surface water, groundwater, air, soil and biota at RFETS. For the purposes of the AME studies, actinide elements addressed included Pu, Am, and U. The AME program, funded by DOE, brought together personnel with a broad range of relevant expertise in technical investigations. The AME advisory panel identified research investigations and approaches that could be used to solve issues related to actinide migration at the Site. An initial step of the AME was to develop a conceptual model to provide a

  20. Contaminant transport and accumulation in Massachusetts Bay and Boston Harbor; a summary of U.S. Geological Survey studies

    Science.gov (United States)

    Butman, Bradford; Bothner, Michael H.; Hathaway, J.C.; Jenter, H.L.; Knebel, H.J.; Manheim, F.T.; Signell, R.P.

    1992-01-01

    The U.S. Geological Survey (USGS) is conducting studies in Boston Harbor, Massachusetts Bay, and Cape Cod Bay designed to define the geologic framework of the region and to understand the transport and accumulation of contaminated sediments. The region is being studied because of environmental problems caused by the introduction of wastes for a long time, because a new ocean outfall (to begin operation in 1995) will change the location for disposal of treated Boston sewage from Boston Harbor into Massachusetts Bay, and because of the need to understand the transport of sediments and associated contaminants in order to address a wide range of management questions. The USGS effort complements and is closely coordinated with the research and monitoring studies supported by the Massachusetts Environmental Trust, the Massachusetts Bays Program, and by the Massachusetts Water Resources Authority. The USGS study includes (1) geologic mapping, (2) circulation studies, (3) long-term current and sediment transport observations, (4) measurements of contaminant inventories and rates of sediment mixing and accumulation, (5) circulation modeling, (6) development of a contaminated sediments data base, and (7) information exchange. A long-term objective of the program is to develop a predictive capability for sediment transport and accumulation.

  1. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  2. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.; Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model integrations than the standard Joint-EnKF.

  3. University Data Partnership Peer Exchange

    Science.gov (United States)

    2012-03-01

    In March 2012, the Connecticut (CTDOT) and New Mexico (NMDOT) Departments of Transportation met in Baton Rouge, Louisiana for a two-day peer session dedicated to exploring the intricate 12-year safety data partnership between the Louisiana Department...

  4. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    International Nuclear Information System (INIS)

    John McCord

    2007-01-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: (1) Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. (2) Assess the level of quality of the data and associated documentation. (3) Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters

  5. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  6. Perched aquifers - their potential impact on contaminant transport in the southern High Plains, Texas

    International Nuclear Information System (INIS)

    Mullican, W.F. III; Fryar, A.E.; Johns, N.D.

    1993-01-01

    Understanding the hydrogeology and hydrochemistry of perched aquifers at potential and known contaminated waste sites has become increasingly important because of the impact these aquifers may have on contaminant transport independent of regional aquifer processes. Investigations of a perched aquifer above the Ogallala aquifer are being conducted in the region of the U.S. Department of Energy's Pantex Plant, a proposed Superfund site, located approximately 20 mi northeast of Amarillo, Texas. Since the early 1950s, a small playa basin located on the Pantex Plant has been used as a waste-water discharge pond with daily discharge rates ranging from 400,000 to 1 million gal. The focus of this investigation is an unconfined, perched aquifer that overlies a thick silty clay sequence within the upper, mostly unsaturated part of the Ogallala Formation (Neogene). In the area of the Pantex Plant, measured depths to the perched aquifer range from 200 to 300 ft below land surface, whereas depth to the regional Ogallala aquifer ranges from 375 to 500 ft. The potentiometric surface of the perched aquifer typically represents groundwater mounds proximal to the playas and thins into trough in the interplaya areas. Hydrologic gradients of the primary mound under investigation are relatively high, ranging from 28 to 45 ft/mi. Calculated transmissivities have a geometric mean of 54 ft 2 /day, with saturated thicknesses ranging from 4 to 1000 ft. Modeling of the perched aquifer was designed to determine how much, if any, discharge to the small playa basin has enhanced recharge to the perched aquifers and increased the vertical and lateral extent of the perched aquifer. Preliminary results indicate that measurements of vertical conductance through the perching silty-clay sequence and recharge rates through playas are critical for calibrating the model. Accurate delineation of rates and flow directions in the perched aquifer is critical to any successful remediation effort

  7. Notification determining details of technical standards concerning transport of radioisotopes or goods contaminated by radioisotopes in works or enterprises

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the regulation for the execution of the law on the prevention of radiation injuries by radioisotopes. Terms are used in this rule for the same meanings as in the regulation. The limit of the concentration of radioisotopes in the goods contaminated by these isotopes which are not required to be sealed in containers defined by the Director General of the Science and Technology Agency is 1/10,000 of the value A 2 under the notification determining the details of technical standards concerning the transport of radioisotopes or the goods contaminated by radioisotopes outside works or enterprises. The application for the permission of transporting the goods which are highly difficult to be sealed in containers shall list names and addresses, the kinds, quantities, shapes and properties of the transported goods contaminated by radioisotopes, etc. The radiation dose rate of transported goods and vehicles under the regulation is 200 milli-rem an hour on the surfaces of these goods, vehicles and containers, and 10 milli-rem an hour at the distance of 1 meter from their surfaces. The permissible exposure dose of the persons engaging in transport is 1.5 rem a year. Dangerous goods, signs, and the application for the approval of special measures are specified, respectively. (Okada, K.)

  8. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  9. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  10. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    Science.gov (United States)

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  11. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu; Sun, Shuyu

    2012-01-01

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall

  12. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    International Nuclear Information System (INIS)

    Choy, Emily S.; Kimpe, Linda E.; Mallory, Mark L.; Smol, John P.; Blais, Jules M.

    2010-01-01

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with ΣPCB and ΣDDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing δ 15 N values. However, only concentrations of p'p-DDE:ΣDDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  13. An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad; Valstar, Johan R.; Hoteit, Ibrahim

    2014-01-01

    Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system's parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme. © 2014 Elsevier Ltd.

  14. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Emily S., E-mail: echoy087@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Kimpe, Linda E., E-mail: linda.kimpe@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Mallory, Mark L., E-mail: mark.mallory@ec.gc.c [Canadian Wildlife Service, Environment Canada, Iqaluit, NU, X0A 0H0 (Canada); Smol, John P., E-mail: smolj@queensu.c [Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2010-11-15

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with {Sigma}PCB and {Sigma}DDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing {delta}{sup 15}N values. However, only concentrations of p'p-DDE:{Sigma}DDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  15. An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-09-01

    Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system\\'s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme. © 2014 Elsevier Ltd.

  16. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    Science.gov (United States)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  17. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control.

    Science.gov (United States)

    Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H

    2002-01-01

    The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.

  18. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  19. Promoting active transportation as a partnership between urban planning and public health: the columbus healthy places program.

    Science.gov (United States)

    Green, Christine Godward; Klein, Elizabeth G

    2011-01-01

    Active transportation has been considered as one method to address the American obesity epidemic. To address obesity prevention through built-environment change, the local public health department in Columbus, Ohio, established the Columbus Healthy Places (CHP) program to formally promote active transportation in numerous aspects of community design for the city. In this article, we present a case study of the CHP program and discuss the review of city development rezoning applications as a successful strategy to link public health to urban planning. Prior to the CHP review, 7% of development applications in Columbus included active transportation components; in 2009, 64% of development applications adopted active transportation components specifically recommended by the CHP review. Active transportation recommendations generally included adding bike racks, widening or adding sidewalks, and providing sidewalk connectivity. Recommendations and lessons learned from CHP are provided.

  20. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  1. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component. Final report

    International Nuclear Information System (INIS)

    Cushman, J.H.

    2000-01-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  2. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  3. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  4. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  5. Preliminary assessment for dust contamination of ITER In-Vessel Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Ueno, Kenichi; Maruyama, Takahito; Murakami, Shin; Takeda, Nobukazu; Kakudate, Satoshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Nakahira, Masataka; Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    Highlights: •To assess the exposure to the maintenance workers, we calculated the effective dose rate. •To reduce the effective dose rate, the IVT was decontaminated and underwent a design change. •The effective dose rate at each maintenance point was also calculated. -- Abstract: After plasma operations of ITER, radioactive dust will have accumulated in the vacuum vessel (VV). The In-Vessel Transporter (IVT) will be introduced into the VV to remove the shield blanket modules for maintenance or replacement and later reinstall them. The IVT itself also needs to undergo regular maintenance in the Hot Cell Facility (HCF). It is assumed that maintenance workers will be exposed to radioactive dust that has adhered to the surfaces of the IVT. In this study, the areas of the IVT that may be contaminated by dust are evaluated to assess the level of exposure to workers during maintenance work in the HCF. Decontamination processes for the IVT, such as a combination of vacuuming and brushing, were investigated and the dose rate after these processes was evaluated. Even though dust was removed from surfaces where decontamination was possible, the dose rate was very high at some assessment points. To decrease the dose rate in accordance with ALARA policy, a decontamination plan and a maintenance plan, which includes the removal of dust, a radiation shield system, and a reduction in working time are proposed.

  6. The role of rivers in transporting organic contaminants in the marine environment of Greece

    Science.gov (United States)

    Hatzianestis, Ioannis

    2013-04-01

    The study of trace organic contaminants in coastal marine environments and especially in estuarine systems is of great importance, since these areas, being biologically productive and receiving considerable pollutant inputs from land-based sources via river runoff, act as a transit zone in which contaminants are transported to the sea. The aim of this work is to identify the significance of estuarine export of organic pollution in the marine environment of Greece. For this reason, the distribution, composition and sources of hydrocarbon mixtures were investigated in sediments collected from eight major Greek estuarine systems, by using a molecular marker approach and several diagnostic criteria and indices. Surface sediment samples were collected from the estuaries of five rivers in Northern Greece flowing into Aegean sea (Axios, Aliakmonas, Strymon, Nestos, Evros), one river in Central Greece (Asopos) also flowing into Aegean Sea and two rivers in Western Greece flowing into Ionian sea (Acheloos, Acherontas). The highest aliphatic hydrocarbon concentrations (>100 μg/g), indicative of petroleum pollution, were recorded in Asopos estruaries, followed by Aliakmonas, Axios, Strymon and Evros estuaries (50-100 μg/g). On the contrary, in Nestos delta, as well as in Acheloos and Acherontas estuaries, hydrocarbon values were found low and similar to those measured in open sea (marine environment. The unresolved complex mixture (UCM) was the main component of the aliphatic fraction in most cases demonstrating some petroleum inputs in all areas, but high values of the ratio unresolved to resolved compounds (U/R), which are clearly indicative of petroleum residues, were measured only in Asopos, Axios and Evros estuary (U/R: 5.1-10.4). The n-alkane distribution was generally similar with that of total aliphatics. The high molecular weight n-alkanes (>C23) predominated in most cases, showing an important odd/even carbon number preference (mean CPI values above 5) which is

  7. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda [International Technologies Corporation, Las Vegas, NV (United States)

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  8. Research on establishment of emergency transportation of heavy-injured and radiation-exposed and contaminated patients. Toward rapid, contamination-preventive and safe land and air transportion

    International Nuclear Information System (INIS)

    Haraguchi, Yoshikura; Tomoyasu, Y.; Yamamoto, Yasuhiro; Ishihara, Toru

    2004-01-01

    The authors has continued researches on countermeasures against various disasters including nuclear or radiation accident. Present paper deals with the following items; (1) Significance of preparation of a manual on countermeasures against disasters in relation to medical drills, (2) Status and prospects of disaster simulations and disaster drills, (3) Promotion and education on medical knowledge when nuclear disasters occur, (4) Network system study of broad area medicines throughout the country. (5) Study on how to approach mental an psychological cares, (6) Specialities of radioactive contamination in the general contamination of NBC (Nuclear, Biological and Chemical) disasters, (7) New concept and preparation of triage tags, and (8) Queueing theory application to many patients in a hospital. (H. Yokoo)

  9. Some partnership

    International Nuclear Information System (INIS)

    Stein, Graham.

    1994-01-01

    The nuclear industry claims that it wants a partnership with renewable energy as part of a balanced energy programme. The author looks at information on renewables supplied by the nuclear industry and finds it economical with the truth. (author)

  10. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    International Nuclear Information System (INIS)

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-01-01

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site

  11. Ammonia gas transport and reactions in unsaturated sediments: Implications for use as an amendment to immobilize inorganic contaminants

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Truex, M.J.; Williams, M.D.; Liu, Y.

    2015-01-01

    Highlights: • Ammonia transport can be predicted from gas movement and equilibrium partitioning. • Ammonia diffusion rate in unsaturated sediment is a function of water contents. • High pH induced by ammonia causes mineral dissolution and sequential precipitation. • Ammonia treatment effectively immobilized uranium from contaminated sediments. - Abstract: Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has a potential for use in treating inorganic contaminants (such as uranium) because it induces a high pore-water pH, causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application of this treatment, further knowledge of ammonia transport in porous media and the geochemical reactions induced by ammonia treatment is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate inter-phase (gas/sediment/pore water) reactions, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions, such as flow rate, gas concentration, and water content. Uranium-contaminated sediment was treated with ammonia gas to demonstrate U immobilization. Ammonia gas quickly partitions into sediment pore water and increases the pH up to 13.2. Injected ammonia gas advection front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Sodium, aluminum, and silica pore-water concentrations increase upon exposure to ammonia and then decline as aluminosilicates precipitate when the pH declines due to buffering. Up to 85% of

  12. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  13. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    Science.gov (United States)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix

  14. The deterioration during transport and storage of tomato fruits by microorganisms contaminating the surface and latent infected tissue

    OpenAIRE

    河野, 又四; 寺下, 隆夫

    1988-01-01

    [Author abstract]Deterioration during transport and storage of tomato fruits is generally thought to be caused by microorganisms contaminating the surface and latent infected tissue of apparently healthy fruit. Counts of viable airborne microorganisms showed that there were more in plastic greenhouses than in open culure of tomatoes. Altemaria, Aspergillus niger, Asp. oryzae, Cladosporium, Fusarium, Mucor, Penicillium, Trichoderma, Trichothecium, Bacillus, Erwinia and Pseudomonas were among t...

  15. «Life Cycle Contract» in the field of Transport Infrastructure – the New Public-Private Partnership Mechanism

    Directory of Open Access Journals (Sweden)

    Veronica V. Turgeneva

    2017-01-01

    Full Text Available Purpose: the purpose of this article is to analyze the Russian experience in using public-private partnership mechanism (further – PPP for the supply and maintenance of rolling stock for Moscow public transport vehicle fleet under the «Life Сycle Сontract» (further – LLC. Overview of LLC, benefits, strengths and weakness identification are needed to achieve the objectives. Methods: methodological and theoretical background of the article based on feasibility study of LCC implementation projects as well as practical experience of LCC in CUE «Mosgortrans» and CUE «Moscow Metro». Information based on official data from Ministry of Economic development of the RF, Moscow Mayor official website, Moscow City Investment Agency. Results: research into LCC in PPP system, strengths and weaknesses identification will allow to minimize risks and to improve system. Conclusions and Relevance: this article proves that LCC model under the tready of of rolling stock procurement and maintenance contracts for Moscow public transport can provide a city with the new generation rolling stock, increase comfort and safety, obtain additional reliability assurance and timekeeping, remain high properties of rolling stock during exploitation period. 

  16. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  17. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  18. A 3D FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE FLUID FLOW AND CONTAMINANT TRANSPORT THROUGH A POROUS LANDFILL

    Directory of Open Access Journals (Sweden)

    ADEGUN, I. K.

    2014-08-01

    Full Text Available The paper investigated the flow of incompressible fluid and contaminant transport through a Porous Landfill using a numerical technique. A threedimensional finite element analysis technique was adopted for the solution. The problem was based on the Darcy’s Law and the Advection-Dispersion equation. The solutions of the Darcy’s and Advection-Dispersion equations were generated using Finite Element Analysis Software known as COMSOL Multiphysics. This simulation tool tracked the contaminant transport in the Landfill for 360 days at 10 days interval. It first modeled steady-state fluid flow by employing the Darcy’s Law Application Mode and then followed up with a transient solute-transport simulation by employing the Solute-Transport Application Mode from the Earth Science Module of COMSOL. The solution results obtained from this model were found to be in close agreement with reallife data obtained at the 130- million ton Bukit Tagar Mega Sanitary Landfill site, Selangor near Kuala Lumpur, Malaysia. This showed that the model can effectively predict the trends in the distributions of pollutants from a Municipal Solid Waste Landfill into nearby land and water sources. The model is thus applicable to the issues of environmental protection and safety of groundwater.

  19. Biogeochemical Attributes That Affect the Fate and Transport of Military Relevant Contaminants Under Freeze-thaw Conditions

    Science.gov (United States)

    LeMonte, J.; Price, C. L.; Seiter, J.; Crocker, F. H.; Douglas, T.; Chappell, M. A.

    2017-12-01

    The roles and missions that the U.S. Department of Defense (DoD) undertakes in the Arctic are being reshaped by significant changes in the operational environment as a result of rising global temperatures and increased development of the vast training ranges available in Alaska. The Arctic is warming faster than any other region on Earth resulting in changing seasonality and precipitation patterns that, in turn, are leading to alterations in above ground vegetation, permafrost stability and summer sea ice extent. Collectively, these poorly defined ecosystem changes play critical roles in affecting the transport and eventual fate of persistent military relevant contaminants through unique Arctic and Subarctic terrestrial environments. As a result, management of military contaminants in a changing Arctic represents a unique and potentially significant liability to the Army and the DoD. The United States footprint in the Arctic region falls within the state of Alaska and U.S. Army Alaska manages 10% of all active Army training lands worldwide, which cover nearly 2,500 square miles in total land area. Primary recalcitrant contaminants of concern at active training ranges and at legacy sites include energetics (i.e. RDX and 2,4-dinitrotoluene) and heavy metals (i.e. antimony and lead). Through a series of field sampling and laboratory experiments, the objectives of this work are to: 1) quantify soil biogeochemical attributes that effect the physical fate and transport of military relevant contaminants in Arctic and subarctic soils under freeze-thaw conditions with a focus on near surface processes, and 2) quantify microbial diversity in Arctic and subarctic soils and the environmental constraints on community activity while exploring the effects of amendments on community function as they relate to contaminant transformation.

  20. Long-term environmental and health implications of morphological change and sediment transport with respect to contaminants

    Science.gov (United States)

    Sneddon, Christopher; Copplestone, David; Tyler, Andrew; Hunter, Peter; Smith, Nick

    2014-05-01

    The EPSRC-funded Adaptation and Resilience of Coastal Energy Supply (ARCoES) project encompasses four research strands, involving 14 institutions and six PhD studentships. ARCoES aims to determine the threats posed to future energy generation and the distribution network by flooding and erosion, changing patterns of coastal sedimentation, water temperature and the distribution of plants and animals in the coastal zone. Whilst this research has direct benefits for the operation of coastal power stations, ARCoES aims to have a wider stakeholder engagement through assessing how the resilience of coastal communities may be altered by five hundred years of coastal evolution. Coastal evolution will have substantial implications for the energy sector of the North West of England as former waste storage sites are eroded and remobilised within the intertidal environment. The current intertidal environmental stores of radioactivity will also experience reworking as ocean chemistry changes and saltmarsh chronologies are reworked in response to rising sea levels. There is a duel requirement to understand mass sediment movement along the North West coast of England as understanding the sediment transport dynamics is key to modelling long term coastal change and understanding how the environmental store of radioactivity will be reworked. The University of Stirling is researching the long-term environmental and health implications of remobilisation and transport of contaminated sediments around the UK coastline. Using a synergy of hyperspectral and topographic information the mobilisation of sediment bound contaminants within the coastal environment will be investigated. Potential hazards posed by contaminants are determined by a set of environmental impact test criteria which evaluate the bio-accessibility and ionising dose of contaminants. These test criteria will be used to comment on the likely environmental impact of modelled sediment transport and anticipated changes in

  1. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Mark R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Candy, Jeff [General Atomics, San Diego, CA (United States)

    2013-11-07

    This project initiated the development of TGYRO - a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  2. Contaminant geochemistry. Interactions and transport in the subsurface environment. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Earth and Planetary Sciences

    2014-07-01

    In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of ''emerging contaminants'' that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a ''human lifetime scale''.

  3. Transport and transformation of pharmaceuticals and other contaminants of emerging concern from wastewater discharge through surface water to drinking water intake and treatment

    Science.gov (United States)

    The ubiquitous presence of pharmaceuticals, hormones, and other contaminants of emerging concern (CECs) in surface-water resources have necessitated research that better elucidates pathways of transport and transformation for these compounds from their discharged wastewater, thro...

  4. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  5. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  6. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    National Research Council Canada - National Science Library

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  7. Deterministic sensitivity analysis for the numerical simulation of contaminants transport; Analyse de sensibilite deterministe pour la simulation numerique du transfert de contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E

    2007-12-15

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  8. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    Science.gov (United States)

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  9. Predicting soil, water and air concentrations of environmental contaminants locally and regionally; multimedia transport and transformation models

    International Nuclear Information System (INIS)

    McKone, T.E.; Daniels, J.I.

    1991-01-01

    Environmental scientists recognize that the environment functions as a complex, interconnected system. A realistic risk-management strategy for many contaminants requires a comprehensive and integrated assessment of local and regional transport and transformation processes. In response to this need, we have developed multimedia models that simulate the movement and transformation of chemicals as they spread through air, water, biota, soils, sediments, surface water and ground water. Each component of the environment is treated as a homogeneous subsystem that can exchange water, nutrients, and chemical contaminants with other adjacent compartments. In this paper, we illustrate the use of multimedia models and measurements as tools for screening the potential risks of contaminants released to air and deposited onto soil and plants. The contaminant list includes the volatile organic compounds (VOCs) tetrachloroethylene (PCE) and trichloroethylene (TCE), the semi-volatile organic compound benzo(a)pyrene, and the radionuclides tritium and uranium-238. We examine how chemical properties effect both the ultimate route and quantity of human and ecosystem contact and identify sensitivities and uncertainties in the model results. We consider the advantages of multimedia models relative to environmental monitoring data. (au)

  10. Predicting soil, water, and air concentrations of environmental contaminants locally and regionally: Multimedia transport and transformation models

    International Nuclear Information System (INIS)

    McKone, T.E.; Daniels, J.I.

    1991-10-01

    Environmental scientists recognize that the environment functions as a complex, interconnected system. A realistic risk-management strategy for many contaminants requires a comprehensive and integrated assessment of local and regional transport and transformation processes. In response to this need, we have developed multimedia models that simulate the movement and transformation of chemicals as they spread through air, water, biota, soils, sediments, surface water, and ground water. Each component of the environment is treated as a homogeneous subsystem that can exchange water, nutrients, and chemical contaminants with other adjacent compartments. In this paper, we illustrate the use of multimedia models and measurements as tools for screening the potential risks of contaminants released to air and deposited onto soil and plants. The contaminant list includes the volatile organic compounds (VOCs) tetrachloroethylene (PCE) and trichloroethylene (TCE), the semi-volatile organic compound benzo(a)pyrene, and the radionuclides tritium and uranium-238. We examine how chemical properties effect both the ultimate route and quantity of human and ecosystem contact and identify sensitivities and uncertainties in the model results

  11. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  12. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.

    2015-05-11

    The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model

  13. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    International Nuclear Information System (INIS)

    Weaver, Louise; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-01

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L −1 ) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L −1 and 17 mg L −1 ), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L −1 DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the

  14. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    Science.gov (United States)

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air...

  16. Applicability of the Linear Sorption Isotherm Model to Represent Contaminant Transport Processes in Site Wide Performance Assessments

    International Nuclear Information System (INIS)

    FOGWELL, T.W.; LAST, G.V.

    2003-01-01

    The estimation of flux of contaminants through the vadose zone to the groundwater under varying geologic, hydrologic, and chemical conditions is key to making technically credible and sound decisions regarding soil site characterization and remediation, single-shell tank retrieval, and waste site closures (DOE 2000). One of the principal needs identified in the science and technology roadmap (DOE 2000) is the need to improve the conceptual and numerical models that describe the location of contaminants today, and to provide the basis for forecasting future movement of contaminants on both site-specific and site-wide scales. The State of Knowledge (DOE 1999) and Preliminary Concepts documents describe the importance of geochemical processes on the transport of contaminants through the Vadose Zone. These processes have been identified in the international list of Features, Events, and Processes (FEPs) (NEA 2000) and included in the list of FEPS currently being developed for Hanford Site assessments (Soler et al. 2001). The current vision for Hanford site-wide cumulative risk assessments as performed using the System Assessment Capability (SAC) is to represent contaminant adsorption using the linear isotherm (empirical distribution coefficient, K d ) sorption model. Integration Project Expert Panel (PEP) comments indicate that work is required to adequately justify the applicability of the linear sorption model, and to identify and defend the range of K d values that are adopted for assessments. The work plans developed for the Science and Technology (S and T) efforts, SAC, and the Core Projects must answer directly the question of ''Is there a scientific basis for the application of the linear sorption isotherm model to the complex wastes of the Hanford Site?'' This paper is intended to address these issues. The reason that well documented justification is required for using the linear sorption (K d ) model is that this approach is strictly empirical and is often

  17. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  18. A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. Theory and development

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and

  19. Em busca da eficiência no transporte terceirizado: estrutura de custos, parcerias e eliminação de desperdícios Seeking effectiveness in third-party transportation: cost structures, partnerships and increased efficiencies

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Fleury

    1997-08-01

    Full Text Available O objetivo deste artigo é apresentar um modelo racional para custeio de transporte como elemento fundamental ao bom funcionamento de parcerias entre embarcadores e transportadoras numa cadeia de suprimentos. A aplicação deste modelo a situações reais traz à tona uma série de informações importantes, a principal delas é o fato que o atual sistema de custeio utilizado pela maioria das empresas brasileiras causa sérias distorções em termos de custos, quando se consideram rotas curtas e rotas longas, subavaliando as primeiras e super-avaliando as últimas. Estas distorções estão vinculadas à elevada ineficiência no transporte de mercadorias, sobretudo nas operações de carregamento e descarregamento, cujos tempos médios excedem seis horas. Dentro deste escopo são definidos o conceito de parceria, suas implicações organizacionais e suas conseqüências imediatas, como por exemplo, o envolvimento de ambas as partes num programa de qualidade e produtividade do transporte. A adoção deste programa, paralelamente ao acordo quanto a um sistema de custeio de frete com as transportadoras que garantam um nível mínimo de retorno sobre seu investimento, tornam mais claras, e facilmente mensuráveis, as oportunidades para exploração de ganhos conjuntos dentro de um ambiente de parceria. Finalmente, são descritas as três causas básicas que levam a ineficiência das operações de carregamento e descarregamento no Brasil: organizacionais, tecnológicas e procedimentos.The main objective of this paper is to present a rational model for cost allocation in the transportation activity as a key element for designing and maintaining partnerships between shippers and carriers. The utilization of the proposed cost allocation model for a real case situation gave rise to several conclusions. The most important of them is the fact that the cost allocation system currently used by Brazilian shippers and carriers underestimate the cost of short

  20. Preliminary description of hydrologic characteristics and contaminant transport potential of rocks in the Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Deju, R.A.; Fecht, K.R.

    1979-03-01

    This report aims at consolidating existing data useful in defining the hydrologic characteristics of the Pasco Basin within south-central Washington. It also aims at compiling the properties required to evaluate contaminant transport potential within individual subsurface strata in this basin. The Pasco Basin itself is a tract of semi-arid land covering about 2,000 square miles in south-central Washington. The regional geology of this basin is dominated by tholeiitic flood basalts of the Columbia Plateau. The surface hydrology of the basin is dominated by the Yakima, Snake, and Columbia rivers. Short-lived ephemeral streams may flow for a short period of time after a heavy rainfall or snowmelt. The subsurface hydrology of the Pasco Basin is characterized by an unconfined aquifer carrying the bulk of the water discharged within the basin. This aquifer overlies a series of confined aquifers carrying progressively smaller amounts of groundwater as a function of depth. The hydraulic properties of the various aquifers and non-water-bearing strata are characterized and reported. A summary of the basic properties is tabulated. The hydrochemical data obtained are summarized. The contaminant transport properties of the rocks in the Pasco Basin are analyzed with emphasis on the dispersion and sorption coefficients and the characteristics of the potential reactions between emplaced waste and the surrounding medium. Some basic modeling considerations of the hydrogeologic systems in the basin with a brief discussion of model input requirements and their relationship to available data are presented

  1. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  2. A chromate-contaminated site in southern Switzerland – Part 2: Reactive transport modeling to optimize remediation options

    International Nuclear Information System (INIS)

    Wanner, Christoph; Eggenberger, Urs; Mäder, Urs

    2012-01-01

    A 2D horizontal reactive transport model of a chromate-contaminated site near Rivera, Switzerland, was developed using the computer code CrunchFlow to evaluate site remediation strategies. Transport processes were defined according to the results of an existing hydrological model, and the definition of geochemical (reactive) processes is based on the results of a detailed mineralogical and geochemical site characterization leading to a comprehensive conceptual site model. Kinetics of naturally occurring Cr(VI) reduction by Fe(II) and natural solid organic matter is quantified by fitting measured Cr isotope ratios to a modeled 1D section along the best constrained flow line. The simulation of Cr isotope fractionation was also incorporated into the 2D model. Simulation of the measured present day Cr(VI) plume and δ 53 Cr value distribution was used for the 2D model calibration and corresponds to a situation where only monitored natural attenuation (MNA) is occurring. Other 2D model runs simulate alternate excavation scenarios. The simulations show that with an excavation of the top 2–4 m the groundwater Cr(VI) plume can be minimized, and that a deeper excavation depth only diminishes the plume if all the contaminants can be removed. A combination of an excavation of the top 2–4 m and monitoring of the ongoing natural Cr(VI) reduction is suggested as the most ecological and economical remediation strategy, even though a remaining time period with ongoing subsoil Cr(VI) contamination in the order of 1 ka is predicted.

  3. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  4. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model

    International Nuclear Information System (INIS)

    Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M. Sinan; Top, Selin; Sekman, Elif

    2011-01-01

    Highlights: → We conduct 1D advection-dispersion modeling to estimate transport parameters. → We examine fourteen phenolic compounds and three inorganic contaminants. → 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. → Dispersion coefficients of Cu are determined to be higher than Zn and Fe. → Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m 3 ) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L e = 0.20 m, k e = 1 x 10 -8 m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L e = 0.20 m, k e = 1 x 10 -8 m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L e = 0.22 m, k e = 1 x 10 -8 m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L e = 0.22 m, k e = 4.24 x 10 -7 m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10 -10 to 10.67 x 10 -10 m 2 /s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 x 10 -6 m 2 /s to 5

  5. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  6. Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.; Zio, E.

    2005-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)

  7. Dose reconstruction in radioactively contaminated areas based on radiation transport calculations and measurements

    International Nuclear Information System (INIS)

    Hiller, Mauritius Michael

    2015-01-01

    The external radiation exposure at the former village of Metlino, Russia, was reconstructed. The Techa river in Metlino was contaminated by water from the Majak plant. The village was evacuated in 1956 and a reservoir lake created. Absorbed doses in bricks were measured and a model of the present-day and the historic Metlino was created for Monte Carlo calculations. By combining both, the air kerma at shoreline could be reconstructed to evaluate the Techa River Dosimetry System.

  8. Technology Partnership Agreements | NREL

    Science.gov (United States)

    Partnership Agreements Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in using technology partnership agreements. See a summary of our Fiscal Year 2017 technology partnership

  9. Origins and transport of aquatic dioxins in the Japanese watershed: soil contamination, land use, and soil runoff events.

    Science.gov (United States)

    Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi

    2009-06-15

    Significant dioxins accumulations in Japanese forests and paddy fields have been observed, and surface soil runoff caused by rainfall and irrigation (i.e., soil puddling in paddy fields) results in dioxins input into the aquatic environment. An extensive investigation into the origins and transport of aquatic dioxins in the Yasu watershed, Japan was conducted considering surface soil contamination level, land use, and type of soil runoff event (i.e., irrigation runoff [IR], rainfall runoff [RR], and base flow [BF]). Combined use of the chemically activated luciferase expression (CALUX) assay together with high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) efficiently enabled this study, so that origins, transport, and dynamic movement of aquatic dioxins in the watershed were revealed. The particulate organic carbon normalized particulate-dioxins WHO-toxic equivalent (TEQ) concentration predicted by the CALUX assay (Spar) was found to be a convenient molecular marker to indicate origins of aquatic dioxins and clearly reflect surface soil contamination level, land use, and soil runoff events. Using experimental results and theoretical modeling, the annual loading amount of dioxins at the middle reach of the river was estimated to be 0.458 mg WHO-TEQ in 2004. More than 96.6% of the annual loading amount was attributed to RR and derived almost evenly from forest and paddy fields at the study location. Because the annual loading amount at the middle reach is less than 0.5% of the total dioxins accumulated in the upper basin, dioxins runoff from the Japanese watershed will continue. This study shows that the combined use of the bioassay with HRGC/HRMS can provide new insights into dioxins transport and fate in the environment.

  10. Catchment-scale contaminant transport under changing hydro-climatic conditions in the Aral Sea Drainage Basin, Central Asia

    Science.gov (United States)

    Jarsjö, Jerker; Törnqvist, Rebecka; Su, Ye

    2013-04-01

    Dependable projections of future water availability and quality are essential in the management of water resources. Changes in land use, water use and climate can have large impacts on water and contaminant flows across extensive catchments that may contain different administrative regions where shared water resources must be managed. We consider the extensive Aral Sea Drainage Basin (ASDB) and the Amu Darya River Delta in Central Asia, which are currently under severe water stress due to large-scale irrigation expansion. We interpret data on hydro-climatic conditions, main contaminants of surface water and shallow groundwater systems, location of rivers and canal networks, and groundwater flow directions. The data are used together with climate change projections from general circulation models (GCMs) as input to hydrological and (advective) transport modelling. The main goal is to assess how regional transport pathways and travel times have changed, and are likely to change further, in response to past and projected future hydro-climatic changes. More specifically, the hydrological modelling was based on temperature and precipitation change (ΔT and ΔP) results from 65 GCM projections of 21st century conditions (specifically considering time periods around 2025, 2050, and 2100), relative to reference conditions around 1975 (taken from the reference period 1961-1990). Whereas ΔT is robustly projected to increase with time, the projected magnitude of ΔP differs more among projections for the distant future (2100) than for the near future (2025), with uncertainty remaining even about the direction of change (i.e., positive or negative ΔP). However, mainly due to the projected temperature-driven increases in evapotranspiration, ensemble average results show that the Amu Darya river discharge Q in the downstream ASDB is likely to show a decreasing trend throughout the 21st century. Notably, projected changes in the upstream, mountainous regions have a relatively

  11. Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lancaster, N.; Bamford, R.

    1993-12-01

    During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ''safety shots.'' ''Safety'' in this context meant ''safety against fission reaction.'' The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ''Plutonium Valley'' was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu 239,240 by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu 239,240 particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures

  12. Induced Environment Contamination Monitor (IECM), air sampler - Results from the Space Transport System (STS-2) flight

    Science.gov (United States)

    Peters, P. N.; Hester, H. B.; Bertsch, W.; Mayfield, H.; Zatko, D.

    1983-01-01

    An investigation involving sampling the rapidly changing environment of the Shuttle cargo bay is considered. Four time-integrated samples and one rapid acquisition sample were collected to determine the types and quantities of contaminants present during ascent and descent of the Shuttle. The sampling times for the various bottles were controlled by valves operated by the Data Acquisition and Control System (DACS) of the IECM. Many of the observed species were found to be common solvents used in cleaning surfaces. When the actual volume sampled is taken into account, the relative mass of organics sampled during descent is about 20 percent less than during ascent.

  13. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D.

    2012-01-01

    with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced...... for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction...... of enhanced electrokinetic extraction of metals in real world applications....

  14. Numerical Survey of Contaminant Transport and Self-Cleansing of Water in Nador Lagoon, Morocco

    Directory of Open Access Journals (Sweden)

    E. M. Chaabelasri

    2014-01-01

    Full Text Available Numerical simulations are presented of the flow hydrodynamics and hypothetical contaminant dispersion patterns in Nador Lagoon, a shallow lagoon with a barrier island situated on the coast of Morocco. It is found that the natural circulation forced by the tidal flow in the lagoon is greatly affected by the development of an artificial inlet in the barrier island. The case study demonstrates the potential use of modern computational hydraulics as a tool integrated in the decision support system designed to manage a lagoon ecosystem.

  15. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  16. Heterogeneity and contaminant transport modeling for the Savannah River integrated demonstration site

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1992-11-01

    The effectiveness of remediating aquifers and vadose zone sediments is frequently controlled by spatial heterogeneities. A continuing and long-recognized problem in selecting, planning, implementing, and operating remediation projects is the development of methods for quantitatively describing heterogeneity and predicting its effects on process performance. The similarity to and differences from modeling oil recovery processes in the petroleum industry are illustrated by the extension to contaminant extraction processes of an analytic model originally developed for waterflooding petroleum reservoirs. The resulting equations incorporate the effects of heterogeneity through a single parameter, σ. Fitting this model to the Savannah River in situ Air Stripping test data suggests that the injection of air into a horizontal well below the water table may have improved performance by changing the flow pattern in the vadose zone. This change increased the capture volume, and consequently the contaminant mass inventory, of the horizontal injection well completed in the vadose zone. The apparent increases (compared to extraction only from the horizontal well) are from 10,200 to 21,000 pounds for TCE and from 3,600 pounds to 59,800 pounds for PCE. The predominance of PCE in this calculated increase suggests that redistribution of flow paths in the vadose zone, rather than in-situ stripping, may provide most of the improvement. Although this preliminary conclusion remains to be reinforced by more sophisticated modeling currently in progress, there appears to be a definite improvement, which is attributable to air injection, over conventional remediation methods

  17. The problem of radioactive contamination inhomogeneity and simulation of the transport of radionuclides through agroecosystems

    International Nuclear Information System (INIS)

    Girij, V.A.; Shpinar, L.I.; Yaskovets, I.I.; Zaitov, V.R.; Hille, R.

    1997-01-01

    The analyses of the measurement data on the territory of the Ukrainian Polesie region carried out by the Research Centre Juelich and the Ukrainian Institute of Radioecology shows that there is a high degree of inhomogeneity for the contamination pattern, they transfer from soil to the biosphere and for the food consumption. Therefore, a deterministic environmental assessment model may not be convenient because most processes are not known in detailed. In this situation a probabilistic approach seems to be more promising. In this report presented a dynamic model for the transfer of radioactivity in terrestrial food chains that fit to the regionally conditions and agricultural practice. The living organism will be treated as dynamic system subject to random action of radioactivity. This system is described by stochastic differential equations of Langevene's type. Starting from this base we calculated a distribution function of radionuclide body burdens for inhabitant ensembles under the assumptions that entering of activity into organisms is a random temporary function that can be approximated by certain impulse Poison processes. A comparison of calculated distribution function is carried out with measurement results of internal body burden. It shown a satisfactory description of the real situation found for four investigated villages of Ukrainian Polesie region (Olevsk, Narodichi, Vezhitsa and Stare Selo) that were characterized by different degree of contamination and different degree of inhomogeneity

  18. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  19. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Louise, E-mail: louise.weaver@esr.cri.nz; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-15

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L{sup −1}) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L{sup −1} and 17 mg L{sup −1}), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L{sup −1} DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage

  20. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  1. PAH contamination in soils adjacent to a coal-transporting facility in Tapin district, south Kalimantan, Indonesia.

    Science.gov (United States)

    Mizwar, Andy; Trihadiningrum, Yulinah

    2015-07-01

    This study was undertaken to determine the level of 16 polycyclic aromatic hydrocarbon (PAH), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), in surface soils around a coal-transporting facility in the western part of South Kalimantan, Indonesia. Three composite soil samples were collected from a coal stockpile, coal-hauling road, and coal port. Identification and quantification of PAH was performed by gas chromatography-mass spectrometry. The total content of 16 USEPA-PAH ranged from 11.79 to 55.30 mg/kg with arithmetic mean value of 33.14 mg/kg and median of 32.33 mg/kg. The 16 USEPA-PAH measured levels were found to be greater compared with most of the literature values. The levels of high molecular-weight PAH (5- and 6-ring) were dominant and formed 67.77-80.69 % of the total 16 USEPA-PAH The most abundant of individual PAH are indeno[1,2,3-cd] pyrene and benzo[a]pyrene with concentration ranges of 2.11-20.56 and 1.59-17.84 mg/kg, respectively. The degree of PAH contamination and subsequent toxicity assessment suggest that the soils of the study area are highly contaminated and pose a potential health risk to humans.

  2. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  3. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    International Nuclear Information System (INIS)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10 -4 , 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10 -4 , 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents

  4. Registered partnerships

    CERN Multimedia

    Staff Association

    2015-01-01

    In recent decades, family patterns have changed significantly. National laws have taken these changes into account, recognizing new forms of unions, different to heterosexual marriage. Indeed, recently some countries have given the possibility to same-sex couples to enter into various forms of unions. Staff regulations of international organizations are not directly affected by national laws, but in the context of diversity policies, the lack of recognition of these new forms of unions, may appear to discriminate based on sexual orientation and to limit the freedom of choosing marital status. A study by the International Service for Remunerations and Pensions (iSRP) of the OECD in January 2015 (PROS Report (1015) 04) shows that in comparison with other international organizations, CERN offers the least favorable social conditions for its Staff with in a registered partnership. As part of the Five-year review in 2015, it is important that CERN aligns itself with the practice of these other organizations...

  5. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs

  6. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    International Nuclear Information System (INIS)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy's Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated 137 Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of 137 Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of 137 Cs, 99 Tc, and NO 3 through the vadose zone of WMA-S-SX, particularly beneath tank SX-109

  7. Modelling the transport of solid contaminants originated from a point source

    Science.gov (United States)

    Salgueiro, Dora V.; Conde, Daniel A. S.; Franca, Mário J.; Schleiss, Anton J.; Ferreira, Rui M. L.

    2017-04-01

    The solid phases of natural flows can comprise an important repository for contaminants in aquatic ecosystems and can propagate as turbidity currents generating a stratified environment. Contaminants can be desorbed under specific environmental conditions becoming re-suspended, with a potential impact on the aquatic biota. Forecasting the distribution of the contaminated turbidity current is thus crucial for a complete assessment of environmental exposure. In this work we validate the ability of the model STAV-2D, developed at CERIS (IST), to simulate stratified flows such as those resulting from turbidity currents in complex geometrical environments. The validation involves not only flow phenomena inherent to flows generated by density imbalance but also convective effects brought about by the complex geometry of the water basin where the current propagates. This latter aspect is of paramount importance since, in real applications, currents may propagate in semi-confined geometries in plan view, generating important convective accelerations. Velocity fields and mass distributions obtained from experiments carried out at CERIS - (IST) are used as validation data for the model. The experimental set-up comprises a point source in a rectangular basin with a wall placed perpendicularly to the outer walls. Thus generates a complex 2D flow with an advancing wave front and shocks due to the flow reflection from the walls. STAV-2D is based on the depth- and time-averaged mass and momentum equations for mixtures of water and sediment, understood as continua. It is closed in terms of flow resistance and capacity bedload discharge by a set of classic closure models and a specific high concentration formulation. The two-layer model is derived from layer-averaged Navier-Stokes equations, resulting in a system of layer-specific non-linear shallow-water equations, solved through explicit first or second-order schemes. According to the experimental data for mass distribution, the

  8. Contaminant transport modelling in tidal influenced water body for low level liquid waste discharge out

    International Nuclear Information System (INIS)

    Singh, Sanjay; Naidu, Velamala Simhadri

    2018-01-01

    Low level liquid waste is generated from nuclear reactor operation and reprocessing of spent fuel. This waste is discharged into the water body after removing bulk of its radioactivity. Dispersion of contaminant mainly depends on location of outfall and hydrodynamics of water body. For radiological impact assessment, in most of the analytical formulations, source term is taken as continuous release. However, this may not be always true as the water level is influenced by tidal movement and the selected outfall may come under intertidal zone in due course of the tidal cycle. To understand these phenomena, a case study has been carried out to evaluate hydrodynamic characteristics and dilution potential of outfall located in inter-tidal zone using numerical modelling

  9. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination.

    Science.gov (United States)

    Sone, Yuka; Uraguchi, Shimpei; Takanezawa, Yasukazu; Nakamura, Ryosuke; Pan-Hou, Hidemitsu; Kiyono, Masako

    2017-01-01

    MerC, encoded by merC in the transposon Tn21 mer operon, is a heavy metal transporter with potential applications for phytoremediation of heavy metals such as mercuric ion and cadmium. In this study, we demonstrate that MerC also acts as a transporter for methylmercury. When MerC was expressed in Escherichia coli XL1-Blue, cells became hypersensitive to CH 3 Hg(I) and the uptake of CH 3 Hg(I) by these cells was higher than that by cells of the isogenic strain. Moreover, transgenic Arabidopsis plants expressing bacterial MerC or MerC fused to plant soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) accumulated CH 3 Hg(I) effectively and their growth was comparable to the wild-type plants. These results demonstrate that when the bacterium-derived merC gene is ectopically introduced in genetically modified plants, MerC expression in the transgenic plants promotes the transport and sequestration of methylmercury. Thus, our results show that the expression of merC in Arabidopsis results in transgenic plants that could be used for the phytoremediation and elimination of toxic methylmercury from the environment.

  10. Code-To-Code Benchmarking Of The Porflow And GoldSim Contaminant Transport Models Using A Simple 1-D Domain - 11191

    International Nuclear Information System (INIS)

    Hiergesell, R.; Taylor, G.

    2010-01-01

    An investigation was conducted to compare and evaluate contaminant transport results of two model codes, GoldSim and Porflow, using a simple 1-D string of elements in each code. Model domains were constructed to be identical with respect to cell numbers and dimensions, matrix material, flow boundary and saturation conditions. One of the codes, GoldSim, does not simulate advective movement of water; therefore the water flux term was specified as a boundary condition. In the other code, Porflow, a steady-state flow field was computed and contaminant transport was simulated within that flow-field. The comparisons were made solely in terms of the ability of each code to perform contaminant transport. The purpose of the investigation was to establish a basis for, and to validate follow-on work that was conducted in which a 1-D GoldSim model developed by abstracting information from Porflow 2-D and 3-D unsaturated and saturated zone models and then benchmarked to produce equivalent contaminant transport results. A handful of contaminants were selected for the code-to-code comparison simulations, including a non-sorbing tracer and several long- and short-lived radionuclides exhibiting both non-sorbing to strongly-sorbing characteristics with respect to the matrix material, including several requiring the simulation of in-growth of daughter radionuclides. The same diffusion and partitioning coefficients associated with each contaminant and the half-lives associated with each radionuclide were incorporated into each model. A string of 10-elements, having identical spatial dimensions and properties, were constructed within each code. GoldSim's basic contaminant transport elements, Mixing cells, were utilized in this construction. Sand was established as the matrix material and was assigned identical properties (e.g. bulk density, porosity, saturated hydraulic conductivity) in both codes. Boundary conditions applied included an influx of water at the rate of 40 cm/yr at one

  11. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    International Nuclear Information System (INIS)

    Barten, Werner; Robinson, Peter C.

    2001-02-01

    In the context of safety assessment of radioactive waste repositories, complex radionuclide transport models covering key safety-relevant processes play a major role. In recent Swiss safety assessments, such as Kristallin-I, an important drawback was the limitation in geosphere modelling capability to account for geosphere heterogeneities. In marked contrast to this limitation in modelling capabilities, great effort has been put into investigating the heterogeneity of the geosphere as it impacts on hydrology. Structural geological methods have been used to look at the geometry of the flow paths on a small scale and the diffusion and sorption properties of different rock materials have been investigated. This huge amount of information could however be only partially applied in geosphere transport modelling. To make use of these investigations the 'PICNIC project' was established as a joint cooperation of PSI/Nagra and QuantiSci to provide a new geosphere transport model for Swiss safety assessment of radioactive waste repositories. The new transport code, PICNIC, can treat all processes considered in the older geosphere model RANCH MD generally used in the Kristallin-I study and, in addition, explicitly accounts for the heterogeneity of the geosphere on different spatial scales. The effects and transport phenomena that can be accounted for by PICNIC are a combination of (advective) macro-dispersion due to transport in a network of conduits (legs), micro-dispersion in single legs, one-dimensional or two-dimensional matrix diffusion into a wide range of homogeneous and heterogeneous rock matrix geometries, linear sorption of nuclides in the flow path and the rock matrix and radioactive decay and ingrowth in the case of nuclide chains. Analytical and numerical Laplace transformation methods are integrated in a newly developed hierarchical linear response concept to efficiently account for the transport mechanisms considered which typically act on extremely different

  12. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    Energy Technology Data Exchange (ETDEWEB)

    Barten, Werner [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Robinson, Peter C. [QuantiSci Limited, Henley-on-Thames (United Kingdom)

    2001-02-01

    In the context of safety assessment of radioactive waste repositories, complex radionuclide transport models covering key safety-relevant processes play a major role. In recent Swiss safety assessments, such as Kristallin-I, an important drawback was the limitation in geosphere modelling capability to account for geosphere heterogeneities. In marked contrast to this limitation in modelling capabilities, great effort has been put into investigating the heterogeneity of the geosphere as it impacts on hydrology. Structural geological methods have been used to look at the geometry of the flow paths on a small scale and the diffusion and sorption properties of different rock materials have been investigated. This huge amount of information could however be only partially applied in geosphere transport modelling. To make use of these investigations the 'PICNIC project' was established as a joint cooperation of PSI/Nagra and QuantiSci to provide a new geosphere transport model for Swiss safety assessment of radioactive waste repositories. The new transport code, PICNIC, can treat all processes considered in the older geosphere model RANCH MD generally used in the Kristallin-I study and, in addition, explicitly accounts for the heterogeneity of the geosphere on different spatial scales. The effects and transport phenomena that can be accounted for by PICNIC are a combination of (advective) macro-dispersion due to transport in a network of conduits (legs), micro-dispersion in single legs, one-dimensional or two-dimensional matrix diffusion into a wide range of homogeneous and heterogeneous rock matrix geometries, linear sorption of nuclides in the flow path and the rock matrix and radioactive decay and ingrowth in the case of nuclide chains. Analytical and numerical Laplace transformation methods are integrated in a newly developed hierarchical linear response concept to efficiently account for the transport mechanisms considered which typically act on extremely

  13. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  14. Modeling contaminant transport in porous media in relation to nuclear-waste disposal: a review

    International Nuclear Information System (INIS)

    Grove, D.B.; Kipp, K.L.

    1980-01-01

    The modeling of solute transport in saturated porous media is reviewed as it is applied to the movement of radioactive waste in the subsurface. Those processes, both physical and chemical, that affect radionuclide movement are discussed and the references that best illustrate these processes listed. Movement is separated into convection, convection-dispersion, and convection-dispersion and chemical reactions. Solutions of equations describing such movement are divided into one-, two-, and three-dimensional analytical and numerical examples. Discussions of recent work in the area of stochastic modeling are followed by discussions of applications of the models to selected field sites

  15. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    International Nuclear Information System (INIS)

    David Watson

    2005-01-01

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  16. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  17. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  18. Stochastic estimation and simulation of heterogeneities important for transport of contaminants in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Kitteroed, Nils-Otto

    1997-12-31

    The background for this thesis was the increasing risk of contamination of water resources and the requirement of groundwater protection. Specifically, the thesis implements procedures to estimate and simulate observed heterogeneities in the unsaturated zone and evaluates what impact the heterogeneities may have on the water flow. The broad goal was to establish a reference model with high spatial resolution within a small area and to condition the model using spatially frequent field observations, and the Moreppen site at Oslo`s new major airport was used for this purpose. An approach is presented for the use of ground penetrating radar in which indicator kriging is used to estimate continuous stratigraphical architecture. Kriging is also used to obtain 3D images of soil moisture. A simulation algorithm based on the Karhunen-Loeve expansion is evaluated and a modification of the Karhunen-Loeve simulation is suggested that makes it possible to increase the size of the simulation lattice. This is obtained by kriging interpolation of the eigenfunctions. 250 refs., 40 figs., 7 tabs.

  19. IAEA co-ordinated research programme on the transport of low specific activity materials and surface contaminated objects

    International Nuclear Information System (INIS)

    Gray, I.L.S.

    2000-01-01

    The International Atomic Energy Agency (IAEA) prepares regulations for the safe transport of radioactive material, and periodically revised editions of these are published. These regulations are adopted by individual countries across the world and by international organisations concerned with transport. Whilst it is desirable to have a stable framework of regulatory requirements, there is also a need to take account of technical advances and operational experience and revise the regulations. From time to time Co-ordinated Research Programmes (CRP) are established to investigate particular areas of the regulations that are giving concern. In 1996 the IAEA Standing Advisory Group on the Transport of Radioactive Material (SAGSTRAM) concluded that the requirements for classification, packaging and transport of low specific activity (LSA) material and surface contaminated objects (SCO) did not always have a strong radiation protection basis. Accordingly SAGSTRAM established a CRP with an overall objective to develop a dose-based approach for establishing LSA/SCO requirements. Six countries are participating in this CRP. Brazil, Canada, France, Germany, United Kingdom and United States. Each country is carrying out work that is outlined in agreements with the IAEA, with the work aimed at meeting the specific objective of the agreement and also contributing to achieving the overall objective of the CRP. Completion of the CRP usually involves the preparation of an IAEA TECDOC by a Consultant Services Meeting (CSM), and this TECDOC will summarise the work performed under the CRP and include any recommendations made by the CRP. Following the establishment of the CRP in 1997, the first Research Co-ordination Meeting (RCM) was held in December 1997. The second RCM was held in March 1999, with the final RCM planned for the end of 2000. The work being carried out by Brazil and Canada is focused upon the transport of uranium and thorium ores, and is a mixture of theoretical and

  20. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  1. Ingredients for successful partnerships

    NARCIS (Netherlands)

    S.M. Pfisterer (Stella)

    2011-01-01

    textabstractFor the development of new cross-sector partnerships it is required to know what the essence of successful partnership projects is. Which factors influence success or failure of partnerships is highly related to the specific context where partnerships operate. The literature on critical

  2. Annual Partnership Report, 2016

    Science.gov (United States)

    Wyoming Community College Commission, 2016

    2016-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. This partnership report fulfills statutory reporting requirement W.S. 21-18-202(e)(iv) which mandates the development of annual reports to the legislature on the outcomes of partnerships between colleges…

  3. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  4. Risk assessment through drinking water pathway via uncertainty modeling of contaminant transport using soft computing

    International Nuclear Information System (INIS)

    Datta, D.; Ranade, A.K.; Pandey, M.; Sathyabama, N.; Kumar, Brij

    2012-01-01

    The basic objective of an environmental impact assessment (EIA) is to build guidelines to reduce the associated risk or mitigate the consequences of the reactor accident at its source to prevent deterministic health effects, to reduce the risk of stochastic health effects (eg. cancer and severe hereditary effects) as much as reasonable achievable by implementing protective actions in accordance with IAEA guidance (IAEA Safety Series No. 115, 1996). The measure of exposure being the basic tool to take any appropriate decisions related to risk reduction, EIA is traditionally expressed in terms of radiation exposure to the member of the public. However, models used to estimate the exposure received by the member of the public are governed by parameters some of which are deterministic with relative uncertainty and some of which are stochastic as well as imprecise (insufficient knowledge). In an admixture environment of this type, it is essential to assess the uncertainty of a model to estimate the bounds of the exposure to the public to invoke a decision during an event of nuclear or radiological emergency. With a view to this soft computing technique such as evidence theory based assessment of model parameters is addressed to compute the risk or exposure to the member of the public. The possible pathway of exposure to the member of the public in the aquatic food stream is the drinking of water. Accordingly, this paper presents the uncertainty analysis of exposure via uncertainty analysis of the contaminated water. Evidence theory finally addresses the uncertainty in terms of lower bound as belief measure and upper bound of exposure as plausibility measure. In this work EIA is presented using evidence theory. Data fusion technique is used to aggregate the knowledge on the uncertain information. Uncertainty of concentration and exposure is expressed as an interval of belief, plausibility

  5. 49 CFR 1103.35 - Partnership or professional corporation names and titles.

    Science.gov (United States)

    2010-10-01

    ... § 1103.35 Partnership or professional corporation names and titles. In the formation of a partnership or... 49 Transportation 8 2010-10-01 2010-10-01 false Partnership or professional corporation names and... used to disguise the practitioner or his partnership or professional corporation. ...

  6. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  7. Modeling the Influence of Variable Tributary Inflow on Circulation and Contaminant Transport in a Water Supply Reservoir

    Science.gov (United States)

    Nguyen, L. H.; Wildman, R.

    2012-12-01

    This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with

  8. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    Science.gov (United States)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  9. Modeling Water Exchange and Contaminant Transport through a Baltic Coastal Region

    International Nuclear Information System (INIS)

    Engqvist, Anders; Doeoes, Kristofer; Andrejev, Oleg

    2006-01-01

    The water exchange of the Baltic coastal zone is characterized by its seasonally varying regimes. In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed into a waterborne transport phase. In particular, estimates of the associated residence times in the near-shore coastal zone are of interest. There are several methods to quantify such measures, of which three are presented here. Using the coastal location of Forsmark (Sweden) as an example, methods based on passive tracers, particle trajectories, and the average age distribution of exogenous water parcels are compared for a representative one-year cycle. Tracer-based methods can simulate diffusivity more realistically than the other methods. Trajectory-based methods can handle Lagrangian dispersion processes due to advection but neglect diffusion on the sub-grid scale. The method based on the concept of average age (AvA) of exogenous water can include all such sources simultaneously not only boundary water bodies but also various (fresh)water discharges. Due to the inclusion of sub-grid diffusion this method gives a smoother measure of the water renewal. It is shown that backward in time trajectories and AvA-times are basically equipollent methods, yielding correlated results within the limits set by the diffusivity

  10. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  11. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  12. Natural organics in groundwaters and their potential effect on contaminant transport in granitic rock

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.; Richer, D.

    1996-07-01

    Naturally occurring organics in groundwaters of the Whiteshell Research Area (WRA) of southern Manitoba and of the Atikokan Research Area of northwestern Ontario were investigated to assess their potential role in radionuclide transport within granite fractures of the Canadian Shield. A survey of dissolved organic carbon (DOC) concentrations, carried out to determine the variability in the organic content of these groundwaters, showed average concentrations in WRA deep groundwaters of 0.8 ± 0.1 mg/L for Fracture Zone 2, 0.8 ± 0.4 mg/L for near-vertical fractures, and 2.3 ± 0.8 mg/L for deeper saline groundwater. Surface waters and near-surface groundwaters had significantly higher DOC with 29.2 ± 0.6 mg/L in streams from the East Swamp. The DOC consisted mainly of hydrophilic neutral compounds 60 to 75%, and hydrophobic and hydrophilic acids 23 to 39%, along with very small amounts of hydrophobic bases and neutrals, and hydrophilic bases. The average complexing capacity of natural organics in WRA deep groundwaters was calculated to be 6.7 x 10 -6 eq/L. The ability of these organics to complex radionuclides was tested using conditional stability constants from the literature for humic complex formation with trivalent, tetravalent, pentavalent and hexavalent actinides. The chemistries of Np(V) and U(VI) were predicted to be dominated by inorganic complexes and not significantly affected by organics. Accurate predictions for AM(III) and Th(IV) could not be made since the literature contains a wide range in values of stability constants for humic complexes with these elements. Surface waters and near-surface groundwaters in many areas of the Canadian Shield contain enough humics to complex a significant fraction of dissolved actinides. Radiocarbon ages of humics from WRA groundwater varied between 3600 and 6200 years before present, indicating that a component of humic substances in deep groundwaters must originate from near-surface waters. 54 refs., 15 tabs., 5

  13. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  14. Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis.

    Science.gov (United States)

    Xie, Haijian; Chen, Yunmin; Thomas, Hywel R; Sedighi, Majid; Masum, Shakil A; Ran, Qihua

    2016-02-01

    A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport

  15. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    Science.gov (United States)

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  16. Partnership for Prescription Assistance

    Science.gov (United States)

    ... may use our name without our permission. The Partnership for Prescription Assistance will help you find the ... Events Blog Facebook Twitter Start living better. The Partnership for Prescription Assistance helps qualifying patients without prescription ...

  17. Partnerships panel: natural, resource partnerships: literature synthesis and research agenda

    Science.gov (United States)

    Steve Selin; Nancy Myers

    1995-01-01

    This paper presents a summary of an annotated bibliography on natural resource partnerships. Resource areas and management functions addressed in the partnership literature are examined. Partnership research is summarized and broken into categories including: Partnership outcomes, assessing the potential for partnerships, characteristics of successful partnerships,...

  18. Partnerships as Interpellation

    DEFF Research Database (Denmark)

    Andersen, Sigrid Bjerre; Jensen, Steffen

    2017-01-01

    of the political partnership between Liberia and the European Union, and the partnership between a South African and a Danish NGO. Both illustrate how neither donor nor recipient, as it is otherwise often assumed, can univocally announce a partnership. Rather, representatives of the institutions involved mutually...

  19. Partnerships – Limited partnerships and limited liability limited partnerships

    OpenAIRE

    Henning, Johan J.

    2000-01-01

    Consideration of the Limited Liability Partnership Act 2000 which introduced a new corporate entity, carrying the designations “partnership” and “limited” which allow members to limit their liability whilst organising themselves internally as a partnership. Article by Professor Johan Henning (Director of the Centre for Corporate Law and Practice, IALS and Dean of the Faculty of Law, University of the Free State, South Africa). Published in Amicus Curiae - Journal of the Institute of Advanced ...

  20. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    movement accompanying dissolution in the unconsolidated media. The resultant movement changes the anticipated findings for pore and throat size distributions. For column S3, with cancrinite precipitation accompanying quartz dissolution, the precitiation halts much of the grain movement and more systematic distributions are obtained. Column S4, which was sealed with caustic solution acted as a control sample to study reactive effects during periods when columns S1 and S3 were sealed between flow experiments. No significant changes are observed in S4 with time. At Princeton, the imaging and analysis work focused on the effects of mineral precipitation and advancing our understanding of the impacts of these reactions on reactive transport in subsurface sediments. These findings are described in detail below, and have been published in L.E. Crandell, C.A. Peters, W. Um, K.W. Jones, W.B. Lindquist, 2012. “Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.” Journal of Contaminant Hydrology 131 (2012) 89–99. 3) Multi-Scale Modeling and Up-Scaling. Using an array of modeling approaches, we examined pore-scale variations in physical and mineralogical properties, flow velocities, and (for unsaturated conditions) wetting fluid/grain surface areas, and permeability evolution. Results and Key Findings: To predict the column permeability and estimate the impact of mineral precipitation, pore network models were informed using the pore and throat-size distributions from the imaging analyses. As a comparison, supplemental analyses were performed on Viking sandstone specimens from the Alberta sedimentary basin. In another part of this study we sought to understand how carbonate rocks in contact with CO2-rich brines change due to the precipitation or dissolution of fast-reacting minerals such as calcite and dolomite. Using a newly developed reactive-transport pore-network model we were able to identify the conditions that lead to

  1. Processes influencing the transport and fate of contaminated sediments in the coastal ocean: Boston Harbor and Massachusetts Bay

    Science.gov (United States)

    Alexander, P. Soupy; Baldwin, Sandra M.; Blackwood, Dann S.; Borden, Jonathan; Casso, Michael A.; Crusius, John; Goudreau, Joanne; Kalnejais, Linda H.; Lamothe, Paul J.; Martin, William R.; Martini, Marinna A.; Rendigs, Richard R.; Sayles, Frederick L.; Signell, Richard P.; Valentine, Page C.; Warner, John C.; Bothner, Michael H.; Butman, Bradford

    2007-01-01

    Most of the major urban centers of the United States including Boston, New York, Washington, Chicago, New Orleans, Miami, Los Angeles, San Francisco, and Seattle—are on a coast (fig. 1.1). All of these cities discharge treated sewage effluent into adjacent waters. In 2000, 74 percent of the U.S. population lived within 200 kilometers (km) of the coast. Between 1980 and 2002, the population density in coastal communities increased approximately 4.5 times faster than in noncoastal areas of the U.S. (Perkins, 2004). More people generate larger volumes of wastes, increase the demands on wastewater treatment, expand the area of impervious land surfaces, and use more vehicles that contribute contaminants to street runoff. According to the National Coastal Condition Report II (U.S. Environmental Protection Agency, 2005a), on the basis of coastal habitat, water and sediment quality, benthic index, and fish tissue, the overall national coastal condition is only poor to fair and the overall coastal condition in the highly populated Northeast is poor. Scientific information helps managers to prioritize and regulate coastal-ocean uses that include recreation, commercial fishing, transportation, waste disposal, and critical habitat for marine organisms. These uses are often in conflict with each other and with environmental concerns. Developing a strategy for managing competing uses while maintaining sustainability of coastal resources requires scientific understanding of how the coastal ocean system behaves and how it responds to anthropogenic influences. This report provides a summary of a multidisciplinary research program designed to improve our understanding of the transport and fate of contaminants in Massachusetts coastal waters. Massachusetts Bay and Boston Harbor have been a focus of U.S. Geological Survey (USGS) research because they provide a diverse geographic setting for developing a scientific understanding of the geology, geochemistry, and oceanography of

  2. Implications and concerns of deep-seated disposal of hydrocarbon exploration produced water using three-dimensional contaminant transport model in Bhit Area, Dadu District of Southern Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Akhter, Gulraiz; Ashraf, Arshad; Fryar, Alan

    2010-11-01

    A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer's layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.

  3. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  4. Contamination shield

    International Nuclear Information System (INIS)

    Bayer, W.; Pecornik, D.

    1982-01-01

    An acrylate resin is presented as contamination protection coating for components and instruments in nuclear facilities and for spent fuel transport containers. The resin is evaporated or sublimated at 130 0 C and can thus be removed easily from the protected component. The radioactive particles entrained during evaporation are retained by suitable filters. (TK) [de

  5. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    Science.gov (United States)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  6. Understanding collaborative partnerships between farmers

    DEFF Research Database (Denmark)

    Asai, Masayasu

    Danish farmers have developed their own strategies to respond to environmental regulations of manure application. Selfgoverning manure exchanges have been widely undertaken by farmers for more than a decade, giving rise to well-established practices. However, there is little factual knowledge about...... the extent and functioning of such existing partnerships between farms as well as farmers’ perceptions of what constitutes successful arrangements. Based on registry and farmer survey data the PhD thesis shows that the vast majority of manure exporters know their partners prior to establishing manure......, duration of the partnership and transport distance. The most important aspects of farmers' perception of successful collaborative arrangements seem to be trust, continuity, flexibility and accessibility. These findings supplement the understanding of farmer collaboration based on spatial-economic models...

  7. Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Leslie, B.W.; Pearcy, E.C.; Prikryl, J.D.

    1993-01-01

    The Nopal I uranium deposit at Pena Blanca, Mexico is being studied as a natural analog of the proposed high-level nuclear waste repository at Yucca Mountain. Identification of secondary uranium phases at Nopal I, and the sequence of their formation after uraninite oxidation, provides insight into the source term for uranium, and suggests that uranophane may control uranium release and transport in a silici, tuffaceous, chemically oxidizing, and hydrologically unsaturated environment. Possible constraints on contaminant transport at Nopal I are derived from the spatial distribution of uranium and from measurements of 238 U decay-series isotopes. The analyses indicate that flow of U-bearing fluids was influenced strongly by fracture density, but that the flow of these fluids was not restricted to fractures. Gamma spectroscopic measurements of 238 U decay-series isotopes indicates secular equilibrium, which suggests undetectable U transport under present conditions

  8. Evaluation and Quantification of Uncertainty in the Modeling of Contaminant Transport and Exposure Assessment at a Radioactive Waste Disposal Site

    Science.gov (United States)

    Tauxe, J.; Black, P.; Carilli, J.; Catlett, K.; Crowe, B.; Hooten, M.; Rawlinson, S.; Schuh, A.; Stockton, T.; Yucel, V.

    2002-12-01

    The disposal of low-level radioactive waste (LLW) in the United States (U.S.) is a highly regulated undertaking. The U.S. Department of Energy (DOE), itself a large generator of such wastes, requires a substantial amount of analysis and assessment before permitting disposal of LLW at its facilities. One of the requirements that must be met in assessing the performance of a disposal site and technology is that a Performance Assessment (PA) demonstrate "reasonable expectation" that certain performance objectives, such as dose to a hypothetical future receptor, not be exceeded. The phrase "reasonable expectation" implies recognition of uncertainty in the assessment process. In order for this uncertainty to be quantified and communicated to decision makers, the PA computer model must accept probabilistic (uncertain) input (parameter values) and produce results which reflect that uncertainty as it is propagated through the model calculations. The GoldSim modeling software was selected for the task due to its unique facility with both probabilistic analysis and radioactive contaminant transport. Probabilistic model parameters range from water content and other physical properties of alluvium to the activity of radionuclides disposed to the amount of time a future resident might be expected to spend tending a garden. Although these parameters govern processes which are defined in isolation as rather simple differential equations, the complex interaction of couple processes makes for a highly nonlinear system with often unanticipated results. The decision maker has the difficult job of evaluating the uncertainty of modeling results in the context of granting permission for LLW disposal. This job also involves the evaluation of alternatives, such as the selection of disposal technologies. Various scenarios can be evaluated in the model, so that the effects of, for example, using a thicker soil cap over the waste cell can be assessed. This ability to evaluate mitigation

  9. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  10. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    International Nuclear Information System (INIS)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer's three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996

  11. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  12. Effect of space allowance during transport and fasting or non-fasting during lairage on carcass contamination and meat traits in Merino lamb

    International Nuclear Information System (INIS)

    Vergara, H.; Cózar, A.; Rodríguez, A.I.; Calvo, L.

    2017-01-01

    A total of 72 Merino breed male lambs were used in this work, to study the effect of the space allowance during transport [(SA): low (SAL: 0.16 m2/animal; n=24); medium (SAM: 20 m2/animal; n=24); high (SAH: 0.30 m2/animal; n=24)], and the management during 18 h lairage [(TL): fasting (TL-FAST; n=36) vs feeding (TL-FEED; n=36)] on carcass microbial contamination (total viable count, Enterobacteriaceae and Pseudomonas) and meat quality. Carcasses contamination determination was carried out by swabbing (neck, flank and rump). Meat quality was assessed by pH, colour coordinates, drip loss (DL), shear force (SF) ad lipid oxidation. SA did not have effect on carcass microbiological quality. TL caused a significant effect on total viable count and Pseudomonas spp values. Flank was the most contaminated site. SAL-FEED group showed the highest values of drip loss and lipid oxidation. At 24 h post-mortem, pH values were the highest in fasted lambs. At 7 d post-mortem the lowest pH was found in SAM-FAST group while the highest in SAM-FEED. TL had no effect on SF, DL neither on lipid oxidation values. These results could help to meat industry to decide the best management as in the transportation as during lairage before lambs slaughter.

  13. Effect of space allowance during transport and fasting or non-fasting during lairage on carcass contamination and meat traits in Merino lamb

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, H.; Cózar, A.; Rodríguez, A.I.; Calvo, L.

    2017-07-01

    A total of 72 Merino breed male lambs were used in this work, to study the effect of the space allowance during transport [(SA): low (SAL: 0.16 m2/animal; n=24); medium (SAM: 20 m2/animal; n=24); high (SAH: 0.30 m2/animal; n=24)], and the management during 18 h lairage [(TL): fasting (TL-FAST; n=36) vs feeding (TL-FEED; n=36)] on carcass microbial contamination (total viable count, Enterobacteriaceae and Pseudomonas) and meat quality. Carcasses contamination determination was carried out by swabbing (neck, flank and rump). Meat quality was assessed by pH, colour coordinates, drip loss (DL), shear force (SF) ad lipid oxidation. SA did not have effect on carcass microbiological quality. TL caused a significant effect on total viable count and Pseudomonas spp values. Flank was the most contaminated site. SAL-FEED group showed the highest values of drip loss and lipid oxidation. At 24 h post-mortem, pH values were the highest in fasted lambs. At 7 d post-mortem the lowest pH was found in SAM-FAST group while the highest in SAM-FEED. TL had no effect on SF, DL neither on lipid oxidation values. These results could help to meat industry to decide the best management as in the transportation as during lairage before lambs slaughter.

  14. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  15. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 3. APPARENT CONDITION-DEPENDENCY OF GROWTH-RELATED COEFFICIENTS. (R825415)

    Science.gov (United States)

    AbstractThe biodegradation of organic contaminants in the subsurface has become a major focus of attention, in part, due to the tremendous interest in applying in situ biodegradation and natural attenuation approaches for site remediation. The biodegradation and trans...

  16. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?

    Science.gov (United States)

    Guzzella, Licia; Salerno, Franco; Freppaz, Michele; Roscioli, Claudio; Pisanello, Francesca; Poma, Giulia

    2016-02-15

    Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Local and distant residence times of contaminants in multi-compartment models. Part II: Application to assessing environmental mobility and long-range atmospheric transport

    International Nuclear Information System (INIS)

    Reid, Liisa; Mackay, Don

    2008-01-01

    In Part I, the concepts of inherent, local and distant residence times (DRTs) were reviewed as metrics of the extent to which chemical discharges or emissions in one region or box are transported to distant regions. In this second part, the concepts are applied to geographically relevant systems to illustrate their applicability to the assessment of chemicals for long-range transport potential (LRTP). It is shown that the relative ranking of chemicals as characterized by the DRT method is similar to that of the characteristic travel distance concept. A DRT source-receptor matrix is developed that can express the chemical-specific potential of source regions to contaminate a specific receptor region of concern such as the Arctic. The matrix can be modified to identify for a specific source region the likely destinations of emissions as well as to assess the relative vulnerability of regions in the global environment to contaminants of concern. - The DRT concept is applied to multi-box and geographically explicit models to assess the long-range transport potential of 10 chemicals

  18. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  19. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Bandy, P.J.; Hall, L.F.

    1993-03-01

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG ampersand G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code

  20. Minnesota urban partnership agreement national evaluation : content analysis test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the content analysis test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by employing ...

  1. Minnesota urban partnership agreement national evaluation : exogenous factors test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the exogenous factors test plan for the national evaluation of the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reduc...

  2. Urban Partnership Agreement and Congestion Reduction Demonstration : National Evaluation Framework

    Science.gov (United States)

    2008-11-21

    This report provides an analytical framework for evaluating six deployments under the United States Department of Transportation (U.S. DOT) Urban Partnership Agreement (UPA) and Congestion Reduction Demonstration (CRD) Programs. The six UPA/CRD sites...

  3. Minnesota urban partnership agreement national evaluation : safety data test plan.

    Science.gov (United States)

    2009-11-17

    This report provides the safety data test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by employing strat...

  4. Minnesota urban partnership agreement national evaluation : tolling test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the test plan for collecting and analyzing toll data for the Minnesota Urban Partnership : Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The : Minnesota UPA projects focus on reducin...

  5. Minnesota urban partnership agreement national evaluation : telecommuting test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the telecommuting test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by employing str...

  6. Benefits to Minnesotans of communications infrastructure public-private partnership

    Science.gov (United States)

    1997-06-01

    This paper presents a summary of the benefits of a communications infrastructure public-private partnership between the Minnesota Department of Transportation and the team of International Communications Systems (ICS) and Stone & Webster.

  7. RISK ASSESSMENT MODELS OF PUBLIC-PRIVATE PARTNERSHIP IN THE ROAD SECTOR

    Directory of Open Access Journals (Sweden)

    V. V. Gasilov

    2013-01-01

    Full Text Available This article studies the main potential models of public-private partnership; it gives evaluation of risks for these models, considering their distribution between members of partnership. It offers the mechanism of making an optimal choice of a public-private partnership model for projects of transport system development.

  8. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  9. Cogema's transatlantic partnership

    International Nuclear Information System (INIS)

    McMurphy, M.; Ihde, R.

    1991-01-01

    Cogema's transatlantic partnership, the B+W Fuel Company, is a natural evolution of Cogema's US fuel cycle activities. The partnership in which important elements of the French nuclear industry teamed with a long-established, well-respected US industrial partner to build a company for the future is explained. 1 fig

  10. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    ) has been foun d to facilitate transport of organic contaminants and metals in stormwater runoff system s, but little is known about the role of the colloidal fraction including nano-sized particl es (0.001-1 μm). Based on the large specific surface area of colloids and nanosized particles, t heir...... abundance, and knowledge about their facilitated transport of persistent organic polluti on in natural waters, they are likely to diminish the efficiency of engineered treatment sys tems unless appropriately accounted for. In this work organic and inorganic nanosized partic les were investigated......(III)carbo nate particles (22 nm) sorption experiments are ongoing. Based on these results and a literature review, the importance of including particulate fractions for surface water q uality assessment in relation to the WFD will be discussed....

  11. Notification determining details of technical standards concerning transport of radioisotopes or goods contaminated by radioisotopes outside works or enterprises

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the regulation for the execution of the law on the prevention of radiation injuries by radioisotopes. Terms are used in this rule for the same meanings as in the regulation. The concentration of radioisotopes to which the technical standards for transport outside enterprises are not applied is 0.002 micro-curie per gram. The radioisotopes which can be transported as L type transported goods are defined in detail, excluding explosive or spontaneously igniting radioisotopes. The quantity limit of radioisotopes which can be transported as A type transported goods is the values A 1 and A 2 defined in this rule. The permissible surface density defined by the Director General of the Science and Technology Agency are 1/100,000 micro-curie per cm 2 for the radioisotopes emitting alpha-ray, and 1/10,000 micro-curie per cm 2 for the radioisotopes which do not emit alpha-ray. The leak quantity of radioisotopes specified by the Director General is 1/1,000,000 of A 2 value for BM type transported goods and 1/1,000 of A 2 value for BU type goods. The test conditions for each type of transported goods, dangerous goods, the limit of the number of transported goods and signs are stipulated, respectively. Permissible exposure dose is 1.5 rem a year for persons other than radiation workers. (Okada, K.)

  12. Features partnership in auditing

    Directory of Open Access Journals (Sweden)

    V.P. Bondar

    2015-06-01

    Full Text Available The notion of «institution partnerships in the audit» and its importance in Ukraine. Done overview of international experience in the Institute of partnerships in the audit business. Determined the nature of the audit, rights, duties and powers of the partnership during the audit. Done distribution of functions between the partner and the engagement partner in the synthesis of these blocks: taking on a new customer service or continued cooperation with existing customers (clients; familiarization with activities of customer audits, including an understanding of its internal control system; identification and assessment of risks of material misstatement of accounting; audit process and the audit and the formation of the final judgment. On the basis of the distribution of functions between the partner and the engagement partner, defined the overall structure of management system auditing firm. These conditions for implementation of partnerships in the audit business, and identified a number of advantages and disadvantages of partnerships for auditing.

  13. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  14. Monte Carlo simulation of radioactive contaminant transport in fractured geologic media: Disorder and long-range correlations

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Cushman, J.H.

    1997-01-01

    The geologic media near Yucca mountain site consist of fractured welded tuffs along with less fractured unwelded tuff. Numerical simulation of flow and transport in such media poses a number of challenging problems, due mainly to the heterogeneities and disorder in the media. In addition, because of different dominant transport mechanisms in different regions of the media, investigations need to be carried out at different time-scales. Time-marching will pose a considerable problem in analyzing such multi-scale transient problems. The authors develop a field-scale network model of fractures and study transport of radionuclides through geologic media as a function of disorder and correlated fracture-permeabilities

  15. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine

    2016-11-01

    The increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments. In spite of noteworthy differences in the sampling protocols, the soil parameters chosen as explanatory variables, and the methods used to evaluate the site-specific initial concentrations, most investigations undoubtedly evidenced a significant accumulation of metals and/or hydrocarbons in SUDS soils, which in the majority of the cases appears to be restricted to the upper 10 to 30cm. These results may suggest that SUDS exhibit an interesting potential for pollution control, but antinomic observations have also been made in several specific cases, and the inter-site concentration variability is still difficult to appraise. There seems to be no consensus regarding the level of complexity to be used in models. However, the available data deriving from experimental studies is generally limited to the contamination profiles and a few parameters of the soil, as a result of which "complex" models (including colloid-facilitated transport for example) appear to be difficult to validate before using them for predictive evaluations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Recycling of salt-contaminated stormwater runoff for brine production at Virginia Department of Transportation road-salt storage facilities.

    Science.gov (United States)

    2008-01-01

    A large part of the Virginia Department of Transportation's (VDOT's) maintenance effort comprises the implementation of its snow removal and ice control program. Earlier research confirmed that VDOT captures significant volumes of salt-laden stormwat...

  17. Multitracer test for the determination of transport and in-situ degradation of organic micro-contaminants in karst aquifers on the example of caffeine

    Science.gov (United States)

    Hillebrand, O.; Nödler, K.; Licha, T.; Geyer, T.

    2012-04-01

    The application of organic micro-contaminants as indicators for contamination sources in aquifers and surface-water bodies has been increasingly discussed in the literature over the last years. One of the proposed substances was caffeine. It served as indicator for wastewater-leakage to various systems. As well, wastewater volumes could be estimated from caffeine concentrations. Although caffeine is known to be degradable, the degradation rates are normally only determined from mass balances or laboratory experiments. Degradation rates obtained from mass balances are relatively uncertain, as the input-function is difficult to be assessed. Laboratory experiments are hardly capable to consider the full complexity of natural systems and can rarely be transferred to those. To solve this problem, in-situ degradation rates of reactive indicators have to be determined. Especially multitracer tests can be used to access compound-specific transport parameters and degradation rates, relative to conservative tracers. A multitracer test with caffeine and uranine has been performed in a karst system (catchment of the Gallusquelle spring, SW Germany). From the breakthrough curves of the tracers, the transport behavior and the in-situ degradation rate of caffeine could be deduced. The tracers were injected into a sinkhole with a linear distance of 3000 m to the spring. The mean residence time of the tracers was found to be 84 h at a flow velocity of 35 m/h. Throughout the whole experiment, the spring discharge was constant at 187 L/s. Uranine served as conservative reference-tracer for the calibration of a one-dimensional transport model with respect to solute-unspecific parameters. Relative to that, the tracer breakthrough curve of caffeine was interpreted. As solute-specific parameters the retardation coefficient as well as degradation rate of caffeine in the investigated karst aquifer could be determined. The results indicate, that caffeine is slightly retarded in the

  18. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    International Nuclear Information System (INIS)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells

  19. Examination of the uncertainty in contaminant fate and transport modeling: a case study in the Venice Lagoon.

    Science.gov (United States)

    Sommerfreund, J; Arhonditsis, G B; Diamond, M L; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L; Giuliani, S; Mugnai, C

    2010-03-01

    A Monte Carlo analysis is used to quantify environmental parametric uncertainty in a multi-segment, multi-chemical model of the Venice Lagoon. Scientific knowledge, expert judgment and observational data are used to formulate prior probability distributions that characterize the uncertainty pertaining to 43 environmental system parameters. The propagation of this uncertainty through the model is then assessed by a comparative analysis of the moments (central tendency, dispersion) of the model output distributions. We also apply principal component analysis in combination with correlation analysis to identify the most influential parameters, thereby gaining mechanistic insights into the ecosystem functioning. We found that modeled concentrations of Cu, Pb, OCDD/F and PCB-180 varied by up to an order of magnitude, exhibiting both contaminant- and site-specific variability. These distributions generally overlapped with the measured concentration ranges. We also found that the uncertainty of the contaminant concentrations in the Venice Lagoon was characterized by two modes of spatial variability, mainly driven by the local hydrodynamic regime, which separate the northern and central parts of the lagoon and the more isolated southern basin. While spatial contaminant gradients in the lagoon were primarily shaped by hydrology, our analysis also shows that the interplay amongst the in-place historical pollution in the central lagoon, the local suspended sediment concentrations and the sediment burial rates exerts significant control on the variability of the contaminant concentrations. We conclude that the probabilistic analysis presented herein is valuable for quantifying uncertainty and probing its cause in over-parameterized models, while some of our results can be used to dictate where additional data collection efforts should focus on and the directions that future model refinement should follow. (c) 2009 Elsevier Inc. All rights reserved.

  20. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    International Nuclear Information System (INIS)

    Goldstein, S.; Ku, T.L.; Luo, S.; Murrel, M.; Roback, R.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  1. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  2. US utility partnerships

    International Nuclear Information System (INIS)

    Worthington, B.

    1995-01-01

    Activities of the United States Energy Association were reviewed, as well as the manner in which its members are benefitting from the Association's programs. The principal cooperative program set up is the Utility Partnership Program, which was described. Through this program the Association is matching US companies, both electric utilities and gas utilities, with counterparts in Eastern Europe or the former Soviet Union. So far, about 25 partnerships were signed, e.g. in the Czech Republic, in Kazakhstan, in Poland, and in Slovakia. It was estimated that the return to the United States from the investments made by the American government in these Utility Partnership Programs has been well over 100-fold

  3. Development of an educational partnership for enhancement of a computer risk assessment model

    International Nuclear Information System (INIS)

    Topper, K.

    1995-02-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is a computer program which evaluates exposure pathways for chemical and radioactive releases according to their potential human health impacts. MEPAS simulates the exposure pathways through standard source-to-receptor transport principles using, a multimedia approach (air, groundwater, overland flow, soil, surface water) in conjunction with specific chemical exposure considerations. This model was originally developed by Pacific Northwest Laboratory (PNL) to prioritize environmental concerns at potentially contaminated US Department of Energy (DOE) sites. Currently MEPAS is being used to evaluate a range of environmental problems which are not restricted to DOE sites. A partnership was developed between PNL and Mesa State College during 1991. This partnership involves the use of undergraduate students, faculty, and PNL personnel to complete enhancements to MEPAS. This has led to major refinements to the original MEPAS shell for DOE in a very cost-effective manner. PNL was awarded a 1993 Federal Laboratory Consortium Award and Mesa State College was awarded an Environmental Restoration and Waste Management Distinguished Faculty Award from DOE in 1993 as a result of this collaboration. The college has benefited through the use of MEPAS within laboratories and through the applied experience gained by the students. Development of this partnership will be presented with the goal of allowing other DOE facilities to replicate this program. It is specifically recommended that DOE establish funded programs which support this type of a relationship on an ongoing basis. Additionally, specific enhancements to MEPAS will be presented through computer display of the program

  4. CHP Partnership Partners

    Science.gov (United States)

    Partners of EPA's Combined Heat and Power Partnership include federal, state, and local government agencies and private organizations such as energy users, energy service companies, CHP project developers and consultants, and equipment manufacturers.

  5. Partnership for Peace

    National Research Council Canada - National Science Library

    Penner, Vernon

    1996-01-01

    Partnership for Peace (PFP) has gotten off to a highly successful start over the past two years with an accelerated growth in membership encompassing the Euro-Atlantic community, the rapid development of its own military...

  6. Urban Waters Partnership

    Science.gov (United States)

    Includes information on 14 Federal member agencies for the Urban Waters Federal Partnership and 19 designated urban waters locations and the local stakeholder groups and activities. Content was formerly at www.epa.gov/urbanwaters/

  7. Engineering Capabilities and Partnerships

    Science.gov (United States)

    Poulos, Steve

    2010-01-01

    This slide presentation reviews the engineering capabilities at Johnson Space Center, The presentation also reviews the partnerships that have resulted in successfully designed and developed projects that involved commercial and educational institutions.

  8. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: Vulnerability of deep groundwater to arsenic contamination in Bangladesh

    Science.gov (United States)

    Michael, Holly A.; Khan, Mahfuzur R.

    2016-12-01

    Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both

  9. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  10. Partnership with the customer

    Science.gov (United States)

    Trachta, Gregory S.

    This discussion will recount some historical observations about establishing partnerships with the customer. It suggests that such partnerships are established as the natural evolutionary product of a continuous improvement culture. Those are warm, ethereal terms about a topic that some people think already suffers from an excess of hot air. We will focus on some real-world activities and workplace artifacts to show there are substantive concepts behind the TQM buzzwords.

  11. Simulated flow and solute transport, and mitigation of a hypothetical soluble-contaminant spill for the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the National Park Service, to investigate the transport and factors affecting mitigation of a hypothetical spill of a soluble contaminant into the New River in the New River Gorge National River, West Virginia. The study reach, 53 miles of the lower New River between Hinton and Fayette, is characterized as a pool-and-riffle stream that becomes narrower, steeper, and deeper in the downstream direction. A USGS unsteady-flow model, DAFLOW (Diffusion Analogy FLOW), and a USGS solute-transport model, BLTM (Branch Lagrangian Transport Model), were applied to the study reach. Increases in discharge caused decreases in peak concentration and traveltime of peak concentration. Decreases in discharge caused increases in peak concentration and traveltime of peak concentration. This study indicated that the effects of an accidental spill could be mitigated by regulating discharge from Bluestone Dam. Knowledge of the chemical characteristics of the spill, location and time of the spill, and discharge of the river can aid in determining a mitigation response.

  12. Analytical solution for multi-species contaminant transport in finite media with time-varying boundary conditions

    Science.gov (United States)

    Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...

  13. Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS

    International Nuclear Information System (INIS)

    Cano-Resendiz, Omar; Rosa, Guadalupe de la; Cruz-Jimenez, Gustavo; Gardea-Torresdey, Jorge L.; Robinson, Brett H.

    2011-01-01

    We identified contaminants associated with the Cata mine tailing depot located in the outskirts of the city of Guanajuato, Mexico. We also investigated strategies for their phytomanagement. Silver and antimony were present at 39 and 31 mg kg -1 , respectively, some twofold higher than the Dutch Intervention Values. Total and extractable boron (B) occurred at concentrations of 301 and 6.3 mg L -1 , respectively. Concentrations of B in soil solution above 1.9 mg L -1 have been shown to be toxic to plants. Plant growth may also be inhibited by the low concentrations of extractable plant nutrients. Analysis of the aerial portions of Aloe vera (L. Burm.f.) revealed that this plant accumulates negligible concentrations of the identified contaminants. Calculations using a whole system model (Phyto-DSS) showed that establishing a crop of A. vera would have little effect on the drainage or leaching from the site. However, this plant would reduce wind and water erosion and potentially produce valuable cosmetic products. In contrast, crops of poplar, a species that is tolerant to high soil B concentrations, would mitigate leaching from this site. Alternate rows of trees could be periodically harvested and be used for timber or bioenergy.

  14. Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Resendiz, Omar [Departamento de Ingenieria Quimica, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Rosa, Guadalupe de la, E-mail: delarosa@quijote.ugto.mx [Departamento de Ingenieria Quimica, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Cruz-Jimenez, Gustavo [Departamento de Farmacia, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Gardea-Torresdey, Jorge L. [Chemistry Department and Environmental Science and Engineering, Ph.D. Program, The University of Texas at El Paso, 500 W. University Ave., 79968 El Paso, TX (United States); Robinson, Brett H. [Agriculture and Life Sciences, Lincoln University, P.O. Box 84 Lincoln, Canterbury 7646 (New Zealand)

    2011-05-15

    We identified contaminants associated with the Cata mine tailing depot located in the outskirts of the city of Guanajuato, Mexico. We also investigated strategies for their phytomanagement. Silver and antimony were present at 39 and 31 mg kg{sup -1}, respectively, some twofold higher than the Dutch Intervention Values. Total and extractable boron (B) occurred at concentrations of 301 and 6.3 mg L{sup -1}, respectively. Concentrations of B in soil solution above 1.9 mg L{sup -1} have been shown to be toxic to plants. Plant growth may also be inhibited by the low concentrations of extractable plant nutrients. Analysis of the aerial portions of Aloe vera (L. Burm.f.) revealed that this plant accumulates negligible concentrations of the identified contaminants. Calculations using a whole system model (Phyto-DSS) showed that establishing a crop of A. vera would have little effect on the drainage or leaching from the site. However, this plant would reduce wind and water erosion and potentially produce valuable cosmetic products. In contrast, crops of poplar, a species that is tolerant to high soil B concentrations, would mitigate leaching from this site. Alternate rows of trees could be periodically harvested and be used for timber or bioenergy.

  15. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  16. Transport behavior of radioactive caesium from forests contaminated by the Fukushima Dai-ichi nuclear power plant accident through river water system

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, K.; Funaki, H.; Ohyama, T.; Niizato, T.; Sato, H.; Yui, M. [Japan Atomic Energy Agency (Japan)

    2014-07-01

    Japan Atomic Energy Agency (JAEA) has carried out 'the project on the Long-term Assessment of Transport of Radioactive Contaminant in the Environment of Fukushima (F-TRACE project)' since the end of 2012. Radioactive caesium (Cs) has been distributed by the fallout by the Fukushima Dai-ichi Nuclear Power Plant (1F-NPP) accident, and forests in mountain areas have large amount of inventory of radioactive Cs and cover relatively large part of contaminated area of Fukushima. In this project, the transport behavior of radioactive Cs from the forests to biosphere and sea is evaluated by computer simulation based on the results of field observation and laboratory experiments. The results are used to predict evolution of effective dose of the residents in the affected area due to the transport, specify the dominant pathway of Cs, and propose effective methodology to constrain the transport along the pathway. This study reports the specific transport behavior of Cs observed in the basins of five rivers by means of the field investigation and laboratory experiments during the first year of the project. Radioactive Cs located at the crown was considered to be transported to the soil surface by litter fall, stem flow and canopy drip in the Japanese cedar tree forests. Even after two years since the accident, more than 90% of radioactive Cs was still been remained within 5 cm depth from the top of the soil, indicating that the distribution coefficient of radioactive Cs onto the specific minerals such as clay was significantly high. In the river, relatively higher dose rate was observed at the flood channel where fine-grained soil particles were trapped by growing vegetation, while low dose rate was observed beside the river channel where coarse sand or gravel accumulated. The results suggested that fine-grained soil particles containing minerals adsorbing large amount of radioactive Cs were transported in high water level and trapped by the vegetation. In the dam

  17. Numerical modeling of the groundwater contaminant transport for the Lake Karachai Area: The methodological approach and the basic two- dimensional regional model

    International Nuclear Information System (INIS)

    Petrov, A.V.; Samsonova, L.M.; Vasil'kova, N.A.; Zinin, A.I.; Zinina, G.A.

    1994-06-01

    Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used

  18. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  19. Public-private partnership oversight : how FHWA reviews P3s.

    Science.gov (United States)

    2015-01-01

    A growing number of State and local transportation agencies are considering the use of public-private : partnerships (P3s), in which a private entity is involved in designing, financing, constructing, operating, : and maintaining a transportation fac...

  20. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments

    International Nuclear Information System (INIS)

    Seigel, M.D.; Ward, D.B.; Bryan, C.R.

    1995-09-01

    A processed quartz sand (Wedron 510), mined from the St. Peter sandstone, has been characterized by a variety of chemical and physical methods for use as a reference porous media in transport model validation experiments. Wedron 510 sand was used in an intermediate-scale experiment involving migration of Ni, Li and Br through a 6-m high x 3-m diameter caisson. Ni and Li adsorption/desorption, and Li/Ni site-competition experiments yielded information on the importance of the trace mineral phases to adsorption of Li and Ni by the sand. The presence of an iron hydroxide coating similar to goethite on the sand grains is suggested by visual observation and leaching experiments. Kaolinite was identified by SEM and XRD as a significant trace mineral phase in the sand and occurs as small particles coating the sand grains. Quartz, the predominant constituent of the sand by weight, does not appear to contribute significantly to the adsorption properties of the sand. Qualitatively, the adsorption properties of the sand can be adequately modeled as a two-mineral system (goethite and kaolinite). The studies described in this report should provide a basis for understanding transport of Ni, Li and Br through porous media similar to the reference sand. Techniques were developed for obtaining parameter values for surface complexation and kinetic adsorption models for the sand and its mineral components. These constants can be used directly in coupled hydrogeochemical transport codes. The techniques should be useful for characterization of other natural materials and elements in high-level nuclear waste in support of coupled hydrogeochemical transport calculations for Yucca Mountain

  1. Contaminant transport in the Snake River Plain Aquifer: Phase 1, Part 1: Simple analytical model of individual plumes

    International Nuclear Information System (INIS)

    Rood, A.S.; Arnett, R.C.; Barraclough, J.T.

    1989-05-01

    A preliminary, semi-quantitative assessment of the migration of INEL effluents in the Snake River Plain Aquifer (SRPA) was performed. This study focused on past tritium, 129 I, and 90 Sr effluents from the Idaho Chemical Processing Plant (ICPP) and Test Reactor Area (TRA) and carbon tetrachloride from the Radioactive Waste Management Complex (RWMC). The disposal ponds at TRA and the ICPP injection well were the primary means of liquid radioactive waste discharge from the ICPP and TRA. Drums containing solidified chlorinated solvents disposed of at the RWMC were the primary source of carbon tetrachloride. Water samples taken from wells located in the SRPA show detectable quantities of the four contaminants. The predicted radionuclide concentrations exceed drinking water limits in limited areas within the INEL boundaries. Without planned remedial action, carbon tetrachloride is predicted to exceed drinking water limits beyond the site boundaries near the middle of the next century. 16 refs., 23 figs., 3 tabs

  2. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A [Princeton University

    2013-05-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE legacy waste problems.

  3. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-01-01

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  4. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  5. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species.

    Science.gov (United States)

    Sonne, Christian

    2010-07-01

    The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body

  6. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  7. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  8. Sinopec and COSCO Sign Strategic Partnership Agreement

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Sinopec and China Ocean Shipping (Group)Company (COSCO), the country's biggest shipping company, signed a framework cooperation agreement on June 18 in Beijing, under which COSCO would provide quality crude oil transport from the current 1.94 million deadweight tons. The ambitious plan was made to chter to COSCO's establishment of a long-term strategic partnership for cooperation with Sinopec, China's leading producer and supplier of petroleum products.

  9. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC

  10. 7 CFR 1400.204 - Limited partnerships, limited liability partnerships, limited liability companies, corporations...

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Limited partnerships, limited liability partnerships..., limited liability partnerships, limited liability companies, corporations, and other similar legal entities. (a) A limited partnership, limited liability partnership, limited liability company, corporation...

  11. Partnership for the future

    International Nuclear Information System (INIS)

    Wilson, R.I.

    1993-01-01

    The benefits of partnerships in the profitable exploration, development, and management of the world's hydrocarbon resources are discussed. A unique period in history is being experienced in the oil and gas industry. Over the next decade, all of the participants will be faced with a number of opportunities and challenges. No longer will having technical expertise or control of vast resources alone create wealth for a company or country. Long-term profitability will result from decisions and policies made by the owners of these assets. Prudent, efficient, and profitable management of resources through partnership will benefit both parties and enrich the standard of living for future generations

  12. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  13. Performance of personalized ventilation in a room with an underfloor air distribution system: transport of contaminants between occupants

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2003-01-01

    the workplaces has not been studied in detail. This paper presents a study on the performance of a personalized ventilation system installed in a full-scale test room with an underfloor air distribution system. Transport of human-produced airborne pollutants (in real life they can be infectious agents) between......Studies have documented that personalized ventilation, which provides clean air at each office workplace, is able to improve substantially the quality of air inhaled by occupants. However, the interaction between the airflow generated by personalized ventilation and the airflow pattern outside...... two occupants was examined using a tracer-gas. Two breathing thermal manikins were used to simulate occupants. The results show that the tested combination of personalized and underfloor ventilation was not able to decrease concentration of the human-produced airborne pollutants in air inhaled...

  14. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    International Nuclear Information System (INIS)

    Binning, P.; Celia, M.A.; Johnson, J.C.

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry's Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model

  15. The impact of co-contaminants and septic system effluent quality on the transport of estrogens and nonylphenols through soil.

    Science.gov (United States)

    Stanford, Benjamin D; Amoozegar, Aziz; Weinberg, Howard S

    2010-03-01

    The impact that varying qualities of wastewater may have on the movement of steroid estrogens through soils into groundwater is little understood. In this study, the steroid estrogens 17beta-estradiol (E2) and estrone (E1) were followed through batch and column studies to examine the impact that organic wastewater constituents from on-site wastewater treatment systems (i.e., septic systems or decentralized systems) may have on influencing the rate of transport of estrogens through soils. Total organic carbon (TOC) content (as a surrogate indicator of overall wastewater quality) and the presence of nonyl-phenol polyethoxylate surfactants (NPEO) at concentrations well below the critical micelle concentration were independently shown to be indicative of earlier breakthrough and less partitioning to soil in batch and column experiments. Both NPEO and wastewater with increasing TOC concentrations led to shifts in the equilibrium of E1 and E2 towards the aqueous phase and caused the analytes to have an earlier breakthrough than in control experiments. The presence of nonylphenols, on the other hand, did not appreciably impact partitioning of E1 or E2. Biodegradation of the steroids in soil was also lower in the presence of septic tank effluents than in an organic-free control water. Furthermore, the data indicate that the rate of movement of E1 and E2 present in septic tank effluent through soils and into groundwater can be decreased by removing the NPEOs and TOC through wastewater treatment prior to sub-surface disposal. This study offers some insights into mechanisms which impact degradation, transformation, and retardation, and shows that TOC and NPEO surfactants play a role in estrogen transport. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Green Power Partnership Eligible Organizations

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Many different types of organizations are eligible to become Partners.

  17. New Partnerships for Sustainability (NEPSUS)

    DEFF Research Database (Denmark)

    Ponte, Stefano; Noe, Christine; Kweka, Opportuna

    New and more complex partnerships are emerging to address the sustainability of natural resource use in developing countries. These partnerships variously link donors, governments, community-based organizations, non-governmental organizations (NGOs), business, certification agencies and other...

  18. Benefits of Green Power Partnership

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Learn about the benefits of becoming a Green Power Partner.

  19. Regulatory competition in partnership law.

    OpenAIRE

    Siems, Mathias

    2009-01-01

    Regulatory competition in company law has been extensively debated in the last few decades, but it has rarely been discussed whether there could also be regulatory competition in partnership law. This article fills this gap. It addresses the partnership law of the US, the UK, Germany, and France, and presents empirical data on the different types of partnerships and companies established in these jurisdictions. The main focus is on the use of a limited liability partnership (LLP) outside its ...

  20. Small public private partnerships

    DEFF Research Database (Denmark)

    Koch, Christian; Jensen, Jesper Ole

    2009-01-01

    Public Private Partnerships (PPP) are frequently mobilized as a purchasing form suitable for large infrastructure projects. And it is commonly assumed that transaction costs linked to the establishment of PPP make them prohibitive in small sizes. In a Danish context this has been safeguarded by t...

  1. Managing Movement as Partnership

    Science.gov (United States)

    Kimbrell, Sinead

    2011-01-01

    The associate director of education at Hubbard Street Dance Chicago recounts her learning and teaching through managing the Movement as Partnership program. Included are detailed descriptions of encounters with teachers and students as they create choreography reflective of their inquiry into integrating dance and literacy arts curriculum in the…

  2. Public private partnerships

    NARCIS (Netherlands)

    Miranda Sarmento, J.J.

    2014-01-01

    Public-private partnerships (PPPs) are increasing in number worldwide and are used to build and manage large public infrastructure projects. In PPPs, the private sector plays a role in developing and maintaining public infrastructure and services, which is usually a public sector responsibility.

  3. Partnerships for optimizing organizational flexibility

    Science.gov (United States)

    Louis Poliquin

    1999-01-01

    For the purpose of this conference, I was asked to discuss partnerships in general. We will first review the reasons that bring organizations to enter into a collaborative agreement, then provide examples of different types of partnerships, discuss some factors that seem to explain the success of partnerships, and review important points to consider before preparing...

  4. Strategic Partnerships in Higher Education

    Science.gov (United States)

    Ortega, Janet L.

    2013-01-01

    The purpose of this study was to investigate the impacts of strategic partnerships between community colleges and key stakeholders; to specifically examine strategic partnerships; leadership decision-making; criteria to evaluate strategic partnerships that added value to the institution, value to the students, faculty, staff, and the local…

  5. Feasibility Study of Biopower in East Helena, Montana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former American Smelting and Refining Company (Asarco) smelter in East Helena, Montana, was selected for a feasibility study under the initiative. Biomass was chosen as the renewable energy resource based on the wood products industry in the area. Biopower was selected as the technology based on Montana's renewable portfolio standard (RPS) requiring utilities to purchase renewable power.

  6. Improving refueling outages through partnership

    International Nuclear Information System (INIS)

    Mercado, Angelo L.

    2004-01-01

    This paper describes an approach to reduce nuclear plant outage duration and cost through partnership. Partnership is defined as a long-term commitment between the utility and the vendor with the objective of achieving shared business goals by maximizing the effectiveness of each party's resources. The elements of an effective partnership are described. Specific examples are given as to how partnership has worked in the effective performance of refueling outages. To gain the full benefits of a partnership, both parties must agree to share information, define the scope early, communicate goals and expectations, and identify boundaries for technical ownership. (author)

  7. Contamination of public transports by Staphylococcus aureus and its carriage by biomedical students: point-prevalence, related risk factors and molecular characterization of methicillin-resistant strains.

    Science.gov (United States)

    Mendes, Â; Martins da Costa, P; Rego, D; Beça, N; Alves, C; Moreira, T; Conceição, T; Aires-de-Sousa, M

    2015-08-01

    To analyse the contamination of public transports by Staphylococcus aureus and assess its carriage by biomedical students, focussing on the point-prevalence, related risk factors and molecular characterization of methicillin-resistant strains. Cross-sectional survey. Methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) isolated from handrails of buses (n = 112) and trains (n = 79) circulating in Porto and from nasal swabs of local university students (n = 475) were quantified, characterized by molecular typing methods and related to possible risk factors. The MRSA prevalence in buses (16.1%) was not significantly different from trains (8.9%). There was also no identifiable association between the counts of MSSA and MRSA in buses and trains and the number of travellers in each sampling day, specific routes (including those passing by main hospitals) or other risk factors. Of the students, 37.1% carried S. aureus, and having a part-time job or smoking were found to be risk factors for carriage. EMRSA-15 (ST22-SCCmecIVh) was the prevalent MRSA clonal lineage, found not only in the buses (n = 14) and trains (n = 2) but also in the single MRSA-carrier among the students. The characteristics of the community-associated Southwest Pacific MRSA clone were found in a single ST30-IVa isolate, which may suggest a recent SCCmec acquisition by an MSSA background in the community. The spread of EMRSA-15, a common hospital-associated lineage, among different public transports and as a nasal coloniser is of concern and warrants adequate public health control measures. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Transport behavior and rice uptake of radiostrontium and radiocesium in flooded paddy soils contaminated in two contrasting ways

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee; Kim, In-Gyu

    2011-01-01

    In order to investigate the transport behavior and rice uptake of radiostrontium and radiocesium in flooded rice fields, lysimeter experiments with two paddy soils were performed in a greenhouse. A solution containing 85 Sr and 137 Cs was applied in two different ways — being mixed with the top soil 27 d before transplanting or being dropped to the surface water 1 d after transplanting. Rice uptake was quantified with two kinds of transfer factor — TF m (dimensionless) and TF a (m 2 kg −1 -dry) for the pre- and post-transplanting depositions, respectively. For brown rice, the TF m values of 85 Sr and 137 Cs differed between the soils by factors of 2 (1.6 × 10 −2 and 2.5 × 10 −2 ) and 7 (2.2 × 10 −2 and 1.5 × 10 −1 ), respectively. Corresponding factors by the TF a values were 2 (2.5 × 10 −4 and 4.4 × 10 −4 ) for 85 Sr and 3 (1.1 × 10 −3 and 2.9 × 10 −3 ) for 137 Cs. Straws had several times higher TF m and TF a values of 85 Sr than of 137 Cs. The surface-water concentrations were substantially higher for the TF a than for the TF m , indicating the possibility of a much higher plant-base uptake for the TF a . In the TF a soils, 137 Cs and, to a lesser degree, 85 Sr were severely localized towards the soil surface, probably leading to an increased root uptake. The activity loss due to plant uptake and water percolation was generally inconsiderable. Time-dependent K d values of 85 Sr measured in a parallel experiment ranged from 20 to 170, whereas 137 Cs had much higher K d values. The use of TF a values instead of TF m values turned out to be a reasonable approach to the evaluation of a vegetation-period deposition.

  9. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Dabrowska, Dominika; Sadikoglu, Fahreddin

    2017-05-01

    As an innovation, both black box and physical-based models were incorporated into simulating groundwater flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration (CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-noising approach. The effect of de-noised data on the performance of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as interior conditions, the radial basis function as a meshless method which solves partial differential equations of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than ANN based model up to 13%.

  10. Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France

    International Nuclear Information System (INIS)

    Hissler, Christophe; Probst, Jean-Luc

    2006-01-01

    Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001-June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m -2 a -1 ). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m -2 ) showing that the residence time of Hg in this river is short

  11. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  12. Cementitious Barriers Partnership Accomplishments And Relevance To The DOE Complex

    International Nuclear Information System (INIS)

    Burns, H.; Langton, C.; Flach, G.; Kosson, D.

    2010-01-01

    The Cementitious Barriers Partnership (CBP) was initiated to reduce risk and uncertainties in the performance assessments that directly impact U.S. Department of Energy (DOE) environmental cleanup and closure programs. The CBP is supported by the DOE Office of Environmental Management (DOE-EM) and has been specifically addressing the following critical EM program needs: (i) the long-term performance of cementitious barriers and materials in nuclear waste disposal facilities and (ii) increased understanding of contaminant transport behavior within cementitious barrier systems to support the development and deployment of adequate closure technologies. To accomplish this, the CBP has two initiatives: (1) an experimental initiative to increase understanding of changes in cementitious materials over long times (> 1000 years) over changing conditions and (2) a modeling initiative to enhance and integrate a set of computational tools validated by laboratory and field experimental data to improve understanding and prediction of the long-term performance of cementitious barriers and waste forms used in nuclear applications. In FY10, the CBP developed the initial phase of an integrated modeling tool that would serve as a screening tool which could help in making decisions concerning disposal and tank closure. The CBP experimental programs are underway to validate this tool and provide increased understanding of how CM changes over time and under changing conditions. These initial CBP products that will eventually be enhanced are anticipated to reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the DOE assessment process. These tools have application to low activity waste forms, high level waste tank closure, D and D and entombment of major nuclear facilities, landfill waste acceptance criteria, and in-situ grouting and immobilization of vadose zone contamination. This paper

  13. Euro-Mediterranean Partnership

    DEFF Research Database (Denmark)

    Brach, Juliane

    2007-01-01

    The EU and 12 countries of the Middle East and North Africa (MENA) engaged in 1995 in the Euro-Mediterranean Partnership (EMP) in political, economic and cultural matters with the aim to foster cooperation, stability and prosperity around the Mediterranean Basin. The Economic and Financial...... and the past performance of the EFP. It analyses the association agreements, economic cooperation and financial assistance, discusses the major obstacles, and outlines the potential of the EFP to shape the European Neighborhood Policy....

  14. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  15. Public-Private Partnerships

    DEFF Research Database (Denmark)

    Lehmann, Martin; Jeppesen, S.

    2006-01-01

    Public-private partnerships in the environmental field have emerged as one option in the pursuit of sustainable development. So-called ‘Green Networks’, ‘Cleaner Production Centres’, ‘Waste Minimisation Clubs’ are among others highlighted as alternatives to governmental regulation. While being...... these initiatives in an institutional framework and suggest how the experiences can be understood in their own rights....

  16. The Global Soil Partnership

    Science.gov (United States)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  17. Design of Algorithms for their Use in the Control of Solutes Transport in Contaminated Aquifers; Diseno de algoritmos para su uso en el control del transporte de solutos en acuiferos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Najera, Juan Diego [Comision Federal de Electricidad (Mexico)

    2002-06-01

    This paper establishes the theoretical foundations of a mathematical methodology to approach the rehabilitation of aquifers contaminated by dissolved substances, with the assistance of numerical techniques. The derived algorithms are of control or management type, since simultaneously to the predictive numerical solution of the solute transport equation, they determine those solutions that fulfil water quality restrictions. The controlling variable is the concentration of the polluting agent dissolved in the flow field. The considerations are kinematics because they take into account the advection and dispersion terms, but they also considerate the first order kinetic sorption model and the sources/sinks for the concentration. We describe the physical arguments and mathematical theory of subdiferentials necessary to establish the control problem of initial and boundary values for the solutes transport equation; afterwards, the primal variational model and the mixed of dual internal control as well as the formal discrete version of both formulations are obtained, so that solution algorithms of finite element semi discrete type are generated. Due to the hyperbolic-parabolic character of the transport equation, when the advective tem is dominant, in this work it is approximated by means of the lkeda's partial upwind technique. To prove the theory a hypothetical example is presented, and we analyze the two possible cases for the concentration of a polluting agent: when it dose not exceed and when it escapes the regulator limits of water quality. In both situations the primal and mixed algorithms determine the appropriate numerical solutions of each kind of problem. [Spanish] Este trabajo establece los fundamentos teoricos de una metodologia matematica para abordar la rehabilitacion de mantos acuiferos contaminados por sustancias disueltas, con la asistencia de tecnicas numericas. Los algoritmos que se derivan son de control o de manejo, ya que inmerso a la

  18. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3-4, 1997

    International Nuclear Information System (INIS)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report

  19. Civil partnerships five years on.

    Science.gov (United States)

    Ross, Helen; Gask, Karen; Berrington, Ann

    2011-01-01

    The Civil Partnership Act 2004, which came into force in December 2005 allowing same-sex couples in the UK to register their relationship for the first time, celebrated its fifth anniversary in December 2010. This article examines civil partnership in England and Wales, five years on from its introduction. The characteristics of those forming civil partnerships between 2005 and 2010 including age, sex and previous marital/civil partnership status are examined. These are then compared with the characteristics of those marrying over the same period. Further comparisons are also made between civil partnership dissolutions and divorce. The article presents estimates of the number of people currently in civil partnerships and children of civil partners. Finally the article examines attitudes towards same-sex and civil partner couples both in the UK and in other countries across Europe.

  20. A Competitive Partnership Formation Process

    OpenAIRE

    Andersson, Tommy; Gudmundsson, Jens; Talman, Adolphus; Yang, Zaifu

    2013-01-01

    A group of heterogeneous agents may form partnerships in pairs. All single agents as well as all partnerships generate values. If two agents choose to cooperate, they need to specify how to split their joint value among one another. In equilibrium, which may or may not exist, no agents have incentives to break up or form new partnerships. This paper proposes a dynamic competitive adjustment process that always either finds an equilibrium or exclusively disproves the existence of any equilibri...

  1. Public-private Partnerships

    DEFF Research Database (Denmark)

    Hodge, Graeme A.; Greve, Carsten; Boardman, Anthony E.

    2017-01-01

    more to seeking economic growth and political success rather than demonstrating ‘one-best-way’ to deliver efficient infrastructure. This article traces where the infrastructure PPP idea has come from and what it is now becoming. It takes a global perspective and places Australian and international...... experience in this context, particularly through the global financial crisis. It concludes that PPP can become an integrated part of infrastructure development around the world, assuming learning occurs from past experience. It presents several lessons on deepening partnerships; on the multiplicity...

  2. The Eastern Partnership

    DEFF Research Database (Denmark)

    Nielsen, Kristian L.; Vilson, Maili

    2014-01-01

    When the EU launched the Eastern Partnership (EaP) in 2009, it did so with much rhetoric about projecting its soft power into Eastern Europe. Yet today, the EU's soft power project seems to have stalled, with developments in the region being less than favourable. This article argues that the EaP...... essentially replicated the main weaknesses of the European Neighbourhood Policy, by offering too little incentive and support to the partners, rendering both conditionality and soft power ineffective as tools for milieu shaping. In promoting the EaP as a policy of soft power, the EU has once again forgotten...

  3. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    F.R. Faillace; Y. Yuan

    2000-01-01

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  4. 31 CFR 306.87 - Partnerships (including nominee partnerships).

    Science.gov (United States)

    2010-07-01

    ... (including nominee partnerships). An assignment of a security registered in the name of or assigned to a... appropriate for winding up partnership affairs. In those cases where assignments by or in behalf of all... dissolution. Upon voluntary dissolution, for any jurisdiction where a general partner may not act in winding...

  5. Canada's Global Partnership Program

    International Nuclear Information System (INIS)

    Ellis, M.

    2007-01-01

    Curbing the proliferation of biological weapons (BW) is an essential element of the Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. At the Kananaskis Summit in June 2002, G8 Leaders committed to prevent terrorists, or those that harbour them, from acquiring or developing biological weapons and related materials, equipment and technology. To this end, Canada's Global Partnership Program is investing heavily in biological non-proliferation activities in countries of the former Soviet Union. A comprehensive strategy has been developed to help improve biological safety (biosafety) and biological security (biosecurity) with provision for addressing dual-use concerns. Raising awareness and creating a self-sustaining culture of biosecurity is a key driver of the program. Through this strategy, Canada is assisting various FSU countries to: develop and implement effective and practical biosafety/biosecurity standards and guidelines; establish national and/or regional biosafety associations; develop and deliver effective biosafety and biosecurity training; put in place enhanced physical security measures and equipment. In addition to biosafety and biosecurity, the GPP supports a broad range of Biological Non-Proliferation projects and initiatives, including dozens of projects aimed at redirecting former biological weapons scientists. To date, most of these activities have been supported through Canada's contribution to the International Science and Technology Center (ISTC) and the Science and Technology Centre Ukraine (STCU).(author)

  6. Southeast Regional Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  7. Pilot study on: Modelling of the Groundwater Flow and Contaminant Transport in the Area of the Landfill Mastwijk (Linschoten, the Netherlands)

    NARCIS (Netherlands)

    Richardson-van der Poel MA; Swartjes FA; Beusen AHW; Sauter FJ; LBG; CIM

    1995-01-01

    The Mastwijk landfill can be regarded as a potential source of contaminants for the pumping water station, situated about one kilometre northeast of the landfill. With the purpose to get insight into the spreading of contaminants originating from the Mastwijk landfill, a pilot study has been

  8. Western Hemisphere Knowledge Partnerships

    Science.gov (United States)

    Malone, T. F.

    2001-05-01

    , and application of knowledge concerning the nature of -- and interaction among -- matter, living organisms, energy, information, and human behavior. This strategy calls for innovative partnerships among the physical, biological, health, and social sciences, engineering, and the humanities. New kinds of partnership must also be forged among academia, business and industry, governments, and nongovernmental organizations. Geophysicists can play an important role in these partnerships. A focus for these partnerships is to manage the individual economic productivity that drives both human development and global change. As world population approaches stability during the twenty-first century, individual economic productivity will be the critical link between the human and the natural systems on planet Earth. AGU is among a core group of individuals and institutions proposing Western Hemisphere Knowledge Partnerships (WHKP) to test the hypothesis that knowledge, broadly construed, is an important organizing principle in choosing a path into the future. The WHKP agenda includes: (1) life-long learning, (2) the health and resilience of natural ecosystems, (3) eco-efficiency in economic production and consumption, (4) extension of national income accounts, (5) environmentally benign sources of energy, (6) delivery of health care, (7) intellectual property rights, and (8) networks for action by local communities.Collaboratories and distance education technologies will be major tools. A panel of experts will explore this proposal.

  9. San Francisco urban partnership agreement, national evaluation : exogenous factors test plan.

    Science.gov (United States)

    2011-06-01

    This report presents the test plan for collecting and analyzing exogenous factors data for the San Francisco Urban : Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. : The San Francisco UPA proj...

  10. Minnesota urban partnership agreement national evaluation : traffic system data test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the traffic system data test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by employi...

  11. Minnesota urban partnership agreement national evaluation : transit system data test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the test plan for collecting and analyzing transit system data for the Minnesota Urban Partnership Agreement (UPA) National Evaluation under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA...

  12. Minnesota urban partnership agreement national evaluation : surveys, interviews, and focus groups test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the test plan for developing, conducting, and analyzing surveys, interviews, and focus groups for evaluating the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Prog...

  13. Minnesota urban partnership agreement national evaluation : cost benefit analysis test plan.

    Science.gov (United States)

    2009-11-17

    This report presents the cost benefit analysis test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by emplo...

  14. Institutions, Partnerships and Institutional Change

    NARCIS (Netherlands)

    J.C.A.C. van Wijk (Jeroen); S.R. Vellema (Sietze); J. van Wijk (Jakomijn)

    2011-01-01

    markdownabstractOne of the goals of the Partnership Resource Centre (PRC) is to execute evidence-based research and further develop a theoretical framework on the linkages between partnerships and value chain development (ECSAD 2009). Within the PRC Trajectory on Global Value Chains, this goal was

  15. Strategic Partnerships in International Development

    Science.gov (United States)

    Treat, Tod; Hartenstine, Mary Beth

    2013-01-01

    This chapter provides a framework and recommendations for development of strategic partnerships in a variety of cultural contexts. Additionally, this study elucidates barriers and possibilities in interagency collaborations. Without careful consideration regarding strategic partnerships' approaches, functions, and goals, the ability to…

  16. Partnership for Wave Power - Roadmaps

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen

    This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...

  17. Partnerships for Global Child Health.

    Science.gov (United States)

    Steenhoff, Andrew P; Crouse, Heather L; Lukolyo, Heather; Larson, Charles P; Howard, Cynthia; Mazhani, Loeto; Pak-Gorstein, Suzinne; Niescierenko, Michelle L; Musoke, Philippa; Marshall, Roseda; Soto, Miguel A; Butteris, Sabrina M; Batra, Maneesh

    2017-10-01

    Child mortality remains a global health challenge and has resulted in demand for expanding the global child health (GCH) workforce over the last 3 decades. Institutional partnerships are the cornerstone of sustainable education, research, clinical service, and advocacy for GCH. When successful, partnerships can become self-sustaining and support development of much-needed training programs in resource-constrained settings. Conversely, poorly conceptualized, constructed, or maintained partnerships may inadvertently contribute to the deterioration of health systems. In this comprehensive, literature-based, expert consensus review we present a definition of partnerships for GCH, review their genesis, evolution, and scope, describe participating organizations, and highlight benefits and challenges associated with GCH partnerships. Additionally, we suggest a framework for applying sound ethical and public health principles for GCH that includes 7 guiding principles and 4 core practices along with a structure for evaluating GCH partnerships. Finally, we highlight current knowledge gaps to stimulate further work in these areas. With awareness of the potential benefits and challenges of GCH partnerships, as well as shared dedication to guiding principles and core practices, GCH partnerships hold vast potential to positively impact child health. Copyright © 2017 by the American Academy of Pediatrics.

  18. A competitive partnership formation process

    NARCIS (Netherlands)

    Andersson, T.; Gudmundsson, J.; Talman, A.J.J.

    A group of heterogeneous agents may form partnerships in pairs. All single agents as well as all partnerships generate values. If two agents choose to cooperate, they need to specify how to split their joint value among one another. In equilibrium, which may or may not exist, no agents have

  19. Cross-Sector Partnership Formation

    NARCIS (Netherlands)

    I. Stöteler (Ismaela); S. Reeder (Sabine); R.J.M. van Tulder (Rob)

    2012-01-01

    textabstractA cross-sector partnership is a collaborative effort in which parties from different societal sectors pool resources to provide solutions to (perceived) common problems. These partnerships are often rather complex because of a number of reasons: (1) they address complex issues, (2) they

  20. A Competitive Partnership Formation Process

    NARCIS (Netherlands)

    Andersson, T.; Gudmundsson, J.; Talman, A.J.J.; Yang, Z.

    2013-01-01

    A group of heterogenous agents may form partnerships in pairs. All single agents as well as all partnerships generate values. If two agents choose to cooperate, they need to specify how to split their joint value among one another. In equilibrium, which may or may not exist, no agents have

  1. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  2. Economic Public Private Partnerships for Development

    Science.gov (United States)

    Taylor, Thomas C.; Kistler, Walter P.; Citron, Bob

    2008-01-01

    Space transportation has evolved to entrepreneurs offering affordable transportation services to LEO. Society expects space tourism to produce low costs quickly, but entrepreneurs need the larger commercial transportation markets to raise the private money to build the orbital vehicles. Early heavy cargo is the logistics model of remote bases on Earth and is likely to be similar for off planet remote bases. Public Private Partnerships (PPP), (Norment, 2006) and other alliances with governments offer new transportation markets and combines private funding with government markets to accelerate the movement of mankind into space, (Kistler, 2004a). Entrepreneurs bring change like a multitude of innovation, changes to the traditional aerospace industry status quo, commercial market forces and the lowering of the cost of transportation to orbit. Within PPPs, government stretches space budgets, increases vehicle innovation without cost and gains cost advantages of larger markets. Examples of PPPs show some opportunity for change in space commerce is possible, (Stainback, 2000 and Spekman, 2000). Some of the items entrepreneurs bring include innovation in hardware, a maturing of the normal market forces such as the pressures from buyers and sellers rather than those from government planners or from regulation. Launch costs are high, society wants orbital hotels and current/future markets are not emerging because of high transportation costs. The paper proposes a new approach with examples, because mankind has taken a long time to transition from expendable launch vehicles to newer more affordable launch innovation and may require the introduction of new innovative approaches.

  3. The AMTEX Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.

    1993-03-01

    The American Textile Partnership, as its name implies, is a collaborative effort between the DOE national labs and industry-related R&D/educational institutions. The purpose of AMTEX is to promote R&D that enhance the competitiveness of the integrated textile industry (i.e., fibers, textiles, sewn/fabricated products). The industry-related organizations bring a vital perspective of industry needs in addition to their own R&D capabilities. The DOE labs bring broad R&D capabilities and perspectives from other areas of research application. The strong synergy between industry and DOE will enable this collaboration to significantly impact industry competitiveness while focusing and strengthening, the labs` capabilities consistent with DOE`s mission. There are three main components in AMTEX: DOE/ER oversight; the Operating Committee, which is composed a Laboratory Board and an Industry Board; and five Technology Area Coordination Teams (TACTs).

  4. The AMTEX Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.

    1993-01-01

    The American Textile Partnership, as its name implies, is a collaborative effort between the DOE national labs and industry-related R D/educational institutions. The purpose of AMTEX is to promote R D that enhance the competitiveness of the integrated textile industry (i.e., fibers, textiles, sewn/fabricated products). The industry-related organizations bring a vital perspective of industry needs in addition to their own R D capabilities. The DOE labs bring broad R D capabilities and perspectives from other areas of research application. The strong synergy between industry and DOE will enable this collaboration to significantly impact industry competitiveness while focusing and strengthening, the labs' capabilities consistent with DOE's mission. There are three main components in AMTEX: DOE/ER oversight; the Operating Committee, which is composed a Laboratory Board and an Industry Board; and five Technology Area Coordination Teams (TACTs).

  5. Public-Private Partnerships

    DEFF Research Database (Denmark)

    Helby Petersen, Ole

    This PhD dissertation studies national similarities and differences in policy and regulation of public-private partnerships (PPPs), with an empirical focus on Denmark and Ireland. The starting point and motivation for the study is the observation that whereas PPPs are often depicted in the academic...... time, and how can their similarities and differences be explained?; (iii) how do differing national policy and regulation frameworks serve to facilitate or hinder the formation of PPPs, exemplified by four case studies from the schools sector?; (iv) what framework conditions does the EU set for PPP...... literature and in policy practice as a globally disseminated governance scheme, in reality, a closer examination of the PPP reform landscape reveals significant differences in national governments’ PPP policy and regulation and in the amount of actually implemented PPP projects. By comparing the initiatives...

  6. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed.

    Science.gov (United States)

    Fairbairn, David J; Karpuzcu, M Ekrem; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth F; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2016-05-01

    The occurrence and spatiotemporal variation of 26 contaminants of emerging concern (CECs) were evaluated in 68 water samples in 2011-2012 in the Zumbro River watershed, Minnesota, U.S.A. Samples were collected across a range of seasonal/hydrological conditions from four stream sites that varied in associated land use and presence of an upstream wastewater treatment plant (WWTP). Selected CECs included human/veterinary pharmaceuticals, personal care products, pesticides, phytoestrogens, and commercial/industrial compounds. Detection frequencies and concentrations varied, with atrazine, metolachlor, acetaminophen, caffeine, DEET, and trimethoprim detected in more than 70% of samples, acetochlor, mecoprop, carbamazepine, and daidzein detected in 30%-50% of samples, and 4-nonylphenol, cotinine, sulfamethoxazole, erythromycin, tylosin, and carbaryl detected in 10%-30% of samples. The remaining target CECs were not detected in water samples. Three land use-associated trends were observed for the detected CECs. Carbamazepine, 4-nonylphenol, erythromycin, sulfamethoxazole, tylosin, and carbaryl profiles were WWTP-dominated, as demonstrated by more consistent loading and significantly greater concentrations downstream of the WWTP and during low-flow seasons. In contrast, acetaminophen, trimethoprim, DEET, caffeine, cotinine, and mecoprop patterns demonstrated both seasonally-variable non-WWTP-associated and continual WWTP-associated influences. Surface water studies of CECs often target areas near WWTPs. This study suggests that several CECs often characterized as effluent-associated have additional important sources such as septic systems or land-applied biosolids. Finally, agricultural herbicide (atrazine, acetochlor, and metolachlor) profiles were strongly influenced by agricultural land use and seasonal application-runoff, evident by significantly greater concentrations and loadings at upstream sites and in early summer when application and precipitation rates are

  7. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  8. Partnership in an application of RBCA: Case study for quantitative assessment of total petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Srinivasan, K.; Shepherd, D.

    1995-01-01

    Risk-Based Corrective Action (RBCA) was successfully applied at a site contaminated with weathered Total Petroleum Hydrocarbons (TPH) from a past release of Diesel Fuel No. 2. In partnership with the state regulatory agency, an approach was developed to assess the toxicity of TPH by the evaluation of its individual classes/constituents. Historically, assessments of petroleum product releases have focused solely on TPH as an analytical parameter and not its individual fractions and/or constituents which represent the actual toxicity of the released product. Soil and groundwater TPH data by Modified California Method 8015 (GC/MS) were reviewed. Based on analytical standards, typical Diesel Fuel No. 2 carbon ranges/fractions were identified. In addition, site-specific carbon-chain lengths were identified based on the aforementioned standard. In consultation with state regulators and according to state draft RBCA guidance, site-specific polycyclic aromatic hydrocarbons (PAHs) and three TPH carbon-range fractions were identified as constituents of concern. In order to quantify the three TPH fractions, appropriate toxicological surrogates were identified. Site-specific exposures to potential human and ecological receptors were evaluated in close consultation with the state regulators. Limited contaminant fate and transport analysis was conducted. Subsequently, complete exposure pathways were quantified

  9. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  10. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  11. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  12. 46 CFR 67.35 - Partnership.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Partnership. 67.35 Section 67.35 Shipping COAST GUARD... Citizenship Requirements for Vessel Documentation § 67.35 Partnership. A partnership meets citizenship... recreational endorsement, at least 50 percent of the equity interest in the partnership is owned by citizens...

  13. NREL: International Activities - Bilateral Partnerships

    Science.gov (United States)

    resource assessment, integration of diverse energy sources, systems modeling, and business models for In partnership with the Organization of American States and other multinational organizations, NREL , Industry and Tourism; Finance and Public Credit; and Agriculture. Europe NREL collaborates with many

  14. F-Gas Partnership Programs

    Science.gov (United States)

    Provides basic information and resources for the Fluorinated Gas Partnership Programs, which were launched as a joint effort by EPA and industry groups to reduce the amount of fluorinated gases emitted through a variety of industrial processes.

  15. Networking the Global Maritime Partnership

    National Research Council Canada - National Science Library

    Galdorisi, George; Hszieh, Stephanie; McKearney, Terry

    2008-01-01

    The modern-day notion of a "Global Maritime Partnership," first introduced by then-CNO Admiral Michael Mullen at the 2005 International Seapower Symposium as "The 1000-Ship Navy," and later enshrined in the new U.S...

  16. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  17. Musselwhite partnership produces results

    Energy Technology Data Exchange (ETDEWEB)

    Larmour, A.

    2009-12-01

    Hydro One will install transmission lines between Nipigon and Pickle Lake as one of 20 projects in Ontario's ambitious $2.3 billion green-energy makeover. The electrical power grid will be extended to the region at the request of a group of northwestern Ontario First Nation communities and representatives from Goldcorp Inc.'s Musselwhite Mine, who wanted a reliable source of energy in this remote area. The partnership between Goldcorp and the First Nation communities began in the late 1980s. The Musselwhite Agreement was one of the first Impact Benefit Agreements negotiated in Ontario. Initially signed in 1996, the 5-year deal was renewed in 2001 and 2006. One of the communities at North Caribou Lake has a population of 780 and is located approximately 320 kilometres north of Sioux Lookout. It is one of 4 First Nation communities and 2 tribal councils that have negotiated the sharing of resources from the Musselwhite gold mine, originally owned and operated by Placer Dome. This article discussed some of the best practices in building relationships with community leaders and members. Industry needs to understand the governance of a First Nation community and how they are set up in their decision-making process. Other negotiated aspects within the agreement are revenue sharing and employment. A target of 30 per cent First Nation employment was set for the signatory and affiliate communities. 2 refs., 1 fig.

  18. Sustainable partnerships; Parcerias sustentaveis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ana Claudia L.C.; Medau, Michelle; Nascimento, Patricia M.; Ruiz, Rogerio H. [Companhia de Gas de Sao Paulo (COMGAS), Sao Paulo, SP (Brazil)

    2008-07-01

    This paper describes the experience of the Gas Company of Sao Paulo - COMGAS in regard to the plantations of seedlings of native tree species as a compensatory measure in licensing regarding intervention in the Preservation Area Standing. The work for the installation of gas pipeline are subject to environmental licensing, and within the context of this specific permit, any intervention in the Preservation Area Standing - APP, or any opening of mass grave or not that results in removal of native vegetation or exotic, generates a Statement of Commitment to Environmental Recovery - TCRA issued by the State Department of Protection of Natural Resources - DEPRN, organ of SMA that licenses the operations on vegetation and wildlife in the State, compensation for the use of Natural Resource (APP). These terms are the reforestation of areas devoid of vegetation, carrying tree or enrichment of fragments without ecological sustainability. To that their plantations were able to pose a greater environmental significance, COMGAS started processes of partnerships that has so far planted about 58,000 seedlings of native species. (author)

  19. Supporting sound partnerships

    International Nuclear Information System (INIS)

    McManus, B.

    2009-01-01

    According to the Alberta Energy Resources Conservation Board's (ERCB) business plan, the ERCB needs to continue its priority of assessing the interests of government, industry, the public and other stakeholders and be responsive to their needs. This presentation discussed the evolution of noise criteria requirements and the establishment of a regulatory foundation with ERCB Directive 038, which is the only comprehensive noise requirement in the province and works towards building relationships with industry and the community to address noise issues. The role of the field centres was also outlined. Their role is to respond and investigate noise complaints throughout the province; communicate with landowners and industry on the front lines; and identify compliance of facilities. Alternative dispute resolution and noise issues were discussed. The field centres facilitate communication between landowners and industry and resolution of noise issues through a collaborative process. The presentation also outlined the role of community and Aboriginal involvement; the role of synergy groups; and successes such as the Sundre Petroleum Operators Group and Aberdeen Pilot Project. It was concluded that Directive 038 promotes noise awareness and strong partnerships with stakeholders.

  20. Job loss and broken partnerships

    DEFF Research Database (Denmark)

    Kriegbaum, Margit; Christensen, Ulla; Lund, Rikke

    2008-01-01

    The aim of this study was to investigate the effects of the accumulated number of job losses and broken partnerships (defined as the end of cohabitation) on the risk of fatal and nonfatal events of ischemic heart disease (IHD).......The aim of this study was to investigate the effects of the accumulated number of job losses and broken partnerships (defined as the end of cohabitation) on the risk of fatal and nonfatal events of ischemic heart disease (IHD)....

  1. Untangling Partnership and Domination Morality

    Directory of Open Access Journals (Sweden)

    David Loye

    2015-06-01

    Full Text Available Riane Eisler’s (1987 cultural transformation theory is an effective framework for understanding many of the constructs that shape society. This article uses Eisler’s theory to explain the formation of morality and the construction of conscience. It contrasts partnership morality and domination morality, and describes the factors that shape our tendency to embrace one or the other. The article helps us understand that we have a choice, and invites us to choose partnership morality.

  2. Investigations of the transport behavior of contaminants in fresh water/brine systems under consideration of density differences; Untersuchungen zum Transportverhalten von Schadstoffen in Suess- / Salzwassersystemen unter Beruecksichtigung von Dichteunterschieden

    Energy Technology Data Exchange (ETDEWEB)

    Larue, Juergen; Weyand, Torben; Mayer, Kim-Marisa

    2016-10-15

    This report contains a compilation of national and international experience gathered as part of a research project sponsored by the BMUB concerning the aspect of the transport behaviour of contaminants in freshwater/brine systems with consideration of density and viscosity differences. The fundamentals of modelling density-dependent flows are presented and a series of examples of the application with different codes and their uses with reference to real sites is described. Besides an overview of test cases for the verification of these codes, the further development of the instruments available to GRS and test calculations regarding their implementation are presented.

  3. THE USE OF PARTNERSHIP IN PURCHASING

    OpenAIRE

    ELENA SIMA; GEORGE BĂLAN

    2014-01-01

    The partnership is now increasingly used in all areas thanks to the synergy it implies and of the benefits demonstrated. And in today's economy benefits of the partnership are widely recognized. Partnership in purchase makes no exception. This paper presents the benefits of a partnership-based purchases compared to those of traditional purchasing. Less well known is that a partnership built and/or implemented incorrectly and may result in additional costs and thus lead to disadvantages for...

  4. 49 CFR 175.705 - Radioactive contamination.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  5. 49 CFR 176.715 - Contamination control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination control. 176.715 Section 176.715... Requirements for Radioactive Materials § 176.715 Contamination control. Each hold, compartment, or deck area... the removable (non-fixed) radioactive surface contamination is not greater than the limits prescribed...

  6. 49 CFR 173.443 - Contamination control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination control. 173.443 Section 173.443... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.443 Contamination control. (a) The level of non-fixed (removable) radioactive contamination on the external surfaces of each package offered for...

  7. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Christopher J. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-11-12

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  8. Contamination Analysis Tools

    Science.gov (United States)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  9. BLT-MS (Breach, Leach, and Transport -- Multiple Species) data input guide. A computer model for simulating release of contaminants from a subsurface low-level waste disposal facility

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M.; MacKinnon, R.J.

    1996-11-01

    The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS

  10. BLT-MS (Breach, Leach, and Transport -- Multiple Species) data input guide. A computer model for simulating release of contaminants from a subsurface low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M. [Brookhaven National Lab., Upton, NY (United States); MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamics Research Associates, Inc., Albuquerque, NM (United States)

    1996-11-01

    The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS.

  11. Nearshore transport processes affecting the dilution and fate of energy-related contaminants. Progress report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Blanton, J.O.

    1980-01-01

    Research was conducted on physical oceanograhic processes off the Georgia Coast. Spatral variations in momentum and salt flux were measured to determine their importance in generating flow and salt transport. Analyses of data are presently underway

  12. Light contamination

    International Nuclear Information System (INIS)

    Cepeda Pena, William Enrique

    1998-01-01

    The article tries on the wrong use of the artificial light, of the main problems of the light contamination, dispersion of the light, noxious effects of the light contamination, ecological effects, effects on the man's biological rhythm, economic effects and effects about the civic and vial security, among other topics

  13. A fruitful partnership with the private sector

    International Nuclear Information System (INIS)

    Ouellet, D.

    1993-01-01

    Hydro-Quebec's successful partnership with the private sector, in particular with the consulting engineering profession, was highlighted, as an indication of the unprecedented economic activity generated by the public utility throughout its fifty year existence, and most noticeably since the 1960s, when the 'Quiet Revolution' of the Lesage government set the tone for favoring Quebec consulting firms. The Corporation's rapid growth also stimulated the development of the province's private engineering sector, and served as the incentive for electrical equipment manufacturers, and the source of new skills and enterprises emerging from environmental concerns. Special mention was made of the economic advances made by native peoples through their involvement in land clearing, excavation, construction, and provision and transportation of supplies to remote construction sites

  14. NATO's Strategic Partnership with Ukraine

    DEFF Research Database (Denmark)

    Breitenbauch, Henrik Ø.

    2014-01-01

    Russian actions in Ukraine have altered the security land- scape in Europe, highlighting a renewed emphasis on the differences between members and non-members. In this context, NATO must a) create a strategic understanding of partnerships as something that can be transformative, even if it will n......Russian actions in Ukraine have altered the security land- scape in Europe, highlighting a renewed emphasis on the differences between members and non-members. In this context, NATO must a) create a strategic understanding of partnerships as something that can be transformative, even...... if it will not lead to membership in the short or even long term, and b) build such a strategic relationship with Ukraine. In sum, the Russian-induced Ukraine crisis should spur the reform of NATO partnerships – with Ukraine as a case in point....

  15. Phytovolatilization of Organic Contaminants.

    Science.gov (United States)

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  16. Enhancing the Vietnamese market presence of the case company Uber Vietnam by implementing a partnership strategy

    OpenAIRE

    Vu, Tram

    2016-01-01

    This thesis is dedicated to studying the concept of partnership marketing and apply the knowledge gained to the commissioner Uber Vietnam through actual research. The case company has entered the Vietnamese transportation market in 2015 and is currently going through a rough time acquiring market attention. Partnership marketing has been one of the main strategies that the commissioner applied in its market entry plan, however it did not deliver the expected result. Therefore, the thesis writ...

  17. Safety impacts of the I-35W improvements done under Minnesota's urban partnership agreement (UPA) project : final report.

    Science.gov (United States)

    2017-06-01

    As part of an Urban Partnership Agreement project, the Minnesota Department of Transportation added lanes : and began operating a priced dynamic shoulder lane (PDSL) on parts of Interstate 35W. Following the opening of : these improvements, the frequ...

  18. Synthesis of public-private partnerships : potential issues and best practices for program and project implementation and administration.

    Science.gov (United States)

    2015-08-01

    Public-private partnerships (P3s or PPPs) offer an innovative procurement method for the public sector. : P3s involve collaborations between the public and private sectors to finance, develop or maintain transportation : infrastructure. In an era of ...

  19. Partnership Education in the Forest

    Directory of Open Access Journals (Sweden)

    Heidi G Bruce

    2017-10-01

    Full Text Available Heidi Bruce is a founding board member of the Orcas Island Forest School, an outdoor early childhood education program located on Orcas Island, Washington State. In this article, she describes the interconnectedness of nature-based education and Partnership education, as outlined in Riane Eisler‘s book, Tomorrow’s Children: A Blueprint for Partnership Education in the 21st Century (2000. She also shares her experience in advocating for the first legislation in the country that creates a pilot program for licensing nature-based early childhood education programs.

  20. The Dilemma of Professional Partnerships

    DEFF Research Database (Denmark)

    Bévort, Frans; Poulfelt, Flemming

    A large and growing proportion of the organizations in the contemporary knowledge economy are organized as professional partnerships as is the case of professional service firms. As these firms have grown larger (e.g. Big4: Deloitte, PwC, E&Y, KPMG), the way of organizing is under pressure...... other sources, the paper analyzes the changing organization of work, the changing partner and manager roles and basic changes in the HR-model. The paper explores the question of where the partnership organization is going and discusses potentials and pitfalls for this particular type of organization....