WorldWideScience

Sample records for contaminant transport experimental

  1. Experimental and AI-based numerical modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.

    2017-10-01

    This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.

  2. Spatial and temporal features of density-dependent contaminant transport: experimental investigation and numerical modeling.

    Science.gov (United States)

    Zoia, Andrea; Latrille, Christelle; Beccantini, Alberto; Cartadale, Alain

    2009-10-13

    We investigate the spatial and temporal features of variable-density contaminant plumes migration in porous materials. Our analysis is supported by novel experimental results concerning concentration profiles inside a vertical column setup that has been conceived at CEA to this aim. The experimental method relies on X-ray spectrometry, which allows determining solute profiles as a function of time at several positions along the column. The salient outcomes of the measurements are elucidated, with focus on miscible fluids in homogeneous saturated media. The role of the injected solution molarity is evidenced. As molarity increases, the solutes plume transport progressively deviates from the usual Fickian behavior, and pollutants distribution becomes skewed in the direction dictated by gravity. By resorting to a finite elements approach, we numerically solve the nonlinear equations that rule the pollutants migration: a good agreement is found between the simulated profiles and the experimental data. At high molarity, a strong dependence on initial conditions is found. Finally, we qualitatively explore the (unstable) interfacial dynamics between the dense contaminant plume and the lighter resident fluid that saturates the column, and detail its evolution for finite-duration contaminant injections.

  3. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  4. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  5. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling.

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S Doug; Reimus, Paul W; Birdsell, Kay H

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Contaminant transport in Massachusetts Bay

    Science.gov (United States)

    Butman, Bradford

    Construction of a new treatment plant and outfall to clean up Boston Harbor is currently one of the world's largest public works projects, costing about $4 billion. There is concern about the long-term impact of contaminants on Massachusetts Bay and adjacent Gulf of Maine because these areas are used extensively for transportation, recreation, fishing, and tourism, as well as waste disposal. Public concern also focuses on Stellwagen Bank, located on the eastern side of Massachusetts Bay, which is an important habitat for endangered whales. Contaminants reach Massachusetts Bay not only from Boston Harbor, but from other coastal communities on the Gulf of Maine, as well as from the atmosphere. Knowledge of the pathways, mechanisms, and rates at which pollutants are transported throughout these coastal environments is needed to address a wide range of management questions.

  7. Contaminant transport at a waste residue deposit

    DEFF Research Database (Denmark)

    Engesgaard, Peter Knudegaard; Traberg, Rikke

    1996-01-01

    Contaminant transport in an aquifer at an incinerator waste residue deposit in Denmark is simulated. A two-dimensional, geochemical transport code is developed for this purpose and tested by comparison to results from another code, The code is applied to a column experiment and to the field site...

  8. Transport of nonlinearly biodegradable contaminants in aquifers

    NARCIS (Netherlands)

    Keijzer, H.

    2001-01-01

    This thesis deals with the transport behavior of nonlinearly biodegradable contaminants in aquifers. Such transport occurs during in situ bioremediation which is based on the injection of an electron acceptor or electron donor. The main interests in this thesis are the

  9. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-12-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  10. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  11. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow ...... is the first in a two-paper series describing contaminant transport at a waste residue site. III the second paper, reactive transport at the site is investigated....

  12. EXPERIMENTAL VISUALIZATION AND QUANTIFICATION OF VITREOUS CONTAMINATION FOLLOWING INTRAVITREAL INJECTIONS.

    Science.gov (United States)

    Nakashizuka, Hiroyuki; Shoji, Jun; Shimada, Hiroyuki; Yuzawa, Mitsuko

    2016-10-01

    To detect and quantify vitreous contamination after intravitreal injection using an experimental vitreous contamination model. Enucleated porcine eyes served as a Type 1 experimental vitreous contamination model with fluoresbrite carboxylate microspheres applied to the conjunctival surface. Saline solution (0.05 mL) was injected using a 27-, 30-, or 32-gauge (G) needle. Injection procedures were monitored using an intraocular fiber catheter. Condensed microspheres were applied to an excised sheet of porcine sclera (Type 2 experimental vitreous contamination model). Saline solution (0.05 mL) was injected from the top of an applied condensed microsphere through the sclera using a needle of one of the aforementioned gauges, and samples were then collected. The fluorescence strength of samples was measured using fluorophotometry. We visually detected fluorescent microspheres in 10/10, 9/10, and 9/10 eyes injected with 27-G, 30-G, and 32-G needles, respectively. In the experimental quantification study, values at all needle gauges were significantly higher than those of controls (P contamination directly into the eyes even when a 32-G needle is used. Furthermore, the 27-G needle carries the highest contamination risk.

  13. Outgassing study of spacecraft materials and contaminant transport simulations

    Science.gov (United States)

    Wong, Chung M.; Labatete-Goeppinger, Aura C.; Fowler, Jesse D.; Easton, Myriam P.; Liu, De-Ling

    2016-09-01

    Contamination control plays an important role in sustaining spacecraft performance. One spacecraft degradation mechanism involves long-term on-orbit molecular outgassing from spacecraft materials. The outgassed molecules may accumulate on thermal control surfaces and/or optics, causing degradation. In this study, we performed outgassing measurements of multiple spacecraft materials, including adhesives, Nylon Velcro, and other assembly materials through a modified ASTM E595 test method. The modified ASTM E595 test had the source and receiver temperature remained at 125°C and 25°C, respectively, but with prolonged outgassing periods of two weeks. The condensable contaminants were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography/Mass Spectrometry (GC/MS) to determine their spectral transmission and chemical composition. The FTIR spectra showed several spacecraft materials, primarily adhesives and potting materials, exhibiting slight absorption from contaminants consisting of hydroxyl groups and carboxylic acids. To gain insight into molecular contaminant transport, simulations were conducted to characterize contaminant accumulation inside a hypothetical space system cavity. The simulation indicated that contaminant molecules bouncing inside the hypothetical payload cavity can lead to deposition on colder surfaces, even though large openings are available to provide venting pathways for escaping to space. The newly established molecular contaminant transport simulation capability holds the promise of providing quantitative guidance for future spacecraft and its venting design.

  14. Experimental design of diffusion and desorption of contaminant in heterogeneous media.

    Science.gov (United States)

    Jiang, Guannan; Crimi, Michelle; Fowler, Kathleen; Fu, Xiaojing

    2011-01-01

    Storage of contaminants in low permeability media (LPM) presents a great challenge for prediction of remediation effectiveness and efficiency. The reason lies in the contaminants' complex behaviors within heterogeneous media. Both interparticle and intraparticle diffusion contribute to the difficulty of precise site assessment. Sorption of contaminants--especially within LPM--may sequester the contaminants from active treatment, while desorption over a long period of time leads to contaminant release from storage and consequent re-contamination. Research has been conducted toward better understanding of contaminant diffusion and sorption/desorption processes to better predict contaminant response to site treatment. However, most of the research has been carried out within homogeneous media, while real scenarios in environmental problems feature media whose permeability and other characteristics vary significantly over the treatment volume. Further, few efforts have combined the interparticle/intraparticle diffusion and sorption/desorption processes together. This research aims at a feasible experimental design of diffusion and desorption of contaminant in heterogeneous media to address the gaps in previous research. A 2-D experimental system was designed to evaluate interparticle/intraparticle diffusion processes of trichloroethylene (TCE) in heterogeneous media. The 2-D system was modified to include organic matter in media for simulation of sorption/desorption processes. Results of the research will improve the understanding of how these different transport processes act together within heterogeneous media. Results will also allow for the evaluation of the impact of contaminant mass transport from within low permeability media at a potential treatment site and can support the development of mathematical tools/models combining interparticle/intraparticle and sorption/desorption processes. Such a model will promote more accurate site assessment and provide more

  15. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    Science.gov (United States)

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...

  16. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  17. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.

  18. Analytical and experimental analysis of solute transport in heterogeneous porous media.

    Science.gov (United States)

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael

    2014-01-01

    Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.

  19. Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin

    Science.gov (United States)

    Li, Fei; Liu, Junjie; Pei, Jingjing; Lin, Chao-Hsin; Chen, Qingyan

    2014-03-01

    The environment of the aircraft cabin greatly influences the comfort and health of passengers and crew members. Contaminant transport has a strong effect on disease spreading in the cabin environment. To obtain the complex cabin contaminant distribution fields accurately and completely, which is also essential to provide solid and precise data for computational fluid dynamics (CFD) model validation, this paper aimed to investigate and improve the method for simultaneous particle and gaseous contaminant fields measurement. The experiment was conducted in a functional MD-82 aircraft. Sulfur hexafluoride (SF6) was used as tracer gas, and Di-Ethyl-Hexyl-Sebacat (DEHS) was used as particulate contaminant. The whole measurement was completed in a part of the economy-class cabin without heating manikins or occupied with heating manikins. The experimental method, in terms of pollutant source setting, sampling points and schedule, was investigated. Statistical analysis showed that appropriately modified sampling grid was able to provide reasonable data. A small difference in the source locations can lead to a significant difference in cabin contaminant fields. And the relationship between gaseous and particulate pollutant transport was also discussed through tracking behavior analysis.

  20. Contaminant plume configuration and movement: an experimental model

    Science.gov (United States)

    Alencoao, A.; Reis, A.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Amorim, V.

    2009-04-01

    The relevance of Science and Technology in our daily routines makes it compulsory to educate citizens who have both scientific literacy and scientific knowledge. These will allow them to be intervening citizens in a constantly changing society. Thus, physical and natural sciences are included in school curricula, both in primary and secondary education, with the fundamental aim of developing in the students the skills, attitudes and knowledge needed for the understanding of the planet Earth and its real problems. On the other hand, teaching in Geosciences is more and more based on practical methodologies which use didactic material, sustaining teachers' pedagogical practices and facilitating students' learning tasks suggested on the syllabus defined for each school level. Themes related to exploring the different components of the Hydrological Cycle and themes related to natural environment protection and preservation, namely water resources and soil contamination by industrial and urban sewage are examples of subject matters included on the Portuguese syllabus. These topics motivated the conception and construction of experimental models for the study of the propagation of pollutants on a porous medium. The experimental models allow inducing a horizontal flux of water though different kinds of permeable substances (e.g. sand, silt), with contamination spots on its surface. These experimental activities facilitate the student to understand the flow path of contaminating substances on the saturated zone and to observe the contaminant plume configuration and movement. The activities are explored in a teaching and learning process perspective where the student builds its own knowledge through real question- problem based learning which relate Science, Technology and Society. These activities have been developed in the framework of project ‘Water in the Environment' (CV/PVI/0854) of the POCTI Program (Programa Operacional "Ciência, Tecnologia, Inovação") financed

  1. Contamination transfers during fuel transport cask loading. A concrete situation

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G. [DEN/DED Centre d' Etudes de Cadarache, 13 - Saint Paul lez Durance (France); Briquet, L. [EDF GENV, 93 - Saint Denis (France); Baubet, D. [SGS Qualitest Industrie, 30 - Pont Saint Esprit (France)

    2002-07-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  2. D-Optimal Experimental Design for Contaminant Source Identification

    Science.gov (United States)

    Sai Baba, A. K.; Alexanderian, A.

    2016-12-01

    Contaminant source identification seeks to estimate the release history of a conservative solute given point concentration measurements at some time after the release. This can be mathematically expressed as an inverse problem, with a linear observation operator or a parameter-to-observation map, which we tackle using a Bayesian approach. Acquisition of experimental data can be laborious and expensive. The goal is to control the experimental parameters - in our case, the sparsity of the sensors, to maximize the information gain subject to some physical or budget constraints. This is known as optimal experimental design (OED). D-optimal experimental design seeks to maximize the expected information gain, and has long been considered the gold standard in the statistics community. Our goal is to develop scalable methods for D-optimal experimental designs involving large-scale PDE constrained problems with high-dimensional parameter fields. A major challenge for the OED, is that a nonlinear optimization algorithm for the D-optimality criterion requires repeated evaluation of objective function and gradient involving the determinant of large and dense matrices - this cost can be prohibitively expensive for applications of interest. We propose novel randomized matrix techniques that bring down the computational costs of the objective function and gradient evaluations by several orders of magnitude compared to the naive approach. The effect of randomized estimators on the accuracy and the convergence of the optimization solver will be discussed. The features and benefits of our new approach will be demonstrated on a challenging model problem from contaminant source identification involving the inference of the initial condition from spatio-temporal observations in a time-dependent advection-diffusion problem.

  3. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  4. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  5. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a

  6. Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.; Riemsdijk, van W.H.

    1998-01-01

    Transport of reactive colloids in groundwater may enhance the transport of contaminants in groundwater. Often, the interpretation of results of transport experiments is not a simple task as both reactions of colloids with the solid matrix and reactions of contaminants with the solid matrix and

  7. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  8. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  9. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg D. [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-06-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  10. Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tyrrell, Kimberly J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Striluk, Miranda L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-15

    A laboratory study was conducted to quantify contaminant attenuation processes and associated contaminant transport parameters that are needed to evaluate transport of contaminants through the vadose zone to the groundwater. The laboratory study information, in conjunction with transport analyses, can be used as input to evaluate the feasibility of Monitored Natural Attenuation and other remedies for the 200-DV-1 Operable Unit at the Hanford Site.

  11. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kayla C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effort reported herein.

  12. Critical contaminant/critical pathway analysis - surface water transport for nonradioactive contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuo-Fu

    1996-11-01

    The health risks for an individual exposed to contaminants released from SRS outfalls from 1989 to 1995 were estimated. The exposure pathways studied are ingestion of drinking water, ingestion of contaminated fish and dermal contact with contaminants in water while swimming. The estimated incremental risks for an individual developing cancer vary from 3.E-06 to 1.0E-05. The estimated total exposure chronic noncancer hazard indices vary from 6.E-02 to 1.E-01. The critical contaminants were ranked based on their cancer risks and chronic noncarcinogenic hazard quotients. For cancer risks, the critical contaminants released from SRS outfalls are arsenic, tetrachloroethylene, and benzene. For chronic noncarcinogenic risks, the critical contaminants released from srs outfalls are cadmium, arsenic, silver, chromium, mercury, selenium, nitrate, manganese, zinc, nickel, uranium, barium, copper, tetrachloroethylene, cyanide, and phenol. The critical pathways in decreasing risk order are ingestion of contaminated fish, ingestion of drinking water and dermal contact with contaminants in water while swimming.

  13. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2012-04-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model in the same porous medium. Because of different sources of uncertainties, this coupled model might not be able to accurately track the contaminant state. Incorporating observations through the process of data assimilation can guide the model toward the true trajectory of the system. The Kalman filter (KF), or its nonlinear invariants, can be used to tackle this problem. To overcome the prohibitive computational cost of the KF, the singular evolutive Kalman filter (SEKF) and the singular fixed Kalman filter (SFKF) are used, which are variants of the KF operating with low-rank covariance matrices. Experimental results suggest that under perfect and imperfect model setups, the low-rank filters can provide estimates as accurate as the full KF but at much lower computational effort. Low-rank filters are demonstrated to significantly reduce the computational effort of the KF to almost 3%. © 2012 American Society of Civil Engineers.

  14. A one-dimensional analytical model for airborne contaminant transport in airliner cabins.

    Science.gov (United States)

    Mazumdar, S; Chen, Q

    2009-02-01

    Quick information on airborne infectious disease transmission in airliner cabins is essential to reduce the risk of infection of passengers and crew members. This investigation proposed a one-dimensional analytical model that can predict the longitudinal transmission of airborne contaminants or disease viruses inside an airliner cabin. The model considered both diffusive and convective transport of contaminants in the longitudinal direction of the cabin but assumed complete mixing of contaminants in the cabin cross-section. The effect of recirculation of the cabin air and efficiency of the high-efficiency particulate air (HEPA) filters is also considered in the model. The analytical solution for the one-dimensional contaminant transport model is obtained by using the principle of superposition and the method of separation of variables. The analytical solutions agree well with the computational fluid dynamics (CFD) results. The coupling of a CFD model with the one-dimensional analytical model could capture the impact of local airflow on contaminant transport. This analytical model has been used for analyzing contaminant transport in a 30-row all-economy-class airliner cabin with minimal computing effort. The paper presents a new one-dimensional analytical model that can provide quick information on global airborne contaminant transmissions in airliner cabins for effective response plans. The model can be used to study the effects of air exchange rates, recirculation, efficiency of the high-efficiency particulate air (HEPA) filters and longitudinal airflow on airborne contaminant transport in airliner cabins with minimal computing effort.

  15. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    Science.gov (United States)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  16. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling; however, concentrations in the limestone matrix are needed for assessing contaminant rebound......Understanding the fate and transport of contaminants in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules. Several modeling approaches have been developed to describe...... contaminant transport in fractured media, such as discrete fracture, equivalent porous media, and dual continuum models. However, these modeling concepts are not well tested for real limestone geologies. Our goal is therefore to develop, evaluate and compare approaches for modeling transport of contaminants...

  17. Experimental study on cuttings transportation in turbulent pipe flow

    OpenAIRE

    Boiten, Maren Louise

    2016-01-01

    Experimental investigation on cuttings transportation in turbulent flow, in both horizontal and inclined pipes were performed in the multiphase-laboratory at the University of Stavanger. Spherical glass particles were used to indicate the cuttings transportation. The focus of the experiments was to investigate how pipe inclination, flow rate, particle size and rotation on drill string (DS) affect the particle transport. Different experiments were conducted for single-phase water flow and two-...

  18. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    OpenAIRE

    M. Radulescu; C. Valerian; Yang, J.

    2007-01-01

    The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling ...

  19. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    OpenAIRE

    Yang, J.; C. Valerian; M. Radulescu

    2007-01-01

    The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical m...

  20. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  1. Experimental evidence of turbulent transport regulation by zonal flows.

    Science.gov (United States)

    Birkenmeier, G; Ramisch, M; Schmid, B; Stroth, U

    2013-04-05

    The regulation of turbulent transport by zonal flows is studied experimentally on a flux surface of the stellarator experiment TJ-K. Data of 128 Langmuir probes at different toroidal and poloidal positions on a single flux surface enable us to measure simultaneously the zonal flow activity and the turbulent transport in great detail. A reduction of turbulent transport by 30% during the zonal flow phase is found. It is shown that the reduction process is initiated by a modification in the cross phase between density and electric field followed by a reduction in the fluctuation levels, which sustain low transport levels on larger time scales than the zonal flow lifetime.

  2. Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability.

    Science.gov (United States)

    Xie, Ming; Luo, Wenhai; Guo, Hao; Nghiem, Long D; Tang, Chuyang Y; Gray, Stephen R

    2017-12-28

    We investigated transport mechanisms of trace organic contaminants (TrOCs) through aquaporin thin-film composite forward osmosis (FO) membrane, and membrane stability under extreme conditions with respect to TrOC rejections. Morphology and surface chemistry of the aquaporin membrane were characterised to identify the incorporation of aquaporin vesicles into membrane active layer. Pore hindrance model was used to estimate aquaporin membrane pore size as well as to describe TrOC transport. TrOC transport mechanisms were revealed by varying concentration and type of draw solutions. Experimental results showed that mechanism of TrOC transport through aquaporin-embedded FO membrane was dominated by solution-diffusion mechanism. Non-ionic TrOC rejections were molecular-weight dependent, suggesting steric hindrance mechanisms. On the other hand, ionic TrOC rejections were less sensitive to molecular size, indicating electrostatic interaction. TrOC transport through aquaporin membrane was also subjected to retarded forward diffusion where reverse draw solute flux could hinder the forward diffusion of feed TrOC solutes, reducing their permeation through the FO membrane. Aquaporin membrane stability was demonstrated by either heat treatment or ethanol solvent challenges. Thermal stability of the aquaporin membrane was manifested as a relatively unchanged TrOC rejection before and after the heat treatment challenge test. By contrast, ethanol solvent challenge resulted in a decrease in TrOC rejection, which was evident by the disappearance of the lipid tail of the aquaporin vesicles from infrared spectrum and a notable decrease in the membrane pore size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An Experimental Study of Contaminant Intrusion Through Pipe Cracks

    Science.gov (United States)

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  4. Evaluation of the performance of different cleaning treatments in reducing microbial contamination of poultry transport crates.

    Science.gov (United States)

    Allen, V M; Burton, C H; Wilkinson, D J; Whyte, R T; Harris, J A; Howell, M; Tinker, D B

    2008-05-01

    1. The present systems for cleaning the plastic crates (drawers) used to transport live poultry to the processing plant are known to be inadequate for removing microbial contamination. 2. To investigate possible improvements, a mobile experimental rig was constructed and operated in the lairage of a poultry processing plant. The cleaning rig could simulate the conditions of commercial cleaning systems and utilise freshly emptied crates from the processing plant. 3. The aim of the study was to improve cleaning by enhancing the removal of adherent organic material on the crates and by reducing microbial contamination by at least 4 log(10) units. 4. Trials showed that the most effective treatments against Campylobacter were either (a) the combination of soaking at 55 degrees C, brushing for 90 s, washing for 15 s at 60 degrees C, followed by the application of disinfectant (Virkon S in this study) or (b) the use of ultrasound (4 kW) at 65 degrees C for 3 to 6 min, with or without mechanical brushing of crates. 5. Both of these treatments also achieved a 4 log(10) reduction or more in the counts of Enterobacteriaceae but were less effective in reducing aerobic plate counts. 6. It was noted that there was little correlation between the visual assessment of crate cleanliness and microbiological counts. 7. It was concluded that the demonstrated enhanced cleaning could contribute significantly to overall hygiene control in poultry meat production.

  5. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    Science.gov (United States)

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  6. Experimental Challenges to Stiffness as a Transport Paradigm

    Science.gov (United States)

    Luce, T. C.

    2017-10-01

    Transport in plasmas is treated experimentally as a relationship between gradients and fluxes in analogy to the random-walk problem. Gyrokinetic models often predict strong increases in local flux for small increases in local gradient when above a threshold, holding all other parameters fixed. This has been named `stiffness'. The radial scalelength is then expected to vary little with source strength as a result of high stiffness. To probe the role of ExB shearing on stiffness in the DIII-D tokamak, two neutral beam injection power scans in H-mode plasmas were specially crafted-one with constant, low torque and one with increasing torque. The ion heat, electron heat, and ion toroidal momentum transport do not show expected signatures of stiffness, while the ion particle transport does. The ion heat transport shows the clearest discrepancy; the normalized heat flux drops with increasing inverse ion temperature scalelength. ExB shearing affects the transport magnitude, but not the scalelength dependence. Linear gyrofluid (TGLF) and nonlinear gyrokinetic (GYRO) predictions show stiff ion heat transport around the experimental profiles. The ion temperature gradient required to match the ion heat flux with increasing auxiliary power is not correctly described by TGLF, even when parameters are varied within the experimental uncertainties. TGLF also underpredicts transport at smaller radii, but overpredicts transport at larger radii. Independent of the theory/experiment comparison, it is not clear that the theoretical definition of stiffness yields any prediction about parameter scans such as the power scans here, because the quantities that must be held fixed to quantify stiffness are varied. A survey of recent literature indicated that profile resilience is routinely attributed to stiffness, but simple model calculations show profile resilience does not imply stiffness. Taken together, these observations challenge the use of local stiffness as a paradigm for explaining

  7. Large Eddy Simulation of Motion-Induced Contaminant Transports in Room Compartments

    Science.gov (United States)

    Choi, Jung-Il; Edwards, Jack

    2011-11-01

    Large eddy simulation (LES) of contaminant transports due to complex human and door motions is conducted for characterizing the effect of the motion-induced wakes on the contaminant transports in room compartments where a contaminated and clean room are connected by a vestibule. We utilize a LES technique with an immersed-boundary method for moving objects (Choi et al., JCP 2007; Choi and Edwards, Indoor Air 2008) and extend the technique to include Eulerian descriptions of gas-phase contaminant transport as well as thermal energy transfer. We demonstrate details of contaminant transport due to human- and door-motion induced wake development during a short-duration event involving the movement of a person (or persons) from a contaminated room, through a vestibule, into a clean room. Parametric studies that capture the effects of human walking pattern, door operation, over-pressure level, and vestibule size are systematically conducted. The results of parameteric studies will be shown in the final presentation. Supported by DARPA/SPO program (HR0011-05-C-0157) and WCU program (R31-10049) of NRF.

  8. Experimental Flat-Field for Correction of XRT Contamination Spots

    Science.gov (United States)

    McKenzie, D. E.; Fox, J. L.; Kankelborg, C.

    2012-08-01

    Beginning in mid-2007, the XRT images are marred by dark spots due to beads of congealed contaminant. While programs are available for improving the cosmetic appearance of the images, no method has yet been demonstrated for a quantitative correction. We have employed a flatfielding method developed for MSU's MOSES sounding rocket payload, in an attempt to restore capabilities for quantitative photometry in the affected pixels. Initial results are encouraging; characterization of the uncertainties in the photometric correction are ongoing. We report on the degree to which this flatfielding attempt has been successful.

  9. Developments in spent fuel transport in Germany - measures for contamination protection

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach-Herbert, B. [Oeko-Inst. e.V. (Inst. for Applied Ecology), Darmstadt (Germany); Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne (Germany)

    2004-07-01

    Following the detection of contamination on the surfaces of transport flasks for spent fuel and on railcars in 1998, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) established 10 criteria for the resumption of spent fuel transports to avoid contamination problems in future. To fulfil these criteria German NPPs and the reprocessing plants of COGEMA, France, and BNFL, UK, developed certain actions and measures and identified a number of key parameters which required formal agreement. On this basis transports were resumed in Germany in April 2001 encompassing additional protection measures for flask surfaces during loading and unloading under water, common measurement standards for contamination controls and enhanced number of such measure-ments during each transport cycle, improved documentation of contamination measurement results and of technical measures during flask handling and organisational measures to clearly define competencies and responsibilities within the NPPs and among the involved parties and to improve the associated communication. About three years after transports had been resumed, the additional measures are proving to be successful: No real contamination event occurred during this entire period.

  10. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  11. Identification of Transport Parameters and Pollution Sources for a Physically Based Groundwater Contaminant Transport Model: A Comparison of Algorithms

    Science.gov (United States)

    Yin, Y.; Sykes, J. F.

    2006-12-01

    Transport parameter estimation and contaminant source identification are critical steps in the development of a physically based groundwater contaminant transport model. For most transient field scale problems, the high computational burden required by parameter identification algorithms combined with sparse data sets often limits calibration. However, when data are available, a high performance computing system and parallel computing may make the calibration process feasible. The selection of the optimization algorithm is also critical. In this paper, the contaminant transport and source parameters were estimated and compared using optimization with two heuristic search algorithms (a dynamically dimensioned search and a parallelized micro genetic algorithm) and a gradient based multi-start PEST algorithm which were implemented on the Shared Hierarchical Academic Research Computing Network (Sharcnet). The case study is located in New Jersey where improper waste disposal resulted in the contamination of down gradient public water supply wells. Using FRAC3DVS, a physically based transient three-dimensional groundwater flow model with spatially and temporally varying recharge was developed and calibrated using both approximately 9 years of head data from continuous well records and data over a period of approximately 30 years from traditional monitoring wells. For the contaminant system, the parameters that were estimated include source leaching rate, source concentration, dispersivities, and retardation coefficient. The groundwater domain was discretized using 214,520 elements. With highly changing pump rates at the 7 municipal wells, time increments over the approximately 30 year simulation period varied dynamically between several days and 3 months. On Sharcnet, one forward simulation on a single processor of both transient flow and contaminant transport takes approximately 3 to 4 hours. The contaminant transport model calibration results indicate that overall

  12. Wastewater contaminant transport and treatment in a nutrient limited ribbed fen

    Science.gov (United States)

    McCarter, C. P. R.; Price, J. S.; Branfireun, B. A.

    2015-12-01

    To minimize the discharge of wastewater contaminants from remote northern communities and mining operations, fen peatlands in sub-arctic regions are used for tertiary wastewater treatment to detain, transform, and remove these contaminants. However, there is a limited understanding of contaminant transport and treatment in fen peatlands, particularly in sub-arctic Canada. To better characterize wastewater contaminant transport and treatment in these systems, approximately 44 m3 day-1 of simulated wastewater, concentrated custom-blend fertilizer (NO3-, PO33-, and SO42-) and Cl- diluted with water, was pumped into a small 0.5 ha sub-arctic ribbed fen continuously for 47 days (July 15th -August 31st 2014). Contaminant concentration of 3 similar ribbed fens varied between 0.0-3.0 mg L-1 over the study period (May - September 2014). An exponential increase in transmissivity (2.4 to 16.8 m2 day-1) as the water table rose (~0.16 m) increased the average linear groundwater velocity (0.5 to 3.4 m day-1) and resulted in rapid SO42- (0.8 m day-1) and Cl- (1.9 m day-1) transport. Notwithstanding the rapid transport of Cl-, diffusion into inactive pores still retarded Cl- transport by a factor of 1.8. Contrary to the rapid transport of SO42- and Cl-, the other contaminants were rapidly removed from the pore water (likely through biological uptake or adsorption) and minimal transport was observed (0.29 and 0.04 m day-1 for PO33- and NO3-, respectively). Northern ribbed fens have a large capacity to detain certain wastewater contaminants (e.g., NO3- and PO33-), yet allow rapid transport of others (e.g., SO42- and Cl-). Thus, these peatlands have the potential to significantly decrease wastewater contamination in northern aquatic environment by both biogeochemical and physical processes but careful management of the hydrology is required to prevent the release of mobile contaminants.

  13. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant......It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling...... approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies...

  14. Management of contaminated bone grafts: an experimental in vitro study.

    Science.gov (United States)

    Hooe, W; Steinberg, B

    1996-07-01

    This study tested various protocols for bone decontamination after bacterial contact to determine if these treatments altered bone structure. Femurs from five Sprague-Dawley rats were sectioned and separated into eight groups. These were contaminated in a broth containing Pseudomonas aeroginosa and Staphylococcus aureus. Subsequently, the groups were treated with eight different decontamination regimens. A Scheffe's Grouping test was used to statistically compare the bacterial counts after each treatment protocol. Treatment with 4% chlorhexidine gluconate and 4% alcohol, Neosporin, cefazolin, and saline solution had little effect on bacterial growth. However, povidone-iodine, autoclaving, and ethyl alcohol with ethanol did significantly decrease the bacterial colony counts from the bone specimens. The autoclave and ethyl alcohol/ethanol induced changes in bony histologic examination. Results suggested that povidone-iodine decontaminates bone specimens without altering histologic conditions. Determination of successful grafting of bone treated with this protocol is required before its recommendation for clinical use.

  15. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    Science.gov (United States)

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.

    Science.gov (United States)

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  18. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu

    2012-10-25

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study K d values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods. © 2012 Global Science Press.

  19. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

    Science.gov (United States)

    Stovern, Michael; Betterton, Eric A; Sáez, A Eduardo; Villar, Omar Ignacio Felix; Rine, Kyle P; Russell, Mackenzie R; King, Matt

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.

  20. Experimental study of the pH influence on the transport mechanisms of phenols in soil.

    Science.gov (United States)

    Fiore, Silvia; Zanetti, Maria Chiara; Genon, Giuseppe

    2003-01-01

    The study of the transport mechanisms connected to solid-liquid interactions is fundamental in the determination of the extension of the pollution of a site and in the evaluation of the best remediation process to be applied. The sorption of hydrophobic ionizable organic contaminants from the groundwaters is supervised not only by the physico-chemical properties of soil and pollutants, but also by the groundwaters pH, which deeply influences their solubility in the aqueous media, and consequently their transport mechanisms in the aquifer. In this work an experimental study of the sorption of phenol and 2-nitrophenol on two soils, different in particle-size distribution, CEC and organic carbon content, was realized. The sorption potential of the soils was evaluated by means of a physical, mineralogical and chemical characterization. The experimental data coming from some batch tests, performed at pH values equal to 4, 7 and 10 were fitted by means of linear, Freundlich and Langmuir isotherms models. The soil-contaminants interaction mechanisms that influence the isotherms shapes were then analyzed and discussed, and a comparison between the theoretical and experimental values of the partitioning coefficient KD was performed.

  1. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  2. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    Science.gov (United States)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-04-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local

  3. CFD Simulations of Contaminant Transport between two Breathing Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    Experiments have shown that exhalation from one person is able to penetrate the breathing zone of another person at a distance. Computational Fluid Dynamics (CFD) is used to investigate the dependency of the personal exposure on some physical parameters, namely: Pulmonary ventilation rate......, convective heat output, exhalation temperature, and crosssectional exhalation area. Full-scale experimental results are used to calibrate/validate the CFD model....

  4. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977 - September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments. (ERB)

  5. Chemical factors influencing colloid-facilitated transport of contaminants in porous media

    Science.gov (United States)

    Roy, Sujoy B.; Dzombak, David A.

    1997-01-01

    The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows:  (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).

  6. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  7. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NARCIS (Netherlands)

    Griffioen, J.|info:eu-repo/dai/nl/091129265; van der Grift, B.|info:eu-repo/dai/nl/373433484; Maas, D.; van den Brink, C.|info:eu-repo/dai/nl/187443416; Zaadnoordijk, J. W.

    2003-01-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated

  8. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  9. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Science.gov (United States)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  10. A Chaotic-Dynamical Conceptual Model to Describe Fluid flow and Contaminant Transport in a Fractured Vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris; Doughty, Christine; Stoops, Thomas M.; Wood, thomas R.; Wheatcraft, Stephen W.

    1999-12-31

    (1) To determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. (2) To introduce a new approach to the multiscale characterization of flow and transport in fractured basalt vadose zones and to develop physically based conceptual models on a hierarchy of scales. The following activities are indicative of the success in meeting the project s objectives: A series of ponded infiltration tests, including (1) small-scale infiltration tests (ponded area 0.5 m2) conducted at the Hell s Half Acre site near Shelley, Idaho, and (2) intermediate-scale infiltration tests (ponded area 56 m2) conducted at the Box Canyon site near Arco, Idaho. Laboratory investigations and modeling of flow in a fractured basalt core. A series of small-scale dripping experiments in fracture models. Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from nonlinear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; Development of a conceptual model and mathematical and numerical algorithms for flow and transport that incorporate (1) the spatial variability of heterogeneous porous and fractured media, and (2) the description of the temporal dynamics of flow and transport, both of which may be chaotic. Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial heterogeneity and flow phenomena are affected by nonlinear dynamics, and in particular, by chaotic processes. The scientific and practical value of this approach is that we can predict the range within which the parameters of flow and transport change with time in order to design and manage the remediation, even when we can not predict

  11. Trinity Multiscale Transport Code Development for Experimental Comparison

    Science.gov (United States)

    Highcock, E.; Barnes, M.; Colyer, G.; Citrin, J.; Dickinson, D.; Mandel, N.; van Wyk, F.; Roach, C.; Schekochihin, A.; Dorland, W.

    2014-10-01

    The Trinity multiscale transport code has been extensively upgraded to further its use in experimental comparison. The upgrades to Trinity have extended its capability to work with experimental data, allowed it to evolve the magnetic equilibrium self-consistently (at fixed current) and significantly enhanced the range and performance of its turbulent transport modeling options. To enhance its capability to reproduce experiment, Trinity is now able to take output from the CRONOS integrated modelling suite, which is able to provide high quality reconstructions of experimental equilibria of, for example, JET. Trinity has also been integrated with the CHEASE Grad-Shafranov code. This allows the magnetic equilibrium to be re-computed self consistently as the pressure gradient evolves. Trinity has been given new options for modeling turbulent transport. These include the well-known TGLF framework, and the newly developed GPU-based nonlinear code GRYFX. These will allow rapid initial scans with Trinity before more detailed gyrokinetic modeling. Trinity's performance will benefit from an extensive programme to upgrade one of its primary gyrokinetic turbulence modeling options, GS2. We present a summary of these improvements and preliminary results. This work was supported by STFC and the Culham Centre for Fusion Energy. Computing time was provided by IFERC grants MULTEI and GKDELB, The Hartree Centre, and EPSRC Grants EP/H002081/1 and EP/L000237/1.

  12. Laboratory experimental investigation of heat transport in fractured media

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria

    2017-01-01

    Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained

  13. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of

  14. Contaminant transport in wetland flows with bulk degradation and bed absorption

    Science.gov (United States)

    Wang, Ping; Chen, G. Q.

    2017-09-01

    Ecological degradation and absorption are ubiquitous and exert considerable influence on the contaminant transport in natural and constructed wetland flows. It creates an increased demand on models to accurately characterize the spatial concentration distribution of the transport process. This work extends a method of spatial concentration moments by considering the non-uniform longitudinal solute displacements along the vertical direction, and analytically determines the spatial concentration distribution in the very initial stage since source release with effects of bulk degradation and bed absorption. The present method is demonstrated to bear a more accurate prediction especially in the initial stage through convergence analysis of Hermite polynomials. Results reveal that contaminant cloud shows to be more contracted and reformed by bed absorption with increasing damping factor of wetland flows. Tremendous vertical concentration variation especially in the downstream of the contaminant cloud remains great even at asymptotic large times. Spatial concentration evolution by the extended method other than the mean by previous studies is potential for various implements associated with contaminant transport with strict environmental standards.

  15. Effects of dissolved organic matter on the co-transport of mineral colloids and sorptive contaminants.

    Science.gov (United States)

    Cheng, Tao; Saiers, James E

    2015-01-01

    Colloid-facilitated transport of contaminants in the vadose zone has important implications to groundwater quality, and has received considerable attention. Natural organic matter (NOM) is ubiquitous in subsurface environments, and its influence on mineral colloids and solute transport has been well documented. However, research on the influence of NOM on colloid-facilitated transport is limited. The objective of this paper is to elucidate the effects of NOM on colloid-facilitated transport of a radioactive contaminant (Cs-137) within partially-saturated sediments. Measurements made with re-packed columns reveal that Cs-137 mobility was low when mineral colloids were absent and was unaffected by the presence of NOM. The addition of mineral colloids to influent increased Cs-137 mobility, and effluent Cs-137 was dominated by the colloid-associated form. When NOM was added to systems that contained mineral colloids and Cs-137, the mobility of Cs-137 further increased. A mathematical model simulating colloid-facilitated transport showed that NOM increases Cs-137 transport by increasing colloid mobility and reducing the rate of Cs-137 adsorption to the porous medium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport.

    Science.gov (United States)

    Alimi, Olubukola; Farner Budarz, Jeffrey; Hernandez, Laura M; Tufenkji, Nathalie

    2017-12-21

    Plastic litter is widely acknowledged as a global environmental threat and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant co-transport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.

  17. PHYSICAL AND MICROBIOLOGICALQUALITYOFOPAQUE, SANITIZED, AND CHILLED QUAIL EGGS EXPERIMENTALLY CONTAMINATED WITH Salmonella enteric SER. TYPHIMURIUM

    Directory of Open Access Journals (Sweden)

    Maria Juliana Ribeiro Lacerda

    2016-01-01

    Full Text Available The objective of this study was to verify the physical, chemical and microbiological quality of Japanese quail eggs artificially contaminated with Salmonella enterica ser. Typhimurium. The eggs were sanitized and stored at different temperatures (between 5 and 25 ºC for 27 days. We used 768 eggs with opaque shells, typical pigments of the species, and average weight of 11 g. The experimental design was completely randomized in a 2x2x2 factorial arrangement (contamination x sanitation x cooling with six replications and one egg per experimental unit. The eggs were contaminated by handling with 1.5 x 105 colony forming unit (CFU of Salmonella. Typhimurium / mL and sanitized according to the treatments with a 5 ppm Cl solution. The data were subjected to analysis of variance and t test. Bacterial contamination has damaged the egg weight, Haugh unit, yolk index and albumen, and pH of yolk and albumen, from 18 days of storage. The egg storage time and storage temperature affected the internal quality of quail eggs in all variables. The worst internal quality was observed in eggs stored at 25 ºC. The sanitation and cooling reduced the growth of Salmonella in contaminated eggs. Eggs in opaque shell, when not refrigerated, should be consumed within 18 days after laying. Keywords: opaque shell; quail eggs; Salmonella Typhimurium; sanitization; storage.

  18. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model.

    Directory of Open Access Journals (Sweden)

    Izabelle Silva Rehfeld

    Full Text Available Bovine vaccinia (BV is a zoonosis caused by Vaccinia virus (VACV, which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT, viral isolation, histopathology, and immunohistochemistry (IHC methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral

  19. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    Science.gov (United States)

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Directory of Open Access Journals (Sweden)

    Ehsan Ghane

    Full Text Available Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS, and total phosphorus (TP than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  1. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Science.gov (United States)

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  2. Source screening module for contaminant transport analysis through vadose and saturated zones.

    Science.gov (United States)

    Bedekar, Vivek; Neville, Christopher; Tonkin, Matthew

    2012-01-01

    At complex sites there may be many potential sources of contaminants within the vadose zone. Screening-level analyses are useful to identify which potential source areas should be the focus of detailed investigation and analysis. A source screening module (SSM) has been developed to support preliminary evaluation of the threat posed by vadose zone waste sites on groundwater quality. This tool implements analytical solutions to simulate contaminant transport through the unsaturated and saturated zones to predict time-varying concentrations at potential groundwater receptors. The SSM integrates several transport processes in a single simulation that is implemented within a user-friendly, Microsoft Excel™ - based interface. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  3. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    Copper is accumulated in soils due to human activities such as mining industry, agriculture practises, or waste deposals. High concentrations of copper can affect plants and soil organisms, and subsequently the soil structure and its inner space architecture. In this work we investigated the effect...... of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...... between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  4. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  5. A wavelet approach to robust solver for three dimensional contaminant mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Hesham, Nasif; Atsushi, Neyama [Computer Software Development Company Ltd, Tokyo (Japan)

    2005-07-01

    Numerical modeling of the contaminant transport especially in three dimensions is considerably difficult. Transport model is not only vulnerable to numerical errors such as numerical dispersion and artificial oscillation, but also requires much of the computer memory and execution time. There is obviously need for a new mathematical approach to develop a computer code that is virtually free of numerical dispersion and oscillations, simple to use and flexible for a variety of field conditions, and also efficient with respect to computer memory. The physical phenomena taken in account in this model are advection, dispersion, chemical reaction, radioactivity, dissolution, sorption and precipitation. (authors)

  6. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  7. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  8. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei

    2014-01-01

    recovery unit with polymer membrane foils was used as refeering unit in this study. The experiments were conducted with different outdoor thermal climates e.g. warm-humid and cold-dry climates; isothermal and non isothermal as well as equal humidity and non equal humidity with indoor climate. Three......Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... could transfer from exhaust air to supply air through the enthalpy recovery unit. The mass transfer efficiency of contaminants was independent of the hygro-thermal differences between indoor and outdoor climate conditions. The mass transfer ratio of the chemical contaminants in the total heat recovery...

  9. Predicting subsurface uranium transport: Mechanistic modeling constrained by experimental data

    Science.gov (United States)

    Ottman, Michael; Schenkeveld, Walter D. C.; Kraemer, Stephan

    2017-04-01

    Depleted uranium (DU) munitions and their widespread use throughout conflict zones around the world pose a persistent health threat to the inhabitants of those areas long after the conclusion of active combat. However, little emphasis has been put on developing a comprehensive, quantitative tool for use in remediation and hazard avoidance planning in a wide range of environments. In this context, we report experimental data on U interaction with soils and sediments. Here, we strive to improve existing risk assessment modeling paradigms by incorporating a variety of experimental data into a mechanistic U transport model for subsurface environments. 20 different soils and sediments from a variety of environments were chosen to represent a range of geochemical parameters that are relevant to U transport. The parameters included pH, organic matter content, CaCO3, Fe content and speciation, and clay content. pH ranged from 3 to 10, organic matter content from 6 to 120 g kg-1, CaCO3 from 0 to 700 g kg-1, amorphous Fe content from 0.3 to 6 g kg-1 and clay content from 4 to 580 g kg-1. Sorption experiments were then performed, and linear isotherms were constructed. Sorption experiment results show that among separate sets of sediments and soils, there is an inverse correlation between both soil pH and CaCO¬3 concentration relative to U sorptive affinity. The geological materials with the highest and lowest sorptive affinities for U differed in CaCO3 and organic matter concentrations, as well as clay content and pH. In a further step, we are testing if transport behavior in saturated porous media can be predicted based on adsorption isotherms and generic geochemical parameters, and comparing these modeling predictions with the results from column experiments. The comparison of these two data sets will examine if U transport can be effectively predicted from reactive transport modeling that incorporates the generic geochemical parameters. This work will serve to show

  10. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    rate of Pu transport. Currently, the role of colloids in facilitating the transport of low-solubility radionuclides is not understood well enough to effectively model contaminant transport. A fundamental understanding of the role that colloids may or may not play in the transport of low-solubility radionuclides is needed in order to predict contaminant transport, design remediation strategies and provide risk assessments. Ryan and Elimelech (1996) have argued that in order to evaluate the potential for colloids to transport radionuclides, several criteria must be met: (1) colloids must exist and be stable, (2) radionuclides must have a high sorption affinity for the colloids, and (3) colloids must be transported. Only then can we understand the conditions where colloids can and will facilitate transport of radionuclides. In this report we compile the results from a series of field, laboratory and modeling studies funded by the UGTA program in order to evaluate the potential for colloids to transport low-solubility radionuclides at the NTS. The studies presented in this report fall under three general areas of investigation: Characterization of natural colloids in groundwater at NTS, Pu sorption/desorption experiments on colloid minerals identified in NTS groundwater, and Transport of Pu-doped colloids through fractured rock core. Chapter 1 is a background review of our current understanding of colloids and their role in facilitating contaminant transport. Chapters 2, and 3 are field studies that focused on characterizing natural colloids at different hydrologic environments at the NTS and address Ryan and Elimelech's (1996) first criteria regarding the existence and stability of colloids. Chapters 4, 5 and 6 are laboratory experimental studies that investigate the sorption/desorption behavior of Pu and other low-solubility radionuclides on colloid minerals observed in NTS groundwater. These studies evaluate Ryan and Elimelech's (1996) second criteria that the

  11. Influence of instantaneous wave effects on contaminant transport in beach aquifers

    Science.gov (United States)

    Robinson, C. E.; Malott, S. S.; O'Carroll, D. M.

    2016-12-01

    Waves cause large quantities of water to recirculate across the sediment-water interface and set up complex groundwater flows and geochemical conditions in beach aquifers. The interacting water exchange, flow and geochemical processes control the fate of various contaminants in nearshore environments including nutrients, organic contaminants (e.g., non-aqueous phase liquids [NAPLs]) and fecal bacteria. This study explores the effect of waves on the transport of dissolved, particulate and non-aqueous phase liquid (NAPL) contaminants in beach aquifers. In particular, it evaluates the influence of high frequency pressure gradients induced by individual waves compared with lower frequency pressure gradients set up by the phase-averaged effect of waves (i.e. wave set up). While the effect of waves and other forcing on the fate of dissolved constituents in beach aquifers is well explored, there is limited understanding of the transport of colloidal (i.e. bacteria) and NAPL contaminants. Field data of instantaneous phase-resolved and phase-averaged pressure gradients over a period of intensified wave conditions at a freshwater beach were collected. Although the pressure gradients induced by individual waves cause large quantities of coastal water to infiltrate across the sediment-water interface, the residence time for coastal-derived dissolved constituents (i.e., dissolved organic matter) in shallow sediments is likely not sufficient for reaction to take place. As a result the longer recirculation flow paths and residence times caused by wave set up are expected to be more important for the transformation of dissolved constituents in beach aquifers. The high frequency water exchange however may be important for the fate of particulates (e.g., particulate organic matter) or fecal bacteria as they can be retained in sediment by attachment or straining. Finally, multiphase flow numerical simulations reveal the differential transport of NAPL contaminants in beach aquifers

  12. TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL: IMPLICATIONS FOR CONTAMINANT TRANSPORT

    Science.gov (United States)

    The stability and transport of radiolabeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from a shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study incl...

  13. Experimental analysis of the environmental contamination of electrical equipment; Analisis experimental de la contaminacion ambiental en equipos electricos

    Energy Technology Data Exchange (ETDEWEB)

    Campillo Ruiz, Maria Teresa; Ponce Velez, Marco Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    This paper is a summary of the main causes that originate the contamination problems in insulating materials. This as the result of different studies performed in experimental testing stations, as well as in transmission, distribution and laboratory power lines by the Departamento de Materiales of the Instituto de Investigaciones Electricas (IIE). [Espanol] En el presente trabajo se muestra un resumen de los principales factores que originan los problemas de contaminacion en aislamientos. Esto, como resultado de diversos estudios realizados tanto en estaciones de prueba experimentales como en lineas de transmision, distribucion y laboratorio por el Departamento de Materiales del Instituto de Investigaciones Electricas (IIE).

  14. Tolerance of negative emotion moderates the amplification of mental contamination following an evoking task: A randomized experimental study.

    Science.gov (United States)

    Fergus, Thomas A

    2017-11-27

    Contamination is a near universal feeling, with mental contamination representing a contamination feeling in the absence of direct physical contact with a source. Extant research indicates that tolerance of negative emotion is important for understanding emotional reactions to images, thoughts, and memories, all of which are common sources of mental contamination. Extending research linking distress tolerance to mental contamination, this study examined if individual differences in the tolerance of negative emotion moderates the amplification of mental contamination following an evoking task. Unselected participants completed a self-report measure of tolerance of negative emotion during an online session. They later attended an in-person session and were randomized to an experimental scenario group: betrayal (n = 49) or control (n = 49). Participants imagined themselves in a scenario, with the betrayal scenario designed to evoke mental contamination. Mental contamination was assessed by self-report before and after the scenario. The betrayal, but not control, scenario caused an increase in mental contamination. Tolerance for negative emotion moderated the effect of group on mental contamination. Group differences in mental contamination evidenced at low, but not high, distress tolerance. A novel experimental manipulation and an unselected sample were used. Future research could assess tolerance of negative emotion using a behavioral task. These results indicate that tolerance of negative emotion may be important for understanding when individuals experience mental contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  16. Microbial behaviour and cross contamination between cargoes in containerized transportation of food

    DEFF Research Database (Denmark)

    Abban, Stephen

    , either with refrigerated units or otherwise. Foodborne pathogenic disease outbreaks have caused havoc including loss of lives, permanent morbidity, ailments with high costs of treatment and even collapse of businesses in various parts of the wold. With transportation needed in so many stages of the food...... involved in foodborne disease outbreaks and their use in the present study have been discussed. Both Gram negative and Gram positive bacteria have been used in various experiments. The history of containerized transportation and its revolutionary role in the world of commerce is also briefly traced......Transportation is central to the global food and feed supply chain. Thus issues of safety, especially cross contamination with pathogens during food transit should be important in food handling operations. A large proportion of the worlds’ food cargo is moved using intermodal cargo containers...

  17. Are reactive transport models reliable tools for reconstructing historical contamination scenarios?

    Science.gov (United States)

    Clement, P.

    2009-12-01

    This presentation will be based on a recent project effort that I completed while serving as a member of National Academy of Sciences and Engineering panel. The primary goal of this congressionally-mandated project effort was to review scientific evidence on the association between adverse health effect s and exposure to a contaminated water supply system at the U.S. Marine Corps Base Camp Lejeune (CLJ) in North Carolina. The detailed NRC study report was released in June 2009, and is available at this NRC weblink: http://www.nap.edu/catalog.php?record_id=12618. Multiple water supply systems at this Marine Base were contaminated with harmful chemicals, such as PCE, TCE and other waste products, since the early 50s. In 1982, a routine water quality survey completed at the site indicated the presence of several volatile organic compounds including PCE and TCE. Further investigations revealed that there are several waste disposal facilities located on-site that have discharged TCE and other waste products into groundwater systems. In addition, there was also an off-site dry cleaning facility located close to the Tarawa Terrace in-take well locations that disposed PCE into the subsurface environment. The dry cleaner has been using PCE since 1953 and disposed various forms of PCE-contaminated wastes in a septic tank and in several shallow pits. Therefore, the residents who lived in Tarawa Terrace on-site family housing units had the potential to be exposed to these harmful environmental contaminants through the drinking water source. In late 1980s, the concerns raised by CLJ public lead to an epidemiological study to evaluate the potential associations of utero and infant exposures to the VOCs and childhood cancers and birth defects. The study included births occurring during the period of 1968-1985 to women who were pregnant while they resided at the base. Since there was no monitoring data available for the study period (1968-1982), researchers used reactive transport

  18. Isotopic evolution of groundwater in a telogenetic karst aquifer: A method to study recharge and contaminant transport

    Science.gov (United States)

    There exists a limited understanding of hydrogeologic flow and contaminant transport within karst aquifers, particularly in the epikarst zone, which are highly susceptible to natural and anthropogenic contamination, such as agricultural runoff, due to the interconnected nature of the surface and sub...

  19. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure.

    Directory of Open Access Journals (Sweden)

    Wilco P Pulskens

    Full Text Available Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD, yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+ and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+ excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5, calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b, whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a and type 3 (PIT2 were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.

  20. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available This work presents results of bulk conductivity and surface potential decay measurements on low-density polyethylene and its nanocomposites filled with uncoated MgO and Al2O3, with the aim to highlight the effect of the nanofillers on charge transport processes. Material samples at various filler contents, up to 9 wt %, were prepared in the form of thin films. The performed measurements show a significant impact of the nanofillers on reduction of material’s direct current (dc conductivity. The investigations thus focused on the nanocomposites having the lowest dc conductivity. Various mechanisms of charge generation and transport in solids, including space charge limited current, Poole-Frenkel effect and Schottky injection, were utilized for examining the experimental results. The mobilities of charge carriers were deduced from the measured surface potential decay characteristics and were found to be at least two times lower for the nanocomposites. The temperature dependencies of the mobilities were compared for different materials.

  1. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    Energy Technology Data Exchange (ETDEWEB)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  2. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  3. Isotopic Studies of Contaminant Transport at the Hanford Site,WA

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.N.; Conrad, M.E.; DePaolo, D.J.; Dresel, P.E.

    2006-11-01

    Processes of fluid flow and chemical transport through thevadose zone can be characterized through the isotopic systematics ofnatural soils, minerals, pore fluids and groundwater. In thiscontribution, we first review our research using measured isotopicvariations, due both to natural and site related processes, of theelements H, O, N, Sr and U, to study the interconnection between vadosezone and groundwater contamination at the Hanford Site in south-centralWashington. We follow this brief review with a presentation of new datapertaining to vadose zone and groundwater contamination in the WMAT-TX-TY vicinity. Uranium (U) isotopic data for the C3832 core (WMA TX)indicates the involvement of processed natural U fuel, and links theobserved U contamination to the nearby single shelled tank TX-104. Thedata also precludes contamination from an early 1970 s TX-107 leak. Inthe case of the C4104 core (WMA T), the U isotopic data indicates amixture of processed natural and enriched U fuels consistent with themajor leak from T-106 in 1973. Uranium and Strontium isotopic data forthe cores also provides direct evidence for chemical interaction betweenhigh-pH waste fluid and sediment. Isotopic data for groundwater nitratecontamination in the vicinity of WMA-T strongly suggests high-level tankwaste (most likely from T-106) as the source of very high 99Tcconcentrations recently observed at the NE corner of WMAT.

  4. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  5. Dynamic transport of suspended sediment by solitary wave: Experimental study

    Science.gov (United States)

    cho, JaeNam; Kim, DongHyun; Hwang, KyuNam; Lee, SeungOh

    2016-04-01

    Solitary waves are able to transport a large amount of suspended sediment when approaching on the beach, which sometimes causes - serious beach erosion, especially in the east and south coastal lines in Korea. But it has rarely been known about the method how to evaluate or estimate the amount of beach erosion caused by solitary waves. Experimental assessment is necessary to comprehend the process of sediment transport on a slope. The prismatic rectangular channel is 12 m long, 0.8 m wide, and 0.75 m high. A sluice gate is applied at prismatic channel in order to produce the solitary waves. Upstream water depth is more than channel water depth and the sluice gate is suddenly opened to simulate conditions of solitary waves. A sand slope with a 1/6 and a sediment thickness is 0.03 m. The experimental sediments are used anthracite (d_50=1.547 mm ,C_u=1.38) and Jumoonjin sand (d_50=0.627 mm ,C_u=1.68). Specific laboratory equipment are designed to collect suspended sediment samples at the same time along the wave propagation at 5 points with evenly space. Each amount of sampling is approximately 25 ml and they are completely dried in oven over 24 hours according to the USGS (Guideline and standard techniques and method 3-C4). Two video cameras (Model No. : Sony, HDR-XR550) are mounted for capturing images at top and side-view when the processes of solitary wave and run up/down on slope. Also, this study are analyzed the correlation between Suspended sediment concentration and turbidity. Also, this study are analyzed the correlation between suspended sediment concentration and turbidity. Turbidity is used to verify suspended sediment concentration. Dimensionless analyses of experimental results carried out in this study. One dimensionless parameter is expressed with pressure of solitary wave on a slope to suspended sediment concentration, which is concerned about lifting force. The other is relate to drag force presenting with run up/down velocity on a slope and

  6. CFD experiment characterization of airborne contaminant transport for two practical 3-D room air flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A.J.; Roy, Subrata; Kelso, R.M. [Tennessee Univ., Knoxville, TN (United States)

    1994-12-31

    With the increasing concern for, and focus on, indoor air quality, determination of the distribution of airborne contaminants within rooms becomes of great interest. Computational fluid dynamics (CFD) techniques offer a means for simulation of contaminant transport processes, with quantitative richness of detail rarely possible in laboratory testing. Results of such ``CFD experiments`` are documented herein for two practical, low turbulence-level, thermal room air flow fields. The supply flow is tagged with a distinguishable species, and the resulting time-dependent concentration evolution throughout the room is predicted. The simulated full-scale room air flow field Reynolds numbers are 15,000 and 30,000, the Archimedes number ranges from 0.83 to 4.3, and simulation turbulent Schmidt number ranges an order of magnitude. (author)

  7. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D.

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes...... with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced...... for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction...

  8. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment approach based on natural removal of contaminants due to physical, chemical and biological processes. In this article, an analytical model is developed by using Green's function method to simulate the effects of pumping well and microbial activity that occurs in riverbed sediments on contaminant transport and evolution of water chemistry. The model is tested with data collected previously for RBF site in France. The results are compared with numerical simulation conducted in the literature by using finite difference method. Graphically, it is noticed that both numerical and analytical results have almost the same behavior. Also it is found that the model can simulate the decreasing of one pollutant concentration at the zone where the bacteria starts to consume this pollutant.

  9. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    Science.gov (United States)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  10. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  11. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  12. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    2000-05-05

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  13. COLLOID MOBILIZATION AND TRANSPORT IN CONTAMINANT PLUMES: FIELD EXPERIMENTS, LABORATORY EXPERIMENTS, AND MODELING (EPA/600/S-99/001)

    Science.gov (United States)

    The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...

  14. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  15. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  16. Evaluation of the effectiveness of ozone as a sanitizer for fish experimentally contaminated with Salmonella sp.

    Directory of Open Access Journals (Sweden)

    Danielle de Bem Luiz

    2017-06-01

    Full Text Available Abstract Salmonellosis is a major public health problem related to food contamination and ensuing food poisoning. Brazilian resolution RDC nº 12/2001 of the Brazilian National Health Surveillance Agency (ANVISA established the absence of Salmonella in 25 g of fish for consumption. However, the significant increase in the occurrence of fish contamination by Salmonella and other pathogenic bacteria shows that the currently applied strategies are not sufficient and that, in addition to the implementation of good health practices, the application of new sanitizer technologies in the fish industry is also necessary. In this context, the present study evaluated the effectiveness of ozone in an aqueous medium as a sanitizer for Salmonella contaminated fish. The experiment was carried out using a completely randomized design with eight treatments and five replicates, giving a total of 40 experimental units. Each sample consisted of three fishes, totalizing 120 fishes. The treatments consisted of different combinations of temperature and water-dissolved ozone (O3 concentrations (21 °C × 0.35 ppm; 20 °C × 0.45 ppm; 21 °C × 0.60 ppm; 20 °C × 0.80 ppm; 19 °C × 1.7 ppm; 6 × 5.1 ppm; 4 °C × 7.2 ppm; and 2 °C × 9.1 ppm. Colossoma macropomum (Tambaqui samples were experimentally infected with Salmonella typhymurium (ATCC 14028 and immersed in water with the different treatments. After three minutes, the fish samples were collected and subjected to qualitative Salmonella analyses. The ozone tests were not efficient in eradicating Salmonella under the experimental conditions presented here, indicating the need for the identification of effective sanitizers in order to meet the determinations of Brazilian law.

  17. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  18. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  19. Transport of contaminants from energy-process-waste leachates through subsurface soils and soil components: laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wangen, L.E.; Stallings, E.A.; Walker, R.D.

    1982-08-01

    The subsurface transport and attenuation of inorganic contaminants common to a variety of energy process waste leachates are being studied using laboratory column methods. Anionic species currently being emphasized are As, B, Mo, and Se. Transport of the cations Cd and Ni is also being studied. The solid adsorbents consist of three soil mineral components (silica sand, kaolinite, and goethite), and four subsurface soils (a dunal sand, an oxidic sandy clay loam, an acidic clay loam, and an alkaline clay loam). Breakthrough patterns of these species from packed soil columns are followed by monitoring eluent concentrations vs time under carefully controlled laboratory conditions. This report describes the experimental methods being used, the results of preliminary batch adsorption studies, and the results of column experiments completed through calendar year 1981. Using column influent concentrations of about 10 mg/l, adsorption (mmoles/100 g) has been determined from the eluent volume corresponding to 50% breakthrough. On silica sand, kaolinite, dunal sand, and goethite, respectively, these are 2.0 x 10/sup -4/, 0.020, 0.013, and 0.31 for cadmium, 4.4 x 10/sup -4/, 0.039, 0.020, and 0.98 for nickel. On kaolinite, dunal sand, and goethite, respectively, adsorption values (mmoles/100 g) are As (0.24, 0.019, and 20.5), B (0.041, 0.0019, and 1.77), Mo (0.048, 0.0010, and 5.93), and Se (0.029, 0.00048, and 1.30). Arsenic is the most highly adsorbed contaminant species and goethite has the largest adsorption capacity of the adsorbents.

  20. Study of Uranium Transport Utilizing Reactive Numerical Modeling and Experimental Data from Heterogeneous Intermediate-Scale Tanks

    Science.gov (United States)

    Rodriguez, D.; Miller, A.; Honeyman, B.

    2007-12-01

    The study of the transport of contaminants in groundwater is critical in order to mitigate risks to downstream receptors from sites where past releases of these contaminants has resulted in the degradation of the water quality of the underlying aquifer. In most cases, the fate and transport of these contaminants occurs in a chemically and physically heterogeneous environment; thereby making the prediction of the ultimate fate of these contaminants difficult. In order to better understand the fundamental processes that have the greatest effect on the transport of these contaminants, careful laboratory study must be completed in a controlled environment. Once the experimental data has been generated, the validation of numerical models may then be achieved. Questions on the management of contaminated sites may center on the long-term release (e.g., desorption, dissolution) behavior of contaminated geomedia. Data on the release of contaminants is often derived from bench-scale experiments or, in rare cases, through field-scale experiments. A central question, however, is how molecular-scale processes (e.g., bond breaking) are expressed at the macroscale. This presentation describes part of a collaborative study between the Colorado School of Mines, the USGS and Lawrence Berkeley National Lab on upscaling pore-scale processes to understanding field-scale observations. In the work described here, two experiments were conducted in two intermediate-scale tanks (2.44 m x 1.22 m x 7.6 cm and 2.44 m x 0.61 m x 7.6 cm) to generate data to quantify the processes of uranium dissolution and transport in fully saturated conditions, and to evaluate the ability of two reactive transport models to capture the relevant processes and predict U behavior at the intermediate scale. Each tank was designed so that spatial samples could be collected from the side of the tank, as well as samples from the effluent end of the tank. The larger tank was packed with a less than 2mm fraction of a

  1. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  2. Contaminated osteochondral plugs: effect of different sterilizing solutions: an experimental study in the rabbit

    Directory of Open Access Journals (Sweden)

    Hamidreza Yazdi

    2012-11-01

    Full Text Available  Abstract Background: To determine the efficacy of different antiseptic solutions (Control group (I, Antibiotic solution (II, Chlorhexidine 0.4% (III, and povidone – iodine 10% (IV in sterilizing contaminated osteochondral plugs. Methods: Under sterile conditions, the femoral head and condyles of 20 rabbits were removed and cut into equal osteochondral pieces. A total of 200 osteochondral specimens were obtained. All 200 specimens were dropped on the operating room floor for fifteen seconds and assigned to one of four experimental groups. Group I samples were cultured after washing with normal saline solution (Control group. In other three groups, prior to culturing process, samples were placed in an antibiotic solution after washing with normal saline (Neomycin & Polymyxin (group II, Chlorhexidine 0.4% (group III, and povidone – iodine 10% (group IV, respectively. Results: In group I, 25 of 50 specimens had positive cultures. Of 50 specimens of group II, III and IV, no positive cultures were found after 10 days. Conclusion: all three agents including antibiotic solution, povidone-iodine 10% and chlorhexidine 0.4% seem effective in sterilizing the contaminated osteochondral samples. According to the literature, povidone-iodine has no negative effect on the cartilage metabolism and seems to be a proper choice of decontaminating solution for osteochondral plugs.To the best of the authors' knowledge, such a study on the contaminated osteochondral specimen has not been previously reported in the literature. 

  3. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  4. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey.

    Science.gov (United States)

    Sengör, S Sevinç; Unlü, Kahraman

    2013-07-01

    The August 1999 earthquake in Turkey damaged three acrylonitrile (AN) storage tanks at a plant producing synthetic fiber by polymerization. A numerical modeling study was carried out to analyze the groundwater flow and contaminant (AN) transport at the spill site. This study presents the application of a numerical groundwater model to determine the hydrogeological parameters of the site, where such data were not available during the field surveys prior to the simulation studies. The two- and three-dimensional transient flow and transport models were first calibrated using the first 266days of observed head and concentration data and then verified using the remaining 540-day observed data set. Off-site migration of the contaminant plume was kept under control within the site boundaries owing to the favorable geology of the site, the characteristics of the local groundwater flow regime and the pumping operations. As expected, the applied pump-and-treat system was effective at high-permeability zones, but not fully effective at low-permeability zones. The results of long-term simulations for unconfined aquifer showed that the size of the plume in the high permeability zone shrank significantly due to the dilution by natural recharge. However, in the low permeability zone, it was not significantly affected. The study showed that accurate and sufficient data regarding the source characteristics, concentration and groundwater level measurements, groundwater pumping rates and their durations at each of the extraction points involved in the pump-and-treat system along with the hydrogeological site characterization are the key parameters for successful flow and transport model calibrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey

    Science.gov (United States)

    Şengör, S. Sevinç; Ünlü, Kahraman

    2013-07-01

    The August 1999 earthquake in Turkey damaged three acrylonitrile (AN) storage tanks at a plant producing synthetic fiber by polymerization. A numerical modeling study was carried out to analyze the groundwater flow and contaminant (AN) transport at the spill site. This study presents the application of a numerical groundwater model to determine the hydrogeological parameters of the site, where such data were not available during the field surveys prior to the simulation studies. The two- and three-dimensional transient flow and transport models were first calibrated using the first 266 days of observed head and concentration data and then verified using the remaining 540-day observed data set. Off-site migration of the contaminant plume was kept under control within the site boundaries owing to the favorable geology of the site, the characteristics of the local groundwater flow regime and the pumping operations. As expected, the applied pump-and-treat system was effective at high-permeability zones, but not fully effective at low-permeability zones. The results of long-term simulations for unconfined aquifer showed that the size of the plume in the high permeability zone shrank significantly due to the dilution by natural recharge. However, in the low permeability zone, it was not significantly affected. The study showed that accurate and sufficient data regarding the source characteristics, concentration and groundwater level measurements, groundwater pumping rates and their durations at each of the extraction points involved in the pump-and-treat system along with the hydrogeological site characterization are the key parameters for successful flow and transport model calibrations.

  6. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  7. Analysis of Contaminant Transport through the Vadose and Saturated Zones for Source Screening

    Science.gov (United States)

    Bedekar, V.; Neville, C. J.; Tonkin, M. J.

    2010-12-01

    At complex sites there may be many potential source areas. Screening level analyses are useful to identify which of the source areas should be the focus of detailed investigation and analysis. A screening tool has been developed to evaluate the threat posed by waste sites on groundwater quality. This tool implements analytical solutions to simulate contaminant transport through the vadose and saturated zones and predict time-varying concentrations at potential groundwater receptors. The screening tool is developed within a user friendly, Microsoft ExcelTM based interface; however, care has been taken to implement rigorous solutions. The screening tool considers the following mechanisms: (a) Partitioning of soil contamination in to an equivalent dissolved concentration. For a time-invariant source, the solution is generalized from [3] for sorption and decay. For a time-varying source, the solution represents a special, degenerate, case of a solution implemented in ATRANS [2]; (b) One-dimensional (1D) transport of the dissolved contamination through the vadose zone considering 1D dispersion, equilibrium sorption, and first order transformation reactions. Steady state infiltration and moisture content are assumed; (c) Blending (mixing) of ambient water quality in the saturated zone with the contaminated water leaching from the vadose zone; and (d) Three-dimensional (3D) transport through the saturated zone using the formulation provided in [2], considering advection, dispersion, sorption, and first-order transformation reactions. The solution is derived using integral transform methods, following approaches adopted in [1] and [4]. Independent verification showed that the analytical techniques implemented in this study generate solutions that closely approximate those obtained using sophisticated numerical approaches, with a systematic over-estimate of the likely impact to groundwater that (predictably) stems from the use of a 1D approximation in the vadose zone. As a

  8. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer.

    Science.gov (United States)

    Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Hancock, Dawn E; Fuller, Mark E; Hatzinger, Paul B; Vainberg, Simon; Istok, Jonathan D; Wilson, Edward; Michalsen, Mandy M

    2015-11-01

    In situ bioaugmentation with aerobic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacteria is being considered for treatment of explosives-contaminated groundwater at Umatilla Chemical Depot, Oregon (UMCD). Two forced-gradient bacterial transport tests of site groundwater containing chloride or bromide tracer and either a mixed culture of Gordonia sp. KTR9 (xplA (+)Km(R)), Rhodococcus jostii RHA1 (pGKT2 transconjugant; xplA (+)Km(R)) and Pseudomonas fluorescens I-C (xenB (+)), or a single culture of Gordonia sp. KTR9 (xplA (+); i.e. wild-type) were conducted at UMCD. Groundwater monitoring evaluated cell viability and migration in the injection well and downgradient monitoring wells. Enhanced degradation of RDX was not evaluated in these demonstrations. Quantitative PCR analysis of xplA, the kanamycin resistance gene (aph), and xenB indicated that the mixed culture was transported at least 3 m within 2 h of injection. During a subsequent field injection of bioaugmented groundwater, strain KTR9 (wild-type) migrated up to 23-m downgradient of the injection well within 3 days. Thus, the three RDX-degrading strains were effectively introduced and transported within the UMCD aquifer. This demonstration represents an innovative application of bioaugmentation to potentially enhance RDX biodegradation in aerobic aquifers.

  9. Experimental challenges to stiffness as a transport paradigm

    Science.gov (United States)

    Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.

    2018-02-01

    Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E  ×  B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E  ×  B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.

  10. Experimental design for assessment of electrokinetically enhanced delivery of lactate and bacteria in 1,2-cis-dichloroethylene contaminated limestone

    DEFF Research Database (Denmark)

    Hyldegaard, Bente Højlund; Nedergaard, L. W.; Ottosen, Lisbeth

    2015-01-01

    Bacterial dechlorination of chlorinated solvents often causes accumulation of the intermediate cis-DCE. Back diffusion of e.g. cis-DCE, due to the dual porosity of limestone, often limits the remediation efficiency. A remediation scheme capable of establishing contact between contaminant, degrading...... bacteria and electron donor within the low permeable limestone matrix is required. The technology EK-BIO, which combines enhanced reductive dechlorination and electrokinetics (EK), was assessed. This novel technology has not previously been tested in limestone. An experimental set-up was designed to meet...... limestone cores and for saturation and contamination of the cores with cis-DCE. EK induced transport processes for delivery of the donor lactate and mixed bacteria culture KB-1® were studied. EK was shown to enhance delivery of lactate and bacteria resulting in fermentation of lactate in the limestone...

  11. Use of Short Chained Alkylphenols (SCAP in Analysis of Transport Behaviour of Oil Contaminated Groundwater

    Directory of Open Access Journals (Sweden)

    M. Sauter

    2002-06-01

    Full Text Available Shortchained alkylphenols (SCAP represent a main constituent of crude oil and coal liquefaction products. Due to their specific oil/water partitioning behaviour and high aqueous solubility they can be detected in oil exploitation waters and groundwaters affected by various spills near oil pipelines, oil exploitation sites and coal liquefaction plants. New efficient and powerful analytical techniques have been developed that allow the identification of all 34 individual compounds (C0-C3 without derivatisation and in complex matrices. Due to the different physico-chemical properties of the SCAP, differential transport behaviour in groundwater can be observed, changing the relative concentrations of SCAP downgradient in space and time. These characteristic ratios can be employed to derive information on migration direction and the ageing of the source of contamination. A case study is presented to illustrate the use of this new tool.

  12. Vadose Zone Contaminant Fate and Transport Analysis for the 216-B-26 Trench

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2004-10-14

    The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial

  13. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen

    2010-12-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  14. Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA.

    Science.gov (United States)

    Wiseman, Benjamin; Kilburg, Arnaud; Chaptal, Vincent; Reyes-Mejia, Gina Catalina; Sarwan, Jonathan; Falson, Pierre; Jault, Jean-Michel

    2014-01-01

    Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.

  15. Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea

    Science.gov (United States)

    Unlu, S.; Alpar, B.

    2009-04-01

    Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil

  16. Experimental investigation of the magnetic configuration dependence of turbulent transport.

    Science.gov (United States)

    Birkenmeier, G; Ramisch, M; Manz, P; Nold, B; Stroth, U

    2011-07-08

    The dependence of turbulent transport on magnetic field properties is measured in detail on a plasma in a stellarator configuration. Pronounced poloidal asymmetries of fluctuation amplitudes and turbulent transport are observed. The transport maximum is located in regions where normal curvature of the magnetic field is negative and simultaneously the geodesic curvature has positive values. A major role of the local magnetic shear cannot be confirmed. The results can have important implications for the optimization of stellarators and the power influx into the scrape-off layer.

  17. Effect of three different sanitizing solutions on the contaminated bone: an experimental study in the rabbit

    Directory of Open Access Journals (Sweden)

    Hamidreza Yazdi

    2012-08-01

    Full Text Available  Abstract Background: To determine the efficacy of three different antiseptic solutions (Control group (I, Antibiotic solution – Neomycin and polymyxin (II, Chlorhexidine 0.4% (III, and povidone – iodine 10% (IV in disinfecting contaminated bone fragments. Methods: Under sterile conditions, the femora of 12 rabbits were removed and cut into six millimeter pieces. A total of 200 bone specimens were obtained. All 200 specimens were dropped on the operating room floor for fifteen seconds and assigned to one of four experimental groups. Group I samples were cultured after immersion in normal saline solution (Control group. In other three groups, prior to culture the samples, they were washed with normal saline for ninety seconds and placed in an antibiotic solution (Neomycin & Polymyxin (group II, Chlorhexidine 0.4% (group III, and povidone-iodine 10% (group IV respectively. Results: In group I, 22 of 50 specimens had positive cultures. Of 50 specimens of group II and IV, positive cultures were found in 3 and 2 grafts respectively after 10 days whereas no positive cultures were detected in any samples of group III. Conclusion: Chlorhexidine 0.4% seems to be the best antiseptic solution for discontaminating the contaminated bone samples although it did not have any significant difference with povidone-iodine and other antibiotic solution. 

  18. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Directory of Open Access Journals (Sweden)

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  19. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence.

    Science.gov (United States)

    Beauchêne, Christian; Laudinet, Nicolas; Choukri, Firas; Rousset, Jean-Luc; Benhamadouche, Sofiane; Larbre, Juliette; Chaouat, Marc; Benbunan, Marc; Mimoun, Maurice; Lajonchère, Jean-Patrick; Bergeron, Vance; Derouin, Francis

    2011-03-03

    Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD). The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software Code_Saturne® (http://www.code-saturne.org) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the

  20. Optimal Experimental Designs For The Identification of Release and Transport Parameters of Reactive Solutes In Column Studies

    Science.gov (United States)

    Wehrer, M.; Totsche, K. U.; Huwe, B.

    Knowledge about the release and transport of contaminants in natural porous media plays a crucial role in the estimation of the risk of soil and groundwater pollution. Thus, robust and reliable experimental methods are necessary for the prediction of contaminant fate in soils and aquifers. In this context, soil column experiments are widely used to determine the reactive solute transport parameters. The scope of this work is to analyze (un)saturated column outflow experiments with respect to their suit- ability for the understanding of interaction processes and their properties. Employing numerical case studies, the effect of singular and composite processes (e.g. sorption, partitioning, dispersion) and properties (linearity of the interactions, rate constrictions) on the breakthrough curve are investigated. Numerical scenarios are based on real world data sets and further consider analytical constraints like limits of determina- tion, precision and accuracy. The results suggest that uniqueness problems arise in the identification and quantification of flow and transport parameters. These problems are caused by the lack of "usable information" in the column response to the rather simple input signal, i.e., the continuous feed or pulse type inflow boundary condition. In gen- eral, shape and curvature of the breakthrough curve - which are used to identify the governing processes - are affected by processes and properties which enforce, weaken or compensate each other. To eliminate this deficiency, we will propose different ex- perimental designs which help to improve our ability for parameter identification but simultaneously minimize both time and financial investments

  1. Tracking the origin and dispersion of contaminated sediments transported by rivers draining the Fukushima radioactive contaminant plume

    Directory of Open Access Journals (Sweden)

    H. Lepage

    2015-03-01

    Full Text Available This study was conducted in several catchments draining the main Fukushima Dai-ichi Power Plant contaminant plume in Fukushima prefecture, Japan. We collected soils and sediment drape deposits (n = 128 and investigated the variation in 137Cs enrichment during five sampling campaigns, conducted every six months, which typically occurred after intense erosive events such as typhoons and snowmelt. We show that upstream contaminated soils are eroded during summer typhoons (June–October before being exported during the spring snowmelt (March–April. However, this seasonal cycle of sediment dispersion is further complicated by the occurrence of dam releases that may discharge large amounts of contaminants to the coastal plains during the coming years.

  2. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    Science.gov (United States)

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave

  3. Geological characterization and solute transport model investigations of contaminated sites in urban areas (Denmark)

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    In Denmark, contaminations from industry and farming represent a significant threat to groundwater resources. On a national level, there is a focus on identifying and locating these contaminated sites. Once located, contaminations are mapped and monitored and remediation efforts are undertaken. R...... the uncertainties of projections on the fate of the contaminant. Based on the work, we were able to pinpoint the best strategies and solutions for future remediation efforts at the two sites.......In Denmark, contaminations from industry and farming represent a significant threat to groundwater resources. On a national level, there is a focus on identifying and locating these contaminated sites. Once located, contaminations are mapped and monitored and remediation efforts are undertaken...... efforts are often challenged by logistics. The general lack of knowledge about theses contaminations introduces significant uncertainties in the projections on the fate of the contaminant. We carry out a geological characterization of two contaminated sites situated in urban areas. The existing data from...

  4. Experimental investigation of heat transport through single synthetic fractures

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Redondo, Jose M.

    2017-04-01

    In fractured geothermal reservoirs, heat transport is highly influenced by the presence of the fractures, so appropriate knowledge of heat behaviour in fractured porous media is essential for accurate prediction of the energy extraction in geothermal reservoirs. The present study focuses on the study of heat transport within single synthetic fractures. In particular manner several tests have been carried out in order to explore the role of fracture roughness, aperture variability and the fracture-matrix ratio on the heat transport dynamics. The Synfrac program together with a 3d printer have been used to build several fracture planes having different geometrical characteristics that have been moulded to generate concrete porous fractured blocks. The tests regard the observation of the thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouples located uniformly on the fractured blocks. The physical model developed permits to reproduce and understand adequately some features of heat transport dynamics in fractured media. The results give emphasis on the errors of the assumptions commonly used in heat transport modelling.

  5. Reconstruction of {sup 131}I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, Nikolai [Scientific Center for Radiation Medicine, 53 Melnikov Street, Kyiv 04050 (Ukraine)]. E-mail: ntalerko@mail.ru

    2005-07-01

    The evaluation of {sup 131}I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The {sup 131}I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne {sup 131}I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of {sup 137}Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of {sup 131}I soil contamination obtained from the {sup 129}I measurements.

  6. Reconstruction of (131)I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling.

    Science.gov (United States)

    Talerko, Nikolai

    2005-01-01

    The evaluation of (131)I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The (131)I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne (131)I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of (137)Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of (131)I soil contamination obtained from the (129)I measurements.

  7. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    Directory of Open Access Journals (Sweden)

    Na Wei

    2013-01-01

    Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

  8. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  9. Numerical modeling and experimental analysis of volatile contaminant removal from vertical flow filters

    NARCIS (Netherlands)

    De Biase, C.

    2012-01-01

    Vertical flow filters (unplanted) and vertical flow constructed wetlands (planted), simple and inexpensive technologies to treat effectively volatile organic compounds (VOCs) contaminated water, consist of containers filled with granular material which is intermittently fed with contaminated water.

  10. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  11. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei

    2014-01-01

    chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...

  12. Modeling the Influence of Variable Tributary Inflow on Circulation and Contaminant Transport in a Water Supply Reservoir

    Science.gov (United States)

    Nguyen, L. H.; Wildman, R.

    2012-12-01

    This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with

  13. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    OpenAIRE

    Na Wei; YingFeng Meng; Gao Li; LiPing Wan; ZhaoYang Xu; XiaoFeng Xu; YuRui Zhang

    2013-01-01

    Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport ma...

  14. A service quality experimental measure for public transport

    OpenAIRE

    Mazzulla, Gabriella; Eboli, Laura

    2006-01-01

    In this paper the importance of service quality attributes for public transport is estabilished by Importance Value calculation. Attribute weights (IV) are calculated by a specific empirical procedure in which a rate is assigned to each attribute according to the preferences of passengers. Finally, a Service Quality Index (SQI) for measuring the effectiveness of supplied services is calculated according to the main service quality attributes and their weights. This index can be us...

  15. Osmium isotopes demonstrate distal transport of contaminated sediments in Chesapeake Bay

    Science.gov (United States)

    Helz, G.R.; Adelson, J.M.; Miller, C.V.; Cornwell, J.C.; Hill, J.M.; Horan, M.; Walker, R.J.

    2000-01-01

    Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal Plain deposits due to post- Miocene 187Re decay. The upper Susquehanna Basin yields sediments also with higher 187Os/188Os. Beginning in the late 1970s, this signal was overprinted by a low 187Os/188Os (anthropogenic) source in the lower Susquehanna Basin. In the vicinity of Baltimore, which is a major center of heavy industry as well as biomedical research, anthropogenic Os has been found only in sediments impacted by the principal wastewater treatment plant. Surprisingly, a mid-Bay site distant from anthropogenic sources contains the strongest anthropogenic Os signal in the data set, having received anthropogenic Os sporadically since the mid-20th Century. Transport of particles to this site overrode the northward flowing bottom currents. Finding anthropogenic Os at this site cautions that other particle-borne substances, including hazardous ones, could be dispersed broadly in this estuary.Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal

  16. Modelling the transport of solid contaminants originated from a point source

    Science.gov (United States)

    Salgueiro, Dora V.; Conde, Daniel A. S.; Franca, Mário J.; Schleiss, Anton J.; Ferreira, Rui M. L.

    2017-04-01

    The solid phases of natural flows can comprise an important repository for contaminants in aquatic ecosystems and can propagate as turbidity currents generating a stratified environment. Contaminants can be desorbed under specific environmental conditions becoming re-suspended, with a potential impact on the aquatic biota. Forecasting the distribution of the contaminated turbidity current is thus crucial for a complete assessment of environmental exposure. In this work we validate the ability of the model STAV-2D, developed at CERIS (IST), to simulate stratified flows such as those resulting from turbidity currents in complex geometrical environments. The validation involves not only flow phenomena inherent to flows generated by density imbalance but also convective effects brought about by the complex geometry of the water basin where the current propagates. This latter aspect is of paramount importance since, in real applications, currents may propagate in semi-confined geometries in plan view, generating important convective accelerations. Velocity fields and mass distributions obtained from experiments carried out at CERIS - (IST) are used as validation data for the model. The experimental set-up comprises a point source in a rectangular basin with a wall placed perpendicularly to the outer walls. Thus generates a complex 2D flow with an advancing wave front and shocks due to the flow reflection from the walls. STAV-2D is based on the depth- and time-averaged mass and momentum equations for mixtures of water and sediment, understood as continua. It is closed in terms of flow resistance and capacity bedload discharge by a set of classic closure models and a specific high concentration formulation. The two-layer model is derived from layer-averaged Navier-Stokes equations, resulting in a system of layer-specific non-linear shallow-water equations, solved through explicit first or second-order schemes. According to the experimental data for mass distribution, the

  17. Coupling Sorption to Soil Weathering During Reactive Transport: Impacts of Mineral Transformation and Sorbent Aging on Contaminant Speciation and Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, J.; Mueller, K. T.; O' Day, P. A.; Serne, R. J.; Steefel, C. I.

    2009-10-30

    This project aimed for a predictive-mechanistic understanding of the coupling between mineral weathering and contaminant (Cs, Sr, I) transport/fate in caustic waste-impacted sediments. Based on our prior studies of model clay mineral systems, we postulated that contaminant uptake to Hanford sediments would reflect concurrent adsorption and co-precipitation effects. Our specific objectives were: (1) to assess the molecular-scale mechanisms responsible for time-dependent sequestration of contaminants (Cs, Sr and I) during penetration of waste-induced weathering fronts; (2) to determine the rate and extent of contaminant release from the sorbed state; (3) to develop a reactive transport model based on molecular mechanisms and macroscopic flow experiments [(1) and (2)] that simulates adsorption, aging, and desorption dynamics. Progress toward achieving each of these objectives is discussed below. We observed unique molecular mechanisms for sequestration of Sr, Cs and I during native silicate weathering in caustic waste. Product solids, which included poorly crystalline aluminosilicates and well-crystallized zeolites and feldspathoids, accumulate contaminant species during crystal growth.

  18. An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-09-01

    Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system\\'s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme. © 2014 Elsevier Ltd.

  19. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Emily S., E-mail: echoy087@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Kimpe, Linda E., E-mail: linda.kimpe@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Mallory, Mark L., E-mail: mark.mallory@ec.gc.c [Canadian Wildlife Service, Environment Canada, Iqaluit, NU, X0A 0H0 (Canada); Smol, John P., E-mail: smolj@queensu.c [Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2010-11-15

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with {Sigma}PCB and {Sigma}DDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing {delta}{sup 15}N values. However, only concentrations of p'p-DDE:{Sigma}DDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  20. Experimental and Numerical Study of Spacecraft Contamination Problems Associated With Gas and Gas-Droplet Thruster Plume Flows

    Science.gov (United States)

    2006-04-17

    sources of contamination of the surface of space vehicles are jets of their control thrusters, containing products of poor combustion (droplets... Etanol , 4861 Е Experimental Points Approximating Curve Fig. 2.16. Calibration dependence of optical radiation intensity for ethanol vapors -6

  1. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  2. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  3. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  4. LUGH an experimental facility for preferential flow-colloidal transport in heterogeneous unsaturated soil

    Science.gov (United States)

    Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.

    2011-12-01

    Colloidal particles transport through vadose zone can contribute to fast transport of contaminants into groundwater. The objective is to study the preferential flow and transport of colloids in heterogeneous unsaturated soil subjected to high organic matter entry. A physically based model is developed based on a large laboratory lysimeter than usual laboratory column experiments. LUGH-Lysimeter for Unsaturated Groundwater Hydrodynamics- is used to embed a soil monolith (1.6 m3) made of different cross-bedded lithological types with contrasting hydraulic properties. The filling material is a carbonated graded sand and gravel from the fluvioglacial vadose zone of the east of Lyon (France). Materials are 3D arranged on contrasting textured lithofacies analogous to the sedimentary lithology of a fluvioglacial cross-bedded deposit. Tracer (Br 1E-2M) and colloid solutions were injected in a pulse mode using a rainfall simulator. Colloid solution is Chlamydomonas reinhardtii at 3.2E+6 units/mL concentration. These unicellular algae can be considered as spherical particles from 6 to 10 μm in diam. Their resistance and doubling time of cell growth are greater than the transfer time in the lysimeter. Algae moving into the porous medium do not immediately reproduce, and then the population size remains constant. During this period, called the lag phase (1 to 2 days), the cells are metabolically active and increase only in cell size. Tensiometers, TDR and electric resistivity enable measurements of the parameters related to flow, solute and colloid transfer. Eluted solutions are sampled by 15 separated fraction collectors, leading to independent breakthrough curves. Eluted colloid concentration is measured by spectrofluorometry. The model approach combines Richards equation, coupled to a convective-dispersive equation with a source/sink term for particle transport and mobilization. Macroscopic particle attachment/detachment from pores is assumed to follow first-order kinetics

  5. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda [International Technologies Corporation, Las Vegas, NV (United States)

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  6. Xenocryst assimilation and formation of peritectic crystals during magma contamination: An experimental study

    OpenAIRE

    Erdmann, Saskia; Scaillet, Bruno; Kellett, D.A.

    2010-01-01

    International audience; Contamination of magmas by country rocks may contribute xenoliths and xenocrysts to the magma, but also melt and peritectic crystals that form through incongruent melting or dissolution of the original contaminants. Identifying contaminant-derived peritectic crystals and former melt components in igneous rocks is particularly challenging, but also particularly important, because their assimilation significantly affects melt composition and magma temperature. To facilit...

  7. An experimental evaluation of the effectiveness of beach ashtrays in preventing marine contamination

    Directory of Open Access Journals (Sweden)

    Walter Martin Widmer

    2010-10-01

    Full Text Available In this study, hypotheses concerning the use of beach ashtrays were experimentally tested. Results indicated that the mean rate of abandonment of this equipment was low (1.5%. The mean amount of cigarette stubs (3.4 items/ashtray was greater than mean amounts of other types of litter. People with different socioeconomic profiles had different perceptions regarding the issues associated with beach debris. These results indicated that beach ashtrays could be useful to prevent the contamination of these environments and that differences in socioeconomic characteristics of beachgoers could partially explain the differences in perceptions regarding the presence of waste on the beaches. This information could now be used by coastal managers to plan strategies to reduce the marine contamination.A presença de resíduos sólidos no ambiente marinho é extensa. Praias são tipicamente contaminadas com esses materiais, que podem causar impactos ecológicos. Resíduos sólidos nas praias podem causar ferimentos nas pessoas e podem prejudicar a atividade turística. Neste estudo, hipóteses relativas ao uso de cinzeiros de praia foram testadas. Os resultados indicam que a taxa de abandono desse equipamento é pequena (1,5% e que a quantidade média de pontas de cigarro (3,4 itens/cinzeiro é maior do que as quantidades médias de outros tipos de lixo. Também se observou que pessoas com diferentes perfis socioeconômicos apresentaram percepções diferentes relativas à presença de resíduos sólidos nas praias. Estes resultados sugerem que cinzeiros portáteis podem ser um equipamento importante na redução da contaminação das praias e que diferenças socioeconômicas dos freqüentadores das praias podem explicar parcialmente as diferentes percepções relativas à presença de resíduos no ambiente praial. Sugere-se que os gerentes costeiros usem esse tipo de informação para planejar estratégias de redução desse problema.

  8. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  9. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-04-24

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site.

  10. Experimental investigation of turbulent transport of momentum and heat in the atmospheric surface layer

    Science.gov (United States)

    Han, Guowen; Zheng, X. J.; Bo, Tianli

    2017-11-01

    In our study, turbulent transport of momentum and heat is investigated in the neutral and unstable atmospheric surface layer (ASL) over the edge of a desert. Our results reveal that with the increase of wind speed the transport efficiencies for momentum and heat increased, furthermore, transport efficiency of momentum increases faster than that of heat. In addition, the method of quadrant analysis and turbulent events were used to analyze the moment flux and heat flux. Experimental results show that the influence of wind speed on moment flux and heat flux can be quite different, which maybe has a great impact on the turbulent transport of momentum and heat in ASL.

  11. Experimental investigation of heat transport enhancement in bubbly flows

    Science.gov (United States)

    Gvozdic, Biljana; Almeras, Elise; Mathai, Varghese; van Gils, Dennis; Sun, Chao; Lohse, Detlef

    2017-11-01

    Bubble injection into a carrier fluid can enhance the convective heat transfer. The exact mechanism behind this phenomenon is still unclear since most of the heat transport measurements in bubbly flows are limited to time-averaged global quantities. In this study we measure the statistical properties of the local temperature fluctuations along with global heat flux measurements in a rectangular bubble column heated from one sidewall and cooled from the opposite wall. We varied the Rayleigh number from 109 to 1011, and the gas volume fraction from 0.5 to 5%. Due to bubble injection, the Nusselt number is increased up to 20 times as compared to the single-phase case. Surprisingly, we find that the Nusselt number is nearly independent on the Rayleigh number in two-phase flows for each studied gas volume fraction. Furthermore, the Nusselt number is found to be proportional to the square root of the gas volume fraction, which is suggestive of a diffusive process. Local measurements of the bulk temperature fluctuations show that not only are the fluctuations increased up to 100 times due to bubble injection, but also that mixing is present at shorter time scales, which is reflected in the power spectrum of the temperature fluctuations.

  12. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  13. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  14. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    Science.gov (United States)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix

  15. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    Science.gov (United States)

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  16. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  17. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    Directory of Open Access Journals (Sweden)

    M. Golzar

    2014-01-01

    Full Text Available Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4 stabilized with PAA in a one-dimensional porous media (column was investigated. The slurries with concentrations of 20,100 and 500 (mg/L were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT. The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm in a porous media.

  18. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  19. The development of an experimental model of contaminated muscle injury in rabbits.

    Science.gov (United States)

    Eardley, Will G P; Martin, Kevin R; Taylor, Chris; Kirkman, Emrys; Clasper, Jon C; Watts, Sarah A

    2012-12-01

    Extent of tissue trauma and contamination determine outcome in extremity injury. In contrast to fracture, osteomyelitis, and closed muscle injury studies, there are limited small animal models of extremity muscle trauma and contamination. To address this we developed a model of contaminated muscle injury in rabbits. Twenty-eight anesthetized New Zealand White rabbits underwent open controlled injury of the flexor carpi ulnaris (FCU). Twenty-two animals had subsequent contamination of the injured muscle with Staphylococcus aureus. All animals were sacrificed at 48 hours and the level of muscle injury and contamination determined by quantitative histological and microbiological analysis. A 1-kg mass dropped 300 mm onto the mobilized FCU resulted in localized necrosis of the muscle belly. Delivery of a mean challenge of 3.71 × 10(6) cfu/100 µL S aureus by droplet spread onto the injured muscle produced a muscle contamination of 8.79 × 10(6) cfu/g at 48 hours. Ipsilateral axillary lymph nodes demonstrated clinically significant activation. All animals had normal body temperature and hematological parameters throughout and blood and urinalysis culture at autopsy were negative for organisms. This model allows reproducible muscle injury and contamination with the organism ubiquitous to extremity wound infection at a level sufficient to allow quantitative assessment of subsequent wound care interventions without incurring systemic involvement.

  20. Experimental contamination of pink shrimps by caesium 137; Contamination experimentale de crevettes roses par le cesium 137

    Energy Technology Data Exchange (ETDEWEB)

    Ancellin, J.; Michon, G.; Vilquin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors describe first of all the technique used for the determination of cesium 137 concentration factors in the pink shrimp (Leander Serratus Pennant). Experiments over three months have shown that the specific activity of the shrimps becomes stable between the thirtieth and the fortieth day. The concentration factors then have values between 30 and 40. These results are similar to those obtained by other authors. (authors) [French] Les auteurs decrivent tout d'abord la technique utilisee pour la determination des facteurs de concentration du Cesium 137 chez la crevette rose (Leander Serratus Pennant). Le resultat des experimentations menees pendant trois mois montre que l'activite specifique des crevettes se stabilise entre le trentieme et le quarantieme jour. Les facteurs de concentration se situent alors entre 30 et 40, Ces donnees sont comparables a celles obtenues par d'autres auteurs. (auteur)

  1. Determinación experimental de los coeficientes locales de transporte de humedad en almacenes soterrados. // Experimental determination of local humidity transport coefficients in underground warehouses.

    Directory of Open Access Journals (Sweden)

    Ma. D. Andrade Gregori

    2006-05-01

    Full Text Available En el trabajo se fundamentan los mecanismos de transporte de humedad que tienen lugar en almacenes soterrados dadas lascaracterísticas climáticas y geohidrològicas de Cuba. Se establece una analogía con la ley de Fick y se propone un modeloteórico que describe este mecanismo de transporte hacia las cavidades. Se determinó experimentalmente los coeficienteslocales de transporte de humedad para diferentes tipos de recubrimiento en paredes y diferentes formas geométricas de losalmacenes.Palabras claves: Almacenes, soterrado, humedad, conservación, coeficientes._______________________________________________________________________________Abstract.In this paper the mechanisms of humidity transport are explained. These mechanisms have place in underground warehousesaccording to the climatic and geohydrological characteristics of Cuba. An analogy with the Fick´s law is stated and it intends atheoretical model that describes this mechanism of transport toward the cavities. It was determined the local coefficients oftransport of humidity experimentally for different recover types in walls and different geometric forms of the warehouses.Key words: Store, buried, humidity, conservation, and coefficients.

  2. Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2012-07-01

    Full Text Available Landslides of contaminated soil into surface water represent an overlooked exposure pathway that has not been addressed properly in existing risk analysis for landslide hazard, contaminated land, or river basin management. A landslide of contaminated soil into surface water implies an instantaneous exposure of the water to the soil, dramatically changing the prerequisites for the mobilisation and transport of pollutants. In this study, an analytical approach is taken to simulate the transport of suspended matter released in connection with landslides into rivers. Different analytical solutions to the advection-dispersion equation (ADE were tested against the measured data from the shallow rotational, retrogressive landslide in clayey sediments that took place in 1993 on the Göta River, SW Sweden. The landslide encompassed three distinct events, namely an initial submerged slide, followed by a main slide, and a retrogressive slide. These slides generated three distinct and non-Gaussian peaks in the online turbidity recordings at the freshwater intake downstream the slide area. To our knowledge, this registration of the impact on a river of the sediment release from a landslide is one of few of its kind in the world and unique for Sweden. Considering the low frequency of such events, the data from this landslide are highly useful for evaluating how appropriate the ADE is to describe the effects of landslides into surface water. The results yielded realistic predictions of the measured variation in suspended particle matter (SPM concentration, after proper calibration. For the three individual slides it was estimated that a total of about 0.6% of the total landslide mass went into suspension and was transported downstream. This release corresponds to about 1 to 2% of the annual suspended sediment transport for that river stretch. The studied landslide partly involved an industrial area, and by applying the analytical solution to estimate the

  3. Changes in mode of travel to work: a natural experimental study of new transport infrastructure

    OpenAIRE

    Heinen, E; Panter, J.; Mackett, R.; Ogilvie, D

    2015-01-01

    Background New transport infrastructure may promote a shift towards active travel, thereby improving population health. The purpose of this study was to determine the effect of a major transport infrastructure project on commuters? mode of travel, trip frequency and distance travelled to work. Methods Quasi-experimental analysis nested within a cohort study of 470 adults working in Cambridge, UK. The intervention consisted of the opening of a guided busway with a path for walking and cycling ...

  4. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  5. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    Science.gov (United States)

    Kaushal, Vikas; Margala, Martin; Yu, Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman

    2009-11-01

    In this paper, two different theoretical models, Comsol Multiphysics™ (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  6. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Vikas; Margala, Martin [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA, 01854 (United States); Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman, E-mail: vikas_kaushal@student.uml.ed [Department of Electrical and Computer Engineering, University of Rochester, NY, 14627 (United States)

    2009-11-15

    In this paper, two different theoretical models, Comsol Multiphysics{sup TM} (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  7. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  8. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  9. Validation Testing a Contaminant Transport and Natural Attenuation Simulation Model Using Field Data.

    Science.gov (United States)

    1995-12-01

    Their Effect on Bioremediation 19 Electron Acceptors 19 Acclimation of Microorganisms 20 Hydrogeologie Considerations 20 BTEX - Electron Acceptor...have been degraded. Hydrogeologie Considerations. Dispersion of the contaminant plume caused by the motion of groundwater through the porous aquifer

  10. Deterministic sensitivity analysis for the numerical simulation of contaminants transport; Analyse de sensibilite deterministe pour la simulation numerique du transfert de contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E

    2007-12-15

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  11. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds.

    Science.gov (United States)

    Choy, Emily S; Kimpe, Linda E; Mallory, Mark L; Smol, John P; Blais, Jules M

    2010-11-01

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with ∑PCB and ∑DDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing δ(15)N values. However, only concentrations of p'p-DDE:∑DDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    Science.gov (United States)

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  13. Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Periago, E.L. [Department of Vegetal Biology and Soil Science, Faculty of Sciences, As Lagoas (Spain); Delgado, A.N.; Diaz-Fierros, F. [Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, Santiago de Compostela (Spain)

    2002-09-01

    Infiltration of contaminants was investigated in a flat pasture plot Lolium perenne L. which received 250 m{sup 3}/ha of cattle slurry. Lysimeters and piezometers had previously been installed in the plot to sample groundwater at different depths. Water samples were analyzed for pH, conductivity.NH{sub 4}{sup +}, NO{sub 3}{sup -}, orthophosphate, Cl{sup -}, Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+} and chemical oxygen demand (COD), and for faecal coliforms and faecal streptococci. Contaminant concentrations in water samples taken in lysimeters at a depth of 5 cm (2 h after slurry application) were already from 22% to 83% of raw slurry. After slurry application and after 150 mm of rainfall, contaminant concentrations in groundwater were in all depths less than 95% of those initially measured in the slurry. For all contaminants except Cl{sup -}, NO{sub 3}{sup -}, K{sup +} and COD, concentrations in groundwater measured before application were reached within 15 days. Mechanical retention was the principal mechanism of attenuation of microorganism and COD levels, whereas cations were attenuated by sorption to soil matrix. Dilution by rain water had less significant effects, accounting for about a tenfold reduction in contaminant levels. (author)

  14. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  15. Experimental Research Regarding the Application of Electro-Flushing Method on Diesel Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Streche Constantin

    2014-05-01

    Full Text Available In 2011, as a result of the inventory conducted at the national level, The Ministry Of Environment concluded that the largest number of contaminated sites with hydrocarbons are due to the petroleum products distribution (nearly 400 sites, followed by the hydrocarbons extraction (about 310 sites. So, soil contamination with liquid petroleum products resulting from many industrial activities became an important issue of environment protection. Unfortunately not all local governments have provided a list of contaminated sites, which means that there is a possibility to have a bigger problem at the national level. All these surfaces are in a continuous growth due to industrial and social development and that is why it is necessary to study and improve decontamination methods of contaminated sites in order to regain one of our most important resources - the soil. In this paper, the main results obtained during a research that aimed to study two different treatment methods of contaminated soil in a combined solution, are presented. The newly developed method is called electro-flushing. Results proved that combining the two nominated methods could be a viable solution for treating diesel polluted soil with better performances comparing with using them separately. Concerning the electrochemical treatment of diesel contaminated soils an efficiency of 35-40 % could be obtained after 28 days; while using the flushing method up to 15-20% efficiency could be reached. On the other hand, if we combine these two methods, we can reach remediation efficiency up to 50%. So, the main interesting results of the present research is given by the fact that combining two known remediation methods, better performances could be achieved.

  16. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement ventilat......The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...

  17. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.

    2015-05-11

    The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model

  18. Laboratory transport experiments with antibiotic sulfadiazine: Experimental results and parameter uncertainty analysis

    Science.gov (United States)

    Sittig, S.; Vrugt, J. A.; Kasteel, R.; Groeneweg, J.; Vereecken, H.

    2011-12-01

    Persistent antibiotics in the soil potentially contaminate the groundwater and affect the quality of drinking water. To improve our understanding of antibiotic transport in soils, we performed laboratory transport experiments in soil columns under constant irrigation conditions with repeated applications of chloride and radio-labeled SDZ. The tracers were incorporated in the first centimeter, either with pig manure or with solution. Breakthrough curves and concentration profiles of the parent compound and the main transformation products were measured. The goal is to describe the observed nonlinear and kinetic transport behavior of SDZ. Our analysis starts with synthetic transport data for the given laboratory flow conditions for tracers which exhibit increasingly complex interactions with the solid phase. This first step is necessary to benchmark our inverse modeling approach for ideal situations. Then we analyze the transport behavior using the column experiments in the laboratory. Our analysis uses a Markov chain Monte Carlo sampler (Differential Evolution Adaptive Metropolis algorithm, DREAM) to efficiently search the parameter space of an advective-dispersion model. Sorption of the antibiotics to the soil was described using a model regarding reversible as well as irreversible sorption. This presentation will discuss our initial findings. We will present the data of our laboratory experiments along with an analysis of parameter uncertainty.

  19. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24

    existing data sets. The first data set used laboratory generated Np sorption data as a function of concentration (three orders of magnitude) and as a function of pH (four orders of magnitude of proton concentration). In this modeling exercise, a very simple solution was identified by assuming that all sorption occurred only to the iron oxides in the sediment and that all the added NpO{sub 4}{sup -} remained in the oxidized state and was not reduced to the Np(IV) state (as occurs rapidly with Pu(V)). With rather limited input data, very good agreement between experimental and modeling results was observed. This modeling approach would be easy to add to the PA with little additional data requirements. This model would be useful in a system where pH is expected to change greatly, such as directly beneath a grout or concrete structure. The second model discussed in the report was to derive strontium K{sub d} values from data collected in an 11-year-old field transport study. In this controlled lysimeter study, a sensitivity analysis was conducted of hydrological and chemical processes that influence contaminant transport, including diffusion coefficients, seepage velocity, and K{sub d} value. The best overall K{sub d} derived from the model fit to the data was 32 L kg{sup -1}, which was the same value that was previously measured in traditional laboratory batch sorption studies. This was an unexpected result given the differences in experimental conditions between the batch test and the lysimeter flow through test, in particular the differences between strontium adsorption and desorption processes occurring in the latter test and not in the former. There were some trends in the lysimeter strontium data that were not predicted by the K{sub d} model, which suggest that other geochemical processes are likely also controlling strontium transport. Strontium release and cation exchange are being evaluated. These results suggest that future modeling efforts (e.g., PAs) could be

  20. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes.

    Science.gov (United States)

    Wagner, Doris; Milodowski, Antoni E; West, Julia M; Wragg, Joanna; Yoshikawa, Hideki

    2013-08-01

    This study investigates the influence of microbes on fluid transport in sedimentary and igneous host rock environments. It particularly focuses on granodiorite rock (Äspö; Sweden) and mudstone (Horonobe; Japan) that were utilised during laboratory-based column experiments. The results showed that biofilms form on both rock types in low nutrient conditions. Cryogenic scanning electron microscopy showed that the morphology of biofilaments varied from filamentous meshwork (in crushed granodiorite column experiments) to clusters of rod-like cells (fracture surfaces in mudstone). X-ray diffraction analysis of the fine fractions (containment and migration of contaminants.

  1. Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors

    NARCIS (Netherlands)

    Sloot, E.M.; Sloot, E.M.; Kruyt, Nicolaas P.

    1996-01-01

    A theoretical and experimental study was made of the conveying speed with which granular materials are transported by vibratory conveyors. The basic assumption made is that the layer of granular material can be considered as a point mass. The theory incorporates rest, slide, and flight phases of the

  2. Experimental bifurcation analysis—Continuation for noise-contaminated zero problems

    DEFF Research Database (Denmark)

    Schilder, Frank; Bureau, Emil; Santos, Ilmar Ferreira

    2015-01-01

    Noise contaminated zero problems involve functions that cannot be evaluated directly, but only indirectly via observations. In addition, such observations are affected by a non-deterministic observation error (noise). We investigate the application of numerical bifurcation analysis for studying t...

  3. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions.

  4. Experimental and theoretical study of particle transport in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fable, E.

    2009-06-15

    The main scope of this thesis work is to compare theoretical models with experimental observations on particle transport in particular regimes of plasma operation from the Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne. We introduce the main topics in Tokamak fusion research and the challenging problems in the first Chapter. A particular attention is devoted to the modelling of heat and particle transport. In the second Chapter the experimental part is presented, including an overview of TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of the numerical tools used to analyze the experimental data. In addition, the numerical codes that are used to interpret the experimental data and to compare them with theoretical predictions are introduced. The third Chapter deals with the problem of understanding the mechanisms that regulate the transport of energy in TCV plasmas, in particular in the electron Internal Transport Barrier (eITB) scenario. A radial transport code, integrated with an external module for the calculation of the turbulence-induced transport coefficients, is employed to reproduce the experimental scenario and to understand the physics at play. It is shown how the sustainment of an improved confinement regime is linked to the presence of a reversed safety factor profile. The improvement of confinement in the eITB regime is visible in the energy channel and in the particle channel as well. The density profile shows strong correlation with the temperature profile and has a large local logarithmic gradient. This is an important result obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter. In the same chapter we present the estimate of the particle diffusion and convection coefficients obtained from density transient experiments performed in the eITB scenario. The theoretical understanding of the strong correlation between density and temperature observed in the e

  5. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  6. Microbially driven fracture sealing for inhibiting contaminant transport at the field scale

    Science.gov (United States)

    McMillan, Lindsay; Cuthbert, Mark; Riley, Michael; Handley-Sidhu, Stephanie; Tobler, Dominique; Phoenix, Vernon

    2013-04-01

    Successful implementation of subsurface carbon storage and nuclear waste containment schemes relies on transmissivity reduction through the sealing of fractures in the surrounding rocks. Effective transmissivity reduction in fine scale features is difficult to achieve using traditional high viscosity cement grouts injected at high pressures. However, laboratory scale studies suggest microbially induced calcite precipitation (MICP) can provide a low-viscosity alternative. The first field trials of MICP in fractured hard rock were carried out in a multiple borehole array by using the ureolytic bacterium Sporosarcina pasteurii. Flow at depth at the experimental site is dominated by a single fracture. Injection of the bacteria in parallel with a 'cementing fluid' of urea and calcium chloride was used to fix the bacteria in the subsurface. Subsequent flushing with the cementing fluid alone drove further ureolysis and calcite precipitation. Calcite precipitation is eventually limited by crystal growth preventing interaction of the accumulated bacteria with the cementing fluid; repeated bacteria injections are necessary. Coupled equations for bacterial and urea transport, bacterial accumulation, and calcite production were used to model the field trial numerically and gave excellent agreement with field data. While a significant reduction in the transmissivity of the fracture was achieved over several m2 the modelling results suggest challenges remain in encouraging aperture reduction at a distance from the injection borehole due primarily to cementation and clogging around the bacteria injection hole. A further borehole array at the same site provides the opportunity for additional experiments informed by the promising initial results. Models of a number of alternative bacteria and cementing fluid injection schemes have been created using the geometry of the new borehole array. These models have been parameterised using the calibrated model from the initial field trial

  7. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Viglianti, Christophe [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Centre Sciences, Information et Technologies pour l' Environnement (SITE) - ENS de Mines de Saint Etienne, 158 cours Fauriel - 42023 Saint Etienne Cedex 2 (France); Hanna, Khalil [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)]. E-mail: khalilhanna@hotmail.com; Brauer, Christine de [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France); Germain, Patrick [Laboratoire d' Analyse Environnementale des Procedes et des Systemes Industriels - INSA de Lyon, 9, rue de la Physique - 69621 Villeurbanne Cedex (France)

    2006-04-15

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. {beta}-Cyclodextrin (BCD), hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 {sup o}C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil.

  8. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    Science.gov (United States)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  9. Experimental Verification of the Behavioral Foundation of Bacterial Transport Parameters Using Microfluidics

    Science.gov (United States)

    Ahmed, Tanvir; Stocker, Roman

    2008-01-01

    We present novel microfluidic experiments to quantify population-scale transport parameters (chemotactic sensitivity χ0 and random motility μ) of a population of bacteria. Previously, transport parameters have been derived theoretically from single-cell swimming behavior using probabilistic models, yet the mechanistic foundations of this upscaling process have not been verified experimentally. We designed a microfluidic capillary assay to generate and accurately measure gradients of chemoattractant (α-methylaspartate) while simultaneously capturing the swimming trajectories of individual Escherichia coli bacteria using videomicroscopy and cell tracking. By measuring swimming speed and bias in the swimming direction of single cells for a range of chemoattractant concentrations and concentration gradients, we directly computed the chemotactic velocity VC and the associated chemotactic sensitivity χ0. We then show how μ can also be readily determined using microfluidics but that a population-scale microfluidic approach is experimentally more convenient than a single-cell analysis in this case. Measured values of both χ0 [(12.4 ± 2.0) × 10−4 cm2 s−1] and μ [(3.3 ± 0.8) × 10−6 cm2 s−1] are comparable to literature results. This microscale approach to bacterial chemotaxis lends experimental support to theoretical derivations of population-scale transport parameters from single-cell behavior. Furthermore, this study shows that microfluidic platforms can go beyond traditional chemotaxis assays and enable the quantification of bacterial transport parameters. PMID:18658218

  10. A compartmentalized solute transport model for redox zones in contaminated aquifers--1, Theory and development

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate-limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate-limiting reactant. Thermodynamic constraints are used to inhibit lower-energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower-energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one-dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and geochemical codes

  11. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport.

    Science.gov (United States)

    Hammes, Julia; Gallego-Urrea, Julián A; Hassellöv, Martin

    2013-09-15

    The current production and use of nanomaterials in consumer products have increased the concern about the possibility that these enter the rivers during their entire life cycle. Further, many aquatic contaminants undergo partitioning to the ubiquitous aquatic colloids. Here is presented the development of a set of European water types for environmental risk assessment of chemicals transported as nanovectors as is the case of environmental fate of manufactured nanoparticles and colloid-bound contaminants. A compilation of river quality geochemical data with information about multi-element composition for near 800 rivers in Europe was used to perform a principal component analysis (PCA) and define 6 contrasting water classes. With the aid of geographical information system algorithms, it was possible to analyse how the different sampling locations were predominantly represented within each European water framework directive drainage basin. These water classes and their associated Debye-Hückel parameter are determining factors to evaluate the large scale fate and behaviour of nanomaterials and other colloid-transported pollutants in the European aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Particulate Contaminant Formation and Transport in Microelectronic Manufacturing Processes. Phase 2

    National Research Council Canada - National Science Library

    Stout, P

    1997-01-01

    ...." The overall objective is to produce a charging, transport, and growth simulation (CTGS) tool that can be used effectively by equipment manufacturers and users to reduce particle generation in fabrication systems...

  13. Surface Spills at Unconventional Oil and Gas Sites: a Contaminant Transport Modeling Study for the South Platte Alluvial Aquifer

    Science.gov (United States)

    McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.

    2016-12-01

    Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations

  14. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    DEFF Research Database (Denmark)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-01-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis...... behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration...

  15. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers.

    Science.gov (United States)

    Almuktar, Suhad A A A N; Scholz, Miklas

    2016-02-06

    The aim of this experimental study is to assess if urban wastewater treated by ten different greenhouse-based sustainable wetland systems can be recycled to irrigate Capsicum annuum L. (Sweet Pepper; California Wonder) commercially grown either in compost or sand within a laboratory environment. The design variables were aggregate diameter, contact time, resting time and chemical oxygen demand. The key objectives were to assess: (i) the suitability of different treated (recycled) wastewaters for irrigation; (ii) response of peppers in terms of growth when using recycled wastewater subject to different growth media and hydrocarbon contamination; and (iii) the economic viability of different experimental set-ups in terms of marketable yield. Ortho-phosphate-phosphorus, ammonia-nitrogen, potassium and manganese concentrations in the irrigation water considerably exceeded the corresponding water quality thresholds. A high yield in terms of economic return (marketable yield expressed in monetary value) was linked to raw wastewater and an organic growth medium, while the plants grown in organic medium and wetlands of large aggregate size, high contact and resting times, diesel-spill contamination and low inflow loading rate produced the best fruits in terms of their dimensions and fresh weights, indicating the role of diesel in reducing too high nitrogen concentrations.

  16. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers

    Science.gov (United States)

    Almuktar, Suhad A.A.A.N.; Scholz, Miklas

    2016-01-01

    The aim of this experimental study is to assess if urban wastewater treated by ten different greenhouse-based sustainable wetland systems can be recycled to irrigate Capsicum annuum L. (Sweet Pepper; California Wonder) commercially grown either in compost or sand within a laboratory environment. The design variables were aggregate diameter, contact time, resting time and chemical oxygen demand. The key objectives were to assess: (i) the suitability of different treated (recycled) wastewaters for irrigation; (ii) response of peppers in terms of growth when using recycled wastewater subject to different growth media and hydrocarbon contamination; and (iii) the economic viability of different experimental set-ups in terms of marketable yield. Ortho-phosphate-phosphorus, ammonia-nitrogen, potassium and manganese concentrations in the irrigation water considerably exceeded the corresponding water quality thresholds. A high yield in terms of economic return (marketable yield expressed in monetary value) was linked to raw wastewater and an organic growth medium, while the plants grown in organic medium and wetlands of large aggregate size, high contact and resting times, diesel-spill contamination and low inflow loading rate produced the best fruits in terms of their dimensions and fresh weights, indicating the role of diesel in reducing too high nitrogen concentrations. PMID:26861370

  17. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers

    Directory of Open Access Journals (Sweden)

    Suhad A.A.A.N. Almuktar

    2016-02-01

    Full Text Available The aim of this experimental study is to assess if urban wastewater treated by ten different greenhouse-based sustainable wetland systems can be recycled to irrigate Capsicum annuum L. (Sweet Pepper; California Wonder commercially grown either in compost or sand within a laboratory environment. The design variables were aggregate diameter, contact time, resting time and chemical oxygen demand. The key objectives were to assess: (i the suitability of different treated (recycled wastewaters for irrigation; (ii response of peppers in terms of growth when using recycled wastewater subject to different growth media and hydrocarbon contamination; and (iii the economic viability of different experimental set-ups in terms of marketable yield. Ortho-phosphate-phosphorus, ammonia-nitrogen, potassium and manganese concentrations in the irrigation water considerably exceeded the corresponding water quality thresholds. A high yield in terms of economic return (marketable yield expressed in monetary value was linked to raw wastewater and an organic growth medium, while the plants grown in organic medium and wetlands of large aggregate size, high contact and resting times, diesel-spill contamination and low inflow loading rate produced the best fruits in terms of their dimensions and fresh weights, indicating the role of diesel in reducing too high nitrogen concentrations.

  18. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    Directory of Open Access Journals (Sweden)

    Ku David N

    2010-07-01

    Full Text Available Abstract Background The finite volume solver Fluent (Lebanon, NH, USA is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140

  19. Experimental validation of a filament transport model in turbulent magnetized plasmas

    CERN Document Server

    Carralero, D; Aho-Mantila, L; Birkenmeier, G; Brix, M; Groth, M; Müller, H W; Stroth, U; Vianello, N; Wolfrum, E; Contributors, JET

    2015-01-01

    In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices.

  20. Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors

    OpenAIRE

    Sloot, E.M.; Kruyt, Nicolaas P.

    1996-01-01

    A theoretical and experimental study was made of the conveying speed with which granular materials are transported by vibratory conveyors. The basic assumption made is that the layer of granular material can be considered as a point mass. The theory incorporates rest, slide, and flight phases of the material. Although the emphasis of this study is on the effect of the inclination (and declination) of the conveyor on the conveying speed, the effects of throw number, friction coefficient and vi...

  1. FINAL REPORT: Coupling Sorption to Soil Weathering During Reactive Transport: Impacts of Mineral Transformation and Sorbent Aging on Contaminant Speciation and Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Karl T; Chorover, John C; ODay, Peggy A; Um, Wooyong; Steefel, Carl I

    2009-10-05

    This project aimed for a predictive-mechanistic understanding of the coupling between mineral weathering and contaminant (Cs, Sr, I) transport/fate in caustic waste-impacted sediments. Based on our prior studies of model clay mineral systems, we postulated that contaminant uptake to Hanford sediments would reflect concurrent adsorption and co-precipitation effects. Our specific objectives were: (1) to assess the molecular-scale mechanisms responsible for time-dependent sequestration of contaminants (Cs, Sr and I) during penetration of waste-induced weathering fronts; (2) to determine the rate and extent of contaminant release from the sorbed state; (3) to develop a reactive transport model based on molecular mechanisms and macroscopic flow experiments [(1) and (2)] that simulates adsorption, aging, and desorption dynamics. Progress toward achieving each of these objectives is discussed in this Final Report.

  2. Insights into the transport of aqueous quaternary ammonium cations: a combined experimental and computational study.

    Science.gov (United States)

    Sarode, Himanshu N; Lindberg, Gerrick E; Yang, Yuan; Felberg, Lisa E; Voth, Gregory A; Herring, Andrew M

    2014-02-06

    This study focuses on understanding the relative effects of ammonium substituent groups (we primarily consider tetramethylammonium, benzyltrimethylammonium, and tetraethylammonium cations) and anion species (OH(-), HCO3(-), CO3(2-), Cl(-), and F(-)) on ion transport by combining experimental and computational approaches. We characterize transport experimentally using ionic conductivity and self-diffusion coefficients measured from NMR. These experimental results are interpreted using simulation methods to describe the transport of these cations and anions considering the effects of the counterion. It is particularly noteworthy that we directly probe cation and anion diffusion with pulsed gradient stimulated echo NMR and molecular dynamics simulations, corroborating these methods and providing a direct link between atomic-resolution simulations and macroscale experiments. By pairing diffusion measurements and simulations with residence times, we were able to understand the interplay between short-time and long-time dynamics with ionic conductivity. With experiment, we determined that solutions of benzyltrimethylammonium hydroxide have the highest ionic conductivity (0.26 S/cm at 65 °C), which appears to be due to differences for the ions in long-time diffusion and short-time water caging. We also examined the effect of CO2 on ionic conductivity in ammonium hydroxide solutions. CO2 readily reacts with OH(-) to form HCO(-)3 and is found to lower the solution ionic conductivity by almost 50%.

  3. Occurrence and transport of MTBE in a contaminated groundwater plume from Duesseldorf

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, M.; Lacorte, S.; Barcelo, D. [Dept. of Environmental Chemistry, Barcelona (Spain); Rohns, H.P.; Forner, C. [Stadtwerke Duesseldorf AG (Germany)

    2003-07-01

    In a contaminated site of Duesseldorf (middle-west of Germany), a one-year monitoring program has been carried to determine the presence and evolution of some gasoline additives in groundwater. The origin of contamination was a spill or underground storage tank leakage from a gas station. The target compounds were: methyl tert-butyl ether (MTBE), its main degradation products, tert-butyl alcohol (TBA) and tert-butyl formate (TBF); other gasoline additives, oxygenate dialkyl ethers: ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE); aromatics: benzene, toluene, ethylbenzene and xylenes (BTEX) and other compounds causing odor events in groundwater such as dicyclopentadiene (DCPD) and trichloroethylene (TCE). Purge and trap coupled to gas chromatography - mass spectrometry (P and T-GC/MS) method was used for the simultaneous determination of the above mentioned compounds and permitted to detect concentrations at ng/L (ppt) or sub-ppb concentrations. All samples analysed contained MTBE at levels varied between 0.05 -645 {micro}g/L (ppb). Three contaminated hot spots were identified with levels up to US. Environmental Protection Agency drinking water advisory (20 - 40 {micro}g/L) and one of them doubling Danish suggested toxicity level of 350 {micro}g/L. Samples with high levels of MTBE contained 0.1 - 440 {micro}g/L of TBA, indicating (but not proving) in situ degradation of parent compound. In all cases, BTEX were at low concentrations or not detected showing less solubility and persistence than MTBE.

  4. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  5. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Baolin Deng; Edward Thornton; Kirk Cantrell; Khris Olsen; James Amonette

    2004-01-11

    Immobilization of toxic and radioactive metals in the vadose zone by In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a promising technology for soil remediation. Earlier laboratory and field studies have shown that Cr(VI) can be effectively immobilized by treatment with dilute gaseous H2S. The objective of this project is to characterize the interactions among H2S, the metal contaminants, and soil components. Understanding these interactions is needed to assess the long-term effectiveness of the technology and to optimize the remediation system.

  6. ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, G

    2007-05-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

  7. Determining Sources and Transport of Nuclear Contamination in Hudson River Sediments with Plutonium, Neptunium, and Cesium isotope ratios

    Science.gov (United States)

    Kenna, T. C.; Chillrud, S. N.; Chaky, D. A.; Simpson, H. J.; McHugh, C. M.; Shuster, E. L.; Bopp, R. F.

    2004-12-01

    Different sources of radioactive contamination contain characteristic and identifiable isotopic signatures, which can be used to study sediment transport. We focus on Pu-239, Pu-240, Np-237 and Cs-137, which are strongly bound to fine grained sediments. The Hudson River drainage basin has received contamination from at least three separate sources: 1) global fallout from atmospheric testing of nuclear weapons, which contributed Pu, Np and Cs; 2) contamination resulting from reactor releases at the Indian Point Nuclear Power Plant (IPNPP) located on the Hudson River Estuary ˜70km north of New York Harbor, where records document releases of Cs-137; 3) contamination resulting from activities at the Knolls Atomic Power Laboratory (KAPL) located on the Mohawk River, where incomplete records document releases of Cs-137 but no mention is made of Pu or Np. Here we report measurements of Pu isotopes, Np-237 and Cs-137 for a series of sediment cores collected from various locations within the drainage basin: 1) Mohawk River downstream of KAPL, 2) Hudson River upstream of its confluence with the Mohawk River, and 3) lower Hudson River at a location in close proximity to IPNPP. In addition, we present data from selected samples from two other lower Hudson River locations: One site located ˜30km downstream of IPNPP and another ˜30km upstream of IPNPP. By comparing the isotopic ratios Pu-240/Pu-239, Np-237/Pu-239, and Cs-137/Pu-239, measured in fluvial sediments to mean global fallout values, it is possible to identify and resolve different sources of non-fallout contamination. To date, isotopic data for sediments indicate non-fallout sources of Pu-239, Pu-240, and Cs-137; Np-237, however, appears to originate from global fallout only. Mohawk River sediments downstream of KAPL exhibit enrichments in Pu-239, Pu-240, and Cs-137 that are 7 to 20 times higher than levels expected from global fallout as indicated from Np-237. The elevated levels, non-fallout isotopic signatures

  8. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    Directory of Open Access Journals (Sweden)

    D. Kocman

    2010-02-01

    Full Text Available Results obtained by a laboratory flux measurement system (LFMS focused on investigating the kinetics of the mercury emission flux (MEF from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4–417 μg g−1 and land cover (forest, meadow and alluvial soil alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m−2 h−1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  9. Effectiveness of ceramic filters in capturing Giardia duodenalis cysts in experimentally contaminated water

    Directory of Open Access Journals (Sweden)

    Larissa Imaculada da Costa Sobrinho

    2016-04-01

    Full Text Available Giardia duodenalis is the main water-transmitted protozoan in developing countries. This study evaluated the effectiveness of ceramic filters in capturing G. duodenalis cysts and verified the porosity size needed to remove cysts from contaminated water. The study was conducted in the Laboratory of Parasitology at the University of Taubaté, where each filter unit was made by joining two Pet gallons, latex hose and a ceramic filter. Two porosity sizes were selected: 0.5-1.0 μm and 5-15 μm with or without activated carbon, and the assays were run in triplicate. Approximately 60 μL (53 cysts of G. duodenalis cysts were placed in 2 liters of distilled water. After the preparation of the contaminated water, this solution was run through the filter until the completely filtered. Afterwards, the filtrate was processed according to the methodology described by De Faria (2006, in order to concentrate parasitic elements. The results were statistically evaluated using ANOVA and Tukey tests, showing that the 0.5- 1,0 μm porosity filter candles (with and without activated carbon were able to retain 100% of cysts of G. duodenalis. This is a result significantly superior to the results obtained in the control group (p<0.05. On the other hand, for the candles with porosity of 5 15 μm, total retention occurred only in candles with activated carbon. Based upon our results, it can be concluded that, in candles with both porosity sizes with activated carbon, all filters showed a satisfactory efficacy for filtration of G. duodenalis cysts.

  10. Impact of plastics on fate and transport of organic contaminants in landfills.

    Science.gov (United States)

    Saquing, Jovita M; Saquing, Carl D; Knappe, Detlef R U; Barlaz, Morton A

    2010-08-15

    Factors controlling organic contaminant sorption to common plastics in municipal solid waste were identified. Consumer plastics [drinking water container, prescription drug bottle, soda bottle, disposable cold cup, computer casing, furniture foam, carpet, vinyl flooring, formica sheet] and model polymers [high-density polyethylene (HDPE), medium-density polyethylene, low-density polyethylene, poly(vinyl chloride) (PVC)] were characterized by X-ray diffractometry, differential scanning calorimetry, and elemental analysis. The material characterization was used to interpret batch isotherm and kinetic data. K(p) values describing toluene sorption to rubbery or "soft" polymers could be normalized by the amorphous polymer fraction (f(amorphous)) but not by the organic carbon fraction (f(oc)). Diffusion coefficients (D) describing the uptake rate of toluene by rubbery plastics (HDPE, drinking water container, prescription drug bottle) were similar (D approximately 10(-10) cm(2)/s), indicating that pure HDPE can be used as a model for rubbery plastics. Toluene diffusivity was similar among glassy or "hard" plastics (PVC, soda bottle, computer casing, disposable cold cup; D approximately 10(-12) cm(2)/s) but lower than for rubbery plastics. Plastics in landfills are potential sinks of hydrophobic organic contaminants (HOCs) because of their higher affinity for HOCs compared to lignocellulosic materials and the slow desorption of HOCs from glassy plastics.

  11. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  12. Geothermal Fluid Interaction with Mafic Rocks in Porous Media - AN Experimental and Reactive Transport Modeling Study

    Science.gov (United States)

    Stefansson, A.

    2013-12-01

    Reaction and reactive transport modeling is becoming an increasingly popular method to study fluid-rock interaction and fluid transport on small to large scales. In this study, fluid-rock experiments were carried out and the observations compared with the results of reaction and reactive transport models. The systems studied included fluid-rock interaction of olivine on one hand and basaltic glass on the other hand with dilute aqueous solutions containing CO2 at acid to neutral pH and temperatures from ambient to 250 °C. The experiments were conducted using batch type experiments in closed reactors and 1-D plug experiments in flow-through reactors and the solution chemistry, the reaction progress, secondary mineralization and porosity changes analyzed as a function of time. The reaction and 1-D reactive transport simulations were conducted with the aid of the PHREEQC program. For the simulations the thermodynamic database for mineral reactions was largely updated and the kinetics of mineral dissolution as well as mineral nucleation and crystal growth was incorporated. According to the experimental results and the reactive transport simulations, olivine and basaltic glass progressively dissolves forming secondary minerals and solutes that are partially transported out of them column (system). The exact reaction path was found to depend on solution composition and pH and reaction progress (time). The mass movement of the system at a particular steady state as well as porosity changes may be divided into three stages. Stage I is characterized by initial olivine or basaltic glass leaching, stage II is characterized by progressive mineral formation and decrease in porosity and stage III is characterized by remobilization of the previously formed secondary minerals and eventual increase in porosity. The reaction and reactive transport modeling was found to simulate reasonable the reaction path as a function of reaction time. However, exact mass movement and time

  13. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  14. PAH contamination in soils adjacent to a coal-transporting facility in Tapin district, south Kalimantan, Indonesia.

    Science.gov (United States)

    Mizwar, Andy; Trihadiningrum, Yulinah

    2015-07-01

    This study was undertaken to determine the level of 16 polycyclic aromatic hydrocarbon (PAH), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), in surface soils around a coal-transporting facility in the western part of South Kalimantan, Indonesia. Three composite soil samples were collected from a coal stockpile, coal-hauling road, and coal port. Identification and quantification of PAH was performed by gas chromatography-mass spectrometry. The total content of 16 USEPA-PAH ranged from 11.79 to 55.30 mg/kg with arithmetic mean value of 33.14 mg/kg and median of 32.33 mg/kg. The 16 USEPA-PAH measured levels were found to be greater compared with most of the literature values. The levels of high molecular-weight PAH (5- and 6-ring) were dominant and formed 67.77-80.69 % of the total 16 USEPA-PAH The most abundant of individual PAH are indeno[1,2,3-cd] pyrene and benzo[a]pyrene with concentration ranges of 2.11-20.56 and 1.59-17.84 mg/kg, respectively. The degree of PAH contamination and subsequent toxicity assessment suggest that the soils of the study area are highly contaminated and pose a potential health risk to humans.

  15. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  16. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs.

  17. Numerical Modeling of Contaminant Transport with Rate-Limited Sorption/Desorption in an Aquifer.

    Science.gov (United States)

    1989-12-01

    to account for the( chemnical sorbinig to the aquifeCr tnatrimis. : lie local equilibriuni assunipt ion (. LA ), where equilibration bet weeni sorhud...L] Average height of the aquifer A [T-’] Exchange rate between stagnant and mobile water Nd - [ La /I’] Distribution Coefficient (I) Q,, -- [ La /T] Flow...II. and letra D611. "A Discrete Kernel Method of Chracteristics Model o f Solute Transport. in Water Table Aquifers," Watcr Resources Research, 25(5

  18. Toxoplasma gondii transmission by artificial insemination in sheep with experimentally contaminated frozen semen.

    Science.gov (United States)

    Consalter, Angélica; Silva, Andressa F; Frazão-Teixeira, Edwards; Matos, Luis F; de Oliveira, Francisco C R; Leite, Juliana S; Silva, Franciele B F; Ferreira, Ana M R

    2017-03-01

    Toxoplasma gondii is a parasite considered one of the major causes of reproductive problems in sheep. Furthermore, the presence of the agent in ram semen urges the possibility of sexual transmission in this species. The aim of this study was to evaluate if ram's frozen semen spiked with T. gondii tachyzoites would be able to cause infection in sheep by laparoscopic artificial insemination (AI). Nine ewes tested seronegative to anti-T. gondii antibodies by the modified agglutination test (MAT) were superovulated and inseminated to collect embryos. Animals were divided into two groups: G1 (n = 5), ewes inseminated with semen containing 4 × 107 tachyzoites; and G2 (n = 4), ewes inseminated with tachyzoite-free semen (control group). To confirm infection, ewe's blood samples were collected on days -14, -7, 0, 7, 14, 21, 28, 35, 49 and 57 after AI for analysis by MAT and PCR. Tissue samples of these ewes were also collected for histopathology and immunohistochemistry (IHC). Seven days after AI, all ewes of group G1 had specific antibodies to T. gondii, while those of G2 were negative. Toxoplasma gondii DNA was detected in the blood of one ewe and parasites were observed in tissues of all five animals inseminated with contaminated semen, indicating that semen freezing protocol does not affect T. gondii transmission by artificial insemination in sheep. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Removal of the emerging contaminant bisphenol A by an ureasil-PEO hybrid membrane: experimental study and molecular dynamic simulation.

    Science.gov (United States)

    de Oliveira, Lilian K; Moura, André L A; Barbosa, Valdir; Parreira, Renato L T; Banegas, Rodrigo S; Caramori, Giovanni F; Ciuffi, Katia J; Molina, Eduardo F

    2017-08-01

    This work reports the use of a cross-linked ureasil-PEO hybrid matrix (designated PEO800) as an efficient adsorbent to retain the emerging contaminant bisphenol A (BPA) from an aqueous medium. The in-deep experimental and theoretical results provide information about the interactions between PEO800 and BPA. The in situ UV-vis spectroscopy data and the pseudo-first order, pseudo-second order, Elovich, and Morris-Webber intraparticle diffusion models allowed us to propose a three-step mechanism for the adsorption of BPA onto PEO800. The results indicate that the pseudo-first-order kinetic model effectively describes the adsorption of BPA onto PEO800. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy confirmed the interaction of PEO800 with BPA, showing an alteration in the chemical environment of the polymer ether oxygen atoms present in the hybrid matrix. The molecular dynamic simulation provides further evidence that the BPA molecules interact preferentially with PEO. The amount of desorbed BPA depended on the pH and solvent used in the assays. This work provides new opportunities for using the hydrophilic ureasil-PEO matrix which has demonstrated its abilities in being a fast and easy alternative to successfully removing organic contaminants from aqueous mediums and therefore having potential applications in water remediation. Graphical abstract.

  20. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    Energy Technology Data Exchange (ETDEWEB)

    Barten, Werner [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Robinson, Peter C. [QuantiSci Limited, Henley-on-Thames (United Kingdom)

    2001-02-01

    In the context of safety assessment of radioactive waste repositories, complex radionuclide transport models covering key safety-relevant processes play a major role. In recent Swiss safety assessments, such as Kristallin-I, an important drawback was the limitation in geosphere modelling capability to account for geosphere heterogeneities. In marked contrast to this limitation in modelling capabilities, great effort has been put into investigating the heterogeneity of the geosphere as it impacts on hydrology. Structural geological methods have been used to look at the geometry of the flow paths on a small scale and the diffusion and sorption properties of different rock materials have been investigated. This huge amount of information could however be only partially applied in geosphere transport modelling. To make use of these investigations the 'PICNIC project' was established as a joint cooperation of PSI/Nagra and QuantiSci to provide a new geosphere transport model for Swiss safety assessment of radioactive waste repositories. The new transport code, PICNIC, can treat all processes considered in the older geosphere model RANCH MD generally used in the Kristallin-I study and, in addition, explicitly accounts for the heterogeneity of the geosphere on different spatial scales. The effects and transport phenomena that can be accounted for by PICNIC are a combination of (advective) macro-dispersion due to transport in a network of conduits (legs), micro-dispersion in single legs, one-dimensional or two-dimensional matrix diffusion into a wide range of homogeneous and heterogeneous rock matrix geometries, linear sorption of nuclides in the flow path and the rock matrix and radioactive decay and ingrowth in the case of nuclide chains. Analytical and numerical Laplace transformation methods are integrated in a newly developed hierarchical linear response concept to efficiently account for the transport mechanisms considered which typically act on extremely

  1. Effect of experimental crude oil contamination on abundance, mortality and resettlement of representative mud flat organisms in the mesohaline area of the elbe estuary

    Science.gov (United States)

    Van Bernem, K. H.

    After repeated experimental contamination with small doses of the crude oils Arabian light, Kuwait crude and Iranian light on a silty mud flat in the Elbe estuary, neither an increased mortality nor emigration was found in Macoma balthica or Nereis diversicolor. Oligochaetes increased in abundance. The entire population of Corophium volutator tried to leave the contaminated sediment. Most specimens came into contact with the oil coating of the sediment and were killed. Twelve weeks after the beginning of the contaminations the original community structure had reestablished. Different effects between the 3 crude oils tested were not significant.

  2. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  3. A hybrid numerical-experimental study of fluid transport by migrating zooplankton aggregations

    Science.gov (United States)

    Martinez, Monica; Dabiri, John; Nawroth, Janna; Gemmell, Brad; Collins, Samantha

    2014-11-01

    Zooplankton aggregations that undergo diel vertical migrations have been hypothesized to play an important role in local nutrient transport and global ocean dynamics. The degree of the contributions of these naturally occurring events ultimately relies on how efficiently fluid is transported and eventually mixed within the water column. By implementing solutions to the Stokes equations, numerical models have successfully captured the time-averaged far-field flow of self-propelled swimmers. However, discrepancies between numerical fluid transport estimates and field measurements of individual jellyfish suggest the need to include near-field effects to assess the impact of biomixing in oceanic processes. Here, we bypass the inherent difficulty of modeling the unsteady flow of active swimmers while including near-field effects by integrating experimental velocity data of zooplankton into our numerical model. Fluid transport is investigated by tracking a sheet of artificial fluid particles during vertical motion of zooplankton. Collective effects are addressed by studying different swimmer configurations within an aggregation from the gathered data for a single swimmer. Moreover, the dependence of animal swimming mode is estimated by using data for different species of zooplankton.

  4. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    Science.gov (United States)

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  5. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Oh, Hwanyeong; Lee, Yoo il; Lee, Guesang; Min, Kyoungdoug; Yi, Jung S.

    2017-03-01

    Oxygen transport resistance is a major obstacle for obtaining high performance in a polymer electrolyte membrane fuel cell (PEMFC). To distinguish the major components that inhibit oxygen transport, an experimental method is established to dissect the oxygen transport resistance of the components of the PEMFC, such as the substrate, micro-porous layer (MPL), catalyst layer, and ionomer film. The Knudsen numbers are calculated to determine the types of diffusion mechanisms at each layer by measuring the pore sizes with either mercury porosimetry or BET analysis. At the under-saturated condition where condensation is mostly absent, the molecular diffusion resistance is dissected by changing the type of inert gas, and ionomer film permeation is separated by varying the inlet gas humidity. Moreover, the presence of the MPL and the variability of the substrate thickness allow the oxygen transport resistance at each component of a PEMFC to be dissected. At a low relative humidity of 50% and lower, an ionomer film had the largest resistance, while the contribution of the MPL was largest for the other humidification conditions.

  6. Antimicrobial effect of zataria multiflora extract in comparison with chlorhexidine mouthwash on experimentally contaminated orthodontic elastomeric ligatures.

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2015-02-01

    Full Text Available Long-term use of orthodontic appliances and fixation ligatures creates a favorable environment for the accumulation of oral normal microflora and increases the risk of enamel demineralization and periodontal disease. The aim of this study was to compare the antimicrobial effects of Zataria Multiflora extract and 0.2% chlorhexidine (CHX mouthwash on experimentally contaminated orthodontic elastomeric ligatures.In this lab trial study, Iranian and foreign-made elastomeric ligatures were experimentally contaminated in Streptococcus mutans, Enterococcus faecalis and Candida albicans suspensions. Ligatures were then decontaminated using 0.2% CHX as the control, 0.5 mg/ml Zataria multiflora extract mouthwashes as the test and phosphate buffered saline (PBS as the negative control for one hour. Antimicrobial properties of both solutions were evaluated by comparing the mean viable bacterial cell count on both rings after decontamination, using SPSS version 15 software.The mean viable bacterial cell count on Iranian ligatures was greater than that on foreign-made ligatures before disinfection (P=0.001, however this difference for C. albicans was not statistically significant (P=0.061. Chlorhexidine mouthwash completely eliminated all tested microorganisms attached to both elastomeric rings, but Zataria extract was only capable of completely eliminating C. albicans from both ligatures. Statistically significant differences were found in viable bacterial counts on both ligatures before and after disinfection with Zataria extract (P=0.0001.Zataria multiflora extract has antimicrobial properties and can be used for disinfection of elastomeric ligatures. In vivo studies are required to evaluate the efficacy of the incorporation of this herbal extract in mouthwashes for orthodontic patients.

  7. COMIS -- an international multizone air-flow and contaminant transport model

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  8. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  9. Stochastic estimation and simulation of heterogeneities important for transport of contaminants in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Kitteroed, Nils-Otto

    1997-12-31

    The background for this thesis was the increasing risk of contamination of water resources and the requirement of groundwater protection. Specifically, the thesis implements procedures to estimate and simulate observed heterogeneities in the unsaturated zone and evaluates what impact the heterogeneities may have on the water flow. The broad goal was to establish a reference model with high spatial resolution within a small area and to condition the model using spatially frequent field observations, and the Moreppen site at Oslo`s new major airport was used for this purpose. An approach is presented for the use of ground penetrating radar in which indicator kriging is used to estimate continuous stratigraphical architecture. Kriging is also used to obtain 3D images of soil moisture. A simulation algorithm based on the Karhunen-Loeve expansion is evaluated and a modification of the Karhunen-Loeve simulation is suggested that makes it possible to increase the size of the simulation lattice. This is obtained by kriging interpolation of the eigenfunctions. 250 refs., 40 figs., 7 tabs.

  10. Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, N.; Bamford, R.

    1993-12-01

    During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ``safety shots.`` ``Safety`` in this context meant ``safety against fission reaction.`` The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ``Plutonium Valley`` was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu{sup 239,240} by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu{sup 239,240} particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures.

  11. EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Susan A.; O' Day, Peggy A.

    1999-12-31

    During the FY96-FY99 funding cycle we examined the uptake of aqueous strontium onto goethite, kaolinite, and amorphous silica surfaces as a function of pH, total strontium, and temperature. Our overall goal was to produce a mechanistic sorption model that can be used in reaction-transport calculations to predict the mobility and attenuation of radioactive strontium (90Sr) in the environment. Our approach was to combine structural information derived from synchrotron-based x-ray absorption spectroscopic analysis together with macroscopic uptake data and surface complexation models to clarify the physical and chemical structure of sorbed complexes. We chose to study these solids because of the prevalence of clays and iron hydroxides in natural systems, and because silica colloids probably form beneath leaking tanks at Hanford as caustic waste is neutralized. We have published the spectroscopic work in two papers in the Journal of Colloid and Interface Science [1, 2], and will soon submit at third manuscript to Geochemical Transactions [3] combining the sorption and spectroscopic data with a mechanistic complexation model.

  12. Experimental evaluation of spatial resolution in phase maps retrieved by transport of intensity equation.

    Science.gov (United States)

    Zhang, Xiaobin; Oshima, Yoshifumi

    2015-12-01

    The transport of intensity equation (TIE) is a convenient method of obtaining a potential distribution, as it requires only three transmission electron microscopy images with different amounts of defocus. However, the spatial resolution of the TIE phase map has not yet been evaluated experimentally. In this study, we investigated the phase distribution of spherical gold nanoparticles and its dependence on the defocus difference and found that the spatial resolution was finer than 2 nm, even for a defocus difference of 4 µm. Theoretical calculations reproduced the experimental results well. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  14. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney.

    Science.gov (United States)

    Ljubojević, Marija; Breljak, Davorka; Herak-Kramberger, Carol M; Anzai, Naohiko; Sabolić, Ivan

    2016-03-01

    Cadmium (Cd)-intoxicated experimental animals exhibit impaired renal secretion of organic anions (OA) and cations (OC), indicating their transporters (Oats and Octs) in the proximal tubule (PT) basolateral membrane as possible targets of Cd. To correlate transport data from the literature with the expression of relevant transporters, we performed immunochemical and RT-PCR studies of renal Oats and Octs in the subchronic (treatment with CdCl2; 2 mg Cd/kg b.m./day, for 2 weeks) and acute (treatment with Cd-metallothionein (CdMT); 0.4 mg Cd/kg b.m., 6 or 12 h before killing) models of Cd nephrotoxicity. In the subchronic model, PT exhibited a minor loss of basolateral invaginations and overall unchanged expression of Na(+)/K(+)-ATPase and GAPDH proteins and mRNAs, while the expression of Oat and Oct proteins and their mRNAs was strongly downregulated. In the acute model, a time-related redistribution of basolateral transporters to the intracellular vesicular compartment was a major finding. However, 6 h following CdMT treatment, the total abundance of Oat and Oct proteins in the renal tissue remained unchanged, the expression of mRNAs decreased only for Oats, while a limited Oat1 and Na(+)/K(+)-ATPase immunoreactivity in the PT apical membrane indicated loss of cell polarity. As tested in rats treated with colchicine, the observed loss/redistribution of basolateral transporters in both models may be independent on microtubules. Therefore, the diminished renal secretion of OA and OC via PT in Cd nephrotoxicity may result from (a) limited loss of secretory surface (basolateral invaginations), (b) selective loss of Oats and Octs, and (c) loss of cell polarity.

  15. Experimental visualization of solutes transport in two-dimensional saturated permeable media

    Science.gov (United States)

    Muñoz, Edinsson; Herrera, Paulo

    2017-04-01

    Mass transport processes in groundwater flows control transport of contaminants or other dissolved substances. A good characterization of transport processes should allow, for example, the optimization of remediation systems or the prediction of natural attenuation or dilution of pollutants in aquifers. Several previous studies have highlighted the role of heterogeneity in transverse mixing processes, which may be enhanced by the convergence of streamlines due to the presence of high permeability materials. The convergence of streamlines increases the concentration gradients in the direction transverse to the flow, which results in greater transverse mixing and natural dilution. This mixing makes possible the occurrence of chemical reactions between species dissolved in groundwater of different origin. We used image analysis techniques to characterize experiments that replicate the transport of a conservative tracer in two types of quasi 2-D homogeneous and heterogeneous saturated permeable media. The experiments were carried out in an acrylic glass tank, 85 cm long, 16 cm wide and 1 cm thick. We simulated flow conditions found in confined aquifers by imposing a vertical flow fed by a peristaltic pump that injected water at eight points at the bottom of the tank, while we controlled the outflow through the top boundary by using a constant head reservoir. We filled the tank with glass beads with mean diameter 0.05 cm to model the matrix material of the porous media and we used glass beads of 0.2 cm to create a high permeability inclusion to study the effect of heterogeneity on transverse mixing. After steady-state of flux was reached, we injected a conservative tracer (Blue Brilliant) only at the two central ports, while clean water continued flowing through the other six ports. We took digital pictures of the steady-state plume and analyzed the concentration of the tracer along perpendicular to the mean flow fringes, using a piecewise linear model to convert light

  16. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2016-12-27

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  17. Effect of Pore-scale Velocity on the Biodegradation of Contaminants during Transport in Porous Media

    Science.gov (United States)

    Mendoza-Sanchez, I.; Autenrieth, R. L.; McDonald, T. J.; Cunningham, J. A.

    2007-12-01

    Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis- dichloroethene (cis-DCE) during transport in porous media. The columns were filled with homogeneous glass beads and inoculated with the KB-1 culture (provided by SiREM, Guelph, Ontario, Canada), which is capable of complete dechlorination of perchloroethene to ethene. The columns were fed continuously with a synthetic groundwater containing a constant concentration of cis-DCE. Three different pore flow velocities (0.03, 0.08, and 0.51 m/day) were tested in duplicate, subjecting each column to a constant velocity for the entire experiment. Dechlorination of cis-DCE to vinyl chloride and ethene was monitored over time and space within the columns. Protein concentrations, also measured over time and space, were used to relate cell growth to biodegradation efficiency. At the end of the experiment, microbial DNA was harvested from the columns, and denaturing gradient gel electrophoresis (DGGE) was used to determine differences in the microbial communities that had developed in the columns subjected to different flow rates. The results show that the pore velocity has a strong influence on the microbial population and the degree of dechlorination. At high flow velocity (0.51 m/day), the degradation of cis-DCE to ethene was complete, and the organism capable of cis-DCE dechlorination ({Dehalococcoides sp.}) was present at the end of the experiment. In contrast, at medium and low flow velocities (0.08 and 0.03 m/day), incomplete dechlorination was observed with an absence or low concentration of {Dehalococcoides sp}. These results suggest that it is important for field-scale groundwater remediation to understand the interaction between physical and biological processes on the scale of single pores.

  18. Effect of types of resection and manipulation on trocar site contamination after laparoscopic colectomy: An experimental study in rats with intraluminal radiotracer application.

    Science.gov (United States)

    Polat, Ayfer Kamali; Yapici, Oktay; Malazgirt, Zafer; Basoglu, Tarik

    2008-05-01

    The etiology and incidence of port-site metastases after laparoscopic surgery for colorectal cancer remain unknown. The purpose of this experimental study was to detect and quantify the amount of contamination at the port-site by means of a method utilizing radiolabelled colloid particles following extra- or intracorporeal laporoscopic resection of cecum. Prior to experimental surgery, we obtained a high concentration of luminal colonic radiotracer activity by per anum application of sulphur colloid molecules labelled with Tc-99m pertechnetate. In three main groups of rats, we either resected a portion of cecum extracorporeally or intracorporeally, or did no resection. Each main group was further divided into two subgroups, in which the manipulations were either autraumatic or traumatic. We excised trocar sites as 2 cm doughnuts after completion of the surgical procedure. We used gamma camera imaging to quantify the amount of radioactive contamination at trocar sites. The background corrected trocar site activity for each rat was calculated. Activities exceeding the maximum background activity were accepted as trocar site contamination. We detected an overall incidence of contamination in 44% of rats. This rate were 71% and 17% in traumatic and atraumatic subgroups. The resection itself increased the rate and intensity of contamination, as well (p = 0.04). The most intensive contamination was detected in the intracorporeal resection with traumatic manipulation subgroup (p = 0.0007). Both the presence of resection and manipulative trauma seemed to be increasing the rate and intensity of the radioactive activity at the trocar site. When traumatic manipulatiun was exercised, the contamination was so intense that the type of resection did not differ. We concluded that our scintigraphic method would be useful in the intraoperative detection of port site contamination by the tumor cells, and that surgeons would take some preventive measures to prevent future port

  19. Biogeochemical Signatures of Contaminant Transport at the Watershed Scale: Spectral and Wavelet Analysis (Invited)

    Science.gov (United States)

    Guan, K.; Harman, C. J.; Basu, N. B.; Rao, S. S.; Sivapalan, M.; Kalita, P. K.; Packman, A. I.

    2009-12-01

    Agricultural watersheds are intensely managed systems, and consist of a large number of dynamic components that interact non-linearly to create emergent patterns in space and time. These systems can be conceptualized as input signals (“drivers”) that cascade through a hierarchy of non-linear “filters” to create the modulated spatial and temporal responses (“signatures”). The coupling between flow and transport (“hydrologic filter”) and transformations (“biogeochemical filter”) control the cascading processes from precipitation through stream flow, and finally to chemical concentrations and loads, at various nested spatial and temporal scales. To detect important “signatures”, we applied spectral analysis and wavelet coherence to the 10-year dataset (at daily resolution) collected from Little Vermillion River watershed (Illinois, USA), an agricultural watershed (~400 km2), drained by an extensive network of subsurface tiles, surface ditches, and streams. Watershed monitoring data includes hydrologic measurements (flow and stage), and concentrations of chemical constituents (nitrate, phosphate, and pesticides) across different spatial scales, from tile-flow stations (drainage area ~ 0.05 km2) to river stations (drainage area ~400 km2). We find that a power-law scaling behavior exists in all the smoothed power spectra for precipitation, stream flow, nitrate concentration and load. The slopes of power spectra increase from precipitation to stream flow to nitrate concentration, demonstrating the cascading effect of the filters. The spectral analysis further shows that the filters retain the major characteristics of long-term response (annual and sub-annual cycle), but smooth (or filter) the short-term responses. Steeper slopes are observed at larger spatial scales, indicating a stronger filtering effect due to greater averaging (buffering) with increasing residence time. Further data analysis using wavelet coherence suggests that at small spatial

  20. Experimental verification of NOVICE transport code predictions of electron distributions from targets

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, S.; Brucker, G.J.; Jordan, T.; Bechtel, E.; Gentner, F.; Groeber, E

    2002-04-01

    This paper reports the results of experiments that were designed to check the validity of the NOVICE Adjoint Monte Carlo Transport code in predicting emission-electron distributions from irradiated targets. Previous work demonstrated that the code accurately calculated total electron yields from irradiated targets. In this investigation, a gold target was irradiated by X-rays with effective quantum energies of 79, 127, 174, 216, and 250 keV. Spectra of electrons from the target were measured for an incident photon angle of 45 deg., an emission-electron polar angle of 45 deg., azimuthal angles of 0 deg. and 180 deg., and in both the forward and backward directions. NOVICE was used to predict those electron-energy-distributions for the same set of experimental conditions. The agreement in shape of the theoretical and experimental distributions was good, whereas the absolute agreement in amplitude was within about a factor of 2 over most of the energy range of the spectra. Previous experimental and theoretical comparisons together with these results show that the code can be used to simulate the generation physics of those distributions.

  1. Experimental verification of NOVICE transport code predictions of electron distributions from targets

    CERN Document Server

    Kronenberg, S; Jordan, T; Bechtel, E; Gentner, F; Groeber, E

    2002-01-01

    This paper reports the results of experiments that were designed to check the validity of the NOVICE Adjoint Monte Carlo Transport code in predicting emission-electron distributions from irradiated targets. Previous work demonstrated that the code accurately calculated total electron yields from irradiated targets. In this investigation, a gold target was irradiated by X-rays with effective quantum energies of 79, 127, 174, 216, and 250 keV. Spectra of electrons from the target were measured for an incident photon angle of 45 deg., an emission-electron polar angle of 45 deg., azimuthal angles of 0 deg. and 180 deg., and in both the forward and backward directions. NOVICE was used to predict those electron-energy-distributions for the same set of experimental conditions. The agreement in shape of the theoretical and experimental distributions was good, whereas the absolute agreement in amplitude was within about a factor of 2 over most of the energy range of the spectra. Previous experimental and theoretical c...

  2. Numerical and experimental approaches to study soil transport and clogging in granular filters

    Science.gov (United States)

    Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.

    2012-12-01

    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of

  3. Experimental research on short-term feeding of dust contaminated gas to a molten carbonate fuel cell cathode

    Science.gov (United States)

    Bernat, Rafał; Milewski, Jarosław; Wejrzanowski, Tomasz

    2017-07-01

    The paper presents initial research on processes present on the cathode side of Molten Carbonate Fuel Cells (MCFC), when the supplied gas is an aerosol containing solid particulate matter. The research is based on experiments conducted at the Institute of Heat Engineering of Warsaw University of Technology. The main task is to determine whether and to what extent solid particles disable or hinder the operation of a molten carbonate fuel cell. It is thought that they might change the penetrability of porous layers by clogging their void volumes. Under investigation are the sizes and amount of solid particles required to significantly affect the processes occurring on the triple phase. Experimental investigation was conducted that determined the change in operational parameters due to dust contamination. Surprisingly, there is no sudden drop in the electric parameters of the fuel cell subject to dust poisoning. Supposedly, the dust creates a porous, permeable to gases, structure on the electrode. The only varying parameter was the pressure difference between the inlet and the outlet to the cathode.

  4. Experimental study of transport of relativistic electron beams in strong magnetic mirror field

    Science.gov (United States)

    Sakata, Shohei; Kondo, Kotaro; Bailly-Grandvaux, Mathiu; Bellei, Claudio; Santos, Joao; Firex Project Team

    2015-11-01

    Relativistic electron beams REB produced by ultra high intense laser pulses have generally a large divergence angle that results in degradation of energy coupling between the REB and a fuel core in the fast ignition scheme. Guiding and focusing of the REB by a strong external magnetic field was proposed to achieve high efficiency. We investigated REB transport through 50 μm or 250 μm thick plastic foils CuI doped under external magnetic fields, in magnetic mirror configurations of 1.2 or 4 mirror ratio. The experiment was carried out at the GEKKO XII and LFEX laser facility. Spatial pattern of the REB was measured by coherent transition radiation and/or Cu Ka x ray emission from the rear surface of the foil targets. Strong collimation of the REB by the external magnetic field was observed with 50 μm thick plastic targets, while the REB scattered in 250 μm thick targets. The experimental results are compared with computer simulations to understand the physical mechanisms of the REB transport in the external magnetic field. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR (France) and COST (Europe).

  5. Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis.

    Science.gov (United States)

    Xie, Haijian; Chen, Yunmin; Thomas, Hywel R; Sedighi, Majid; Masum, Shakil A; Ran, Qihua

    2016-02-01

    A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport

  6. Determinación experimental de los coeficientes locales de transporte de humedad en almacenes soterrados. // Experimental determination of local humidity transport coefficients in underground warehouses.

    OpenAIRE

    Ma. D. Andrade Gregori; R. Hernández Rubio; M. Piedra Díaz

    2006-01-01

    En el trabajo se fundamentan los mecanismos de transporte de humedad que tienen lugar en almacenes soterrados dadas lascaracterísticas climáticas y geohidrològicas de Cuba. Se establece una analogía con la ley de Fick y se propone un modeloteórico que describe este mecanismo de transporte hacia las cavidades. Se determinó experimentalmente los coeficienteslocales de transporte de humedad para diferentes tipos de recubrimiento en paredes y diferentes formas geométricas de losalmacenes.Palabras...

  7. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    During the last decades, the growing urbanisation a nd increasing anthropogenic activities in urban areas have turned urban stormwater runoff int o a surface water quality contamination problem. The concerns of urban stormwater runoff as a source of contamination in the receiving surface water......) has been foun d to facilitate transport of organic contaminants and metals in stormwater runoff system s, but little is known about the role of the colloidal fraction including nano-sized particl es (0.001-1 μm). Based on the large specific surface area of colloids and nanosized particles, t heir...... for their ability to sorb polycyclic aromatic hydrocarbons (PAH’s) in an aqueous solution. These particles were used as indicators for stormwater particles which a re diverse in size and composition. For controlling the sorption onto the particles, passiv e doing vials were used (Birch et. al., 2010). Using passive...

  8. Processes influencing the transport and fate of contaminated sediments in the coastal ocean: Boston Harbor and Massachusetts Bay

    Science.gov (United States)

    Alexander, P. Soupy; Baldwin, Sandra M.; Blackwood, Dann S.; Borden, Jonathan; Casso, Michael A.; Crusius, John; Goudreau, Joanne; Kalnejais, Linda H.; Lamothe, Paul J.; Martin, William R.; Martini, Marinna A.; Rendigs, Richard R.; Sayles, Frederick L.; Signell, Richard P.; Valentine, Page C.; Warner, John C.; Bothner, Michael H.; Butman, Bradford

    2007-01-01

    Most of the major urban centers of the United States including Boston, New York, Washington, Chicago, New Orleans, Miami, Los Angeles, San Francisco, and Seattle—are on a coast (fig. 1.1). All of these cities discharge treated sewage effluent into adjacent waters. In 2000, 74 percent of the U.S. population lived within 200 kilometers (km) of the coast. Between 1980 and 2002, the population density in coastal communities increased approximately 4.5 times faster than in noncoastal areas of the U.S. (Perkins, 2004). More people generate larger volumes of wastes, increase the demands on wastewater treatment, expand the area of impervious land surfaces, and use more vehicles that contribute contaminants to street runoff. According to the National Coastal Condition Report II (U.S. Environmental Protection Agency, 2005a), on the basis of coastal habitat, water and sediment quality, benthic index, and fish tissue, the overall national coastal condition is only poor to fair and the overall coastal condition in the highly populated Northeast is poor. Scientific information helps managers to prioritize and regulate coastal-ocean uses that include recreation, commercial fishing, transportation, waste disposal, and critical habitat for marine organisms. These uses are often in conflict with each other and with environmental concerns. Developing a strategy for managing competing uses while maintaining sustainability of coastal resources requires scientific understanding of how the coastal ocean system behaves and how it responds to anthropogenic influences. This report provides a summary of a multidisciplinary research program designed to improve our understanding of the transport and fate of contaminants in Massachusetts coastal waters. Massachusetts Bay and Boston Harbor have been a focus of U.S. Geological Survey (USGS) research because they provide a diverse geographic setting for developing a scientific understanding of the geology, geochemistry, and oceanography of

  9. Compartimentation et transfert de contaminants dans les milieux souterrains : interaction entre transport physique, réactivité chimique et activité biologique

    OpenAIRE

    Babey, Tristan

    2016-01-01

    Modelling of contaminant transfer in the subsurface classically relies on a detailed representation of transport processes (groundwater flow controlled by geological structures) coupled to chemical and biological reactivity (immobilization, degradation). Calibration of such detailed models is however often limited by the small amount of available data on the subsurface structures and characteristics. In this thesis, we develop an alternative approach of parsimonious models based on simple gra...

  10. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...

  11. Absorption and transport of radioactive /sup 57/Co-vitamin B/sub 12/ in experimental giardiasis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Deka, N.C.; Sehgal, A.K.; Chnuttani, P.N. (Post-Graduate Inst. of Medical Education and Research, Chandigarh (India))

    1981-11-01

    Giardiasis was produced in weanling albino rats by feeding suspension of Giardia lamblia cysts isolated from human stool. Experiments were carried out to assess the absorption and transport through intestinal wall of /sup 57/Co-vitamin B/sub 12/ in these rats. The results showed a significant impairment of the absorption of the vitamin in the rats with experimental giardiasis. However, the transport of the vitamin B/sub 12/ was unimpaired.

  12. Experimental and Computational Studies of Temperature Gradient Driven Molecular Transport in Gas Flows through Nano/Micro-Scale Channels

    OpenAIRE

    Han, Yen-Lin; Alexeenko, Alina A; Young, Marcus; Muntz, Eric Phillip

    2007-01-01

    Studies at the University of Southern California have shown that an unconventional solid-state device, the Knudsen Compressor, can be operated as a micro-scale pump or compressor. The critical components of Knudsen Compressors are gas transport membranes, which can be formed from porous materials or densely packed parallel arrays of channels. An applied temperature gradient across a transport membrane creates a thermal creep pumping action. Experimental and computational techniques that have ...

  13. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas

    Science.gov (United States)

    Anawar, Hossain Md.

    Disposal of untreated and treated mining wastes and tailings exerts a significant threat and hazard for environmental contamination including groundwater, surface water, wetlands, land, food chain and animals. In order to facilitate remediation techniques, it is important to understand the oxidation of sulfidic minerals, and the hydrolysis of the oxidation products that result in production of acid mine drainage (AMD), toxic metals, low pH, SO42- and Fe. This review has summarized the impacts of climate change on geochemical reactions, AMD generation, and water quality in semi-arid/arid mining environments. Besides this, the study included the effects of hydrological, seasonal and climate change on composition of AMD, contaminant transport in watersheds and restoration of mining sites. Different models have different types of limitations and benefits that control their adaptability and suitability of application in various mining environments. This review has made a comparative discussion of a few most potential and widely used reactive transport models that can be applied to simulate the effect of climate change on sulfide oxidation and AMD production from mining waste, and contaminant transport in surface and groundwater systems.

  14. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.; Timchalk, Charles

    2017-04-11

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed, and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.

  15. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare.

    Science.gov (United States)

    Moore, Ginny; Stevenson, David; Thompson, Katy-Anne; Parks, Simon; Ngabo, Didier; Bennett, Allan M; Walker, Jimmy T

    2015-01-01

    Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.

  16. Behavior of Different Shiga Toxin-Producing Escherichia coli Serotypes in Various Experimentally Contaminated Raw-Milk Cheeses

    Science.gov (United States)

    Miszczycha, Stéphane D.; Perrin, Frédérique; Ganet, Sarah; Jamet, Emmanuel; Tenenhaus-Aziza, Fanny; Montel, Marie-Christine

    2013-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness. The public health implication of the presence of STEC in dairy products remains unclear. Knowledge of STEC behavior in cheeses would help to evaluate the human health risk. The aim of our study was to observe the growth and survival of experimentally inoculated STEC strains in raw-milk cheeses manufactured and ripened according to five technological schemes: blue-type cheese, uncooked pressed cheese with long ripening and with short ripening steps, cooked cheese, and lactic cheese. Cheeses were contaminated with different STEC serotypes (O157:H7, O26:H11, O103:H2, and O145:H28) at the milk preparation stage. STEC growth and survival were monitored on selective media during the entire manufacturing process. STEC grew (2 to 3 log10 CFU · g−1) in blue-type cheese and the two uncooked pressed cheeses during the first 24 h of cheese making. Then, STEC levels progressively decreased in cheeses that were ripened for more than 6 months. In cooked cheese and in lactic cheese with a long acidic coagulation step (pH cheese and after the coagulation step in the lactic cheese, but STEC was still detectable at the end of ripening and storage. A serotype effect was found: in all cheeses studied, serotype O157:H7 grew less strongly and was less persistent than the others serotypes. This study improves knowledge of the behavior of different STEC serotypes in various raw-milk cheeses. PMID:23087038

  17. Numerical and experimental predictions of fine-soil erosion, transport and trapping in embankment dam

    Science.gov (United States)

    Kanarska, Y.; Lomov, I.; Ezzedine, S. M.; Antoun, T. H.; Glascoe, L. G.

    2011-12-01

    A determination of the safety of dam structures requires the characterization of fine-soil erosion processes and the ability of filter layers to capture fine-soil particles to prevent dam failure. We investigated numerically and experimentally different aspects of this problem at a grain scale. The numerical method was based on Lagrange multiplier technique (Kanarska et al., 2011). The particle-particle interactions were implemented using explicit force-displacement interactions for frictional inelastic particles similar to the distinct element method (DEM) (Cundall and Strack, 1979), with some modifications using the volume of the overlapping region as the input to the contact forces. The first set of numerical tests was performed to describe the response of a granular bed to forcing by a fluid, which flows over the crack surface. We investigated how particle properties, such as size and shape, affect threshold values for critical shear stresses and mean velocities. A good agreement between numerical results and experiments was found. A general constitutive erosion law, critical shear stresses, and erosion velocities were derived and validated against the available experimental range of conditions for different particle sizes, particle shapes, and flow conditions. We confirmed that a linear relationship between particle mass fluxes and shear stresses well describes soil behavior. A second set of numerical and experimental tests to investigate sediment trapping in the filter layers was also performed. The laboratory experiments on soil transport and trapping in granular media were conducted in constant-head flow chamber filled with filter media. We investigated how particle properties and amplitude of the applied hydraulic gradient affect clogging criteria and changes in hydraulic conductivity of the medium. The numerical results were validated against available experimental data. We started with spherical particles. In the future, we are planning to investigate

  18. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants in the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched

  19. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  20. Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces

    Science.gov (United States)

    Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-02-01

    Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for

  1. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    Science.gov (United States)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  2. Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, V

    2016-03-01

    Full Text Available This study assessed the fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite. To accomplish that, neutralization and metal attenuation were evaluated and complemented with simulations using geochemical...

  3. Risk assessment of nitrate transport through subsurface layers and groundwater using experimental and modeling approach.

    Science.gov (United States)

    Alslaibi, Tamer M; Abunada, Ziyad; Abu Amr, Salem S; Abustan, Ismail

    2017-09-22

    Landfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction. The average [Formula: see text] concentration in the wells was 54 mg/L, slightly higher than the World Health Organization ([Formula: see text] 50 mg/L) standards. SESOIL model was used to predict the [Formula: see text] concentration at the bottom of the unsaturated zone. Results indicated that the current mean [Formula: see text] concentration at the bottom of the unsaturated zone is 75 mg/L. the model predicted that the level of NO 3 will increased up to 325 mg/L within 30 years. Accordingly, the [Formula: see text] concentration in groundwater wells near the landfill area is expected to gradually increase with time. Although the current risk associated with the [Formula: see text] level might not be harm to adults, however, it might pose severe risks to both adults and infants in the near future due to [Formula: see text] leaching. Urgent mitigation measures such as final cell cover (cap), lining system and vertical expansion should be considered at the landfill to protect the public health in the area.

  4. Evaluation and Quantification of Uncertainty in the Modeling of Contaminant Transport and Exposure Assessment at a Radioactive Waste Disposal Site

    Science.gov (United States)

    Tauxe, J.; Black, P.; Carilli, J.; Catlett, K.; Crowe, B.; Hooten, M.; Rawlinson, S.; Schuh, A.; Stockton, T.; Yucel, V.

    2002-12-01

    The disposal of low-level radioactive waste (LLW) in the United States (U.S.) is a highly regulated undertaking. The U.S. Department of Energy (DOE), itself a large generator of such wastes, requires a substantial amount of analysis and assessment before permitting disposal of LLW at its facilities. One of the requirements that must be met in assessing the performance of a disposal site and technology is that a Performance Assessment (PA) demonstrate "reasonable expectation" that certain performance objectives, such as dose to a hypothetical future receptor, not be exceeded. The phrase "reasonable expectation" implies recognition of uncertainty in the assessment process. In order for this uncertainty to be quantified and communicated to decision makers, the PA computer model must accept probabilistic (uncertain) input (parameter values) and produce results which reflect that uncertainty as it is propagated through the model calculations. The GoldSim modeling software was selected for the task due to its unique facility with both probabilistic analysis and radioactive contaminant transport. Probabilistic model parameters range from water content and other physical properties of alluvium to the activity of radionuclides disposed to the amount of time a future resident might be expected to spend tending a garden. Although these parameters govern processes which are defined in isolation as rather simple differential equations, the complex interaction of couple processes makes for a highly nonlinear system with often unanticipated results. The decision maker has the difficult job of evaluating the uncertainty of modeling results in the context of granting permission for LLW disposal. This job also involves the evaluation of alternatives, such as the selection of disposal technologies. Various scenarios can be evaluated in the model, so that the effects of, for example, using a thicker soil cap over the waste cell can be assessed. This ability to evaluate mitigation

  5. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  6. Decline in Mycobacterium bovis and Brucella abortus populations during the maturation of experimentally contaminated parmesan-type cheese

    Directory of Open Access Journals (Sweden)

    Karina Ramirez Starikoff

    2016-11-01

    Full Text Available Brazilian legislation allows the manufacture of raw milk cheese with a maturation exceeding 60 days at room temperature above 5°C, but there is a lack of solid scientific evidence on the efficacy of this maturation process in inactivating important pathogens that may be present in milk, such as Mycobacterium bovis and Brucella abortus. Thus, the objectives of this study were to produce parmesan-type cheese experimentally contaminated with M. bovis and B. abortus and evaluate the survival of these pathogens along 2-month maturation. Parmesan-type cheese was manufactured in the laboratory using whole pasteurized milk with or without inoculation with M. bovis (SB1033 or B. abortus (1119-3 and matured at 18°C for up to 63 days. M. bovis was inoculated in Stonebrink-Leslie medium supplemented with antibiotics and incubated at 37°C for 45 days, and B. abortus was incubated in Farrel medium at 36°C for 3 days. The average D18°C value, weighted by variance, was 37.5 ± 5.3 days for M. bovis and 5.9 ± 0.7 days for B. abortus. The average physicochemical parameters in the cheese at the end of the study were as follows: pH = 4.89, water activity = 0.976, and moisture percentage = 43.1%. The pH might have contributed to the reduction in the population of B. abortus but seems not to have influenced the population of M. bovis. We conclude that the duration of the maturation process influences the size of the surviving populations of M. bovis and B. abortus, and that the shortening of the maturation duration might not ensure a decline in pathogen levels to safe levels. Thus, complementary studies considering the effect of several other technological aspects on the survival of these pathogens are required, including the effect of the lactic acid bacterial population, salt content, and temperature of maturation.

  7. Effect of space allowance during transport and fasting or non-fasting during lairage on carcass contamination and meat traits in Merino lamb

    Directory of Open Access Journals (Sweden)

    Herminia Vergara

    2017-07-01

    Full Text Available A total of 72 Merino breed male lambs were used in this work, to study the effect of the space allowance during transport [(SA: low (SAL: 0.16 m2/animal; n=24; medium (SAM: 20 m2/animal; n=24; high (SAH: 0.30 m2/animal; n=24], and the management during 18 h lairage [(TL: fasting (TL-FAST; n=36 vs feeding (TL-FEED; n=36] on carcass microbial contamination (total viable count, Enterobacteriaceae and Pseudomonas and meat quality. Carcasses contamination determination was carried out by swabbing (neck, flank and rump. Meat quality was assessed by pH, colour coordinates, drip loss (DL, shear force (SF ad lipid oxidation. SA did not have effect on carcass microbiological quality. TL caused a significant effect on total viable count and Pseudomonas spp values. Flank was the most contaminated site. SAL-FEED group showed the highest values of drip loss and lipid oxidation. At 24 h post-mortem, pH values were the highest in fasted lambs. At 7 d post-mortem the lowest pH was found in SAM-FAST group while the highest in SAM-FEED. TL had no effect on SF, DL neither on lipid oxidation values. These results could help to meat industry to decide the best management as in the transportation as during lairage before lambs slaughter.

  8. The rate of 2,2-dichloropropane transformation in mineral micropores: implications of sorptive preservation for fate and transport of organic contaminants in the subsurface.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2008-04-15

    Nanometer scale pores are ubiquitous in porous geologic media (soils and sediments). Sorption of organic contaminants in micropores (hydrophobic micropore spaces. As a test case, we studied the dehydrohalogenation of 2,2-dichloropropane (2,2-DCP) sorbed in the micropores of several model mineral solids. In the micropores of a hydrophobic dealuminated Y zeolite, CBV-780, 2,2-DCP dehydrohalogenation proceeded significantly slower than in bulk aqueous solution and eventually stopped. This was attributed to the depletion of reactive water molecules in the micropore spaces. The 2,2-DCP sorbed in the micropores of more hydrophilic solids (aquifer sediment, aquifer sand, and silica gel) also transformed slower than in aqueous solution, and the reaction no longer followed first-order kinetics. Results of transport modeling support that reactive contaminants sorbed in microporous minerals can be preserved over geological time scales under conditions that limit desorption. This study shows that hydrophobic micropores in geological media may act as an important sink for anthropogenic organic contaminants in the subsurface, and that sorption in micropores may significantly increase the persistence of the sorbed contaminants.

  9. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?

    Science.gov (United States)

    Guzzella, Licia; Salerno, Franco; Freppaz, Michele; Roscioli, Claudio; Pisanello, Francesca; Poma, Giulia

    2016-02-15

    Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    Science.gov (United States)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  11. Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts

    Science.gov (United States)

    Pettes, Michael Thompson

    As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, kappa, of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low kappa in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the kappa is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the kappa of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the kappa temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale

  12. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment

    Directory of Open Access Journals (Sweden)

    H.-J. Vogel

    2006-01-01

    Full Text Available A classical transport experiment was performed in a field plot of 2.5 m2 using the dye tracer brilliant blue. The measured tracer distribution demonstrates the dominant role of the heterogeneous soil structure for solute transport. As with many other published experiments, this evidences the need of considering the macroscopic structure of soil to predict flow and transport. We combine three different approaches to represent the relevant structure of the specific situation of our experiment: i direct measurement, ii statistical description of heterogeneities and iii a conceptual model of structure formation. The structure of soil layers was directly obtained from serial sections in the field. The sub-scale heterogeneity within the soil horizons was modelled through correlated random fields with estimated correlation lengths and anisotropy. Earthworm burrows played a dominant role at the transition between the upper soil horizon and the subsoil. A model based on percolation theory is introduced that mimics the geometry of earthworm burrow systems. The hydraulic material properties of the different structural units were obtained by direct measurements where available and by a best estimate otherwise. From the hydraulic structure, the 3-dimensional velocity field of water was calculated by solving Richards' Equation and solute transport was simulated. The simulated tracer distribution compares reasonably well with the experimental data. We conclude that a rough representation of the structure and a rough representation of the hydraulic properties might be sufficient to predict flow and transport, but both elements are definitely required.

  13. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    Science.gov (United States)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a

  14. How Does Fiction Reading Influence Empathy? An Experimental Investigation on the Role of Emotional Transportation

    Science.gov (United States)

    Bal, P. Matthijs; Veltkamp, Martijn

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced over a period of one week for people who read a fictional story, but only when they were emotionally transported into the story. No transportation led to lower empathy in both studies, while study 1 showed that high transportation led to higher empathy among fiction readers. These effects were not found for people in the control condition where people read non-fiction. The study showed that fiction influences empathy of the reader, but only under the condition of low or high emotional transportation into the story. PMID:23383160

  15. How does fiction reading influence empathy? An experimental investigation on the role of emotional transportation.

    Science.gov (United States)

    Bal, P Matthijs; Veltkamp, Martijn

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced over a period of one week for people who read a fictional story, but only when they were emotionally transported into the story. No transportation led to lower empathy in both studies, while study 1 showed that high transportation led to higher empathy among fiction readers. These effects were not found for people in the control condition where people read non-fiction. The study showed that fiction influences empathy of the reader, but only under the condition of low or high emotional transportation into the story.

  16. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations

  17. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  18. Contaminated Human Remains: Transportable Decontamination - 1. Technical Readiness Level Estimate. 2. Vaccinia Virus Ionizing Radiation Inactivation in a Human Phantom. 3. Current State of Technology Relevant to Development of a Transportable System for Treatment of Contaminated Human Remains

    Science.gov (United States)

    2011-05-30

    microbial pathogens , including putative biological threat agents, are available. 2. The technological base is well developed for commercial irradiation ...2005, Effective use of optimized, high‐ dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts, Biomaterials 26 2033...current applications are irradiation of spices to eliminate both insect and bacterial contamination, irradiation of ground meats, particularly beef

  19. Survival of Salmonella Copenhagen in food bowls following contamination with experimentally inoculated raw meat: Effects of time, cleaning, and disinfection

    OpenAIRE

    Weese, J Scott; Rousseau, J.

    2006-01-01

    There are concerns regarding the safety of feeding raw meat to household pets. This study demonstrated that Salmonella persists in food bowls that are inoculated with Salmonella-containing raw meat. Standard methods of cleaning and disinfection were minimally effective at eliminating Salmonella contamination.

  20. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  1. How does fiction reading influence empathy? An experimental investigation on the role of emotional transportation

    NARCIS (Netherlands)

    Bal, P.M.; Veltkamp, M.

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced

  2. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  3. Herbicide transport trends in Goodwater Creek experimental watershed II: acetochlor, alachlor, metolachlor, and metribuzin

    Science.gov (United States)

    Farmers in the Midwestern United States continue to be reliant on soil-applied herbicides for weed control in row crop production, and herbicide contamination of surface waters. Runoff-prone watersheds remain an environmental problem. The primary objective of this study was to analyze trends in conc...

  4. Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study

    Directory of Open Access Journals (Sweden)

    Tulaya Masipan

    2016-03-01

    Full Text Available Tracer (Bromide movement through the unsaturated agricultural soil was investigated in soil columns. Two tracer column experiments, with a diameter of 7 cm and a depth of 25 cm, were vertically homogeneous packed with sandy loam and then carried out to investigate bromide (Br− transport under different water contents (at steady flow condition. One soil column (Column 1 represents the unsaturated agricultural soil in dry season (with water content ranging from 0.23 to 0.26 and the other (Column 2 represents the soil in wet season (water content from 0.24 to 0.35. Bromide samples were periodically collected by vacuum tubes inserted at 6.25 cm equally spaced intervals (e.g., 6.25, 12.5, 18.75 and 25 cm along the length of the column and the effluent collected at the end of the column. The observed breakthrough curves (BTCs of bromide in both columns represented a relative smooth and sigmodal curves at different distances (sampling ports. Dispersivity (α, cm for sandy loam at different locations was numerically estimated by curve fitting the experimental data with HYDRUS-1D. The α can be well described by the convection–dispersion equation and these values derived from Column 1 (ranging from 0.37 to 0.98 cm are more than those from Column 2 (0.25–0.59. Moreover, the α in both columns increases with the travel distance due to the scale-dependent effect. Furthermore, the α values were plotted on a log–log scale against travel distances and they yield empirical power law relationships with an excellent correlation (α = 0.102 (L0.697, R2 = 0.999 and α = 0.086 (L0.579, R2 = 0.963 for Column 1 and 2, respectively.

  5. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-01-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two....... The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured...... breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model...

  6. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral

  7. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Zaheer

    2017-01-01

    Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.

  8. Transportation

    Science.gov (United States)

    2006-01-01

    container. It now permits free transit of shipping containers from their western ports, if transported by rail directly to the U.S. ( Mireles , 2005, p...Transportation Industry Study Seminar. Mireles , Richard, Castillo. (2005, January). A Cure for West Coast Congestion. Logistics Today, Vol. 46, Issue 1. 1

  9. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    Science.gov (United States)

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  10. Distribution of heavy metals in vegetation surrounding the Blackstone River, USA: considerations regarding sediment contamination and long term metals transport in freshwater riverine ecosystems.

    Science.gov (United States)

    Ozdilek, Hasan Goksel; Mathisen, Paul P; Pellegrino, Don

    2007-04-01

    The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone

  11. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Buck, J.W.; Castleton, K.J. [and others

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

  12. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Rotger, Gabriel Pons; Sick Nielsen, Thomas

    2015-01-01

    This study examines the effect of accessibility to urban jobs via a public transport system on individual earnings. The effect of improved public transport based accessibility on earnings and commuting behaviour is determined by exploiting the exogenous variation in access to a public rail...... and Metro system due to the construction of a new terminal Metro station connecting southern townships to the city centre of Copenhagen. The results show that public transport based job accessibility has a positive and permanent effect on individual earnings. The increase in earnings is associated...... with a change in commuting patterns as the improved access to public transport facilitates a shift from employment within the township to better paid jobs in the city centre, as well as in other suburbs of the Copenhagen metropolitan area....

  13. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Pons Rotger, Gabriel Angel; Nielsen, Thomas Alexander Sick

    2015-01-01

    This study examines the effect of accessibility to urban jobs via a public transport system on individual earnings and commuting behaviour. The effect of improved public transport based accessibility on these outcomes is determined by exploiting the exogenous variation in access to a public rail...... and Metro system resulting from the construction of a new terminal Metro station connecting southern townships to Copenhagen city centre. The results show that public transport based job accessibility has a positive and permanent effect on individual earnings. The increase in earnings is associated...... with a change in commuting patterns as the improved access to public transport facilitates a shift from employment within the township to better paid jobs in the city centre, as well as in other suburbs of the Copenhagen Metropolitan area...

  14. Experimental Evaluation of the Transport Mechanisms of PoIFN-α in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-11-01

    Full Text Available For the development of an efficient intestinal delivery system for Porcine interferon-α (PoIFN-α, the understanding of transport mechanisms of which in the intestinal cell is essential. In this study, we investigated the absorption mechanisms of PoIFN-α in intestine cells. Caco-2 cells and fluorescein isothiocyanate-labeled (FITC-PoIFN-α were used to explore the whole transport process, including endocytosis, intracellular trafficking, exocytosis, and transcytosis. Via various techniques, the transport pathways of PoIFN-α in Caco-2 cells and the mechanisms were clarified. Firstly, the endocytosis of PoIFN-α by Caco-2 cells was time, concentration and temperature dependence. And the lipid raft/caveolae endocytosis was the most likely endocytic pathway for PoIFN-α. Secondly, both Golgi apparatus and lysosome were involved in the intracellular trafficking of PoIFN-α. Thirdly, the treatment of indomethacin resulted in a significant decrease of exocytosis of PoIFN-α, indicating the participation of cyclooxygenase. Finally, to evaluate the efficiency of PoIFN-α transport, the transepithelial electrical resistance (TEER value was measured to investigate the tight junctional integrity of the cell monolayers. The fluorescence microscope results revealed that the transport of PoIFN-α across the Caco-2 cell monolayers was restricted. In conclusion, this study depicts a probable picture of PoIFN-α transport in Caco-2 cells characterized by non-specificity, partial energy-dependency and low transcytosis.

  15. Experimental Evaluation of the Transport Mechanisms of PoIFN-α in Caco-2 Cells.

    Science.gov (United States)

    Liu, Xin; Zheng, Sidi; Qin, Yue; Ding, Wenya; Tu, Yabin; Chen, Xingru; Wu, Yunzhou; Yanhua, Li; Cai, Xuehui

    2017-01-01

    For the development of an efficient intestinal delivery system for Porcine interferon-α (PoIFN-α), the understanding of transport mechanisms of which in the intestinal cell is essential. In this study, we investigated the absorption mechanisms of PoIFN-α in intestine cells. Caco-2 cells and fluorescein isothiocyanate-labeled (FITC)-PoIFN-α were used to explore the whole transport process, including endocytosis, intracellular trafficking, exocytosis, and transcytosis. Via various techniques, the transport pathways of PoIFN-α in Caco-2 cells and the mechanisms were clarified. Firstly, the endocytosis of PoIFN-α by Caco-2 cells was time, concentration and temperature dependence. And the lipid raft/caveolae endocytosis was the most likely endocytic pathway for PoIFN-α. Secondly, both Golgi apparatus and lysosome were involved in the intracellular trafficking of PoIFN-α. Thirdly, the treatment of indomethacin resulted in a significant decrease of exocytosis of PoIFN-α, indicating the participation of cyclooxygenase. Finally, to evaluate the efficiency of PoIFN-α transport, the transepithelial electrical resistance (TEER) value was measured to investigate the tight junctional integrity of the cell monolayers. The fluorescence microscope results revealed that the transport of PoIFN-α across the Caco-2 cell monolayers was restricted. In conclusion, this study depicts a probable picture of PoIFN-α transport in Caco-2 cells characterized by non-specificity, partial energy-dependency and low transcytosis.

  16. Experimental investigation of transport phenomena in the scrape-off layer and divertor

    Energy Technology Data Exchange (ETDEWEB)

    LaBombard, B.; Goetz, J.A.; Hutchinson, I.; Jablonski, D.; Kesner, J.; Kurz, C.; Lipschultz, B.; McCracken, G.M.; Niemczewski, A.; Terry, J.; Allen, A.; Boivin, R.L.; Bombarda, F.; Bonoli, P.; Christensen, C.; Fiore, C.; Garnier, D.; Golovato, S.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Irby, J.; Lo, D.; Lumma, D.; Marmar, E.; May, M.; Mazurenko, A.; Nachtrieb, R.; Ohkawa, H.; O`Shea, P.; Porkolab, M.; Reardon, J.; Rice, J.; Rost, J.; Schachter, J.; Snipes, J.; Sorci, J.; Stek, P.; Takase, Y.; Wang, Y.; Watterson, R.; Weaver, J.; Welch, B.; Wolfe, S. [Massachusetts Inst. of Technol., Cambridge (United States). Plasma Fusion Center]|[Associazione Euratom-ENEA sulla Fusione, Frascati (Italy)]|[Johns Hopkins University, Baltimore, MD (United States)]|[University of Maryland, College Park, MD (United States)

    1997-02-01

    Transport physics in the divertor and scrape-off layer of Alcator C-Mod is investigated for a wide range of plasma conditions. Parallel (parallel) transport topics include: low recycling, high-recycling, and detached regimes, thermoelectric currents, asymmetric heat fluxes driven by thermoelectric currents, and reversed divertor flows. Perpendicular (perpendicular to) transport topics include: expected and measured scalings of perpendicular to gradients with local conditions, estimated {chi} {sub perpendicular} {sub to} profiles and scalings, divertor neutral retention effects, and L-mode/H-mode effects. Key results are: (i) classical parallel transport is obeyed with ion-neutral momentum coupling effects, (ii) perpendicular to heat transport is proportional to local gradients, (iii) {chi} {sub perpendicular} {sub to} {proportional_to}T{sub e}{sup -0.6} n{sup -0.6} L{sup -0.7} in L-mode, insensitive to toroidal field, (iv) {chi} {sub perpendicular} {sub to} is dependent on divertor neutral retention, (v) H-mode transport barrier effects partially extend inside the SOL, (vi) inside/outside divertor asymmetries may be caused by a thermoelectric instability, and (vii) reversed parallel flows depend on divertor asymmetries and their implicit ionization source imbalances. (orig.).

  17. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    Science.gov (United States)

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  18. Meta-analysis of the effects of soil properties, site factors and experimental conditions on preferential solute transport

    Science.gov (United States)

    Koestel, J. K.; Moeys, J.; Jarvis, N. J.

    2011-11-01

    than electrically neutral tracers under comparable experimental conditions. We also found that the strength of preferential transport increased at larger flow rates and water saturations, which suggests that macropore flow was a more important flow mechanism than heterogeneous flow in the soil matrix. Nevertheless, our data shows that heterogeneous flow in the soil matrix also occasionally leads to strong preferential transport. Furthermore, we show that preferential solute transport under steady-state flow depends on soil texture in a threshold-like manner: moderate to strong preferential transport was found to occur only for undisturbed soils which contain more than 8% clay. Preferential flow characteristics were also absent for columns filled with glass beads, clean sands, or sieved soil. No clear effect of land use on the pattern of solute transport could be discerned, probably because the available dataset was too small and too much affected by cross-correlations with experimental conditions. Our results suggest that in developing pedotransfer functions for solute transport properties of soils it is critically important to account for travel distance, lateral observation scale, and water flow rate and saturation.

  19. Coupling Sorption to Soil Weathering during Reactive Transport: Impacts of Mineral Transformation and Sorbate Aging on Contaminant Speciation and Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Carl I. Steefel; Aaron Thompson; Jon Chorover

    2006-06-01

    The Hanford subsurface has become contaminated with highly alkaline, radioactive waste generated as a result of weapons production. The radioactive brine was stored in underground storage tanks, a number of which developed leaks and contaminated the surrounding subsurface. The high pH and ionic strength of these wastes has been predicted to accelerate the degree of soil weathering to produce new mineral phases--cancrinite and sodalite among the most abundant. Previous work has demonstrated that Cs and Sr, which along with I represent the most radioactive components in the waste, are sequestered by these neo-formed solids. The present work is aimed at assessing the stability of these neo-formed solids, with special emphasis on the degree of Cs, Sr and I release under ambient (neutral pH, low ionic strength) conditions expected to return to the Hanford area after the caustic radioactive brine waste is removed.

  20. Microfoams as Reactant Transport Media for In-Situ Immobilization of Radionuclide and Metallic Contaminants in Deep Vadose Zone

    Science.gov (United States)

    Wellman, D. M.; Zhong, L.; Mattigod, S.; Jansik, D.

    2009-12-01

    The U.S. Department of Energy (DOE) is currently addressing issues related to remediation of Cr, U and Tc contamination in the deep vadose zone at the Hanford Site in Washington State. One of the transformational technology alternatives being considered by the DOE Office of Environmental Management, is the use of Reactant Carrier Microfoams (RCM) for in-situ immobilization of contaminants. Foam injection technology for Enhance Oil Recovery (EOR) has well-established pedigree. Use of surfactant foams have also been explored for mobilizing DNAPL from sediments. However, the novel concept of using RCM for in situ immobilization contaminants in the deep vadose zone has not been explored, therefore, presents many daunting challenges for successful implementation. Scienists at Pacific Northwest National Laboratory (PNNL), leveraged previous EMSP-funded studies on microfoams conducted at LBNL with the goal to formulate robust stable microfoams for delivering reductive and/or precipitating reactants to the deep subsurface. Following an extensive literature review, a protocol was deisnged to select appropriate surfactant blends, and tested three different methods of foam generation namely, Venturi foam generato , high-speed gas entrainment and porous plate method. The resulting RCMs were characterized as to their quality, stability, bubble size distribution, surface tension and viscosity. The foam stabilities as a function of reactant (polyphosphate and polysulfides) concentrations and entrained polyatomic gases were also examined. Based on these experiments, optimal carrier foam compositions were identified for each Hanford deep vadose zone Contaminant of Concern (COC) namely U(VI) and Cr(VI). Finally, MSE Technology Applications, Inc (MSE) in collaboration with PNNL, conducted a series of scale-up reactant carrier foam injection tests to evaluate the efficacy of this technology for potential deep vadose zone remediation.

  1. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    Energy Technology Data Exchange (ETDEWEB)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells.

  2. Experimental evaluation of the significance of the pressure transport term for the Turbulence Kinetic Energy Budget across contrasting forest architectures

    Science.gov (United States)

    Ehrnsperger, Laura; Wunder, Tobias; Thomas, Christoph

    2017-04-01

    Forests are one of the dominant vegetation types on Earth and are an important sink for carbon on our planet. Forests are special ecosystems due to their great canopy height und complex architecture consisting of a subcanopy and a canopy layer, which changes the mechanisms of turbulent exchange within the plant canopy. To date, the sinks and sources of turbulence in forest canopies are not completely understood, especially the role of the pressure transport remains unclear. The INTRAMIX experiment was conducted in a mountainous Norway spruce (Picea abies) forest at the Fluxnet Waldstein site (DE-Bay) in Bavaria, Germany, for a period of 10 weeks in order to experimentally evaluate the significance of the pressure transport to the TKE budget for the first time. The INTRAMIX data of the dense mountain forest was compared to observations from a sparse Ponderosa pine (Pinus ponderosa) stand in Oregon, USA, to study the influence of forest architecture. We hypothesized that the pressure transport is more important in dense forest canopies as the crown decouples the subcanopy from the buoyancy- and shear-driven flow above the canopy. It is also investigated how atmospheric stability influences the TKE budget. Based upon model results from literature we expect the pressure transport to act as a source for TKE especially under free convective and unstable dynamic stability. Results to date indicate that pressure transport is most important in the subcanopy with decreasing magnitude with increasing height. Nevertheless, pressure transport is a continuous source of TKE above the canopy, while in the canopy and subcanopy layer pressure transport acts both as a sink and source term for TKE. In the tree crown layer pressure transport is a source in the morning and afternoon hours and acts as a sink during the evening, while in the subcanopy pressure transport is a source around noon and during the night and acts as a sink in the early morning and afternoon hours. This

  3. Experimental lead toxicosis in ponies: comparison of the effects of smelter effluent-contaminated hay and lead acetate

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, G.E.; Borchard, R.E.

    1982-12-01

    Grass hay produced in the Coeur d'Alene River Basin of northern Idaho was fed to a group of 4 ponies. The hay contained Pb in concentration of 423 +/- 82 mg/kg and Cd in concentration of 10.8 +/- 1.4 mg/kg, resulting in daily exposures of the ponies to approximately 7.4 mg of Pb/kg and 0.19 mg of Cd/kg/day. The results in this group of ponies were compared with those from a group fed noncontaminated grass hay and given a daily dose of 10 mg of Pb/kg of body weight, in the form of lead acetate. Clinical toxicologic signs, hematologic changes, and blood and tissue Pb concentrations were similar in the 2 groups. However, the severity of the disease process appeared to be greater in the ponies fed the Pb- and Cd-contaminated hay. This was shown clearly by the shorter interval between onset of clinical changes and death in the ponies fed contaminated hay. The possibility of multiple heavy metal effects is discussed. Clinical toxicologic signs observed include incoordination, labial paresis, pharyngeal paresis, CNS depression, anorexia, and body weight loss. Anemia or marginal anemia was common and was often accompanied by the appearance of nucleated RBC and Howell-Jolly bodies in peripheral blood. Neither the hematologic response nor the blood Pb concentrations were reflective of the severity of poisoning, although blood Pb concentrations were greater than 0.35 micrograms/ml once clinical signs of toxicity were observed. Liver, kidney, spleen, brain, and bone Pb concentrations and liver, kidney, and brain Cd concentrations were increased in both the ponies fed contaminated hay and the ponies given lead acetate.

  4. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    Science.gov (United States)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature

  5. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers

    National Research Council Canada - National Science Library

    Almuktar, Suhad A A A N; Scholz, Miklas

    2016-01-01

    The aim of this experimental study is to assess if urban wastewater treated by ten different greenhouse-based sustainable wetland systems can be recycled to irrigate Capsicum annuum L. (Sweet Pepper; California Wonder...

  6. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: Vulnerability of deep groundwater to arsenic contamination in Bangladesh

    Science.gov (United States)

    Michael, Holly A.; Khan, Mahfuzur R.

    2016-12-01

    Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both

  7. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  8. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    increased at larger flow rates and water saturations, which suggests that macropore flow was a more important flow mechanism than heterogeneous flow in the soil matrix. Nevertheless, our data show that heterogeneous flow in the soil matrix also occasionally leads to strong preferential transport. Furthermore, we show that preferential solute transport under steady-state flow depends on soil texture in a threshold-like manner: moderate to strong preferential transport was found to occur only for undisturbed soils that contain more than 8% clay. Preferential flow characteristics were also absent for columns filled with glass beads, clean sands, or sieved soil. No clear effect of land use on the pattern of solute transport could be discerned, probably because the available dataset was too small and too strongly affected by cross-correlations with experimental conditions. Our results suggest that, in developing pedotransfer functions for solute transport properties of soils, it is critically important to account for travel distance, lateral observation scale, and water flow rate and saturation.

  9. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Science.gov (United States)

    Koestel, J. K.; Moeys, J.; Jarvis, N. J.

    2012-06-01

    flow rates and water saturations, which suggests that macropore flow was a more important flow mechanism than heterogeneous flow in the soil matrix. Nevertheless, our data show that heterogeneous flow in the soil matrix also occasionally leads to strong preferential transport. Furthermore, we show that preferential solute transport under steady-state flow depends on soil texture in a threshold-like manner: moderate to strong preferential transport was found to occur only for undisturbed soils that contain more than 8% clay. Preferential flow characteristics were also absent for columns filled with glass beads, clean sands, or sieved soil. No clear effect of land use on the pattern of solute transport could be discerned, probably because the available dataset was too small and too strongly affected by cross-correlations with experimental conditions. Our results suggest that, in developing pedotransfer functions for solute transport properties of soils, it is critically important to account for travel distance, lateral observation scale, and water flow rate and saturation.

  10. Experimental investigation of internal structure of open-channel flow with intense transport of sediment

    Directory of Open Access Journals (Sweden)

    Matoušek Václav

    2015-12-01

    Full Text Available Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.

  11. Water flow and pesticide transport in cultivated sandy soils : experimental data on complications

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    The risk of leaching of agricultural pesticides from soil to groundwater and water courses has to be evaluated. Complications in water flow and pesticide transport in humic-sandy and loamy-sandy soil profiles can be expected to increase the risk of leaching. Much of the precipitation water is

  12. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  13. Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Resendiz, Omar [Departamento de Ingenieria Quimica, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Rosa, Guadalupe de la, E-mail: delarosa@quijote.ugto.mx [Departamento de Ingenieria Quimica, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Cruz-Jimenez, Gustavo [Departamento de Farmacia, Universidad de Guanajuato, Noria Alta s/n, CP 36050 Guanajuato (Mexico); Gardea-Torresdey, Jorge L. [Chemistry Department and Environmental Science and Engineering, Ph.D. Program, The University of Texas at El Paso, 500 W. University Ave., 79968 El Paso, TX (United States); Robinson, Brett H. [Agriculture and Life Sciences, Lincoln University, P.O. Box 84 Lincoln, Canterbury 7646 (New Zealand)

    2011-05-15

    We identified contaminants associated with the Cata mine tailing depot located in the outskirts of the city of Guanajuato, Mexico. We also investigated strategies for their phytomanagement. Silver and antimony were present at 39 and 31 mg kg{sup -1}, respectively, some twofold higher than the Dutch Intervention Values. Total and extractable boron (B) occurred at concentrations of 301 and 6.3 mg L{sup -1}, respectively. Concentrations of B in soil solution above 1.9 mg L{sup -1} have been shown to be toxic to plants. Plant growth may also be inhibited by the low concentrations of extractable plant nutrients. Analysis of the aerial portions of Aloe vera (L. Burm.f.) revealed that this plant accumulates negligible concentrations of the identified contaminants. Calculations using a whole system model (Phyto-DSS) showed that establishing a crop of A. vera would have little effect on the drainage or leaching from the site. However, this plant would reduce wind and water erosion and potentially produce valuable cosmetic products. In contrast, crops of poplar, a species that is tolerant to high soil B concentrations, would mitigate leaching from this site. Alternate rows of trees could be periodically harvested and be used for timber or bioenergy.

  14. Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology.

    Science.gov (United States)

    Venkata Mohan, S; Sirisha, K; Sreenivasa Rao, R; Sarma, P N

    2007-10-01

    Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was applied to evaluate the influence of eight biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature, soil microflora load, application of bioaugmentation and humic substance concentration) on the soil bound chlorpyrifos bioremediation in bioslurry phase reactor. The selected eight factors were considered at three levels (18 experiments) in the experimental design. Substrate-loading rate showed significant influence on the bioremediation process among the selected factors. Derived optimum operating conditions obtained by the methodology showed enhanced chlorpyrifos degradation from 1479.99 to 2458.33microg/g (over all 39.82% enhancement). The proposed method facilitated systematic mathematical approach to understand the complex bioremediation process and the optimization of near optimum design parameters, only with a few well-defined experimental sets.

  15. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jung-Seok; Kwon, Man Jae; Choi, Jaeyoung; Baek, Kitae; O’Loughlin, Edward J.

    2014-12-01

    Electrokinetic remediation (also known as electrokinetics) is a promising technology for removing metals from fine-grained soils. However, few studies have been conducted regarding the transport behavior of multi-metals during electrokinetics. We investigated the transport of As, Cu, Pb, and Zn from soils during electrokinetics, the metal fractionation before and after electrokinetics, the relationships between metal transport and fractionation, and the effects of electrolyte conditioning. The main transport mechanisms of the metals were electroosmosis and electromigration during the first two weeks and electromigration during the following weeks. The direction of electroosmotic flow was from the anode to the cathode, and the metals in the dissolved and reducible-oxides fractions were transported to the anode or cathode by electromigration according to the chemical speciation of the metal ions in the pore water. Moreover, a portion of the metals that were initially in the residual fraction transitioned to the reducible and soluble fractions during electrokinetic treatment. However, this alteration was slow and resulted in decreasing metal removal rates as the electrokinetic treatment progressed. In addition, the use of NaOH, H3PO4, and Na2SO4 as electrolytes resulted in conditions that favored the precipitation of metal hydroxides, phosphates, and sulfates in the soil. These results demonstrated that metal removal was affected by the initial metal fractionation, metal speciation in the pore solution, and the physical–chemical parameters of the electrolytes, such as pH and electrolyte composition. Therefore, the treatment time, use of chemicals, and energy consumption could be reduced by optimizing pretreatment and by choosing appropriate electrolytes for the target metals.

  16. Comparing solute and particulate transport in streams using Notre Dame Linked Experimental Ecosystem Facility (ND-LEEF)

    Science.gov (United States)

    Shogren, A.; Tank, J. L.; Aubeneau, A. F.; Bolster, D.

    2016-12-01

    in streams and rivers. These processes co-vary across systems and are thus difficult to isolate. Therefore, to improve our understanding of drivers of fine-scale transport and retention of particles and solutes in streams, we experimentally compared transport and retention dynamics of two different particles (brewers yeast, 7μm; corn pollen, 70μm), a non-reactive solute (RhodamineWT), and a biologically reactive solute, nitrate (NO3-). We conducted experiments in four semi-natural constructed streams at the Notre Dame Linked Ecosystem Experimental Facility (ND-LEEF) in South Bend, Indiana. Each of the four 50 m replicate stream was lined with a unique configuration of substrate: pea gravel (PG, D50 = 0.5cm) and cobble (COB, D50 = 5cm) and structural complexity: alternating 2m sections of PG and COB substrates (ALT) and a random 50/50 mix (MIX). We allowed the experimental streams to naturally colonize with biofilm and periphyton throughout the summer sampling season. For particles, we estimated transport distance (Sp) and deposition velocity (vdep) and for solutes, we estimated uptake lengths (Sw) and uptake velocity (vf) using a short-term pulse addition technique. Sp and vdep were variable for particles, and were most strongly predicted by biofilm colonization on substrata in each stream. Biofilm accumulation also increased uptake of the reactive solute, though in contrast to particles, there were no significant differences in Sw or vf among streams suggesting that substrate type was not the main driver of reactive solute retention. These results emphasize the dynamic relationship between the physical and biological drivers influencing particle and solute retention in streams. Differential uptake of particles and solutes highlights the non stationarity of controlling variables along spatial or temporal continua. Even in highly controlled systems like those at ND-LEEF, physical vs. biological drivers are difficult to isolate.

  17. Parametric dependencies of the experimental tungsten transport coefficients in ICRH and ECRH assisted ASDEX Upgrade H-modes

    Science.gov (United States)

    Sertoli, M.; Angioni, C.; Odstrcil, T.; ASDEX Upgrade Team; Eurofusion MST1 Team

    2017-11-01

    The profiles of the W transport coefficients have been experimentally calculated for a large database of identical ASDEX Upgrade H-mode discharges where only the radio-frequency (RF) power characteristics have been varied [Angioni et al., Nucl. Fusion 57, 056015 (2017)]. Central ion cyclotron resonance heating (ICRH) in the minority heating scheme has been compared with central and off-axis electron cyclotron resonance heating (ECRH), using both localized and broad heat deposition profiles. The transport coefficients have been calculated applying the gradient-flux relation to the evolution of the intrinsic W density in-between sawtooth cycles as measured using the soft X-ray diagnostic. For both ICRH and ECRH, the major player in reducing the central W density peaking is found to be the reduction of inward pinch and, in the case of ECRH, the rise of an outward convection. The impurity convection increases, from negative to positive, almost linearly with RF-power, while no appreciable changes are observed in the diffusion coefficient, which remains roughly at neoclassical levels independent of RF power or background plasma conditions. The ratio vW/DW is consistent with the equilibrium ∇ n W / n W prior to the sawtooth crash, corroborating the separate estimates of diffusion and convection. These experimental findings are slightly different from previous results obtained analysing the evolution of impurity injections over many sawtooth cycles. Modelling performed using the drift-kinetic code NEO and the gyro-kinetic code GKW (assuming axisymmetry) overestimates the diffusion coefficient and underestimates the experimental positive convection. This is a further indication that magneto-hydrodynamic/neoclassical models accounting for 3D effects may be needed to characterize impurity transport in sawtoothing tokamak plasmas.

  18. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  19. Experimental Study on the Euglena gracilis for Micro-Transportation using a Phototatic Control

    Science.gov (United States)

    Kim, Jihoon; Nguyen, Vu Dat; Byun, Doyoung

    2012-11-01

    Recently, there has been growing interests in micro or nano-scale biological organisms for the micro-robotics to develop actively controlled micro or nano-level machines. The Euglena gracilis is a genus of unicellular protists, whose body size ranges from 30 to 70 μm. The Euglena gracilis contains an eyespot, a primitive organelle that filters sunlight into the light-detecting, photo-sensitive structures. It actively swims at the base of the flagellum. In this study, we investigated the controllability of Euglena gracilis for transporting a structure attaching itself. When a LED light is detected, the Euglena gracilis accordingly adjust its position to enhance photosynthesis. Using the phototactic control, we achieved the efficient transportation of a micro-structure. Partially funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF, 2011-0016461) and the Industrial Core Technology Development Project through the Ministry of Knowledge and Commerce.

  20. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  1. Experimental Study of Vacuum Transport in a Horizontal 50-Millimeter Pipe

    Science.gov (United States)

    1989-04-01

    Arlington, Virginia 22217-5000 62233N 12830 -102 YM3E8004 IDN 778155 11. TITLE (Include Security Clasificauton) PERIMENTAL STUDY OF VACUUM TRANSPORT IN...Manometer as the calibration standard . The Inficon has an accuracy of ± 0.01 % of reading. Readings were made for five vacuums ranging from 0 to 68.60...sensor and a temperature sensor. They are responsive to the product of air density and velocity and are calibrated assuming that the air is at standard

  2. Transportes

    Directory of Open Access Journals (Sweden)

    Hidalgo Fernández-Cano, Amalio

    1960-01-01

    Full Text Available El movimiento de materiales dentro de la Factoría está atendido por tres principales medios de transporte, en consonancia con las características del material y de los desplazamientos. Así se han establecido: sistemas de cintas transportadoras, una red ferroviaria de ancho normal y una completa malla de caminos enlazando funcionalmente las instalaciones.

  3. Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbour sediments

    DEFF Research Database (Denmark)

    Nystrøm, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic removal of heavy metals from different harbour sediments was investigated. Electrodialytic remediation experiments in laboratory scale were made with calcareous and non-calcareous harbour sediments. Two different experimental set-ups were used for the study, one with stirring of t...

  4. Experimental observations of transport of picosecond laser generated electrons in a nail-like target

    Science.gov (United States)

    Pasley, J.; Wei, M.; Shipton, E.; Chen, S.; Ma, T.; Beg, F. N.; Alexander, N.; Stephens, R.; MacPhee, A. G.; Hey, D.; Le Pape, S.; Patel, P.; Mackinnon, A.; Key, M.; Offermann, D.; Link, A.; Chowdhury, E.; Van-Woerkom, L.; Freeman, R. R.

    2007-12-01

    The transport of relativistic electrons, generated by the interaction of a high intensity (2×1020W/cm2) laser, has been studied in a nail-like target comprised of a 20μm diameter solid copper wire, coated with ˜2μm of titanium, with an 80μm diameter hemispherical termination. A ˜500fs, ˜200J pulse of 1.053μm laser light produced by the Titan Laser at Lawrence Livermore National Laboratory was focused to a ˜20μm diameter spot centered on the flat face of the hemisphere. Kα fluorescence from the Cu and Ti regions was imaged together with extreme ultraviolet (XUV) emission at 68 and 256eV. Results showed a quasiexponential decline in Kα emission along the wire over a distance of a few hundred microns from the laser focus, consistent with bulk Ohmic inhibition of the relativistic electron transport. Weaker Kα and XUV emission on a longer scale length showed limb brightening suggesting a transition to enhanced transport at the surface of the wire.

  5. Experimental and theoretical study of the transport of silver nanoparticles at their prolonged administration into a mammal organism

    Science.gov (United States)

    Antsiferova, A. A.; Buzulukov, Yu. P.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    The transport of silver nanoparticles in the organism of laboratory animals has been investigated. A mathematical model of the biokinetics of prolonged administration of nonmetabolizable and nonaglomerating pharmaceutical preparations is proposed, and its analytical solution is found. Based on the experimental data on the prolonged introduction and excretion of colloidal silver nanoparticles and the numerical approximation of the solutions to the equations for the proposed model, time dependences of the silver mass content in brain and blood are obtained and some other important biokinetic parameters are determined. It is concluded that both chronic1 and subchronic2 peroral application of these nanoparticles as an biologically active additive or antiseptic is potentially dangerous.

  6. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well......A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...

  7. COMPARATIVE STUDY ON THE LEVEL OF BACTERIOLOGICAL CONTAMINATION OF AUTOMATIC TELLER MACHINES, PUBLIC TOILETS AND PUBLIC TRANSPORT COMMERCIAL MOTORCYCLE CRASH HELMETS IN KIGALI CITY, RWANDA.

    Science.gov (United States)

    Nigatu, W; Fabiola, N S; Flora, I J; Mukahirwa, M A; Omar, M; Nsengimana, J; Nsabimana, A

    2014-12-01

    The environments can be contaminated by infectious agents that constitute a major health hazards as sources of community and hospital-acquired infections due to various activities. A comparative study on the level of bacteriological contamination of automatic teller machines (ATMs), public toilets and commercial motorcycle crash helmets were conducted in Kigali city during the period of January to March, 2013. Samples were collected from selected ATMs, public toilets and commercial motorcycle crash helmets surfaces. Micro-organisms identified from these samples were associated to infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital. Samples from each device and subject were transported to the laboratory where they were analysed for the presence of coliforms and other airborne, human skin and intestinal disease causing microorganisms. Microbiological methods including spread plate techniques and some biochemical tests were used to partially identify the microorganisms. Subjects involved in this study were consented students from University of Rwanda and Kigali motorcyclists for collections of samples from hands and crash helmets respectively. The following pathogenic bacteria have been found on the devices, Staphylococcus aureus, Staphylococcus epidermis, Streptococcus species, Escherichia coli, Salmonella, Klebsiella, Enterobacter aerogenes, Pseudomonas. The commercial motorcycle crash helmets had the highest level of bacteriological contamination compared to ATMs and public toilets. There was no growth observed on samples collected after treatment from ATMs, public toilets, and commercial motorcycle crash helmets. Attempt to correlate this finding with infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital show that the presences of some of these infectious pathogens. This study has revealed the ability of these public devices to serve as vehicle of transmission of

  8. Efficient evaluation of small failure probability in high-dimensional groundwater contaminant transport modeling via a two-stage Monte Carlo method

    Science.gov (United States)

    Zhang, Jiangjiang; Li, Weixuan; Lin, Guang; Zeng, Lingzao; Wu, Laosheng

    2017-03-01

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters. To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen-Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.

  9. Efficient evaluation of small failure probability in high-dimensional groundwater contaminant transport modeling via a two-stage Monte Carlo method: FAILURE PROBABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Lin, Guang [Department of Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette Indiana USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2017-03-01

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters. To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.

  10. A pseudo-outbreak due to Acinetobacter species (GIM-1) contamination of the pneumatic transport system of a Large University Hospital.

    Science.gov (United States)

    Herrmann, Mathias; Jungmann, Sven; Halfmann, Alexander; Dawson, Alik; Kaase, Martin; Gatermann, Sören; von Müller, Lutz; Gärtner, Barbara C

    2014-11-01

    To establish the source and contamination routes resulting in positive clinical and surveillance microbiological cultures with carbapenem-resistant, GIM-1 metallo-β-lactamase-positive Acinetobacter pitii and Acinetobacter radioresistens from 21 patients in 8 departments. Retrospective, descriptive study. A 1,300-bed tertiary care academic medical facility consisting of 90 buildings linked by a pneumatic transport system (PTS). Microbiological workup of the cluster strains included matrix-assisted laser desorption/ionization time-of-flight species identification, phenotypic carbapenemase tests, polymerase chain reaction-based genotyping of carbapenemase, and pulsed-field gel electrophoresis. Outbreak management procedures were employed according to institutional regulations. The rarity of GIM-1 Acinetobacter species in the hospital and region, the lack of epidemiological links between patients, and the fact that in some patients the apparent colonization was clearly nonnosocomial prompted the suspicion of a pseudo-outbreak. Numerous environmental cultures were positive for GIM-1-positive Acinetobacter (including archived sample requisition forms, PTS capsules, cultures from line-diverter and dispenser stations, and sterilized transport capsules following PTS delivery). Moreover, it was observed that condensation fluid from subterranean PTS tubing resulted in water entry in PTS capsules, possibly conferring specimen contamination. After extensive system disinfection, environmental surveys of the PTS were negative, and no further positive patient specimens were encountered. This is the first report of a PTS-associated pseudo-outbreak. The large number of falsely positive patient-related specimens in conjunction with the potential hazard of airborne and contact spread of multidrug-resistant microorganisms (in this case, GIM-1 carbapenem-resistant Acinetobacter species) underscores the need for implementation of infection control-based monitoring and operating

  11. Nonideal transport of reactive contaminants in heterogeneous porous media: 7. distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption.

    Science.gov (United States)

    Zhang, Zhihui; Brusseau, Mark L

    2004-10-01

    The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of

  12. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, M.D. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

    1995-09-01

    A processed quartz sand (Wedron 510), mined from the St. Peter sandstone, has been characterized by a variety of chemical and physical methods for use as a reference porous media in transport model validation experiments. Wedron 510 sand was used in an intermediate-scale experiment involving migration of Ni, Li and Br through a 6-m high x 3-m diameter caisson. Ni and Li adsorption/desorption, and Li/Ni site-competition experiments yielded information on the importance of the trace mineral phases to adsorption of Li and Ni by the sand. The presence of an iron hydroxide coating similar to goethite on the sand grains is suggested by visual observation and leaching experiments. Kaolinite was identified by SEM and XRD as a significant trace mineral phase in the sand and occurs as small particles coating the sand grains. Quartz, the predominant constituent of the sand by weight, does not appear to contribute significantly to the adsorption properties of the sand. Qualitatively, the adsorption properties of the sand can be adequately modeled as a two-mineral system (goethite and kaolinite). The studies described in this report should provide a basis for understanding transport of Ni, Li and Br through porous media similar to the reference sand. Techniques were developed for obtaining parameter values for surface complexation and kinetic adsorption models for the sand and its mineral components. These constants can be used directly in coupled hydrogeochemical transport codes. The techniques should be useful for characterization of other natural materials and elements in high-level nuclear waste in support of coupled hydrogeochemical transport calculations for Yucca Mountain.

  13. Physiological response of invasive mussel Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) submitted to transport and experimental conditions.

    Science.gov (United States)

    Cordeiro, N I S; Andrade, J T M; Montresor, L C; Luz, D M R; Araújo, J M; Martinez, C B; Pinheiro, J; Vidigal, T H D A

    2017-03-01

    Successful animal rearing under laboratory conditions for commercial processes or laboratory experiments is a complex chain that includes several stressors (e.g., sampling and transport) and incurs, as a consequence, the reduction of natural animal conditions, economic losses and inconsistent and unreliable biological results. Since the invasion of the bivalve Limnoperna fortunei (Dunker, 1857) in South America, several studies have been performed to help control and manage this fouling pest in industrial plants that use raw water. Relatively little attention has been given to the laboratory rearing procedure of L. fortunei, its condition when exposed to a stressor or its acclimation into laboratory conditions. Considering this issue, the aims of this study are to (i) investigate L. fortunei physiological responses when submitted to the depuration process and subsequent air transport (without water/dry condition) at two temperatures, based on glycogen concentrations, and (ii) monitor the glycogen concentrations in different groups when maintained for 28 days under laboratory conditions. Based on the obtained results, depuration did not affect either of the groups when they were submitted to approximately eight hours of transport. The variation in glycogen concentration among the specimens that were obtained from the field under depurated and non-depurated conditions was significant only in the first week of laboratory growth for the non-depurated group and in the second week for the depurated group. In addition, the tested temperature did not affect either of the groups that were submitted to transport. The glycogen concentrations were similar to those of the specimens that were obtained from the field in third week, which suggests that the specimens acclimated to laboratory conditions during this period of time. Thus, the results indicate that the air transport and acclimation time can be successfully incorporated into experimental studies of L. fortunei. Finally

  14. Experimental determination of contaminant metal mobility as a function of temperature, time and solution chemistry. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, S.; Bruton, C. [Lawrence Livermore National Lab., CA (US); O' Day, P.; Sahai, N. [Arizona State Univ., Tempe, AZ (US)

    1997-01-01

    'Strontium is significantly more mobile than other hazardous radioactive metals. Its partitioning between aqueous and solid phases is controlled by reactions that occur at the interface between natural waters and minerals. At a groundwater site in Hanford (200-BP-5), the aerial extent of the {sup 90}Sr plume is 100 times larger than the aerial extent of the {sup 137}Cs and the {sup 239}Pu plumes. Similarly, contaminated, perched watertables at INEL have much higher aqueous concentrations of {sup 90}Sr than {sup 137}Cs, presumably because Cs is preferentially sorbed to solids (Duncan 1995). Under high physical flow conditions, such as those in the highly fractured rock at Hanford and INEL, {sup 90}Sr present in plumes may spread off-site and cause contamination of aquifers or other water sources. Geochemical factors that may contribute to the overall mobility of Sr in natural waters are the solubilities of phases such as strontianite (SrCO{sub 3}) and formation of strong complexes with sulfate and nitrate. Although {sup 90}Sr is mobilized in natural waters in these examples, significant concentrations may also be present in solid phases. Sorption experiments using a wide variety of substrates at room temperature have shown that Sr is removed from solution under certain conditions. Additionally, strontianite (SrCO{sub 3}) may precipitate at low Sr concentrations in the pH range of waters in contact with basaltic rocks, which varies between pH 8 and 10. Waters contain variable amounts of carbonate owing to atmospheric interactions; the partial pressure of CO{sub 2} is about 10 x 3.5 atm in air and commonly as high as 10 x 2.5 atm in soils. The objective of this work is to determine the fundamental data needed to predict the behavior of strontium at temperature and time scales appropriate to thermal remediation. The authors approach combines macroscopic sorption/precipitation and desorption/dissolution kinetic experiments, which track changes in solution

  15. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  16. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions.

    Science.gov (United States)

    Gómez-Couso, H; Fontán-Saínz, M; Sichel, C; Fernández-Ibáñez, P; Ares-Mazás, E

    2009-06-01

    To investigate the efficacy of the solar water disinfection (SODIS) method for inactivating Cryptosporidium parvum oocysts in turbid waters using 1.5 l polyethylene terephthalate (PET) bottles under natural sunlight. All experiments were performed at the Plataforma Solar de Almería, located in the Tabernas Desert (Southern Spain) in July and October 2007. Turbid water samples [5, 100 and 300 nephelometric turbidity units (NTU)] were prepared by addition of red soil to distilled water, and then spiked with purified C. parvum oocysts. PET bottles containing the contaminated turbid waters were exposed to full sunlight for 4, 8 and 12 h. The samples were then concentrated by filtration and the oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. Results After an exposure time of 12 h (cumulative global dose of 28.28 MJ/m(2); cumulative UV dose of 1037.06 kJ/m(2)) the oocyst viabilities were 11.54%, 25.96%, 41.50% and 52.80% for turbidity levels of 0, 5, 100 and 300 NTU, respectively, being significantly lower than the viability of the initial isolate (P < 0.01). SODIS method significantly reduced the potential viability of C. parvum oocysts on increasing the percentage of oocysts that took up the dye PI (indicator of cell wall integrity), although longer exposure periods appear to be required than those established for the bacterial pathogens usually tested in SODIS assays. SODIS.

  17. Small-scale experimental contamination with diesel oil does not affect the recolonization of Sargassum (Fucales fronds by vagile macrofauna

    Directory of Open Access Journals (Sweden)

    Henrique Grande

    2012-04-01

    Full Text Available Coastal regions are subject to various forms of environmental impacts, such as spills of crude oil and associated products, with a wide range of effects on benthic biodiversity. This study characterized the patterns of recolonization of the macrofauna associated with the brown alga Sargassum cymosum(C. Agardh, on fronds contaminated by diesel oil in a small-scale field experiment. We collected 40 fronds of S. cymosum from an algal bed in southeastern Brazil and defaunated each frond by immersion in fresh water. Half of the fronds were then immersed in seawater (control group and the other half in a mixture of 50% diesel oil and 50% seawater (impacted group. The test fronds were returned to the algal bed, and natural recolonization took place over a period of 12 days. Samples of the vagile macrofauna were taken randomly at three-day intervals over the course of the recolonization period. No significant differences in the densities of most taxa were found between the impact treatment (IG and control treatment (CG. At the end of the recolonization period (day 12, the faunal composition of the treated fronds was very similar to the natural conditions, indicating a high rate of community recovery and suggesting that benthic associations can be rather resilient to diesel-oil impacts on a small scale.

  18. Experimental study of Lucilia sericata (Diptera Calliphoridae) larval development on rat cadavers: Effects of climate and chemical contamination.

    Science.gov (United States)

    Aubernon, Cindy; Charabidzé, Damien; Devigne, Cédric; Delannoy, Yann; Gosset, Didier

    2015-08-01

    Household products such as bleach, gasoline or hydrochloric acid have been used to mask the presence of a cadaver or to prevent the colonization of insects. These types of chemicals affect insect development and alter the forensic entomology analysis. This study was designed to test the effects of six household products (bleach, mosquito repellent, perfume, caustic soda, insecticide and unleaded gasoline) on blowfly (Lucilia sericata, Diptera: Calliphoridae) larval development. Furthermore, the effects of climate (rain or dry conditions) on larval development were analyzed. For each replication, 100 first instars were placed on a rat cadaver on which one household product was spilled. We observed a decrease in the survival rates of the larvae but no significant effect on their development times or the adult size. The same trends were observed under rainy conditions. However, the rain altered the effects of some tested household products, especially gasoline. These results demonstrate for the first time the successful development of necrophagous larvae on chemically contaminated cadavers, and provide evidence for the range of possible effects to expect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. MONITOR SURVEY OF GROUND CONTAMINATION (RADSAFE),

    Science.gov (United States)

    RADIOACTIVE CONTAMINATION , CONTAMINATION , RADIATION MEASURING INSTRUMENTS, SURFACE BURST, RADIOACTIVE DECAY, MAPPING, EXPERIMENTAL DATA, WIND, DOSIMETERS, GAMMA EMISSION, RADIATION DOSAGE, IONIZATION CHAMBERS.

  20. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  1. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport

    Science.gov (United States)

    Xiong, Qingrong; Baychev, Todor G.; Jivkov, Andrey P.

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community.

  2. Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results, and Predictive Relations

    Science.gov (United States)

    Bar-Cohen, Avram; Sheehan, Jessica R.; Rahim, Emil

    2012-01-01

    A comprehensive literature review and analysis of recent microchannel/microgap heat transfer data for two-phase flow of refrigerants and dielectric liquids is presented. The flow regime progression in such a microgap channel is shown to be predicted by the traditional flow regime maps. Moreover, Annular flow is shown to be the dominant regime for this thermal transport configuration and to grow in importance as the channel diameter decreases. The results of heat transfer studies of single miniature channels, as well as the analysis and inverse calculation of IR images of a heated microgap channel wall, are used to identify the existence of a characteristic M-shaped heat transfer coefficient variation with quality (or superficial velocity), with inflection points corresponding to transitions in the two-phase cooling modalities. For the high-quality, Annular flow conditions, the venerable Chen correlation is shown to yield predictive agreement for microgap channels that is comparable to that attained for macrochannels and to provide a mechanistic context for the thermal transport rates attained in microgap channels. Results obtained from infrared imaging, revealing previously undetected, large surface temperature variations in Annular flow, are also reviewed and related to the termination of the favorable thin-film evaporation mode in such channels.

  3. Experimental study of a fuel cell power train for road transport application

    Science.gov (United States)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.

  4. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Xiaofeng Pang

    2016-07-01

    Full Text Available The influences of electromagnetic fields (EMFs on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the

  5. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    Science.gov (United States)

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  6. An evaluation of disinfectants for the sanitation of porcine reproductive and respiratory syndrome virus-contaminated transport vehicles at cold temperatures.

    Science.gov (United States)

    Dee, Scott; Deen, John; Burns, Danny; Douthit, George; Pijoan, Carlos

    2005-01-01

    The objective of this study was to evaluate the efficacy of commercially available disinfectants to sanitize porcine reproductive and respiratory syndrome virus (PRRSV) contaminated trailer models in cold climates (-20 degrees C and 4 degrees C). Disinfectants evaluated included Synergize, Aseptol 2000, Biophene, Sentramax, Virkon, Tek Trol, and DC&R. All products were applied to trailers via fumigation at 4 degrees C. Following experimental contamination of model trailers with PRRSV MN 30-100 (5 x 10(5) TCID50), models were tested for the presence or absence of PRRSV-RNA by polymerase chain reaction (PCR) on swabs collected 0, 30, and 60 min after treatment. Treatments included washing only, washing plus disinfectant fumigation, washing plus fumigation, and washing plus overnight drying. The PRRSV-RNA detected across trailers ranged from 0/12 replicates in trailers treated with Synergize or allowed to dry for 8 h. These trailers were also negative for the presence of infectious PRRSV, based on the lack of sentinel pig infection (0/4 replicates). In contrast, the detection of PRRSV-positive swabs by PCR ranged from 3/12 (Aseptol) to 10/12 (Biophene). Based on these results, the efficacy of Synergize was evaluated at -20 degrees C. In an attempt to reduce the impact of freezing on disinfectant activity, 30 mL of disinfectant was added to a 3840 mL of a 40% methanol solution, a 10% propylene glycol (PG) solution, or water alone. The PRRSV-contaminated trailers were treated with 1 of 3 disinfectant mixtures via fumigation, stored for 8 h at -20 degrees C, allowed to thaw, and sampled as described. Trailers treated with 40% methanol or 10% PG did not freeze and were negative for PRRSV-RNA and infectious virus following thawing. In contrast, trailers treated with disinfectant and water were frozen within 60 min at -20 degrees C, and decontamination was not successful.

  7. Single well thermal tracer test, a new experimental set up for characterizing thermal transport in fractured media

    Science.gov (United States)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Floriant; Gerard, Marie-Françoise; Le Borgne, Tanguy

    2017-04-01

    Thermal transport in fractured media depends on the hydrological properties of fractures and thermal characteristics of rock. Tracer tests using heat as tracer can thus be a good alternative to characterize fractured media for shallow geothermal needs. This study investigates the possibility of implementing a new thermal tracer test set up, the single well thermal tracer test, to characterize hydraulic and thermal transport properties of fractured crystalline rock. The experimental setup is based on injecting hot water in a fracture isolated by a double straddle packer in the borehole while pumping and monitoring the temperature in a fracture crossing the same borehole at greater elevation. One difficulty comes from the fact that injection and withdrawal are achieved in the same borehole involving thermal losses along the injection tube that may disturb the heat recovery signal. To be able to well localize the heat influx, we implemented a Fiber-Optic Distributed Temperature Sensing (FO-DTS) which allows the temperature monitoring with high spatial and temporal resolution (29 centimeters and 30 seconds respectively). Several tests, at different pumping and injection rates, were performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). We show through signal processing how the thermal breakthrough may be extracted thanks to Fiber-Optic distributed temperature measurements. In particular, we demonstrate how detailed distributed temperature measurements were useful to identify different inflows and to estimate how much heat was transported and stored within the fractures network. Thermal breakthrough curves of single well thermal tracer tests were then interpreted with a simple analytical model to characterize hydraulic and thermal characteristics of the fractured media. We finally discuss the advantages of these tests compared to cross-borehole thermal tracer tests.

  8. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  9. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamic Research Associates, Inc., Albuquerque, NM (United States); Sullivan, T.M.; Kinsey, R.R. [Brookhaven National Lab., Upton, NY (United States)

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.

  10. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [University of New Mexico

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  11. Experimental study on noise reduction effect of a muffler inserted in liquid transporting pipeline

    Science.gov (United States)

    Du, T.; Xu, W. W.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    In order to reduce the noise of liquid transporting pipelines caused by the motion of the power unit, a kind of compact hydrodynamic muffler used in pipes with small diameters is proposed which achieves good vibration damping as well as hydrodynamic noise reduction. Based on the rubber damper tube, according to the structure characteristics, the muffler is composed of two main parts, the rubber damper tube and the inner noise reducing structure. Experiment on insertion loss of the muffler in stationary state is conducted. It is found that the rubber damper tube itself has a good performance at noise reducing at the frequency band considered here, total insertion loss values can reach 10 dB and the inner structures improve the performance of the muffler at low frequency band.

  12. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    Science.gov (United States)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  13. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  14. Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling

    Science.gov (United States)

    Majdalani, S.; Chazarin, J. P.; Delenne, C.; Guinot, V.

    2015-01-01

    This paper focuses on the effects of the observation scale and sampling on the dispersion of tracers in periodical heterogeneous porous media. A Model Heterogeneous Porous Medium (MHPM) with a high degree of heterogeneity was built. It consists of a preferential flow path surrounded by glass beads. 44 tracer experiments were carried out on several series of periodic MHPM to investigate the effect of the observation scale on solute dispersion. Each series was replicated several times, allowing for a statistical description of the unit transfer function of the MHPM. No significant trend was found for the dispersion coefficient as a function of the size of the MHPM. However, given the variability of the breakthrough curves from one experiment replicate to another, under-sampling might easily lead to conclude that the dispersion coefficient is variable with distance. Depending on the samples used, it would be as easy to (wrongly) detect an increasing trend as to detect a decreasing one. A confidence interval analysis of the experimental breakthrough curves in the Laplace space shows that (i) there exists a model with scale independent parameters that can describe the experimental breakthrough curves within the limits of experimental uncertainty, (ii) this model is not the advection-dispersion (AD) model, (iii) the modelling error of the AD model decreases with the number of periods, (iv) the size of the Reference Elementary Volume for the dispersion coefficient is between 10 and 20 periods. The effects of sampling prove to override those of scaling. This, with the invalidity of the AD model, leads to question attempts to calibrate and/or identify trends in the dispersion coefficient at intermediate scales from a limited number of experiment replicates.

  15. Selected issues concerning calculations and experimental tests of transport means construction elements fatigue life

    Directory of Open Access Journals (Sweden)

    Bogdan LIGAJ

    2014-12-01

    Full Text Available Development of an algorithm of fatigue life of structural components of road and rail vehicles as well as sea vessels and aircrafts involves three groups of activities connected with: development of fatigue load spectra on the basis measurement of service loads, determination of the construction material fatigue properties and a selection of the best hypothesis for estimating the fatigue damage to be used for a phenomenological description of the fatigue process. The above listed groups of problems include the main causes of differences that occur between the calculation results and the results of fatigue life experimental tests. Evaluation of these differences is the main goal of this article.

  16. The impact of co-contaminants and septic system effluent quality on the transport of estrogens and nonylphenols through soil.

    Science.gov (United States)

    Stanford, Benjamin D; Amoozegar, Aziz; Weinberg, Howard S

    2010-03-01

    The impact that varying qualities of wastewater may have on the movement of steroid estrogens through soils into groundwater is little understood. In this study, the steroid estrogens 17beta-estradiol (E2) and estrone (E1) were followed through batch and column studies to examine the impact that organic wastewater constituents from on-site wastewater treatment systems (i.e., septic systems or decentralized systems) may have on influencing the rate of transport of estrogens through soils. Total organic carbon (TOC) content (as a surrogate indicator of overall wastewater quality) and the presence of nonyl-phenol polyethoxylate surfactants (NPEO) at concentrations well below the critical micelle concentration were independently shown to be indicative of earlier breakthrough and less partitioning to soil in batch and column experiments. Both NPEO and wastewater with increasing TOC concentrations led to shifts in the equilibrium of E1 and E2 towards the aqueous phase and caused the analytes to have an earlier breakthrough than in control experiments. The presence of nonylphenols, on the other hand, did not appreciably impact partitioning of E1 or E2. Biodegradation of the steroids in soil was also lower in the presence of septic tank effluents than in an organic-free control water. Furthermore, the data indicate that the rate of movement of E1 and E2 present in septic tank effluent through soils and into groundwater can be decreased by removing the NPEOs and TOC through wastewater treatment prior to sub-surface disposal. This study offers some insights into mechanisms which impact degradation, transformation, and retardation, and shows that TOC and NPEO surfactants play a role in estrogen transport. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Experimental Exploration of Particle-Scale Bed Load Transport and Near-Bed Fluid Velocities

    Science.gov (United States)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2016-12-01

    Bed load sediment particles move as complex motions over the surface of a stream bed, accelerating and decelerating in response to the near-bed turbulence and due to particle-bed interactions. Using high-speed imagery of coarse sand particles on a planer bed surface, we track individual particle motions from start to stop, combined with measurements of near-bed fluid velocities to better characterize the relationship between these properties. These simultaneous measurements provide an initial step towards describing the dynamic relationship between the fluid and particle entrainment on the grain-scale. We start with an Eulerian a priori method wherein we grid the analyzed area and compare the fluid velocity time series to the entrainment time series within each grid space. We progressively increase the size of the grids and monitor the correlation between the two time series. We then use an a posteriori method that focuses on the fluid velocities in the vicinity of entrained particles both at the moment of entrainment and prior to the initiation of motion. We further our analysis of the relationship between particle motions and the near-bed fluid using detailed measurements of particle motions to calibrate estimates of the sediment load using a pixel differencing method. This allows us to examine connections between the fluid and particle activity over many frames rather than over the limited, manually tracked time period. Furthermore, this allows us to empirically define a distribution of particle wait times, or the duration of time between successive entrainment events over a set area, which acts to determine the transport intensity. Preliminary results suggest that there is not a clear correlation between near-bed fluid velocities and particle entrainment. In absence of a correlation we find that (1) we must think more deeply about collective entrainment and how it 'works', and (2) we must consider how the microstructure of the particles on the bed act to set up

  18. Particle and impurity transport in the Axial Symmetric Divertor Experiment Upgrade and the Joint European Torus, experimental observations and theoretical understanding

    DEFF Research Database (Denmark)

    Angioni, C.; Carraro, L.; Dannert, T.

    2007-01-01

    Experimental observations on core particle and impurity transport from the Axial Symmetric Divertor Experiment Upgrade [O. Gruber, H.-S. Bosch, S. Gunter , Nucl Fusion 39, 1321 (1999)] and the Joint European Torus [J. Pamela, E. R. Solano, and JET EFDA Contributors, Nucl. Fusion 43, 1540 (2003......)] tokamaks are reviewed and compared. Robust general experimental behaviors observed in both the devices and related parametric dependences are identified. The experimental observations are compared with the most recent theoretical results in the field of core particle transport. (C) 2007 American Institute...

  19. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    Science.gov (United States)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed

  20. Fate and Transport of Organic Contaminants in Coastal Marsh Sediments Resulting from the 2010 Gulf Oil Spill

    Science.gov (United States)

    Natter, M.; Keevan, J.; Lee, M.; Keimowitz, A.; Savrda, C.; Son, A.; Okeke, B.; Wang, Y.

    2011-12-01

    The devastating explosion and subsequent sinking of the oil platform Deepwater Horizon at the British Petroleum Macondo-1 well in the Northern Gulf of Mexico on April 20, 2010, released approximately 4.9 million barrels of crude oil into the Gulf before the well was capped on July 15, 2010. Although most light compounds of oil may be easily degraded by natural microbes on the short term, saturated heavy oil (e.g., asphaltenes, resins, polycyclic aromatics, etc.) and those adsorbed by sediments could persist in the environment for decades. The long-term effects of high levels of persistent oil compounds on biogeochemical evolution and ecosystems of salt marshes remain unclear. This research investigates the spatial range and changes in levels of oil and their biogeochemical impacts. A total of ten marsh sampling sites that varied from pristine, non-effected marshes (e.g., Weeks Bay and Wolf Bay, Alabama) to heavily oiled wetlands (e.g., Bay Jimmy and Bayou Dulac, Louisiana) were utilized for this study. Sediment cores, bulk sediments, surface water samples, degraded oil, oiled dead marsh grass, and live marsh grass were collected from these sites in an attempt to study the source, distribution, and evolution of organic compounds and oil present in sediments and pore-waters. Geochemical analyses show alarmingly high organic carbon loads in pore-waters and sediments at heavily contaminated sites months after the influx of oil ceased. Very high levels (10-28%) of total organic carbon (TOC) within the heavily oiled sediments (down to 30 cm) are clearly distinguished from those found in pristine wetland sediments (generally marsh sediments due to their higher density with respect to freshwater. TOC and DOC data clearly indicate that not all the spilled oil rose to the water surface and washed on-shore. Plumes of partially degraded oil could be spreading at various levels of the water column and feeding the underlying sediments. Geochemical biomarkers and stable isotopes

  1. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere’s attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of −44 to −49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L−1. The most hydrophilic (0.52 HI) and negatively charged (ζ −38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  2. Downstream and soaring interfaces and vortices in 2-D stratified wakes and their impact on transport of contaminants

    Directory of Open Access Journals (Sweden)

    Y. D. Chashechkin

    2006-01-01

    Full Text Available The flow of continuously stratified fluids past obstacles was studied analytically, numerically, and experimentally. The obstacles discussed here include a flat strip, aligned with the flow, inclined or transverse to the flow and a horizontal cylinder. In the flow pattern, transient and attached (lee internal waves, downstream wakes with submerged interfaces and vortices, soaring singular interfaces, soaring vortices and vortex systems are distinguished. New components of laminar flow past a horizontally towed strip are presented. Fine transverse streaky structures on the strip in the downstream wake were visualized. Soaring isolated interfaces, which are internal boundary layers forming inside the downstream attached wave field past bluff bodies were observed. With increasing of the body velocity a vortex pair was formed directly at the leading edge of this interface.

  3. Which physical and social environmental factors are most important for adolescents' cycling for transport? An experimental study using manipulated photographs.

    Science.gov (United States)

    Verhoeven, Hannah; Ghekiere, Ariane; Van Cauwenberg, Jelle; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Clarys, Peter; Deforche, Benedicte

    2017-08-17

    Ecological models emphasize that cycling for transport is determined by an interplay between individual, physical and social environmental factors. The current study investigated (a) which physical and social environmental factors determine adolescents' preferences towards cycling for transport and (b) which individual, physical and social environmental factors are associated with their intention to actually cycle for transport. An online questionnaire consisting of questions on individual and social environmental variables, and 15 choice-based conjoint tasks with manipulated photographs was completed by 882 adolescents (55.3% male; 13.9 ± 1.6 years). Within the choice tasks, participants were asked to indicate which of two situations they would prefer to cycle to a friend's house. The manipulated photographs were all modified versions of one semi-urban street which differed in the following physical micro-environmental attributes (separation of cycle path, evenness of cycle path, speed limit, speed bump, traffic density, amount of vegetation and maintenance). In addition, each photograph was accompanied by two sentences which described varying cycling distances and co-participation in cycling (i.e. cycling alone or with a friend). After each choice task participants were also asked if they would actually cycle in that situation in real life (i.e. intention). Hierarchical Bayes analyses were performed to calculate relative importances and part-worth utilities of environmental attributes. Logistic regression analyses were performed to investigate which individual, physical and social environmental factors were associated with adolescents' intention to actually cycle for transport. Adolescents' preference to cycle for transport was predominantly determined by separation of cycle path, followed by shorter cycling distance and co-participation in cycling. Higher preferences were observed for a separation between the cycle path and motorized traffic by means of a

  4. Hydrogeologic settings and groundwater-flow simulations for regional investigations of the transport of anthropogenic and natural contaminants to public-supply wells—Investigations begun in 2004

    Science.gov (United States)

    Eberts, Sandra M.

    2011-01-01

    A study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. The study was designed to shed light on factors that affect the vulnerability of groundwater and, more specifically, water from public-supply wells to contamination to provide a context for the NAWQA Program's earlier finding of mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation. The TANC study has included investigations at both the regional (tens to thousands of square kilometers) and local (generally less than 25 square kilometers) scales. At the regional scale, the approach to investigation involves refining conceptual models of groundwater flow in hydrologically distinct settings and then constructing or updating a groundwater-flow model with particle tracking for each setting to help quantify regional water budgets, public-supply well contributing areas (areas contributing recharge to wells and zones of contribution for wells), and traveltimes from recharge areas to selected wells. A great deal of information about each contributing area is captured from the model output, including values for 170 variables that describe physical and (or) geochemical characteristics of the contributing areas. The information is subsequently stored in a relational database. Retrospective water-quality data from monitoring, domestic, and many of the public-supply wells, as well as data from newly collected samples at selected public-supply wells, also are stored in the database and are used with the model output to help discern the more important factors affecting vulnerability in many, if not most, settings. The study began with investigations in seven regional areas, and it benefits from being conducted as part of the NAWQA Program, in which consistent methods are used so that meaningful comparisons can be

  5. Experimental Study on Interfacial Area Transport of Two-Phase Flow under Vibration Conditions

    Directory of Open Access Journals (Sweden)

    Xiu Xiao

    2017-01-01

    Full Text Available An experimental study on air-water two-phase flow under vibration condition has been conducted using double-sensor conductivity probe. The test section is an annular geometry with hydraulic diameter of 19.1 mm. The vibration frequency ranges from 0.47 Hz to 2.47 Hz. Local measurements of void fraction, interfacial area concentration (IAC, and Sauter mean diameter have been performed along one radius in the vibration direction. The result shows that local parameters fluctuate continuously around the base values in the vibration cycle. Additional bubble force due to inertia is used to explain lateral bubble motions. The fluctuation amplitudes of local void fraction and IAC increase significantly with vibration frequency. The radial distribution of local parameters at the maximum vibration displacement is specifically analyzed. In the void fraction and IAC profiles, the peak near the inner wall is weakened or even disappearing and a strong peak skewed to outer wall is gradually observed with the increase of vibration frequency. The nondimensional peak void fraction can reach a maximum of 49% and the mean relative variation of local void fraction can increase to more than 29% as the vibration frequency increases to 2.47 Hz. But the increase of vibration frequency does not bring significant change to bubble diameter.

  6. Experimental study of contamination by inhalation of radioactive iodine aerosols. Biological balance; Etude experimentale de la contamination par inhalation d'aerosols d'iode radioactif bilan biologique

    Energy Technology Data Exchange (ETDEWEB)

    Marble, G. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    Several articles have been published concerning research into contamination produced by inhalation of radioactive iodine aerosols in monkeys. Results dealing with the biological balance of this contamination are presented and discussed in this report. (author) [French] L'etude experimentale de la contamination par inhalation d'aerosols d'iode radioactif effectuee chez le singe a fait l'objet de plusieurs publications. Les resultats concernant le bilan biologique de cette contamination sont presentes et discutes dans ce rapport. (auteur)

  7. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain.

    Science.gov (United States)

    Garfí, Marianna; Pedescoll, Anna; Bécares, Eloy; Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; García, Joan

    2012-10-15

    The aim of this study was to examine the effects of climate, season and wastewater quality on contaminant removal efficiency of constructed wetlands implemented in Mediterranean and continental-Mediterranean climate region of Spain. To this end, two experimental horizontal subsurface flow constructed wetlands located in Barcelona and León (Spain) were compared. The two constructed wetland systems had the same experimental set-up. Each wetland had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium of D(60)=7.3 mm, and was planted with Phragmites australis. Both systems were designed in order to operate with a maximum organic loading rate of 6 g(DBO) m(-2) d(-1). Experimental systems operated with a hydraulic loading rate of 28.5 and 98 mm d(-1) in Barcelona and León, respectively. Total suspended solids, biochemical oxygen demand and ammonium mass removal efficiencies followed seasonal trends, with higher values in the summer (97.4% vs. 97.8%; 97.1% vs. 96.2%; 99.9% vs. 88.9%, in Barcelona and León systems, respectively) than in the winter (83.5% vs. 74.4%; 73.2% vs. 60.6%; 19% vs. no net removal for ammonium in Barcelona and León systems, respectively). During the cold season, biochemical oxygen demand and ammonium removal were significantly higher in Barcelona system than in León, as a result of higher temperature and redox potential in Barcelona. During the warm season, statistical differences were observed only for ammonium removal. Results showed that horizontal subsurface flow constructed wetland is a successful technology for both regions considered, even if winter seemed to be a critical period for ammonium removal in continental climate regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Experimental contamination of margaritana margaritifera (L) (a Fresh water bivalve) by caesium 137; Contamination experimentale de margaritana margaritifera (L) (bivalve d'eau douce) par le cesium 137

    Energy Technology Data Exchange (ETDEWEB)

    Foulquier, L.; Bovard, P.; Grauby, A. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1966-07-01

    The hydro biological research carried out in the Radio-Ecology Section has led the authors to study some Margaritana sampling stations situated down-stream from the Monts d'Arree nuclear power station. They describe the preservation and contamination methods used for fixing the {sup 137}Cs concentration factors in the case of Margaritana Margaritifera (L). The results of experiments carried out over a period of one hundred days show that the specific activity of the various organs is stabilized after thirty to thirty-five days. The authors have noticed a relatively low adsorption on the shell through the intermediary of micro-organisms, and a strong and rapid absorption in the soft parts. The concentration factors have values, at equilibrium, of around: 9 for the shell, 300 for all the organs, and 38 for the whole animal. A comparison of these results with work published by other authors makes it possible to draw general conclusions concerning the mechanism of {sup 137}Cs fixation by lamellibranch, as well as their capacity of fixation. (author) [French] Les etudes hydrobiologiques effectuees au sein de la Section de Radio-Ecologie ont amene les auteurs a etudier des stations de prelevement de Margaritana en aval de la Centrale Nucleaire des Monts d'Arree. Ils decrivent les methodes de conservation et de contamination utilisees pour l'etablissement des facteurs de concentration du {sup 137}Cs par Margaritana margaritifera (L). Les resultats des experimentations menees pendant cent jours montrent que les activites specifiques de la coquille et des differents organes se stabilisent au bout de trente a trente-cinq jours. Les auteurs constatent une adsorption relativement faible sur la coquille par l'intermediaire des micro-organismes et une absorption forte et rapide dans les parties molles. Les facteurs de concentration se situent, a l'equilibre, autour de: 9 pour la coquille, 300 pour l'ensemble des organes et 38 si l'on considere

  9. Contamination of public transports by Staphylococcus aureus and its carriage by biomedical students: point-prevalence, related risk factors and molecular characterization of methicillin-resistant strains.

    Science.gov (United States)

    Mendes, Â; Martins da Costa, P; Rego, D; Beça, N; Alves, C; Moreira, T; Conceição, T; Aires-de-Sousa, M

    2015-08-01

    To analyse the contamination of public transports by Staphylococcus aureus and assess its carriage by biomedical students, focussing on the point-prevalence, related risk factors and molecular characterization of methicillin-resistant strains. Cross-sectional survey. Methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) isolated from handrails of buses (n = 112) and trains (n = 79) circulating in Porto and from nasal swabs of local university students (n = 475) were quantified, characterized by molecular typing methods and related to possible risk factors. The MRSA prevalence in buses (16.1%) was not significantly different from trains (8.9%). There was also no identifiable association between the counts of MSSA and MRSA in buses and trains and the number of travellers in each sampling day, specific routes (including those passing by main hospitals) or other risk factors. Of the students, 37.1% carried S. aureus, and having a part-time job or smoking were found to be risk factors for carriage. EMRSA-15 (ST22-SCCmecIVh) was the prevalent MRSA clonal lineage, found not only in the buses (n = 14) and trains (n = 2) but also in the single MRSA-carrier among the students. The characteristics of the community-associated Southwest Pacific MRSA clone were found in a single ST30-IVa isolate, which may suggest a recent SCCmec acquisition by an MSSA background in the community. The spread of EMRSA-15, a common hospital-associated lineage, among different public transports and as a nasal coloniser is of concern and warrants adequate public health control measures. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  10. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Dabrowska, Dominika; Sadikoglu, Fahreddin

    2017-05-01

    As an innovation, both black box and physical-based models were incorporated into simulating groundwater flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration (CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-noising approach. The effect of de-noised data on the performance of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as interior conditions, the radial basis function as a meshless method which solves partial differential equations of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than ANN based model up to 13%.

  11. Experimental Plan: 300 Area Treatability Test: In Situ Treatment of the Vadose Zone and Smear Zone Uranium Contamination by Polyphosphate Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Oostrom, Mart; Fruchter, Jonathan S.

    2007-08-31

    The overall objectives of the treatability test is to evaluate and optimize polyphosphate remediation technology for infiltration either from ground surface, or some depth of excavation, providing direct stabilization of uranium within the deep vadose and capillary fringe above the 300 Area aquifer. Expected result from this experimental plan is a data package that includes: 1) quantification of the retardation of polyphosphate, 2) the rate of degradation and the retardation of degradation products as a function of water content, 3) an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) an understanding of the transformation mechanism, identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and –silicate minerals with the polyphosphate remedy under solubility-limiting conditions, 5) quantification of the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and capillary fringe, and 6) quantification of reliable equilibrium solubility values for autunite under hydraulically unsaturated conditions allowing accurate prediction of the long-term stability of autunite. Moreover, results of intermediate scale testing will quantify the transport of polyphosphate and degradation products, and yield degradation rates, at a scale that is bridging the gap between the small-scale UFA studies and the field scale. These results will be used to test and verify a site-specific, variable saturation, reactive transport model and to aid in the design of a pilot-scale field test of this technology. In particular, the infiltration approach and monitoring strategy of the pilot test would be primarily based on results from intermediate-scale testing. Results from this

  12. An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems: ADAPTIVE GAUSSIAN PROCESS-BASED INVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiangjiang [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-08-01

    Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose a Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.

  13. Design of Algorithms for their Use in the Control of Solutes Transport in Contaminated Aquifers; Diseno de algoritmos para su uso en el control del transporte de solutos en acuiferos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Najera, Juan Diego [Comision Federal de Electricidad (Mexico)

    2002-06-01

    This paper establishes the theoretical foundations of a mathematical methodology to approach the rehabilitation of aquifers contaminated by dissolved substances, with the assistance of numerical techniques. The derived algorithms are of control or management type, since simultaneously to the predictive numerical solution of the solute transport equation, they determine those solutions that fulfil water quality restrictions. The controlling variable is the concentration of the polluting agent dissolved in the flow field. The considerations are kinematics because they take into account the advection and dispersion terms, but they also considerate the first order kinetic sorption model and the sources/sinks for the concentration. We describe the physical arguments and mathematical theory of subdiferentials necessary to establish the control problem of initial and boundary values for the solutes transport equation; afterwards, the primal variational model and the mixed of dual internal control as well as the formal discrete version of both formulations are obtained, so that solution algorithms of finite element semi discrete type are generated. Due to the hyperbolic-parabolic character of the transport equation, when the advective tem is dominant, in this work it is approximated by means of the lkeda's partial upwind technique. To prove the theory a hypothetical example is presented, and we analyze the two possible cases for the concentration of a polluting agent: when it dose not exceed and when it escapes the regulator limits of water quality. In both situations the primal and mixed algorithms determine the appropriate numerical solutions of each kind of problem. [Spanish] Este trabajo establece los fundamentos teoricos de una metodologia matematica para abordar la rehabilitacion de mantos acuiferos contaminados por sustancias disueltas, con la asistencia de tecnicas numericas. Los algoritmos que se derivan son de control o de manejo, ya que inmerso a la

  14. Coupled dynamics of the co-evolution of gravel bed topography, flow turbulence and sediment transport in an experimental channel

    Science.gov (United States)

    Singh, Arvind; Foufoula-Georgiou, Efi; Porté-Agel, Fernando; Wilcock, Peter R.

    2012-12-01

    A series of flume experiments were conducted in a large experimental channel at the St. Anthony Falls Laboratory to understand the coupled dynamics of flow and bed forms above the sediment-water interface. Simultaneous high resolution measurements of velocity fluctuations, bed elevations and sediment flux at the downstream end of the channel, were made for a range of discharges. The probability density functions (pdfs) of bed elevation increments and instantaneous Reynolds stress reveal a power law tail behavior and a wavelet cross-correlation analysis depicts a strong dependence of these series across a range of scales, indicating a feedback between bed form dynamics and near-bed turbulence. These results complement our previous findings in which the signature of bed form evolution on the near-bed velocity fluctuations was confirmed via the presence of a spectral gap and two distinct power law scaling regimes in the spectral density of velocity fluctuations. We report herein a strong asymmetry in the probability distribution of bed elevation increments and instantaneous Reynolds stresses, the latter being further analyzed and interpreted via a quadrant analysis of velocity fluctuations in the longitudinal and vertical directions. We also report the presence of intermittency (multifractality) in bed elevation increments and interpret it, in view of the asymmetric nature of the pdfs, as the result of scale coupling. In other words, the geometric asymmetry at the bed form scale gets transferred down to a probabilistic asymmetry at all smaller scales indicating a local anisotropy in the energy transfer. Finally, we propose a predictive relationship between bed form averaged sediment transport rates and bed form averaged instantaneous Reynolds stress and validate it using our experimental data.

  15. Experimental evaluation of the 'transport-of-intensity' equation for magnetic phase reconstruction in Lorentz transmission electron microscopy.

    Science.gov (United States)

    Kohn, Amit; Habibi, Avihay; Mayo, Martin

    2016-01-01

    The 'transport-of-intensity' equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni80Fe20 (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 μm and 800 μm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5Tnm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hygienic characteristics of radiation situation in the water area of The Ladoga Lake during salvaging of the radioactively contaminated experimental vessel “KIT”

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2016-01-01

    Full Text Available In 1991, a salvage operation of the waterlogged radioactive contaminated vessel in the water area of lake Ladoga was carried out. In 1953-1954, new radiological weapons or new radiological warfare agenst were tested on this vessel. By the beginning of works, the experimental vessel was on the ooze in the half-flooded condition at a depth of 4,5-6 meters. There were approximate 2000 m3 of contaminated water and silt, mixed with oil products inside the vessel. The aims of the study are to perform:1 the hygienic assessment of radiation situation on the place of the vessel berthing before, during and after ship salvaging; 2 the radiation risk assessment for the population of the region. The assessment of the radiological situation on the board and at the place of the vessel berthing was carried out on the base of dosimetric, spectrometric and radiochemistry surveys. The gamma ray exposure rate at a height of 1 m from the superstructures and main deck outer surfaces was on average 0,14 μSv/h andit did not exceeded 0,30 μSv/h. On the place of the vessel berthing, an increasing of concentrations of Sr-90, Cs-137, Pu-239,240 in samples of water, bottom sediments, and algae has been determined. Object posed no radiation hazard to the population of the region. However, some inhabitants, despite the ban, visited the vessel for recreation and fishing. Their potential exposure dose could reach 0,5 mSv/y. Ship salvaging included salvage pontoon launching, ship’s bottom isolation, liquid waste pumping from the vessel to the special tanker, ship raising and dockage, liquid waste remediation, discharge of remediated water in the water area of lake Ladoga, solidification of liquid waste remained in the vessel’s rooms. Liquid waste remediation and strict radiation control of each process prohibited significant hygienic degradation of the radiation situation in the water area of the lake Ladoga. An insignificant increasing of levels

  17. Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiOx hole transport layer

    Science.gov (United States)

    Wei, Xiaoqing; Wang, Xian; Jiang, Hailong; Huang, Yongliang; Han, Anjun; Gao, Qi; Bian, Jiantao; Liu, Zhengxin

    2017-12-01

    Numerical simulation of inverted planar perovskite solar cells based on NiOx hole transport layer was performed with AMPS-1D program. The simulated device parameters were shown to agree well with our experimental work. The simulated results revealed that the device contained typical p-i-n junction configuration. The optimum thickness of the absorber, the effects of the absorber quality, the defect density of interfaces, the effects of VBO and CBO, the interface contact at front and back electrodes were analyzed. Open-circuit voltage mainly depended on the defect density in CH3NH3PbI3 layer, the recombination at HTL/CH3NH3PbI3 and ETL/CH3NH3PbI3 interface, the values of VBO and CBO, while short-circuit current mainly depended on the thickness of CH3NH3PbI3 layer. Fill factor was significantly influenced by the interface contact at front and back electrodes. Remarkably, a power conversion efficiency of 21.8% is obtained under optimised conditions. Real devices with PCE of up to 15% were obtained by initially optimizing the preparation of CH3NH3PbI3 absorber layer. Our work can provide some important guidance for device design and optimization from the considerations of both theory and experiment.

  18. Validation of Geant4 on Proton Transportation for Thick Absorbers: Study Based on Tschalär Experimental Data

    Science.gov (United States)

    Hoff, Gabriela; Denyak, Valeriy; Schelin, Hugo R.; Paschuk, Sergei

    2017-02-01

    Imaging techniques using protons as incident particles are currently being developed to substitute X-ray computer tomography and nuclear magnetic resonance methods in proton therapy. They deal with relatively thick targets, like the human head or trunk, where protons lose a significant part of their energy, however, they have enough energy to exit the target. The physical quantities important in proton imaging are kinetic energy, angle and coordinates of emerging proton from an absorber material. In recent times, many research groups use the Geant4 toolkit to simulate proton imaging devices. Most of the available publications about validation of Geant4 models are for thin or thick absorbers (Bragg Peak studies), that are not consistent with the contour conditions applied to proton imaging. The main objective of this work is to evaluate the kinetic energy spectrum for protons emerging from homogeneous absorbers slabs comparing it to the experimental results published by Tschalär and Maccabee, in 1970. Different models (standard and detailed) available on Geant4 (version 9.6.p03) are explored taking into account its accuracy and computational performance. This paper presents a validation for protons with incident kinetic energies of 19.68 MeV and 49.10 MeV. The validation results from the emerging protons kinetic energy spectra show that: (i) there are differences between the reference data and the data produced by different processes evoked for transportation and (ii) the validation energies are sensitive to sub-shell processes.

  19. Outward particle transport by coherent mode in the H-mode pedestal in the Experimental Advanced Superconducting Tokamak (EAST)

    Science.gov (United States)

    Zhang, T.; Han, X.; Gao, X.; Liu, H. Q.; Shi, T. H.; Liu, J. B.; Liu, Y.; Kong, D. F.; Liu, Z. X.; Qu, H.; Xiang, H. M.; Geng, K. N.; Wang, Y. M.; Wen, F.; Zhang, S. B.; Ling, B. L.; the EAST Team

    2017-06-01

    A coherent mode (CM) in the edge pedestal region has been observed on different fluctuation quantities, including density fluctuation, electron temperature fluctuation and magnetic fluctuation in H mode plasma on the Experimental Advanced Superconducting Tokamak (EAST) tokamak. Measurements at different poloidal positions show that the local poloidal wavenumber is smallest at the outboard midplane and will increase with poloidal angle. This poloidal asymmetry is consistent with the flute-like assumption (i.e. k// ˜ 0) from which the toroidal mode number of the mode has been estimated as between 12 and 17. It was further found that the density fluctuation amplitude of the CM also demonstrated poloidal asymmetry. The appearance of a CM can clearly decrease or even stop the increase in the edge density, while the disappearance of a CM will lead to an increase in the pedestal density and density gradient. Statistical analysis showed there was a trend that as the CM mode amplitude increased, the rate of increase of the edge density decreased and the particle flux (Γdiv) onto the divertor plate increased. The CM sometimes showed burst behavior, and these bursts led bursts on Γdiv with a time of about 230 μs, which is close to the time for particle flow from the outer midplane to the divertor targets along the scrape-off layer magnetic field line. This evidence showed that the CM had an effect on the outward transport of particles.

  20. Pilot study on: Modelling of the Groundwater Flow and Contaminant Transport in the Area of the Landfill Mastwijk (Linschoten, the Netherlands)

    NARCIS (Netherlands)

    Richardson-van der Poel MA; Swartjes FA; Beusen AHW; Sauter FJ; LBG; CIM

    1995-01-01

    The Mastwijk landfill can be regarded as a potential source of contaminants for the pumping water station, situated about one kilometre northeast of the landfill. With the purpose to get insight into the spreading of contaminants originating from the Mastwijk landfill, a pilot study has been

  1. Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results.

    Science.gov (United States)

    Jeffrey Yang, Y; Haught, Roy C; Goodrich, James A

    2009-06-01

    Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation-reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.

  2. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination From Intakes of Radionuclides Part I: Field Tests and Monte Carlo Simulations.

    Science.gov (United States)

    Anigstein, Robert; Erdman, Michael C; Ansari, Armin

    2016-06-01

    The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of Co, Cs, and Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides.

  3. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  4. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  5. Transfer of contaminants from surface to hands : experimental assessment of linearity of the exposure process, adherence to the skin, and area exposed during fixed pressure and repeated contact with surfaces contaminated with a powder

    NARCIS (Netherlands)

    Brouwer, D.H.; Kroese, R.; Hemmen, J.J. van

    1999-01-01

    Estimation of dermal exposure in the workplace resulting from contact with contaminated surfaces is important in risk assessment. Models have been developed to describe the process of exposure due to transfer, but for major input parameters - that is, contact area surface and adherence - defaults

  6. Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation.

    Science.gov (United States)

    Henneberg, Anders; Sorrell, Brian K; Brix, Hans

    2012-11-01

    Aerenchymatous plants can transport methane (CH(4) ) from the root zone to the atmosphere, bypassing the surface-oxidizing layers of the soil, yet morphological and anatomical factors that govern the transport of methane have rarely been critically tested in manipulative experiments. Here, we investigated the methane transport capacity of hydroponically grown Juncus effusus, in experiments with roots submerged in nutrient solutions sparged with methane (1.16 mmol CH(4) l(-1)). Through a range of manipulations of the above- and below-ground plant parts, we tested the contradictory claims in the literature regarding which sites provide the greatest resistance to gas transport. Root manipulations had the greatest effect on methane transport. Removing root material reduced methane transport significantly, and especially the lateral roots and the root tips were important. Cutting of the shoots, with or without subsequent sealing, did not alter methane transport significantly. We confirm modelling predictions that the limiting factor for methane transport in the tussock forming wetland graminoid, J. effusus, is the amount of permeable root surface, estimated using the proxy measurement of root length. The aerial tissues do not provide any significant resistance to methane transport, and the methane is emitted from the lower 50 mm of the shoots. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    Energy Technology Data Exchange (ETDEWEB)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic

  8. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    Energy Technology Data Exchange (ETDEWEB)

    Prodan, Camelia [NJIT

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic

  9. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  10. High-Temperature Liquid Metal Transport Physics of Capillary Pumping Heat Transport System (CPHTS) Research: Experimental and Theoretical Studies of Evaporating Liquid Metal Thin Film

    Science.gov (United States)

    2012-04-01

    Gagliardo, D. L. Jacobson, D. S. Hussey and M. Arif, "Use of neutron imaging for proton exchange membrane fuel cell (PEMFC) performance analysis...Borgmeyer, C. Wilson, R. A. Winholtz, H. B. Ma, D. Jacobson, D. Hussey , 2010, “Heat Transport Capability and Fluid Flow Neutron Radiography of Three

  11. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  12. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  13. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  14. EMERGING TECHNOLOGY SUMMARY: THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS

    Science.gov (United States)

    This project investigated an innovative approach for transport of inorganic species under the influence of electric fields. This process, commonly known as electrokinetics uses low-level direct current (dc) electrical potential difference across a soil mass applied through inert...

  15. Multi scale experimental study of water and ionic transport in porous charged media: clays; Etude experimentale multiechelle du transport ionique et aqueux en milieu poreux charge: argiles

    Energy Technology Data Exchange (ETDEWEB)

    Cadene, A

    2005-10-15

    Clays are porous media of industrial interest. Due to their retention capacities and low permeability to water, they are the principal candidate for the conception of engineered barriers radioactive waste disposal. The main interest of this study is the experimental determination of the cationic and water dynamics in montmorillonite and fluoro-hectorite at low water contents This latter synthetic smectite has been used as a model clay to help the interpretation of the results issued from the first natural one. After a summary on the clayey system, this work reports the many experimental techniques (Atomic Force Microscopy, Photo-Correlation Spectroscopy, Micro-calorimetry, Powder Diffraction) used during the preliminary study concerning structural characterisation of the samples. The study of the sodic form of smectites with the use of a combination of quasi-elastic neutron scattering techniques (Time of Flight and Spin Echo) succeeded to water diffusion coefficients but also to a discernment of the limits of such techniques. Experiments with montmorillonite samples are in agreement with the simulations, so tending to a validation of the models. Experimental data obtained from synthetic hectorites will be in the near future compared to simulations In the last part, this work shows the application of Broad Band Dielectric Spectroscopy for the investigation of ionic dynamic in these porous media. Many models have been developed for the interpretation of the experimental raw data obtained with this technique. (author)

  16. Modèle d'aide à la gestion des eaux souterraines (MAGES). 1. Théorie du modèle numérique de transport des contaminants

    Science.gov (United States)

    Delay, Frédérick; Banton, Olivier; Porel, Gilles

    1998-08-01

    MAGES is software for forecasting pollution hazards of groundwater which is in the process of development at INRS-Eau (Canada). The main distinctive feature of the model is the use of stationary truncated temporal moment equations instead of the classical time dependent advection-dispersion equation to solve the transport of contaminants. The aim of this work is to describe the theory of truncated temporal moment equations and to show how the curves of the concentration versus time can be calculated from temporal moments. The discrete method used to solve the equations and its stability is also discussed.

  17. Investigations of the transport behavior of contaminants in fresh water/brine systems under consideration of density differences; Untersuchungen zum Transportverhalten von Schadstoffen in Suess- / Salzwassersystemen unter Beruecksichtigung von Dichteunterschieden

    Energy Technology Data Exchange (ETDEWEB)

    Larue, Juergen; Weyand, Torben; Mayer, Kim-Marisa

    2016-10-15

    This report contains a compilation of national and international experience gathered as part of a research project sponsored by the BMUB concerning the aspect of the transport behaviour of contaminants in freshwater/brine systems with consideration of density and viscosity differences. The fundamentals of modelling density-dependent flows are presented and a series of examples of the application with different codes and their uses with reference to real sites is described. Besides an overview of test cases for the verification of these codes, the further development of the instruments available to GRS and test calculations regarding their implementation are presented.

  18. 49 CFR 175.705 - Radioactive contamination.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  19. 49 CFR 173.443 - Contamination control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination control. 173.443 Section 173.443... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.443 Contamination control. (a) The level of non-fixed (removable) radioactive contamination on the external surfaces of each package offered for...

  20. 49 CFR 176.715 - Contamination control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination control. 176.715 Section 176.715... Requirements for Radioactive Materials § 176.715 Contamination control. Each hold, compartment, or deck area... the removable (non-fixed) radioactive surface contamination is not greater than the limits prescribed...

  1. Experimental and Particle-Tracking Model Analysis of Anomalous Transport and Sorption of Nickel in Natural Soil Columns

    Science.gov (United States)

    Edery, Y.; Rubin, S.; Dror, I.; Berkowitz, B.

    2012-12-01

    Nickel migration measured in laboratory-scale, natural soil column experiments is shown to display anomalous (non-Fickian) transport and non-equilibrium adsorption and desorption patterns. Similar experiments using a conservative tracer also exhibit anomalous behavior. In parallel batch experiments, adsorption and desorption isotherms demonstrate hysteresis, indicating some permanent adsorption. While adsorption is described by the Langmuir isotherm, equilibrium concentrations are higher than those predicted by the same model for desorption. Furthermore, batch and flow-through column experiments show the occurrence of ion exchange of nickel with magnesium and potassium in the soil; aluminum and other ion concentrations are also affected by the presence of nickel. Strong retention of nickel during transport in soil columns leads to delayed initial breakthrough (~40 pore volumes), slow increase in concentration, and extended concentration tailing at long times. Standard models, including two-site non-equilibrium formulations, fail to capture these features quantitatively. We describe the mechanisms of transport and adsorption/desorption in terms of a continuous time random walk (CTRW) model, and use a particle tracking formulation to simulate the nickel migration in the column. This approach allows us to capture the non-Fickian transport and the subtle local effects of adsorption and desorption. The model uses transport parameters estimated from the conservative tracer and, as a starting point, adsorption/desorption parameters based on the batch experiments to account for the reactions. It is shown that the batch parameters under-estimate the actual adsorption in the column. The CTRW particle tracking model is shown to capture both the full evolution of the measured breakthrough curve and the measured spatial concentration profile. Analysis of these results provides further understanding of the interaction and dynamics between transport and sorption mechanisms in

  2. Contamination Analysis Tools

    Science.gov (United States)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  3. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.

    Science.gov (United States)

    Du, Yan-Jun; Jiang, Ning-Jun; Shen, Shui-Long; Jin, Fei

    2012-07-30

    Remediation of contaminated lands in China urban areas is of great concern. Degradation of construction facilities caused by acid rain is a serious environmental pollution issue in China. This paper presents an investigation of the effects of acid rain on leaching and hydraulic properties of cement-based solidified/stabilized lead contaminated soil. Laboratory tests including infiltration test and soaking test are conducted. It is found that the soil hydraulic conductivity decreases with increase in the pore volume of flow of permeant liquids (acid rain and distilled water). The decreasing rate in the case of the acid rain is lower than that in the case of the distilled water. The soaking test results show that pH and the presence of sulfate ions of acid rain have considerable influence on the leached concentrations and leaching rate of calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered....

  5. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    NARCIS (Netherlands)

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P. J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a

  6. Experimental observation and modelling of roughness variation due to supply-limited sediment transport in uni-directional flow

    NARCIS (Netherlands)

    Tuijnder, Arjan; Ribberink, Jan S.

    2012-01-01

    This paper presents a study on the relationship between supply-limited bedform formation and the hydraulic roughness of the riverbed. The results of several new sets of flume experiments with supply-limited or partial transport conditions with bimodal sediment are presented. The results show that

  7. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  8. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  9. Nearshore transport processes affecting the dilution and fate of energy-related contaminants. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, J. O.

    1980-07-15

    Research was conducted on physical oceanograhic processes off the Georgia Coast. Spatral variations in momentum and salt flux were measured to determine their importance in generating flow and salt transport. Analyses of data are presently underway.

  10. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  11. Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport

    OpenAIRE

    Xiong, Qingrong; Baychev, Todor; Jivkov, Andrey

    2016-01-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main expe...

  12. Solid–liquid transport in a modified co-rotating twin-screw extruder-dynamic simulator and experimental validations

    OpenAIRE

    Prat, Laurent E.; N'Diaye, Senghane; Rigal, Luc; Gourdon, Christophe

    2004-01-01

    This work presents a dynamic transport model of a solid–liquid media through a twin-screw extruder (TSE). The application under consideration is the solid–liquid extraction of solute from raw plant substrate. Dynamic experiments are performed and compared with the simulated results for step functions on the solid feed rate and on the screw rotating speed. Despite some imperfections, results allow to validate the simulator.

  13. Experimental determination of the hydrothermal solubility of ReS2 and the Re–ReO2 buffer assemblage and transport of rhenium under supercritical conditions

    OpenAIRE

    Wood Scott A; Xiong Yongliang

    2002-01-01

    To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; in sulfur-free systems was buffered by the Re–ReO2 assemblage; and and in sulfur-containing systems were buffered by the magnetite–pyrite–pyrrhotite assemblage. Our experimental studies indicate that the species ReCl...

  14. THESEUS - achieving maximum possible road transport tanker safety by means of experimental accident simulation; THESEUS - Tankfahrzeuge mit hoechsterreichbarer Sicherheit durch experimentelle Unfallsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rompe, K.; Heuser, G.

    1996-03-01

    In spring 1990, the Federal German Minister for Education, Science, Research and Technology (BMBF) commissioned the team from the Federal Institute for Materials Research and Testing (BAM), DEKRA, Daimler-Benz, the Federal Road Research Institute (BASt) with the University of Cologne, Ellinghaus and TUeV Rheinland (project leader) to perform the research project `THESEUS` (the acronym THESEUS comes from the German `Tankfahrzeuge mit hoechst erreichbarer Sicherheit durch experimentelle Unfallsimulation`, which translates as `achieving maximum possible road transport tanker safety by means of experimental accident simulation`). Arting from an analysis of road transport tanker accidents, crash tests and overturn tests were performed and supplemented by investigations of road transport tanker components and accompanying complex calculations of the failure processes. Parallel to this, the static side-tilt stability of road transport tankers was determined on a tilting test platform. The causes of and constructive possibilities for avoiding overturning, which is the most common cause of accidents in which hazardous materials escape, wewre analysed in dynamic driving tests with supplementary computer simulation. Various measures for improving the safety of road transport tankers were determined and subjected to a cost-benefit analysis. (orig.) [Deutsch] Das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie hat seit 1990 das Forschungsproject `THESEUS` (Tankfahrzeuge mit hoechst erreichbarer Sicherheit durch experimentelle Unfallsimulation) der Arbeitsgemeinschaft aus TUeV Rheinland (Federfuehrung), Bundesanstalt fuer Materialforschung und -pruefung (BAM), DEKRA, Daimler Benz, Bundesanstalt fuer Strassenwesen (BASt), Universitaet Koeln und Ellinghaus gefoerdert. Ausgehend von der detaillierten Analyse von 231 Tankfahrzeugunfaellen wurden Tankfahrzeug-Crashversuche und Tankfahrzeug-Umsturzversuche durchgefuehrt. Diese Messungen an kompletten Fahrzeugen

  15. Soil-plant relationships and contamination by trace elements: A review of twenty years of experimentation and monitoring after the Aznalcóllar (SW Spain) mine accident.

    Science.gov (United States)

    Madejón, Paula; Domínguez, María T; Madejón, Engracia; Cabrera, Francisco; Marañón, Teodoro; Murillo, José M

    2017-12-27

    Soil contamination by trace elements (TE) is a major environmental problem and much research is done into its effects on ecosystems and human health, as well as into remediation techniques. The Aznalcóllar mine accident (April 1998) was a large-scale ecological and socio-economic catastrophe in the South of Spain. We present here a literature review that synthesizes the main results found during the research conducted at the affected area over the past 20years since the mine accident, focused on the soil-plant system. We review, in depth, information about the characterization of the mine slurry and contaminated soils, and of the TE monitoring, performed until the present time. The reclamation techniques included the removal of sludge and soil surface layer and use of soil amendments; we review the effects of different types of amendments at different spatial scales and their effectiveness with time. Monitoring of TE in soil and their transfer to plants (crops, herbs, shrubs, and trees) were evaluated to assess potential toxicity effects in the food web. The utility of some plants (accumulators) with regard to the biomonitoring of TE in the environment was also evaluated. On the other hand, retention of TE by plant roots and their associated microorganisms was used as a low-cost technique for TE stabilization and soil remediation. We also evaluate the experience acquired in making the Guadiamar Green Corridor a large-scale soil reclamation and phytoremediation case study. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. S. Rood

    2009-04-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  17. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. S. Rood

    2010-10-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  18. Theoretical and experimental evaluation of waste transport in selected rocks: 1977 annual report of LBL Contract No. 45901AK. Waste Isolation Safety Assessment Program: collection and generation of transport data

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Benson, L.V.; Lucas, J.; Mathur, A.K.; Tsao, L.

    1977-09-01

    During fiscal year 1977, the following subtasks were performed. (1) Thermodynamic data were tabulated for those aqueous complexes and solid phases of plutonium, neptunium, americium, and curium likely to form in the environment. (2) Eh-pH diagrams were computed and drafted for plutonium, neptunium, americium and curium at 25/sup 0/C and one atmosphere. (3) The literature on distribution coefficients of plutonium, neptunium, americium, and curium was reviewed. (4) Preliminary considerations were determined for an experimental method of measuring radionuclide transport in water-saturated rocks. (5) The transport mechanisms of radionuclides in water-saturated rocks were reviewed. (6) A computer simulation was attempted of mass transfer involving actinides in water-saturated rocks. Progress in these tasks is reported. Subtasks 1, 2, 3, and 4 are complete. The progress made in subtask 5 is represented by an initial theoretical survey to define the conditions needed to characterize the transport of radionuclides in rocks. Subtask 6 has begun but is not complete.

  19. 49 CFR 177.843 - Contamination of vehicles.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination of vehicles. 177.843 Section 177.843... and Unloading § 177.843 Contamination of vehicles. (a) Each motor vehicle used for transporting Class... surface contamination is not greater than the level prescribed in § 173.443(a) of this subchapter. (b...

  20. Water Contamination

    Science.gov (United States)

    ... Statistics Training & Education Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... type=”submit” value=”Submit” /> Healthy Water Home Water Contamination Recommend on Facebook Tweet Share Compartir On ...

  1. Groundwater Contamination

    Science.gov (United States)

    ... Payment Methods Shipping & Handling Donate Potential Threats to Groundwater The Basics What is Groundwater The Hydrologic Cycle ... Quick Facts Read The Aquifer Get Our Newsletters Groundwater Contamination Over 50% of the United States population ...

  2. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Science.gov (United States)

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  3. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Theoretical and experimental studies of reverse osmosis separation of inorganic salts in aqueous solutions; Estudio teorico y experimental de parametros de transporte a traves de membranas de osmosis inversa : Efecto de varios tipos de sales

    Energy Technology Data Exchange (ETDEWEB)

    Khavet, M.; Mengual, J. I.

    2004-07-01

    Theoretical and experimental studies of reverse osmosis separation of inorganic salts in aqueous solutions have been carried out. In this study, a polyamide thin film composite membrane in spiral wound configuration was used. The free energy of different inorganic monovalent (LiCl, NaCl, KCl, NaBr, NaI, LiBr, KBr) and divalent (MgCl2, MnCl2, CaCl2, MgBr2) salts has been calculated. The solute transport parameters were related to the free energy of the corresponding cations and anions. The mass transfer coefficient at the high pressure feed side of the spiral wound module was determined for each type of salt. The obtained theoretical values were compared to the experimental ones. The good agreements observed between the experimental and theoretical results confirm the validity of the theoretical procedure, which may be applied in modelling solar reverse osmosis plants for the prediction of the separation factor of various types of inorganic salts. (Author)

  5. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    Science.gov (United States)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular-to-rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  6. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...... during the first flush (≈1 pore volume) in association with the movement of colloid particles, followed by slower transport in association with the movement of DOC in the soil solution. The relative amount of Cu released was strongly correlated with macroporosity as determined by X-ray CT, indicating...

  7. DE FG02-06ER64193: Final Technical Report Nucleation and Precipitation Processes in the Vadose Zone during Contaminant Transport

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn L. Nagy

    2012-07-06

    The report describes results of experiments to synthesize and characterize uranium(VI)-silicates from solutions containing dissolved U(VI), Si, Na, and nitrate as a function of solution pH and Si:U ratio under ambient conditions. Solids characterization was accomplished by X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and high-energy X-ray scattering (HEXS) analysis. The purpose was to develop a framework for describing the formation of U(VI)-silicate solids that might form in contaminated soils and sediments under oxidizing conditions in the presence of aqueous uranium, and are known to exist naturally in geologic uranium deposits.

  8. Assessing the Potential Consequences of Subsurface Bioremediation: Fe-oxide Bioreductive Processes and the Propensity for Contaminant-colloid Co-transport and Media Structural Breakdown

    Science.gov (United States)

    2017-05-12

    coated Ottawa quartz sand of the same sizes were used to evaluate the transport of silica-shelled silver nanoparticles (SSSNP) and the effect of...silica- coated silver nanoparticles used as non-diffusing particle tracers in this study. Image taken from NanoComposix website (http...remediation based on cost and effectiveness (Ellis et al., 2000; Coates and Anderson, 2000). Anaerobic bioremediation generally aims to create anaerobic

  9. Investigating the Sources of Nitrogen Contamination in the Shallow Aquifer of Jakarta using a Newly Developed Distributed River-Aquifer Flow and Transport Model

    Science.gov (United States)

    Costa, D.; Burlando, P.; Liong, S. Y.

    2015-12-01

    Recent observations in the shallow aquifer of Jakarta show a rise in nitrate (NO3-) levels. Groundwater is extensively used in the city to compensate for the limited public water supply network and therefore the risk to public health from a rise in NO3- concentration is high. NO3- has been identified as a cofactor for methemoglobinemia in infants, a disease which can lead to death in extreme cases. The NO3- levels detected are still below regulatory limits for drinking purposes but strategies are necessary to contain the growing problem. To this end, the main sources and pathways of inorganic compounds containing nitrogen (N) - i.e. nitrate, nitrite (NO2-) and ammonium (NH4+) - were investigated. We combined 3 years of field measurements in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterize the N-cycle in both systems and quantify the contribution of river infiltration in the overall groundwater N budget. The computed infiltration fluxes were compared to estimates of leaks from poorly maintained septic tanks, which are extensively used in the city, to identify the main source of groundwater contamination. Observations show a strong and interdependent spatial and seasonal variability in the levels of NO3-, NO2- and NH4+ in the river, which is caused by changes in nitrification/denitrification rates due to variations in dissolved oxygen concentrations. Simulation results suggest that such dynamics in the river cause river to aquifer contamination patterns to likewise change over space and time, which leads to heterogeneous vulnerability distributions. The estimated contribution of river-N infiltration to the observed NO3- groundwater levels is small if compared to that originating from all leaking septic tanks inside Jakarta. However, in the vicinity of the Ciliwung, river to groundwater N-loading can play an important role in the local NO3- groundwater levels because it is highly

  10. Spatial distribution and transport of heavy metals in soil, ponded-surface water and grass in a pb-contaminated watershed as related to land-use practices.

    Science.gov (United States)

    Panichayapichet, P; Nitisoravut, S; Simachaya, W

    2007-12-01

    The aim of this study was to investigate the spatial distribution of heavy metal in soil and evaluate the dissolution of metal from soil to ponded-surface water, leaching through soil profiles and metal uptake in grass as related to different land-use practices. The data provided a scientific basis for best-management practices for land use in Khli Ti watershed. The watershed has a Pb-contamination problem from the previous operation of a Pb-ore concentrator and abandoned Zn-Pb mine. Sampling sites were selected from a land-use map, with land-use types falling into the following four categories: forest, agricultural land, residential area and road. Soil, ponded-surface water, grass samples and soil profiles were collected. The study related soil characteristics from different land-use practices and locations with observed metal concentrations in ponded-surface water and soil. High enrichment factors of Pb and As in soil were found. Partitioning coefficient, K(d) values were in the order: Cr > Pb > Ni > Cu > Cd > Zn. Soil disturbance from land-use activities including tillage and traffic increased leaching of trace metal from soils. Pb in soil was significantly taken up by grass even though the Transfer Factor, TF values were rather low. Agricultural activities in the watershed must be limited. Moreover, land encroachments in the upper and middle part of the watershed which have high potential of Pb must be strictly controlled in order to reduce the Pb contamination from non-point sources.

  11. Contamination vs. Exposure

    Science.gov (United States)

    ... Health Matters Information on Specific Types of Emergencies Contamination vs. exposure Recommend on Facebook Tweet Share Compartir ... contaminate their surroundings and personal property. Types of Contamination Internal Contamination Internal contamination occurs when people swallow ...

  12. phytoremediation of sewage sludge in soils contaminated with ...

    African Journals Online (AJOL)

    PROF EKWUEME

    plant-associated microbes and plants-induced changes in the contaminated environment, transport of contaminants into the plant system is highly dominated by ... plant carbon compounds. (exudates, mucilage, dead cells). Activation, Detoxification,. Mineralization. PHYTOREMEDIATION OF SEWAGE SLUDGE IN SOILS ...

  13. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China.

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Zhou, Honghua; Chen, Yapeng; XinmingHao; Fu, Aihong; Ma, Jianxin

    2017-06-01

    Studying the water use processes of desert riparian vegetation in arid regions and analyzing the response and adaptation strategies of plants to drought stress are of great significance for developing ecological restoration measures. Based on field monitoring and test analyses of physiological ecological indicators of dominant species (Populus euphratica and Tamarix chinensis) in the desert riparian forest in the lower reaches of the Tarim River, the water relations of P. euphratica and T. chinensis under drought stress are discussed and some water use strategies put forward. The results show that (1) concerning plant water uptake, desert riparian forests depend mainly on groundwater to survive under long-term water stress. (2) Concerning plant water distribution, the survival of P. euphratica and nearby shallow root plants is mainly due to the hydraulic lift and water redistribution of P. euphratica under drought stress. (3) Concerning plant water transport, P. euphratica sustains the survival of competitive and advantageous branches by improving their ability to acquire water while restraining the growth of inferior branches. (4) Concerning plant transpiration, the sap flow curves of daily variations of P. euphratica and T. chinensis were wide-peak sin and narrower-peak respectively. T. chinensis has better environmental adaptability.

  14. Transport Mechanisms and Quality Changes During Frying of Chicken Nuggets--Hybrid Mixture Theory Based Modeling and Experimental Verification.

    Science.gov (United States)

    Bansal, Harkirat S; Takhar, Pawan S; Alvarado, Christine Z; Thompson, Leslie D

    2015-12-01

    Hybrid mixture theory (HMT) based 2-scale fluid transport relations of Takhar coupled with a multiphase heat transfer equation were solved to model water, oil and gas movement during frying of chicken nuggets. A chicken nugget was treated as a heterogeneous material consisting of meat core with wheat-based coating. The coupled heat and fluid transfer equations were solved using the finite element method. Numerical simulations resulted in data on spatial and temporal profiles for moisture, rate of evaporation, temperature, oil, pore pressure, pressure in various phases, and coefficient of elasticity. Results showed that most of the oil stayed in the outer 1.5 mm of the coating region. Temperature values greater than 100 °C were observed in the coating after 30 s of frying. Negative gage-pore pressure (p(w) p(g)) in the hydrophilic matrix causes p(w) < p(g), which further results in negative pore pressure. The coefficient of elasticity was the highest at the surface (2.5 × 10(5) Pa) for coating and the interface of coating and core (6 × 10(5) Pa). Kinetics equation for color change obtained from experiments was coupled with the HMT based model to predict the color (L, a, and b) as a function of frying time. © 2015 Institute of Food Technologists®

  15. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  16. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  17. Comparison of Atmospheric Travel Distances of Several PAHs Calculated by Two Fate and Transport Models (The Tool and ELPOS with Experimental Values Derived from a Peat Bog Transect

    Directory of Open Access Journals (Sweden)

    Sabine Thuens

    2014-05-01

    Full Text Available Multimedia fate and transport models are used to evaluate the long range transport potential (LRTP of organic pollutants, often by calculating their characteristic travel distance (CTD. We calculated the CTD of several polycyclic aromatic hydrocarbons (PAHs and metals using two models: the OECD POV& LRTP Screening Tool (The Tool, and ELPOS. The absolute CTDs of PAHs estimated with the two models agree reasonably well for predominantly particle-bound congeners, while discrepancies are observed for more volatile congeners. We test the performance of the models by comparing the relative ranking of CTDs with the one of experimentally determined travel distances (ETDs. ETDs were estimated from historical deposition rates of pollutants to peat bogs in Eastern Canada. CTDs and ETDs of PAHs indicate a low LRTP. To eliminate the high influence on specific model assumptions and to emphasize the difference between the travel distances of single PAHs, ETDs and CTDs were analyzed relative to the travel distances of particle-bound compounds. The ETDs determined for PAHs, Cu, and Zn ranged from 173 to 321 km with relative uncertainties between 26% and 46%. The ETDs of two metals were shorter than those of the PAHs. For particle-bound PAHs the relative ETDs and CTDs were similar, while they differed for Chrysene.

  18. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    Science.gov (United States)

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  19. Gills of juvenile fish piaractus mesopotamicus as histological biomarkers for experimental sub-lethal contamination with the Organophosphorus Azodrin®400

    Directory of Open Access Journals (Sweden)

    Cácia Aparecida Mendes Rudnicki

    2009-12-01

    Full Text Available Piaractus mesopotamicus is a freshwater native fish from rivers of the Paraná-Paraguay Basin and of the Pantanal region and has been used for repopulation programs in Brazil. Juvenile fishes were exposed to the sub-lethal dose of 1.08mg/L of the OP Azodrin®400 containing 0.43µL/L of the active principle monocrotophos for 96 h. A frequent pathology in the gills at all times of exposure was epithelial detachment, from minimal until 24 h of exposure, to intense after 48 h of contamination. Deformed pillar cells in the respiratory lamellae leading to irregular blood spaces and blood congestion, as well as hyperplasia and lamellar fusion were observed. These histopathologies suggested that 48 h after T0 was an important time when a reduction in the capability for gaseous exchange with consequent weakening of the fishes' condition could occur. This could impair growth and development of juveniles introduced in water bodies for repopulation programs.Piaractus mesopotamicus é um peixe de água doce encontrado na Bacia Paraná-Paraguai e na região do Pantanal, tendo sido usado em programas de repovoamento no Brasil. Peixes juvenis foram expostos por 96 horas à dose sub-letal de 1.08mg/L do organofosforado (OP Azodrin®400 que contém 0,43µL/L do principio ativo monocrotofós. A patologia freqüente nas brânquias foi o descolamento epitelial que variou de mínimo nas primeiras 24 horas a severo ou intenso após 48 horas de contaminação. Deformações e degeneração de células pilares nas lamelas respiratórias levando à formação de espaços sanguíneos irregulares e congestão sanguínea, hiperplasia e fusão lamelar também foram observadas. Sugere-se que 48 horas após o T0 é um tempo crítico após exposição a níveis subletais de OP, pois a capacidade de trocas gasosas poderá ter diminuído, levando ao enfraquecimento dos peixes. Os sintomas poderão prejudicar o desenvolvimento dos juvenis introduzidos em corpos de água em

  20. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  1. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    Science.gov (United States)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution

  2. Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences

    Science.gov (United States)

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-01

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The

  3. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological stat