WorldWideScience

Sample records for containment heating experiments

  1. CONTAIN code analyses of direct containment heating experiments

    International Nuclear Information System (INIS)

    Williams, D.C.; Griffith, R.O.; Tadios, E.L.; Washington, K.E.

    1995-01-01

    In some nuclear reactor core-melt accidents, a potential exists for molten core-debris to be dispersed into the containment under high pressure. Resulting energy transfer to the containment atmosphere can pressurize the containment. This process, known as direct containment heating (DCH), has been the subject of extensive experimental and analytical programs sponsored by the U.S. Nuclear Regulatory Commission (NRC). The DCH modeling has been an important focus for the development of the CONTAIN code. Results of a detailed independent peer review of the CONTAIN code were published recently. This paper summarizes work performed in support of the peer review in which the CONTAIN code was applied to analyze DCH experiments. Goals of this work were comparison of calculated and experimental results, CONTAIN DCH model assessment, and development of guidance for code users, including development of a standardized input prescription for DCH analysis

  2. Results from the DCH-1 [Direct Containment Heating] experiment

    International Nuclear Information System (INIS)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.; Ross, J.E.; Oliver, M.S.; Lucero, D.A.; Kerley, T.E.; Arellano, F.E.; Gomez, R.D.

    1987-05-01

    The DCH-1 (Direct Containment Heating) test was the first experiment performed in the Surtsey Direct Heating Test Facility. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale model of the Zion reactor cavity. The melt was produced by a metallothermic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris propagated directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the molten material was ejected from the caviity as a cloud of particles and aerosol. The dispersed debris caused a rapid pressurization of the 103-m 3 chamber atmosphere. Peak pressure from the six transducers ranged from 0.09 to 0.13 MPa (13.4 to 19.4 psig) above the initial value in the chamber. Posttest debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a lognormal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a subsantial portion (2 to 16%) of the ejected mass was in the size range less than 10 m aerodynamic equivalent diameter

  3. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.

    1994-01-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories (SNL) are used to perform scaled experiments for the Nuclear Regulatory Commission (NRC) that simulate High Pressure Melt Ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic atmospheres, and hydrogen generation and combustion, can be studied

  4. DHCVIM - a direct heating containment vessel interactions module: applications to Sandia National Laboratories Surtsey experiments

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading that results from transfer of thermal and chemical energy from high-temperature, finely divided, molten core material to the containment atmosphere. The direct heating containment vessel interactions module (DHCVIM) has been developed at Brookhaven National Laboratory to model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratories one-tenth-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical, and hydrodynamic interactions that are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments, and containment dome. Major emphasis is placed on the description of reactor cavity dynamics. This paper summarizes the modeling principles that are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 that was made prior to execution of the experiment

  5. Scaling for Mixed Convection Heat Transfer in Passive Containments and Experiment Design

    International Nuclear Information System (INIS)

    Wang, Shengfei; Yu, Yu; Lv, Xuefeng; Niu, Fenglei; Yan, Xiuping

    2012-01-01

    Most of the advanced nuclear reactor design utilizes passive systems to remove heat from the core by natural circulation. The passive systems will be widely used in generation III pressurized water reactor. One of the typical passive systems is passive containment cooling system (PCCS), which is a passive condenser system designed to remove heat from the containment for long term cooling after a postulated reactor accident. In order to establish empirical correlations and develop simulation models, a scaling analysis is performed in designing an experiment for the prototype PCCS. This paper presents a scaling method and the design of the experimental facility. The key dimensionless parameters governing the dominant processes are given at last

  6. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    International Nuclear Information System (INIS)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-01-01

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests

  7. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  8. Containment heat removal system

    International Nuclear Information System (INIS)

    Wade, G.E.; Barbanti, G.; Gou, P.F.; Rao, A.S.; Hsu, L.C.

    1992-01-01

    This patent describes a nuclear system of a type including a containment having a nuclear reactor therein, the nuclear reactor including a pressure vessel and a core in the pressure vessel, the system. It comprises a gravity pool of coolant disposed at an elevation sufficient to permit a flow of coolant into the nuclear reactor pressure vessel against a predetermined pressure within the nuclear reactor pressure vessel; means for reducing a pressure of steam in the nuclear reactor pressure vessel to a value less than the predetermined pressure in the event of a nuclear accident, the means including a depressurization valve connected to the pressure vessel, the means further including steam heat dissipating means such dissipating means including a suppression pool; a supply of water in the suppression pool, there being a headspace in the suppression pool above the water supply; a substantial amount of air in the head space; means for feeding pressurized steam from the nuclear reactor pressure vessel to a location under a surface of the supply of water, the supply of water being effective to absorb heat sufficient to reduce steam pressure below the predetermined pressure; and a check valve for communicating the headspace with the containment, the check valve being oriented to vent air in the headspace to the containment when a pressure in the headspace exceeds a pressure in the containment by a predetermined pressure differential

  9. Passive heat removal from containment

    International Nuclear Information System (INIS)

    Gou, P.F.; Townsend, H.E.

    1990-01-01

    This patent describes a heat removal system for removing heat from a containment of a nuclear reactor. It comprises: a sealed suppression chamber in the containment; means for venting steam from the nuclear reactor into the suppression chamber upon occurrence of an event requiring dissipation of heat from the nuclear reactor. The suppression chamber containing a quantity of water; the suppression chamber having a gas-containing space above the water; a heat exchanger disposed within the gas-containing space of the suppression chamber; the heat exchanger including an enclosed structure for holding a heat-exchange fluid; means for metering a supply of heat-exchange fluid to the heat exchanger to maintain a predetermined level thereof in the enclosed structure. The heat-exchange fluid boiling in the heat exchanger in consequence of heat transfer thereto from steam present in the suppression chamber; means for separating a heat-exchange fluid vapor in the heat exchanger from the heat-exchange fluid; and means for discharging the vapor immediately following its separation from heat-exchange fluid directly from the heat exchanger to a location exterior of the containment, whereby heat is discharged from the suppression chamber, and the containment is maintained at a temperature and pressure below its design value

  10. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs

  11. Heat Transfer Reactor Experiment (HTRE)-3 Container Storage Unit Resource Conservation Recovery Act closure plan

    International Nuclear Information System (INIS)

    Spry, M.J.

    1992-11-01

    This document describes the closure of the HTRE-3 Container Storage Unit under the requirements of the Resource Conservation and Recovery Act. The unit's location, size, history, and current status are described. The document also summarizes the decontamination and decommissioning efforts performed in 1983 and provides an estimate of,waste residues remaining in the HTRE-3 assembly. A risk evaluation was performed that demonstrates that the residue does not pose a hazard to public health or the environment. Based on the risk evaluation, it is proposed that the HTRE-3 Container Storage Unit be closed in its present condition, without further decontamination or removal activities

  12. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  13. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  14. Adiabatic equilibrium models for direct containment heating

    International Nuclear Information System (INIS)

    Pilch, M.; Allen, M.D.

    1991-01-01

    Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load

  15. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  16. CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in Battelle model containment long-term heat-up phase. Results for phase I

    International Nuclear Information System (INIS)

    Fischer, K.; Schall, M.; Wolf, L.

    1991-01-01

    The major objective of the F2 experiment was to investigate the thermal-hydraulic long-term phenomena with special emphasis on natural convection phenomena in a loop-type geometry affected by variations of steam and air injections at different locations as well as dry energy supply into various compartments. The open post-test exercise is being performed in two consecutive phases, with Phase I covering the initial long-term heat-up phase. The exercise received widespread international attention with nine organizations from six European countries participating with seven different computer codes (FUMO, Jericho2, Fiploc, Wavco, Contain, Melcor, Cobra/Fathoms). These codes cover a broad spectrum of presently known European computational tools in severe accident containment analyses. The participants used either the specified mass flow or pressure control boundary conditions. Some exercised their codes for both. In total, 14 different computations were officially provided by the participants indicating strong interests and cooperative efforts by various institutions

  17. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    International Nuclear Information System (INIS)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O.; Nichols, R.T.

    1994-05-01

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report

  18. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  19. Direct containment heating models in the CONTAIN code

    International Nuclear Information System (INIS)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale

  20. Direct containment heating models in the CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  1. TRIAM-1 turbulent heating experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1983-02-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by wave-particle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated.

  2. TRIAM-1 turbulent heating experiment

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro

    1983-01-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by waveparticle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated. (Kako, I.)

  3. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  4. Results of an experiment in a Zion-like geometry to investigate the effect of water on the containment basement floor on direct containment heating (DCH) in the Surtsey Test Facility: The IET-4 test

    International Nuclear Information System (INIS)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.; Nichols, R.T.

    1992-09-01

    This document discusses the fourth experiment of the Integral Effects Test (IET-4) series which was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models (1:10) of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. ne RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 3.5-cm exit hole to simulate the ablated hole in the RPV bottom head that would be tonned by tube ejection in a severe nuclear power plant accident. The reactor cavity model contained 3.48 kg of water with a depth of 0.9 cm that corresponded to condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected into the scaled reactor cavity by 6.7 MPa steam. IET-4 replicated the third experiment in the IET series (IET-3), except the Surtsey vessel contained slightly more preexisting oxygen (9.6 mol.% vs. 9.0 mol.%), and water was placed on the basement floor inside the crane wall. The cavity pressure measurements showed that a small steam explosion occurred in the cavity at about the same time as the steam explosion in IET-1. The oxygen in the Surtsey vessel in IET-4 resulted in a vigorous hydrogen bum, which caused a significant increase in the peak pressure, 262 kPa compared to 98 kPa in the IET-1 test. EET-3, with similar pre-existing oxygen concentrations, also had a large peak pressure of 246 kPa

  5. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  6. CONTAIN calculations of direct containment heating in the Surry plant

    International Nuclear Information System (INIS)

    Williams, D.C.; Louie, D.L.Y.

    1988-01-01

    The draft NUREG-1150 risk analysis performed for the Surry plant identified direct containment heating (DCH) as a potentially dominant contributor to the total public risk associated with this plant. At that time, however, detailed mechanistic calculations of DCH loads were unavailable. Subsequently, a series of analyses of DCH scenarios using the CONTAIN-DCH code was performed in order to put the treatment of DCH on a firmer basis in the final draft of NUREG-1150. The present paper describes some of the results obtained for the Surry plant. A developmental model for DCH has been incorporated into CONTAIN code. This model includes mechanistic treatments of reasonably well-understood phenomena (e.g., heat and mass transfer), together with a parametric treatment of poorly understood phenomena for which mechanistic models are unavailable (e.g., debris de-entrainment from the gas stream due to debris-structure interactions). The DCH model was described in an earlier report, but the present version incorporates a number of advances, including treatment of the chemical equilibria involved in the iron-steam reaction

  7. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  8. The prediction of direct containment heating

    International Nuclear Information System (INIS)

    Yan, H.; California Univ., Santa Barbara, CA; Theofanous, T.G.; California Univ., Santa Barbara, CA

    1996-01-01

    A simple analytical model is proposed and shown to capture the essence of the direct containment heating phenomenon. The model is based on assuming thermal/chemical equilibrium in the melt dispersal (flow) process, and separation of the melt out of this 'equilibrium steam' in the intermediate compartment. The model reveals a natural scale (hence named the 'DCH scale') for the DCH phenomenon, and the results are in very good agreement with the integral effects tests series. On this basis, reactor predictions can be made quite simply, provided that the DCH scale for the particular condition of interest is known. This prediction of DCH scale is also addressed by a scaling approach that is shown to be consistent with the experimental data. Finally, reactor predictions (of DCH loads) are also included in generalized terms convenient for use under a wide variety of conditions. In general, the results appear to be well within the structural capability of large dry containments. (orig.)

  9. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  10. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  11. Experimental simulation of corium dispersion phenomena in direct containment heating

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms. (orig.)

  12. Blowdown heat transfer experiment, (1)

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Yamamoto, Nobuo; Osaki, Hideki; Shiba, Masayoshi

    1976-09-01

    Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)

  13. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  14. Prenatal Experiences of Containment in the Light of Bion's Model of Container/Contained

    Science.gov (United States)

    Maiello, Suzanne

    2012-01-01

    This paper explores the idea of possible proto-experiences of the prenatal child in the context of Bion's model of container/contained. The physical configuration of the embryo/foetus contained in the maternal uterus represents the starting point for an enquiry into the unborn child's possible experiences of its state of being contained in a…

  15. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  16. CO2 contain of the electric heating

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-02-01

    A recent announcement of the RTE and the ADEME on the CO 2 contain of the electric kW, refuting a 2005 study of EDF and ADEME, perturbed the public opinion and was presented as the proof that the nuclear has no part in the fight against the climatic change. The author aims to set things straight. (A.L.B.)

  17. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  18. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  19. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  20. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  1. Design experiments for a vented containment

    International Nuclear Information System (INIS)

    Hesboel, R.

    1985-01-01

    A filtered containment venting system, operable late in 1985, is currently under installation at the Barsebaeck twin nuclear power station in Sweden. The filter unit, which communicates with the containments of both reactor units, but is separated from them by rupture discs, consists of a concrete bed, 40 m high and 20 m in diameter, filled with gravel of grain size 25-35 mm. The performance of the gravel bed under such accident conditions which might lead to an activation of this safeguard system has been the subject for investigation within the FILTRA project. These investigations have shown that the gravel bed acts as: an expansion volume for decreasing gas pressure and increasing gas residence time, a heat sink for condensing steam, an excellent filter medium for removing aerosols and elemental iodine, and a sump volume for collecting radioactive condensate. The results from iodine retention studies in gravel beds are mainly considered

  2. Cornish heat transfer experiment - final report

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.

    1985-01-01

    The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)

  3. Dynamic response of the target container under pulsed heating

    Energy Technology Data Exchange (ETDEWEB)

    Liping Ni [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The structural mechanics of a liquid target container for pulsed spallation sources have been simulated using both a commercial code and a PSI-developed program. Results from the transient thermal-structural analysis showed that, due to inertia effects, the dynamic stress in the target container is contributed mainly from direct heating in the initial time stage, and later from the pressure wave in the target liquid once it reaches the wall. (author) figs., tab., refs.

  4. The advanced containment experiments (ACE) Project

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Ritzman, R.; Merilo, M.; Rahn, F.; Machiels, A.

    1992-01-01

    The overall structure and content of the ACE Project, which has been obtaining experimental data in four key areas of LWR severe accident technology are described. The key areas consist of filtration systems for vented containment concepts, radioiodine behavior in containment, the interaction of molten core material with structural concrete, and the use of water to terminate the core-concrete interaction process. Experiment procedures used in each phase of the work are summarized and the principal results and conclusions developed to date are discussed

  5. Docker Containers for Deep Learning Experiments

    OpenAIRE

    Gerke, Paul K.

    2017-01-01

    Deep learning is a powerful tool to solve problems in the area of image analysis. The dominant compute platform for deep learning is Nvidia’s proprietary CUDA, which can only be used together with Nvidia graphics cards. The nivida-docker project allows exposing Nvidia graphics cards to docker containers and thus makes it possible to run deep learning experiments in docker containers.In our department, we use deep learning to solve problems in the area of medical image analysis and use docker ...

  6. Heat transfer in underground heating experiments in granite, Stipa, Sweden

    International Nuclear Information System (INIS)

    Chan, T.; Javandel, I.; Witherspoon, P.A.

    1980-04-01

    Electrical heater experiments have been conducted underground in granite at Stripa, Sweden, to investigate the effects of heating associated with nuclear waste storage. Temperature data from these experiments are compared with closed-form and finite-element solutions. Good agreement is found between measured temperatures and both types of models, but especially for a nonlinear finite-element heat conduction model incorporating convective boundary conditions, measured nonuniform initial rock temperature distribution, and temperature-dependent thermal conductivity. In situ thermal properties, determined by least-squares regression, are very close to laboratory values. A limited amount of sensitivity analysis is undertaken

  7. Operational experience with SLAC's beam containment electronics

    International Nuclear Information System (INIS)

    Constant, T.N.; Crook, K.; Heggie, D.

    1977-03-01

    Considerable operating experience was accumulated at SLAC with an extensive electronic system for the containment of high power accelerated beams. Average beam power at SLAC can approach 900 kilowatts with the potential for burning through beam stoppers, protection collimators, and other power absorbers within a few seconds. Fast, reliable, and redundant electronic monitoring circuits have been employed to provide some of the safeguards necessary for minimizing the risk to personnel. The electronic systems are described, and the design philosophy and operating experience are discussed

  8. CONTAIN assessment of the NUPEC mixing experiments

    International Nuclear Information System (INIS)

    Stamps, D.W.

    1995-08-01

    The ability of the CONTAIN code to predict the thermal hydraulics of five experiments performed in the NUPEC 1/4-scale model containment was assessed. These experiments simulated severe accident conditions in a nuclear power plant in which helium (as a nonflammable substitute for hydrogen) and steam were coinjected at different locations in the facility with and without the concurrent injection of water sprays in the dome. Helium concentrations, gas temperatures and pressures, and wall temperatures were predicted and compared with the data. The use of different flow solvers, nodalization schemes, and analysis methods for the treatment of water sprays was emphasized. As a result, a general procedure was suggested for lumped-parameter code analyses of problems in which the thermal hydraulics are dominated by water sprays

  9. Heat transfer in a fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800 0 F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures

  10. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  11. Containment loads due to direct containment heating and associated hydrogen behavior: Analysis and calculations with the CONTAIN code

    International Nuclear Information System (INIS)

    Williams, D.C.; Bergeron, K.D.; Carroll, D.E.; Gasser, R.D.; Tills, J.L.; Washington, K.E.

    1987-05-01

    One of the most important unresolved issues governing risk in many nuclear power plants involves the phenomenon called direct containment heating (DCH), in which it is postulated that molten corium ejected under high pressure from the reactor vessel is dispersed into the containment atmosphere, thereby causing sufficient heating and pressurization to threaten containment integrity. Models for the calculation of potential DCH loads have been developed and incorporated into the CONTAIN code for severe accident analysis. Using CONTAIN, DCH scenarios in PWR plants having three different representative containment types have been analyzed: Surry (subatmospheric large dry containment), Sequoyah (ice condenser containment), and Bellefonte (atmospheric large dry containment). A large number of parameter variation and phenomenological uncertainty studies were performed. Response of DCH loads to these variations was found to be quite complex; often the results differ substantially from what has been previously assumed concerning DCH. Containment compartmentalization offers the potential of greatly mitigating DCH loads relative to what might be calculated using single-cell representations of containments, but the actual degree of mitigation to be expected is sensitive to many uncertainties. Dominant uncertainties include hydrogen combustion phenomena in the extreme environments produced by DCH scenarios, and factors which affect the rate of transport of DCH energy to the upper containment. In addition, DCH loads can be aggravated by rapid blowdown of the primary system, co-dispersal of moderate quantities of water with the debris, and quenching of de-entrained debris in water; these factors act by increasing steam flows which, in turn, accelerates energy transport. It may be noted that containment-threatening loads were calculated for a substantial portion of the scenarios treated for some of the plants considered

  12. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  13. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D.; Li, J.; Wang, J. [The Univ., of Manchester, Manchester (United Kingdom)

    2003-07-01

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results.

  14. Heat removing device for nuclear reactor container facility

    Energy Technology Data Exchange (ETDEWEB)

    Tateno, Seiya; Tominaga, Kenji; Iwata, Yasutaka; Kinoshita, Shoichiro; Niino, Tsuyoshi

    1994-09-30

    A pressure suppression chamber incorporating pool water is disposed inside of a reactor container for condensating steams released to a dry well upon occurrence of abnormality. A pool is disposed at the outer circumference of the pressure suppression chamber having a steel wall surface of the reactor container as a partition wall. The outer circumferential pool is in communication with ocean by way of a lower communication pipeline and an upper communication pipeline. During normal plant operation state, partitioning valves disposed respectively to the upper and lower communication pipelines are closed, so that the outer circumferential pool is kept empty. After occurrence loss of coolant accident, steams generated by after-heat of the reactor core are condensated by pool water of the pressure suppression chamber, and the temperature of water in the pressure suppression chamber is gradually elevated. During the process, the partition valves of the upper and lower communication pipelines are opened to introduce cold seawater to the outer circumferential pool. With such procedures, heat of the outer circumferential pool is released to the sea by natural convection of seawater, thereby enabling to remove residual heat without dynamic equipments. (I.N.).

  15. Comparison of CONTAIN and TCE calculations for direct containment heating of Surry

    International Nuclear Information System (INIS)

    Washington, K.E.; Stuart, D.S.

    1996-01-01

    This paper presents the results of several CONTAIN code calculations used to model direct containment heating (DCH) loads for the Surry plant. The results of these calculations are compared with the results obtained using the two-cell equilibrium (TCE) model for the same set of initial and boundary conditions. This comparison is important because both models have been favorably validated against the available DCH database, yet there are potentially important modeling differences. The comparisons are to quantitatively assess the impact of these differences. A major conclusion of this study is that, for the accident conditions studied and for a broad range of sensitivity cases, the peak pressures predicted by both TCE and CONTAIN are well below the failure pressure for the Surry containment. (orig.)

  16. The probability of containment failure by direct containment heating in surry

    International Nuclear Information System (INIS)

    Pilch, M.M.; Allen, M.D.; Bergeron, K.D.; Tadios, E.L.; Stamps, D.W.; Spencer, B.W.; Quick, K.S.; Knudson, D.L.

    1995-05-01

    In a light-water reactor core melt accident, if the reactor pressure vessel (RPV) fails while the reactor coolant system (RCS) at high pressure, the expulsion of molten core debris may pressurize the reactor containment building (RCB) beyond its failure pressure. A failure in the bottom head of the RPV, followed by melt expulsion and blowdown of the RCS, will entrain molten core debris in the high-velocity steam blowdown gas. This chain of events is called a high-pressure melt ejection (HPME). Four mechanisms may cause a rapid increase in pressure and temperature in the reactor containment: (1) blowdown of the RCS, (2) efficient debris-to-gas heat transfer, (3) exothermic metal-steam and metal-oxygen reactions, and (4) hydrogen combustion. These processes, which lead to increased loads on the containment building, are collectively referred to as direct containment heating (DCH). It is necessary to understand factors that enhance or mitigate DCH because the pressure load imposed on the RCB may lead to early failure of the containment

  17. The probability of containment failure by direct containment heating in zion

    International Nuclear Information System (INIS)

    Pilch, M.M.; Yan, H.; Theofanous, T.G.

    1994-01-01

    This report is the first step in the resolution of the Direct Containment Heating (DCH) issue for the Zion Nuclear Power Plant using the Risk Oriented Accident Analysis Methodology (ROAAM). This report includes the definition of a probabilistic framework that decomposes the DCH problem into three probability density functions that reflect the most uncertain initial conditions (UO 2 mass, zirconium oxidation fraction, and steel mass). Uncertainties in the initial conditions are significant, but the quantification approach is based on establishing reasonable bounds that are not unnecessarily conservative. To this end, the authors also make use of the ROAAM ideas of enveloping scenarios and open-quotes splinteringclose quotes. Two casual relations (CRs) are used in this framework: CR1 is a model that calculates the peak pressure in the containment as a function of the initial conditions, and CR2 is a model that returns the frequency of containment failure as a function of pressure within the containment. Uncertainty in CR1 is accounted for by the use of two independently developed phenomenological models, the Convection Limited Containment Heating (CLCH) model and the Two-Cell Equilibrium (TCE) model, and by probabilistically distributing the key parameter in both, which is the ratio of the melt entrainment time to the system blowdown time constant. The two phenomenological models have been compared with an extensive data base including recent integral simulations at two different physical scales (1/10th scale in the Surtsey facility at Sandia National Laboratories and 1/40th scale in the COREXIT facility at Argonne National Laboratory). The loads predicted by these models were significantly lower than those from previous parametric calculations. The containment load distributions do not intersect the containment strength curve in any significant way, resulting in containment failure probabilities less than 10 -3 for all scenarios considered

  18. The probability of containment failure by direct containment heating in Zion

    International Nuclear Information System (INIS)

    Pilch, M.M.; Yan, H.; Theofanous, T.G.

    1994-12-01

    This report is the first step in the resolution of the Direct Containment Heating (DCH) issue for the Zion Nuclear Power Plant using the Risk Oriented Accident Analysis Methodology (ROAAM). This report includes the definition of a probabilistic framework that decomposes the DCH problem into three probability density functions that reflect the most uncertain initial conditions (UO 2 mass, zirconium oxidation fraction, and steel mass). Uncertainties in the initial conditions are significant, but our quantification approach is based on establishing reasonable bounds that are not unnecessarily conservative. To this end, we also make use of the ROAAM ideas of enveloping scenarios and ''splintering.'' Two causal relations (CRs) are used in this framework: CR1 is a model that calculates the peak pressure in the containment as a function of the initial conditions, and CR2 is a model that returns the frequency of containment failure as a function of pressure within the containment. Uncertainty in CR1 is accounted for by the use of two independently developed phenomenological models, the Convection Limited Containment Heating (CLCH) model and the Two-Cell Equilibrium (TCE) model, and by probabilistically distributing the key parameter in both, which is the ratio of the melt entrainment time to the system blowdown time constant. The two phenomenological models have been compared with an extensive database including recent integral simulations at two different physical scales. The containment load distributions do not intersect the containment strength (fragility) curve in any significant way, resulting in containment failure probabilities less than 10 -3 for all scenarios considered. Sensitivity analyses did not show any areas of large sensitivity

  19. District heating plants in Europe: Recent experience and innovations

    International Nuclear Information System (INIS)

    De Comelli, G.

    1992-01-01

    This paper contains a critical review of recent experience and innovative features encountered in some European district heating plants. The increased application of cogeneration is pointed out, with reference to traditional, as well as, more recent technology which makes use of combined gas-steam cycles. An example of a combined gas-steam cycle is schematically described. The relevance of fluidized bed combustion and interconnection of heat distribution grids, and their consequences to the environmentally-safe and economical employment of the plants, are evidenced

  20. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  1. Direct containment heating integral effects tests in geometries of European nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Leonhard; Albrecht, Giancarlo; Caroli, Cataldo; Ivanov, Ivan

    2009-01-01

    The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P'4, the VVER-1000 and the German Konvoi plant. A high-temperature iron-alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified. The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.

  2. Direct containment heating integral effects tests in geometries of European nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Leonhard [Forschungszentrum Karlsruhe (FZK), Postfach 3640, 76021 Karlsruhe (Germany)], E-mail: meyer@iket.fzk.de; Albrecht, Giancarlo [Forschungszentrum Karlsruhe (FZK), Postfach 3640, 76021 Karlsruhe (Germany); Caroli, Cataldo [Institut de Radioprotection et de Surete Nucleaire, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Ivanov, Ivan [Technical University of Sofia, BG-1797 Sofia (Bulgaria)

    2009-10-15

    The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P'4, the VVER-1000 and the German Konvoi plant. A high-temperature iron-alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified. The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.

  3. Disposal/storage container development experience

    International Nuclear Information System (INIS)

    Morrow, R.W. Jr.; Van Hoesen, S.D.; Fowler, E.; Barreira, D.G.; Emmett, R.W.

    1988-01-01

    Developmental work is currently underway at the Oak Ridge National Laboratory to design and manufacture a radioactive waste container suitable for both storage and disposal of radioactive wastes. The container is designed to fulfill the Department of Energy and Nuclear Regulatory Commission requirements for on-site storage, as well as the Nuclear Regulatory Commission's requirements for high integrity containers. The project also involves meeting the strict design and manufacturing ANSI/ASME NQA-1 guidelines. Special provisions of the container include a double containment system, with the inner barrier being corrosion resistant, the capability to monitor the internal cavity of the container, and off-gas venting capability. Further, yet related developmental work includes evaluating the cask for other varied uses, such as a processing cask, an ALARA shield, and even the possibility of Department of Transportation approval for an over-the-road transport cask

  4. Seoul's greenbelt: an experiment in urban containment

    Science.gov (United States)

    David N. Bengston; Youn Yeo-Chang

    2005-01-01

    Urban containment policies are considered by some to be a promising approach to growth management. The greenbelt-based urban containment policy of Seoul, Republic of Korea is examined as a case study. Seoul's greenbelt has generated both significant social costs and benefits. Korea's greenbelt policy is currently being revised, largely due to pressure from...

  5. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  6. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  7. LMFBR intermediate-heat-exchanger experience

    International Nuclear Information System (INIS)

    Cho, S.M.; Beaver, T.R.

    1983-01-01

    This paper presents developmental and operating experience of large Intermediate Heat Exchangers (IHX's) in US from the Fast Flux Test Facility (FFTF) to the Clinch River Breeder Reactor Plant (CRBRP) to the Large Development Plant (LDP). Design commonalities and deviations among these IHX's are synopsized. Various developmental tests that were conducted in the areas of hydraulic, structural and mechanical design are also presented. The FFTF is currently operating. Performance data of the FFTF IHXs are reviewed, and comparisons between actual and predicted performances are made. The results are used to assess the adequacy of IHX designs

  8. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  9. Burnout detector design for heat transfer experiments

    International Nuclear Information System (INIS)

    Dias, H.F.

    1992-01-01

    This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)

  10. The buffer/container experiment: results, synthesis, issues

    International Nuclear Information System (INIS)

    Graham, J.; Chandler, N.A.; Dixon, D.A.; Roach, P.J.; To, T.; Wan, A.W.L.

    1997-12-01

    A large in-ground experiment has examined how heat affects the performance of the dense sand bentonite 'buffer' that has been proposed for use in the Canadian Nuclear Fuel Waste Management Program. The experiment was performed by Atomic Energy of Canada Limited at its Underground Research Laboratory, Lac du Bonnet, Manitoba between 1991 and 1994. The experiment placed a full-size heater representing a container of nuclear fuel waste in a 1.24-m diameter borehole filled with buffer below the floor of a room excavated at 240-m depth in granitic rock of the Canadian Shield. The buffer and surrounding rock were extensively instrumented for temperatures, total pressures, water pressures, suctions, and rock displacements. Power was provided to the heater for almost 900 days. The experiment showed that good rock conditions can be pre-selected, a borehole can be drilled, and buffer can be placed at controlled densities and water contents. The instrumentation generally worked well, and an extensive data base was successfully organized. Drying was observed in buffer close to the heater. This caused some desiccation cracking. However the cracks only extended approximately one third of the distance to the buffer-rock interface and did not form an advective pathway. Following sampling at the time of decommissioning, cracked samples of buffer were transported to the laboratory and given access to water. The hydraulic conductivities and swelling pressures of these resaturated samples were very similar to those of uncracked buffer. A good balance was achieved between the mass of water flowing into the experiment from the surrounding rock and the increased mass of water in the buffer. A good understanding was developed of the relationships between suctions, water contents, and total pressures in buffer near the buffer-rock interface. Comparisons between measurements and predictions of measured parameters show that a good understanding has been developed of the processes operating

  11. The buffer/container experiment: results, synthesis, issues

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J. [Univ. of Manitoba, Dept. of Civil Engineering, Winnipeg, MB (Canada); Chandler, N.A.; Dixon, D.A.; Roach, P.J.; To, T.; Wan, A.W.L

    1997-12-01

    A large in-ground experiment has examined how heat affects the performance of the dense sand bentonite 'buffer' that has been proposed for use in the Canadian Nuclear Fuel Waste Management Program. The experiment was performed by Atomic Energy of Canada Limited at its Underground Research Laboratory, Lac du Bonnet, Manitoba between 1991 and 1994. The experiment placed a full-size heater representing a container of nuclear fuel waste in a 1.24-m diameter borehole filled with buffer below the floor of a room excavated at 240-m depth in granitic rock of the Canadian Shield. The buffer and surrounding rock were extensively instrumented for temperatures, total pressures, water pressures, suctions, and rock displacements. Power was provided to the heater for almost 900 days. The experiment showed that good rock conditions can be pre-selected, a borehole can be drilled, and buffer can be placed at controlled densities and water contents. The instrumentation generally worked well, and an extensive data base was successfully organized. Drying was observed in buffer close to the heater. This caused some desiccation cracking. However the cracks only extended approximately one third of the distance to the buffer-rock interface and did not form an advective pathway. Following sampling at the time of decommissioning, cracked samples of buffer were transported to the laboratory and given access to water. The hydraulic conductivities and swelling pressures of these resaturated samples were very similar to those of uncracked buffer. A good balance was achieved between the mass of water flowing into the experiment from the surrounding rock and the increased mass of water in the buffer. A good understanding was developed of the relationships between suctions, water contents, and total pressures in buffer near the buffer-rock interface. Comparisons between measurements and predictions of measured parameters show that a good understanding has been developed of the processes

  12. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  13. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  14. Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yohan; Jung, Dong Soo; Shim, Sang Eun

    2011-01-01

    In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 .deg. C were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF

  15. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  16. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  17. Use of an integrated containment and ultimate heat sink (UHS) response approach to evaluate nuclear power plant modifications

    International Nuclear Information System (INIS)

    Wetzel, M.C.; Vieira, A.T.; Patton, D.C.

    1994-01-01

    Detailed containment and Ultimate Heat Sink (UHS) performance evaluations often are required to support major plant modifications, such as power up-rates and steam generator replacements. These UHS and containment pressure and temperature response evaluations are interrelated. Not only is the containment heat load to the UHS a factor in these evaluations, but other heat loads, such as those from the spent fuel pool, may change as a result of the plant modification and impact containment or UHS response. Our experience is that if an integrated containment/UHS response model is developed prior to the feasibility evaluations for such plant modifications, significant savings in engineering hours can be achieved. This paper presents an overview of such a front-end engineering tool that has been developed and used to support engineering evaluations. 3 refs., 2 figs

  18. ICRF heating experiments in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1986-01-01

    This is an experimental study of ICRF heating on JFT-2 Tokamak in Japan Atomic Energy Research Institute. In this study, we first clarified physical and engineering problems of ICRF heating of tokamak plasma. Next, we optimized the design of the ICRF heating system, and the plasma parameters for the heating. Finally, we could demonstrate a high efficiency of this additional heating method by launching RF power which is two or three times as large as an ohmic input power to a plasma. And we achieved following things. (1) We optimized a design of an antenna, and we improved a durability of the system for high voltage. With the result that we achieved the maximum power density on an antenna. (2) We demonstrated that electron heating regime and ion heating regime can be easily accessed by controlling plasma parameters. Also we found the optimum heating conditions in each heating regime. (3) We experimentally clarified the production mechanism of impurities during ICRF heating. We could reduce the influx of metal impurity ions to a plasma by employing low z materials for limiters and antenna shields. Consequently, we improved a heating efficiency of electrons. Next, we studied a power balance of plasma during ICRF heating, and we could compare heating characteristics of ICRF with other additional heatings on JFT-2. (author)

  19. Design of a cavity heat pipe receiver experiment

    Science.gov (United States)

    Schneider, Michael G.; Brege, Mark H.; Greenlee, William J.

    1992-01-01

    A cavity heat pipe experiment has been designed to test the critical issues involved with incorporating thermal energy storage canisters into a heat pipe. The experiment is a replication of the operation of a heat receiver for a Brayton solar dynamic power cycle. The heat receiver is composed of a cylindrical receptor surface and an annular heat pipe with thermal energy storage canisters and gaseous working fluid heat exchanger tubes surrounding it. Hardware for the cavity heat pipe experiment will consist of a sector of the heat pipe, complete with gas tube and thermal energy storage canisters. Thermal cycling tests will be performed on the heat pipe sector to simulate the normal energy charge/discharge cycle of the receiver in a spacecraft application.

  20. Separate effects tests on hydrogen combustion during direct containment heating events

    International Nuclear Information System (INIS)

    Meyer, L.; Albrecht, G.; Kirstahler, M.; Schwall, M.; Wachter, E.

    2008-01-01

    In the frame of severe accident research for light water reactors Forschungszentrum Karlsruhe (FZK/IKET) operates the facilities DISCO-C and DISCO-H since 1998, conceived to investigate the direct containment heating (DCH) issue. Previous DCH experiments have investigated the corium dispersion and containment pressurization during DCH in different European reactor geometries using an iron-alumina melt and steam as model fluids. The analysis of these experiments showed that the containment was pressurized by the debris-to-gas heat transfer but also to a large part by hydrogen combustion. The need was identified to better characterize the hydrogen combustion during DCH. To address this issue separate effect tests in the DISCO-H facility were conducted. These tests reproduced phenomena occurring during DCH (injection of a hot steam-hydrogen mixture jet into the containment and ignition of the air-steam-hydrogen mixture) with the exception of corium dispersion. The effect of corium particles as igniters was simulated using sparkler systems. The data will be used to validate models in combustion codes and to extrapolate to prototypic scale. Tests have been conducted in the DISCO-H facility in two steps. First a small series of six tests was done in a simplified geometry to study fundamental parameters. Then, two tests were done with a containment geometry subdivided into a subcompartment and the containment dome. The test conditions were as follows: As initial condition in the containment an atmosphere was used either with air or with a homogeneous air-steam mixture containing hydrogen concentrations between 0 and 7 mol%, temperatures around 100 C and pressure at 2 bar (representative of the containment atmosphere conditions at vessel failure). Injection of a hot steam-hydrogen jet mixture into the reactor cavity pit at 20 bar, representative of the primary circuit blow down through the vessel and hydrogen produced during this phase. The most important variables

  1. A Simple Heat of Crystallization Experiment.

    Science.gov (United States)

    De Nevers, Noel

    1991-01-01

    A demonstration used in a heat and material balances class that explains how a reusable heat pack works is described. An initial homework problem or exam question is provided with its solution. A discussion of the solution is included. (KR)

  2. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  3. Experiments and procedures for bottom-heating heat-transfer experiments through UO2 debris beds in sodium

    International Nuclear Information System (INIS)

    Sowa, E.S.; Pedersen, D.R.; Pavlik, J.; Purviance, R.

    1982-01-01

    Real materials experiments in heat transfer through beds of UO 2 in sodium have been performed at Argonne National Laboratory over a period of years. The most recent method utilizes the resistive heating in a sheet tungsten filament located at the base of the debris container. A schematic diagram of the apparatus is shown. The tungsten is clamped between two water cooled copper electrodes. The filament is a sheet of tungsten 0.15 mm thick, 5 cm wide and 18 cm long. Two 6.5 mm thick sheets of boron nitride sandwich the filament. The upper face of the upper boron nitride sheet is in intimate contact with the bottom of the debris container. Temperatures are measured at various levels in the bed as well as in the boron nitride plate. In addition, the sodium pool temperature is measured by the thermocouple. The heat transferral through the bed is measured by the temperature difference and mass flowrate in a NaK condenser located above the debris bed. The NaK inlet and outlet temperatures are recorded individually, as well as, differentially

  4. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    DeHart, T.E.; Zumdieck, J.F.; Hoffman, A.L.; Lowenthal, D.D.; Crawford, E.A.; Parry, B.

    1977-01-01

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  5. Experiments on a vapour absorption heat transformer

    Energy Technology Data Exchange (ETDEWEB)

    George, J M; Murthy, S S [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1993-03-01

    Tests were conducted on a 3 kW heating capacity R21-DMF vapour absorption heat transformer to study the influence of operating temperature on its performance. Heat source temperature and condensing temperature were varied in the ranges 50-75[sup o]C and 20-40[sup o]C, respectively. Heat delivery temperatures up to 85[sup o]C and temperature lifts up to 20[sup o]C were achieved. Actual coefficients of performance (COPs) ranged from 0.2 to 0.35, whereas exergetic efficiencies of 0.3-0.4 could be obtained. (Author)

  6. Nuclear heat applications in Russia: Experience, status and prospects

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kusmartsev, E.V.

    1998-01-01

    The extensive experience gained with nuclear district heating in Russia is described. Most of the WWER reactors in Russia are cogeneration plants. Steam is extracted through LP turbine bleeders and condensed in intermediate heat exchangers to hot water which is then supplied to DH grids. Also some small dedicated nuclear heating plants are operated. (author)

  7. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  8. Chemistry experiences from a containment fire at Ringhals unit 2

    International Nuclear Information System (INIS)

    Arvidsson, Bengt; Svanberg, Pernilla; Bengtsson, Bernt

    2012-09-01

    containment, together with 1000 smear test (cotton pads) for chloride analysis in the chemistry laboratory to evaluate contamination levels and verify the cleaning procedures and results. The main chemistry issues and concerns have been related to surface and water contamination of chloride, bromide, carbon, lead, copper and zinc from corrosion point of view. Lack of specification and guidelines for several of this parameters forced Ringhals to establish some internal guidelines and technical basis for clean up and restart of the plant. The solubility of soot particles was found to be very low and more adhesive to surfaces at high temperature, this caused some concerns and actions to clean up reactor coolant from soot particles before fuel reload and heating. An extensive review of stainless steel Outer Diameter Stress Corrosion Cracking (ODSCC) was performed independently from the fire incident during the outage, indicating a high number of crack indications of 1-3 mm depth, all within acceptance criteria for material thickness and operation. The indications are more likely to be addressed to almost 40 years of operation in marine atmosphere then the fire itself, even if the chloride contamination from fire may have supported some propagation. All found cracks were grinded according to authority requirements and no pipes needed to be replaced. The heating and start-up of Ringhals 2 could be done successfully without any water chemistry deviations due to the fire and the following cycle have been normal. The cleanness of R2 containment surfaces are now highly improved compared to earlier outages or other sea-cooled power plants. However, an extended program has been introduced to follow external surface chloride contamination built up in containment more frequently, together with inspections of ODSCC. The workload from the containment fire has been extreme and the chemistry and corrosion experiences several. This paper gives a summary of the results, challenges, solutions and

  9. Simulation of containment atmosphere stratification experiment using local instantaneous description

    International Nuclear Information System (INIS)

    Babic, M.; Kljenak, I.

    2004-01-01

    An experiment on mixing and stratification in the atmosphere of a nuclear power plant containment at accident conditions was simulated with the CFD code CFX4.4. The original experiment was performed in the TOSQAN experimental facility. Simulated nonhomogeneous temperature, species concentration and velocity fields are compared to experimental results. (author)

  10. Melting of glass by direct induction heating in ceramic container

    International Nuclear Information System (INIS)

    Ooka, Kazuo; Oguino, Naohiko; Kawanishi, Nobuo

    1981-01-01

    The direct induction melting, a process of glass melting by high frequency induction heating, was found to be the effective way of glass melting, especially desirable for the vitrification of High Level Radioactive Liquid Wastes, HLLW. A test instrument in the cold level was equipped with a high frequency oscillator of 65 kW anode output. The direct induction melting was successfully performed with two frequencies of 400 kHz and 3 MHz, and the operation conditions were determined in the five cases of ceramic pot inner diameters of 170, 200, 230, 280 and 325 mm. The start-up of the direct induction melting was carried out by induction heating using a silicon carbide rod which was inserted in raw material powders in the ceramic pot. After the raw material powders partly melted down and the direct induction in the melt began, the start-up rod was removed out of the melt. At this stage, the direct induction melting was successively performed by adjusting the output power of the oscillator and by supplying the raw materials. It was also found that the capacity of this type of melting was reasonably large and the operation could be remotely controlled. Both applied frequencies of 400 kHz and 3 MHz was found to be successful with this melting system, especially in the case of lower frequency which proved more preferable for the in-cell work. (author)

  11. Heat and mass transfer involving droplets containing soluble solids

    International Nuclear Information System (INIS)

    Oscarson, J.L.; Briggs, D.E.

    1977-01-01

    The mass loss and temperature history of aqueous drops containing dissolved solids were measured under varying conditions of air velocity and temperature. The data taken from these drops were compared with the computer solution to a diffusional model. Very good agreement was obtained

  12. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  13. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  14. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  15. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  16. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  17. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions

  18. Quantum Optical Heating in Sonoluminescence Experiments

    International Nuclear Information System (INIS)

    Kurcz, Andreas; Capolupo, Antonio; Beige, Almut

    2009-01-01

    Sonoluminescence occurs when tiny bubbles rilled with noble gas atoms are driven by a sound wave. Each cycle of the driving field is accompanied by a collapse phase in which the bubble radius decreases rapidly until a short but very strong light flash is emitted. The spectrum of the light corresponds to very high temperatures and hints at the presence of a hot plasma core. While everyone accepts that the effect is real, the main energy focussing mechanism is highly controversial. Here we suggest that the heating of the bubble might be due to a weak but highly inhomogeneous electric field as it occurs during rapid bubble deformations [A. Kurcz et al.(submitted)]. It is shown that such a field couples the quantised motion of the atoms to their electronic states, thereby resulting in very high heating rates.

  19. Heating hydrocarbon containing formations in a spiral startup staged sequence

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; Miller, David Scott [Katy, TX

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  20. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  1. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran

    2013-09-01

    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  2. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  3. Heat transfer coefficient for lead matrixing in disposal containers for used reactor fuel

    International Nuclear Information System (INIS)

    Mathew, P.M.; Taylor, M.; Krueger, P.A.

    1985-02-01

    In the Canadian Nuclear Fuel Waste Management Program, metal matrices with low melting points are being evaluated for their potential to provide support for the shell of disposal containers for used fuel, and to act as an additional barrier to the release of radionuclides. The metal matrix would be incorporated into the container by casting. To study the heat transfer processes during solidification, a steady-state technique was used, involving lead as the cast metal, to determine the overall heat transfer coefficient between the lead and some of the candidate container materials. The existence of an air gap between the cast lead and the container material appeared to control the overall heat transfer coefficient. The experimental observations indicated that the surface topography of the container material influences the heat transfer and that a smoother surface results in a greater heat transfer than a rough surface. The experimental results also showed an increasing heat transfer coefficient with increasing temperature difference across the container base plates; a model developed to base-plate bending can explain the observed results

  4. MELCOR 1.8.2 Assessment: IET direct containment heating tests

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze several of the IET direct containment heating experiments done at 1:10 linear scale in the Surtsey test facility at Sandia and at 1:40 linear scale in the corium-water thermal interactions (CWTI) COREXIT test facility at Argonne National Laboratory. These MELCOR calculations were done as an open post-test study, with both the experimental data and CONTAIN results available to guide the selection of code input. Basecase MELCOR results are compared to test data in order to evaluate the new HPME DCH model recently added in MELCOR version 1.8.2. The effect of various user-input parameters in the HPME model, which define both the initial debris source and the subsequent debris interaction, were investigated in sensitivity studies. In addition, several other non-default input modelling changes involving other MELCOR code packages were required in our IET assessment analyses in order to reproduce the observed experiment behavior. Several calculations were done to identify whether any numeric effects exist in our DCH IET assessment analyses.

  5. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  6. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  7. The probability of containment failure by direct containment heating in Zion. Supplement 1

    International Nuclear Information System (INIS)

    Pilch, M.M.; Allen, M.D.; Stamps, D.W.; Tadios, E.L.; Knudson, D.L.

    1994-12-01

    Supplement 1 of NUREG/CR-6075 brings to closure the DCH issue for the Zion plant. It includes the documentation of the peer review process for NUREG/CR-6075, the assessments of four new splinter scenarios defined in working group meetings, and modeling enhancements recommended by the working groups. In the four new scenarios, consistency of the initial conditions has been implemented by using insights from systems-level codes. SCDAP/RELAP5 was used to analyze three short-term station blackout cases with Different lead rates. In all three case, the hot leg or surge line failed well before the lower head and thus the primary system depressurized to a point where DCH was no longer considered a threat. However, these calculations were continued to lower head failure in order to gain insights that were useful in establishing the initial and boundary conditions. The most useful insights are that the RCS pressure is-low at vessel breach metallic blockages in the core region do not melt and relocate into the lower plenum, and melting of upper plenum steel is correlated with hot leg failure. THE SCDAP/RELAP output was used as input to CONTAIN to assess the containment conditions at vessel breach. The containment-side conditions predicted by CONTAIN are similar to those originally specified in NUREG/CR-6075

  8. The Mistra experiment for field containment code validation first results

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Blumenfeld, L.

    2001-01-01

    The MISTRA facility is a large scale experiment, designed for the purpose of thermal-hydraulics multi-D codes validation. A short description of the facility, the set up of the instrumentation and the test program are presented. Then, the first experimental results, studying helium injection in the containment and their calculations are detailed. (author)

  9. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  10. Lower hybrid heating experiment in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Uchara, K.; Nagashima, T.

    1982-01-01

    Lower hybrid heating experiments in JFT-2 are reviewed. Good maintenance and controlling of the coupling structure are very important in the injection of RF power before heating experiments. Accessibility of waves and the existence of the mode conversion region are necessary for ion heating in the main plasma. Parametric instabilities which may bring undesirable power deposition are suppressed by enough electron heating in the boundary region. Optimizing the Nsub(z) spectrum and the improvement of the plasma confinement may lead the electron heating in the high density region. Current generation by use of quasi-linear Landau damping is confirmed and is suggested to bring the improvement of plasma confinement. High power and long pulse klystrons may be expected to open a frontier toward a stational reactor plasma in tokamaks. (author)

  11. Heat transfer simulation and retort program adjustment for thermal processing of wheat based Haleem in semi-rigid aluminum containers.

    Science.gov (United States)

    Vatankhah, Hamed; Zamindar, Nafiseh; Shahedi Baghekhandan, Mohammad

    2015-10-01

    A mixed computational strategy was used to simulate and optimize the thermal processing of Haleem, an ancient eastern food, in semi-rigid aluminum containers. Average temperature values of the experiments showed no significant difference (α = 0.05) in contrast to the predicted temperatures at the same positions. According to the model, the slowest heating zone was located in geometrical center of the container. The container geometrical center F0 was estimated to be 23.8 min. A 19 min processing time interval decrease in holding time of the treatment was estimated to optimize the heating operation since the preferred F0 of some starch or meat based fluid foods is about 4.8-7.5 min.

  12. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  13. The International Heat Pipe Experiment. [international cooperation zero g experiment

    Science.gov (United States)

    Mcintosh, R.; Ollendorf, S.; Harwell, W.

    1976-01-01

    The aims of the experiment are outlined. Flight experiments included in this program were provided by NASA, Goddard Space Flight Center, ESA (European Space Agency), the German Ministry of Technology, Hughes Aircraft Company and NASA, Ames Research Center.

  14. Review on experiments relating to primary containment vessel failure

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Okada, Hidetoshi; Uchida, Sunsuke; Naitoh, Masanori

    2015-01-01

    Experiments regarding failures of primary containment vessels (PCVs) are reviewed and remained issues to be investigated in the future are discussed. Experiments are categorized as those relating to criteria of PCV failures and to FP releases through breaches on PCV boundaries. In the experiments categorized as those relating to criteria of PCV failures, experiments with full-scale, scale models, and compounds used for sealing are surveyed. Experiments relating to an amount of radioactive fission products (FPs) trapped at breaches on PCV boundaries are also reviewed. As remained issues to be investigated in the future, two items are pointed out: Evaluating degradation behavior of PCV boundaries exposed to temperature and pressure from the failure onset criteria to far above them, and evaluating an amount of FPs trapped at breaches on PCV boundaries. (author)

  15. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  16. ORNL experiments to characterize fuel release from the reactor primary containment in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wright, A.L.; Kress, T.S.; Smith, A.M.

    1980-01-01

    This paper presents results from aerosol source term experiments performed in the ORNL Aerosol Release and Transport (ART) Program sponsored by the US NRC. The tests described were performed to provide information on fuel release from an LMFBR primary containment as a result of a hypothetical core-disruptive accident (HCDA). The release path investigated in these tests assumes that a fuel/sodium bubble is formed after disassembly that transports fuel and fission products through the sodium coolant and cover gas to be relased into the reactor secondary containment. Due to the excellent heat transfer characteristics of the sodium, there is potential for large attenuation of the maximum release

  17. The buffer/container experiment design and construction report

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, N.A.; Wan, A.W.L.; Roach, P.J

    1998-03-01

    The Buffer/Container Experiment was a full-scale in situ experiment, installed at a depth of 240 m in granitic rock at AECL's Underground Research Laboratory (URL). The experiment was designed to examine the performance of a compacted sand-bentonite buffer material under the influences of elevated temperature and in situ moisture conditions. Buffer material was compacted in situ into a 5-m-deep, 1.24-m-diameter borehole drilled into the floor of an excavation. A 2.3-m long heater, representative of a nuclear fuel waste container, was placed within the buffer, and instrumentation was installed to monitor changes in buffer moisture conditions, temperature and stress. The experiment was sealed at the top of the borehole and restrained against vertical displacement. Instrumentation in the rock monitored pore pressures, temperatures and rock displacement. The heater was operated at a constant power of 1200 W, which provided a heater skin temperature of approximately 85 degrees C. Experiment construction and installation required two years, followed by two and a half years of heater operation and two years of monitoring the rock conditions during cooling. The construction phase of the experiment included the design, construction and testing of a segmental heater and controller, geological and hydrogeological characterization of the rock, excavation of the experiment room, drilling of the emplacement borehole using high pressure water, mixing and in situ compaction of buffer material, installation of instrumentation in the rock, buffer and on the heater, and the construction of concrete curb and steel vertical restraint system at the top of emplacement borehole. Upon completion of the experiment, decommissioning sampling equipment was designed and constructed and sampling methods were developed which allowed approximately 2000 samples of buffer material to be taken over a 12-day period. Quality assurance procedures were developed for all aspects of experiment

  18. The buffer/container experiment design and construction report

    International Nuclear Information System (INIS)

    Chandler, N.A.; Wan, A.W.L.; Roach, P.J.

    1998-03-01

    The Buffer/Container Experiment was a full-scale in situ experiment, installed at a depth of 240 m in granitic rock at AECL's Underground Research Laboratory (URL). The experiment was designed to examine the performance of a compacted sand-bentonite buffer material under the influences of elevated temperature and in situ moisture conditions. Buffer material was compacted in situ into a 5-m-deep, 1.24-m-diameter borehole drilled into the floor of an excavation. A 2.3-m long heater, representative of a nuclear fuel waste container, was placed within the buffer, and instrumentation was installed to monitor changes in buffer moisture conditions, temperature and stress. The experiment was sealed at the top of the borehole and restrained against vertical displacement. Instrumentation in the rock monitored pore pressures, temperatures and rock displacement. The heater was operated at a constant power of 1200 W, which provided a heater skin temperature of approximately 85 degrees C. Experiment construction and installation required two years, followed by two and a half years of heater operation and two years of monitoring the rock conditions during cooling. The construction phase of the experiment included the design, construction and testing of a segmental heater and controller, geological and hydrogeological characterization of the rock, excavation of the experiment room, drilling of the emplacement borehole using high pressure water, mixing and in situ compaction of buffer material, installation of instrumentation in the rock, buffer and on the heater, and the construction of concrete curb and steel vertical restraint system at the top of emplacement borehole. Upon completion of the experiment, decommissioning sampling equipment was designed and constructed and sampling methods were developed which allowed approximately 2000 samples of buffer material to be taken over a 12-day period. Quality assurance procedures were developed for all aspects of experiment construction

  19. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  20. Gamma heated subassembly for sodium boiling experiments

    International Nuclear Information System (INIS)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed

  1. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  2. Fundamental experiment of potassium heat exchanger using principle of heat pipe

    International Nuclear Information System (INIS)

    Sumida, Isao; Kotani, Koichi

    1976-01-01

    In order to provide compact and reliable sodium equipments including a steam generator, performance tests are conducted with a potassium heat exchanger, which is featured by the separate construction of primary and secondary coolant systems. A small amount of potassium plays a role as an intermediate media of heat transportation between these two coolant systems. Heat is transferred by evaporation and condensation of potassium on the surface of the primary and the secondary coolant pipings, respectively. The tests are performed in the temperature range of 200 -- 300 0 C and the maximum heat transfer reaches 1.3kW (heat transfer rate at the primary heating source: 8.6W/cm 2 at 300 0 C). The experimental results are analyzed by using Langmuir's and Schrage's equation and close agreement between experiment and theory is obtained. (auth.)

  3. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in a cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rock. These waste containers are vertically emplaced in the borehole 300 meters just below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3-4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions. The borehole wall temperature history has been found in the previous study, and was estimated to reach a maximum temperature of about 218 degrees C after 18 years from the emplacement. The temperature history of the rock surface is then used for the air-gap simulation. The problem includes convection and radiation heat transfer in a vertical enclosure. This paper will present the results of the convection in the air-gap over one thousand years after the containers' emplacement. During this long simulation period it was also observed that a multi-cellular air flow pattern can be generated in the air gap

  4. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  5. AREVA’s Containment Venting Technologies and Experience Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Welker, M.

    2015-07-01

    The AREVA Filtered Containment Venting System (FCVS) is a product family that minimizes the environmental impact in case of a severe accident in a nuclear power plant (NPP). Our experience is based on a large-scale test and qualification program as well as on the design, licensing and installation of more than 80 projects worldwide. The product family provides flexibility regarding the adaptation to respective accident scenarios, applicable codes and standards, seismic design, supply chain, implementation and localization. AREVA has broad experience of managing fleet supplies, successful support of licensing and cooperating with original equipment manufacturers (OEMs) of pressurized and boiling water reactors (PWR and BWR). (Author)

  6. Comparison of ANL containment codes with SNR-300 simulation experiments

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Wang, C.Y.; Fistedis, S.H.

    1976-01-01

    A comparison of REXCO and ICECO code predictions is made with data obtained from experiments of LMFBR excursion models. The comparisons are based on published results of tests conducted for the safety analysis of the SNR-300 fast breeder. The test configurations consist of a centrally located spherical source immersed in a pool of water which is encased in a cylindrical container. The cylinical walls of the container are prestressed by holddown bolts which span the two rigid ends. The space above the surface of the water within the container is occupied by air. Although certain aspects of the tests could not be simulated by the analytical models exactly, the comparison of results shows quite close agreement. The fact that the REXCO and ICECO codes involve different analytical formulations, their own close correspondence of results lends added credence to the value of analytical predictions

  7. Ion Bernstein wave heating experiments in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2005-01-01

    Ion Bernstein Wave (IBW) experiments have been carried out in recent years in the HT-7 superconducting Tokamak. The electron heating experiment has been concentrated on deuterium plasma with an injecting RF power up to 350 kw. The globe heating and localized heating can be seen clearly by controlling the ICRF resonance layer's position. On-axis and off-axis electron heating have been realized by properly setting the target plasma parameters. Experimental results show that the maximum increment in electron temperature has been more than 1 keV, the electron temperature profile has been modified by IBW under different plasma conditions, and both energy and particle confinement improvements have been obtained. (author)

  8. Heat-processing method and facility for helium-containing metal material

    International Nuclear Information System (INIS)

    Kato, Takahiko; Kodama, Hideyo; Matsumoto, Toshimi; Aono, Yasuhisa; Nagata, Tetsuya; Hattori, Shigeo; Kaneda, Jun-ya; Ono, Shigeki.

    1996-01-01

    Electric current is supplied to an objective portion of a He-containing metal material to be applied with heat processing without causing melting, to decrease the He content of the portion. Subsequently, the defect portion of the tissues of the He-containing metal is modified by heating the portion with melting. Since electric current can be supplied to the metal material in a state where the metal material is heated and the temperature thereof is elevated, an effect of further reducing the He content can be obtained. Further, if the current supply and/or the heating relative to the metal material is performed in a vacuum or inert gas atmosphere, an effect of reducing the degradation of the surface of the objective portion to be supplied with electric current can be obtained. (T.M.)

  9. An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House

    Directory of Open Access Journals (Sweden)

    Chiemi Iba

    2018-04-01

    Full Text Available Concerns about resource depletion have prompted several countries to promote the usage of renewable energy, such as underground heat. In Japan, underground heat-pump technology has begun to be utilized in large-scale office buildings; however, several economic problems are observed to still exist, such as high initial costs that include drilling requirements. Further, most of the traditional dwellings “Kyo-machiya” in Kyoto, Japan have a shallow well. This study intends to propose an effective ground-source heat-pump system using the well water from a “Kyo-machiya” home that does not contain any drilling works. In previous research, it was depicted that the well-water temperature decreases as the heat pump (HP is operated and that the heat extraction efficiency steadily becomes lower. In this study, an experiment is conducted to improve efficiency using a drainage pump. Based on the experimental results, the effect of efficiency improvement and the increase in the electric power consumption of the drainage pump are examined. It is indicated that short-time drainage could help to improve efficiency without consuming excessive energy. Thus, continuous use of the heat pump becomes possible.

  10. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  11. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  12. Problems of heat transfer within the containing vessel of high performance LMFBR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Pope, R.B.; Gartling, D.K.; Schimmel, W.P. Jr.; Larson, D.W.

    1976-01-01

    A preliminary assessment of heat transfer problems internal to a LMFBR spent fuel shipping cask is reported. The assessment is based upon previous results obtained in full-scale, electrically heated mockups of an LMFBR assembly located in a containing pipe, and also upon analytical and empirical studies presented in this paper. It is shown that a liquid coolant will be required to adequately distribute the decay heat of short-cooled assemblies from the fuel region to the containing cask structure. Liquid sodium apparently provides the best heat transfer, and sufficient data are available to adequately model the heat transfer processes involved. Dowtherm A is the most efficient organic evaluated to date and presented in the open literature. Since the organic materials have high Prandtl and usually high Rayleigh numbers, natural convection is the predominant mode of heat transfer. It is shown that a more comprehensive understanding of the convective processes will be required before heat transfer with an organic coolant can be adequately modeled. However, in view of systems considerations, Dowtherm A should be further considered as an alternative to sodium for use as a LMFBR spent fuel shipping cask coolant

  13. Heating and cooling device for use in the vacuum container of a thermonuclear device

    International Nuclear Information System (INIS)

    Morita, Hiroaki; Onozuka, Masanori; Fukui, Hiroshi.

    1986-01-01

    Purpose: To prevent the generation of great temperature difference within a hollow doughnuts-shaped space of the torus vacuum container of a tokamak type thermonuclear reactor, as well as effectively eliminate the local injection of heat to the vacuum container. Constitution: A hollow doughnuts-like space is formed between the inner wall and the double outer wall of a vacuum container main body, which is divided into a plurality of regions by partition plates extended in the toroidal direction. An input/output header is disposed in adjacent with each of the partition plates for inputting/outputting heat medium. Further, heat medium inlet/outlets are disposed to define two flow channels on every one-half circumference. This enables to reduce the temperature difference of the heat medium between the inlet and the outlet by the shortening of the flow channel length and heating or cooling can be performed without causing unevenness in the temperature distribution of the vacuum container. (Horiuchi, T.)

  14. Assessment of GOTHIC and TRACE codes against selected PANDA experiments on a Passive Containment Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Papini, Davide, E-mail: davide.papini@psi.ch; Adamsson, Carl; Andreani, Michele; Prasser, Horst-Michael

    2014-10-15

    Highlights: • Code comparison on the performance of a Passive Containment Condenser. • Simulation of separate effect tests with pure steam and non-condensable gases. • Role of the secondary side and accuracy of pool boiling models are discussed. • GOTHIC and TRACE predict the experimental performance with slight underestimation. • Recirculatory flow pattern with injection of light non-condensable gas is inferred. - Abstract: Typical passive safety systems for ALWRs (Advanced Light Water Reactors) rely on the condensation of steam to remove the decay heat from the core or the containment. In the present paper the three-dimensional containment code GOTHIC and the one-dimensional system code TRACE are compared on the calculation of a variety of phenomena characterizing the response of a passive condenser submerged in a boiling pool. The investigation addresses the conditions of interest for the Passive Containment Cooling System (PCCS) proposed for the ESBWR (Economic Simplified Boiling Water Reactor). The analysis of selected separate effect tests carried out on a PCC (Passive Containment Condenser) unit in the PANDA large-scale thermal-hydraulic facility is presented to assess the code predictions. Both pure steam conditions (operating pressure of 3 bar, 6 bar and 9 bar) and the effect on the condensation heat transfer of non-condensable gases heavier than steam (air) and lighter than steam (helium) are considered. The role of the secondary side (pool side) heat transfer on the condenser performance is examined too. In general, this study shows that both the GOTHIC and TRACE codes are able to reasonably predict the heat transfer capability of the PCC as well as the influence of non-condensable gas on the system. A slight underestimation of the condenser performance is obtained with both codes. For those tests where the experimental and simulated efficiencies agree better the possibility of compensating errors among different parts of the heat transfer

  15. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  16. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    International Nuclear Information System (INIS)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  17. LWR aerosol containment experiments (LACE) program and initial test results

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.; Bloom, G.R.; McCormack, J.D.; Rahn, F.J.

    1985-01-01

    The LWR aerosol containment experiments (LACE) program is described. The LACE program is being performed at the Hanford Engineer Development Laboratory (operated by Westinghouse Hanford Company) and the initial tests are sponsored by EPRI. The objectives of the LACE program are: to demonstrate, at large-scale, inherent radioactive aerosol retention behavior for postulated high consequence LWR accident situations; and to provide a data base to be used for aerosol behavior . Test results from the first phase of the LACE program are presented and discussed. Three large-scale scoping tests, simulating a containment bypass accident sequence, demonstrated the extent of agglomeration and deposition of aerosols occurring in the pipe pathway and vented auxiliary building under realistic accident conditions. Parameters varied during the scoping tests were aerosol type and steam condensation

  18. Experiment on transient heat transfer in closed narrow channel

    International Nuclear Information System (INIS)

    Ochiai, Masaaki

    1985-01-01

    Heat transfer coefficients and transient pressures in closed narrow channels were obtained experimentally, in order to assess the gap heat transfer models in the computer code WTRLGD which were devised to analyze the internal pressure behavior of waterlogged fuel rods. Gap widths of channels are 0.1--0.5mm to simulate the gap region of waterlogged fuel rods, and test fluids are water (7--89.2 0 C) and Freon-113 (9.2 0 C). The results show that the heater temperature and the pressure measured in the experiments without the DNB occurrence are simulated fairly well by the calculational model of WTRLGD where the heat transfer in a closed narrow channel is evaluated with one-dimensional transient thermal conduction equation and Jens and Lottes' correlation for nucleate boiling. Consequently, it is also suggested that the above equations are available for evaluation of heat flux from fuel to internal water of waterlogged fuel rods. The film boiling heat transfer coefficient was in the same order of that evaluated by Bromley's correlation and the DNB heat flux was smaller than that obtained in quasi-steady experiments with ordinary systems, although the experimental data for them were not enough. (author)

  19. Experience in the use of wind energy for greenhouse heating

    Energy Technology Data Exchange (ETDEWEB)

    O' Flaherty, T; Kocsis, K; Petersen, H [eds.

    1987-05-01

    Study of the appliction of wind energy for greenhouse heating began at Kinsealy Research Centre in 1980 with the installation of a multi-blade 6m diamter wind turbine. This produced electricity which was used to provide root zone warming for a glasshouse tomato crop. The application worked well and the wind turbine is still in operation, although it has been out of service for substantial periods and has required major refurbishment. In July 1985 a new wind turbine was commissioned as an EEC Wind Energy Demonstration Project. This is an 11m diameter grid-connected unit, and the project involves using its output to power a heat pump which in turn supplies heat to a greenhouse. The system is operating well and initial performance results have been obtained during the 1985-'86 heating season. The paper summarises the experience to data with both of these projects.

  20. Reflooding experiments on a 49-rod cluster containing a long 90% blockage

    International Nuclear Information System (INIS)

    Pearson, K.G.; Cooper, C.A.; Jowitt, D.; Kinneir, J.H.

    1983-01-01

    A series of reflooding experiments was performed on a model fuel assembly, containing a very severe partial blockage, in the THETIS rig. The assembly comprised 49 full length, electrically heated fuel rod simulators and the blockage was created by attaching thin-walled, preformed swellings to a group of 16 rods. Results are presented for single phase and forced reflooding experiments. The most important findings relate to the improvements in heat transfer created by spacer grids and the nature of the heat transfer processes within the blockage. Spacer grids are shown to improve heat transfer by increasing turbulence and also, when wet, by cooling the steam flowing through them. Liquid penetration evidently deteriorates as the rewetting front approaches the blockage, allowing the steam through the blockage to superheat strongly and giving rise to a late peak in cladding temperature. At low reflooding rates there is a temperature penalty associated with the blockage which becomes increasingly larger as the reflooding rate is reduced. The adequacy of cooling in this very severe blockage becomes questionable when the reflooding rate falls to about 2cm/s. (U.K.)

  1. Abnormal excess heat observed during Mizuno-type experiments

    International Nuclear Information System (INIS)

    Fauvarque, Jean-Francois; Clauzon, Pierre Paul; Lalleve, Gerard Jean-Michel

    2006-01-01

    A simple calorimeter has been designed that works at constant temperature; that of boiling water. Heat Losses can be estimated accurately with an ohmic heater. As expected, losses are independent of the electric power input to the heater and the amount of evaporated water is linearly dependant on the power input. The device has been used to determine the heating power of a plasma electrolysis (the Ohmori-Mizuno experiment). We confirm that in this experiment, the heat output from electrolysis is greater than the electrical power input. The excess energy increases as the electrolysis voltage is increased from 200 up to 350 V (400 V input). The excess energy may be as high as 120 W. (author)

  2. ICRF heating experiments on JIPP T-II

    International Nuclear Information System (INIS)

    Ichimura, M.; Fujita, J.; Hirokura, S.

    1983-10-01

    Data of JIPP T-II ICRF heating experiments are presented. The experiment covers three typical cases: the low concentration hydrogen minority case, the high concentration hydrogen minority case, and the 3 He minority case. The best heating efficiency is obtained for the 3 Heminority case. It is shown through power balance analysis that the two H-minority cases are different in the wave energy deposition profile. The difference is explained by the presence of local cavity mode for the high concentration minority case. The ion temperature stops rising at the power density level of 0.65 W/cm 3 . An analytic solution of the Fokker-Planck equation is derived to interpret the deterioration of heating efficiency. (author)

  3. Recent {sup 3}He radio frequency heating experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D. [Association Euratom-Belgian State, LPP-ERM/KMS, TEC, Brussels (Belgium); Imbeaux, F.; Joffrin, E. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)] [and others

    2003-07-01

    Various ITER relevant experiments using {sup 3}He in a majority D plasma were performed in the recent JET campaigns. Two types can be distinguished: dedicated studies of the various RF heating scenarios which rely on the presence of {sup 3}He, and physics studies using RF heating as a working tool to provide a tunable heat source. As the success of a number of these experiments depended on the capability to keep the {sup 3}He concentration fixed, real time control of the {sup 3}He concentration was developed and used. This paper presents a brief overview of the results obtained, zooms in on some of the more interesting recent findings and discusses some of the theoretical background. (authors)

  4. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  5. Atmospheric stability inside containments with a heated layer of liquid on the floor

    Energy Technology Data Exchange (ETDEWEB)

    Vate, J.F. van de [Netherlands Energy Research Foundation, Petten (Netherlands)

    1977-01-01

    The study of atmospheric stability inside containments with a heated layer of liquid comprised derivation of the boundary condition for stable atmospheric stratifications and the experimental validation of the boundary condition for stable atmospheric stratification. This report includes description of the model for stirred aerosol deposition and the calculation results for maximum aerodynamic diameter of a confined aerosol remaining just well-stirred.

  6. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    Science.gov (United States)

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  7. MELCOR 1.8.3 assessment: CSE containment spray experiments

    International Nuclear Information System (INIS)

    Kmetyk, L.N.

    1994-12-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part, of an ongoing assessment program, the MELCOR computer code has been used to analyze a series of containment spray tests performed in the Containment Systems Experiment (CSE) vessel to evaluate the performance of aqueous sprays as a means of decontaminating containment atmospheres. Basecase MELCOR results are compared with test data, and a number of sensitivity studies on input modelling parameters and options in both the spray package and the associated aerosol washout and atmosphere decontamination by sprays modelled in the radionuclide package have been done. Time-step and machine-dependency calculations were done to identify whether any numeric effects exist in these CSE assessment analyses. A significant time-step dependency due to an error in the spray package coding was identified and eliminated. A number of other code deficiencies and inconveniences also are noted

  8. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  9. Research on heat and mass transfer model for passive containment cooling system

    International Nuclear Information System (INIS)

    Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun

    2013-01-01

    Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)

  10. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  11. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)

  12. Status of direct containment heating in CSNI member countries. Report of task group on ex-vessel thermal-hydraulics

    International Nuclear Information System (INIS)

    1989-03-01

    The status of activities on direct containment heating in the light water reactor program in OECD/CSNI countries is presented. Experimental and analytical studies are reviewed. Approaches or measures are discussed for accident management in relation to direct containment heating. A discussion is given of common and diverging views among the countries based, in part, on response to a questionnaire. The key issues are discussed and recommendations are provided for future CSNI work on direct containment heating

  13. Mathematical modelling of heat absorption capacity of containment spray system in a 700 MWe PHWR

    International Nuclear Information System (INIS)

    Kota, Sampath Bharadwaj; Ali, Seik Mansoor; Balasubramaniyan, V.

    2015-01-01

    This paper presents a mathematical model for estimating the heat removal by containment spray system in the post Loss of Coolant Accident (LOCA) environment. The procedure involves firstly, the calculation of heat removal rates by droplets of spray dispersed in the air-steam mixture by an appropriate direct contact condensation model accounting for the presence of non-condensable gas (air). Parametric influence of droplet size, ambient pressure and temperature on heat flux is brought out. It was found that the heat flux is inversely proportional to the ambient pressure and diameter. A spray module was subsequently developed and incorporated into an in-house containment thermal hydraulics code. The pressure and temperature transients in a 700 MWe PHWR containment building following a Large Break LOCA was obtained using this code. The efficacy of the spray in condensing the steam is shown by comparing the transients with and without the operation of spray system. Parametric studies are also conducted with respect to droplet size and flow rate of water droplet spray. The details of the investigation are presented and discussed in this paper. (author)

  14. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    Science.gov (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  15. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  16. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  17. Numerical analysis of heat transfer of canned liquid foods containing fibers or particles during sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Z.; Sakai, N.; Hanzawa, T. [Tokyo Univ. of Fisheries, Tokyo (Japan). Dept. of Food Science and Tech.

    2000-10-01

    The velocity profile, temperature distribution, and the slowest heating point of a canned liquid food containing fibers or particles were calculated numerically by using fundamental equations that take account of the effect of free convection in the can at an unsteady state under the assumption of imaginary fluid with apparent physical properties. To check these calculated results, the temperature distribution in the can was measured experimentally under the same operating conditions as those of the theoretical analysis. The calculated results agree closely with the experimental ones. Adaptable ranges of present numerical analysis and the positional characteristics of the slowest heating point are shown. (author)

  18. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    International Nuclear Information System (INIS)

    Spring, J.P.; McLaughlin, D.M.

    2006-01-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  19. Thermal striping heat transfer measurements in sodium AKB experiments

    International Nuclear Information System (INIS)

    Sheriff, N.; Sephton, K.P.; Gleave, C.

    1988-01-01

    Temperature fluctuations are produced in the sodium flow of fast reactors where hot and cold flow streams mix. A sodium experiment mounted on the Interatom facility AKB has been used to measure the heat transfer conditions in a flow stream with typical temperature fluctuations. The measurements were made at locations near to the leading edge of a plate, where in practice the most severe conditions are expected. With tests carried out over a wide range of flows good correlations of the heat transfer data with flow have been obtained. A simple theoretical model is proposed to explain the magnitude of the measured heat transfer coefficients, and the use of reasonable assumptions in the model produce good agreement with the experimental measurements

  20. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    Science.gov (United States)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  1. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  2. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  3. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-10-01

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  4. Simulations and experiments of laminar heat transfer for Therminol heat transfer fluids in a rifled tube

    International Nuclear Information System (INIS)

    Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai

    2016-01-01

    Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.

  5. Radiant heat testing of the H1224A shipping/storage container

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

  6. Mixed convection heat transfer experiments using analogy concept

    International Nuclear Information System (INIS)

    Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea

    2009-01-01

    A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number

  7. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  8. Critical heat flux experiments in tight lattice core

    Energy Technology Data Exchange (ETDEWEB)

    Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  9. Critical heat flux experiments in tight lattice core

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2002-01-01

    Fuel rods of the Reduced-Moderation Water Reactor (RMWR) are so designed to be in tight lattices as to reduce moderation and achieve higher conversion ratio. As for the BWR type reactor coolant flow rate is reduced small compared with the existing BWR, so average void fraction comes to be langer. In order to evaluate thermo hydraulic characteristics of designed cores, critical heat flux experiments in tight lattice core have been conducted using simulated high pressure coolant loops for both the PWR and BWR seven fuel rod bundles. Experimental data on critical heat flux for full bundles have been accumulated and applied to assess the critical power of designed cores using existing codes. Evaluated results are conservative enough to satisfy the limiting condition. Further experiments on axial power distribution effects and 37 fuel rod bundle tests will be performed to validate thermohydraulic characteristics of designed cores. (T. Tanaka)

  10. Using containment analysis to improve component cooling water heat exchanger limits

    International Nuclear Information System (INIS)

    Da Silva, H.C.; Tajbakhsh, A.

    1995-01-01

    The Comanche Peak Steam Electric Station design requires that exit temperatures from the Component Cooling Water Heat Exchanger remain below 330.37 K during the Emergency Core Cooling System recirculation stage, following a hypothetical Loss of Coolant Accident (LOCA). Due to measurements indicating a higher than expected combination of: (a) high fouling factor in the Component Cooling Water Heat Exchanger with (b) high ultimate heat sink temperatures, that might lead to temperatures in excess of the 330.37 K limit, if a LOCA were to occur, TUElectric adjusted key flow rates in the Component Cooling Water network. This solution could only be implemented with improvements to the containment analysis methodology of record. The new method builds upon the CONTEMPT-LT/028 code by: (a) coupling the long term post-LOCA thermohydraulics with a more detailed analytical model for the complex Component Cooling Water Heat Exchanger network and (b) changing the way mass and energy releases are calculated after core reflood and steam generator energy is dumped to the containment. In addition, a simple code to calculate normal cooldowns was developed to confirm RHR design bases were met with the improved limits

  11. Heat transfer experiment in a granite formation at Cornwall

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.

    1985-01-01

    An experiment simulating a waste package was started in 1978 in Cornish granite. To obtain measurable temperature rises through large volumes of rock, an electrical heater at 50m depth was run for four years. The heater was then switched off and the cooling was monitored for another year. The results show that most of the heat transfer was by conduction but that some convection occurred and that temperatures can be predicted with some confidence

  12. High temperature experiments on a 4 tons UF6 container TENERIFE program

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  13. Modeling of high power ICRF heating experiments on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Murakami, M.

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P rf ∼ 6 MW) in the TFTR experiments

  14. Controller tuning of district heating networks using experiment design techniques

    International Nuclear Information System (INIS)

    Dobos, Laszlo; Abonyi, Janos

    2011-01-01

    There are various governmental policies aimed at reducing the dependence on fossil fuels for space heating and the reduction in its associated emission of greenhouse gases. DHNs (District heating networks) could provide an efficient method for house and space heating by utilizing residual industrial waste heat. In such systems, heat is produced and/or thermally upgraded in a central plant and then distributed to the end users through a pipeline network. The control strategies of these networks are rather difficult thanks to the non-linearity of the system and the strong interconnection between the controlled variables. That is why a NMPC (non-linear model predictive controller) could be applied to be able to fulfill the heat demand of the consumers. The main objective of this paper is to propose a tuning method for the applied NMPC to fulfill the control goal as soon as possible. The performance of the controller is characterized by an economic cost function based on pre-defined operation ranges. A methodology from the field of experiment design is applied to tune the model predictive controller to reach the best performance. The efficiency of the proposed methodology is proven throughout a case study of a simulated NMPC controlled DHN. -- Highlights: → To improve the energetic and economic efficiency of a DHN an appropriate control system is necessary. → The time consumption of transitions can be shortened with the proper control system. → A NLMPC is proposed as control system. → The NLMPC is tuned by utilization of simplex methodology, using an economic oriented cost function. → The proposed NLMPC needs a detailed model of the DHN based on the physical description.

  15. Status of the LWR aerosol containment experiments (LACE) program

    International Nuclear Information System (INIS)

    Bloom, G.R.; Dickinson, D.R.; Hilliard, R.K.; McCormack, J.D.; Muhlestein, L.D.; Rahn, F.J.

    1985-01-01

    The LACE program, sponsored by an international consortium, is investigating inherent aerosol behavior for three postulated high consequence accident sequences; the containment bypass or V-sequence, failure to isolate containment, and delayed containment failure. Six large-scale tests are described which focus on these accident situations and which will be completed in the Containment Systems Test Facility at the Hanford Engineering Development Laboratory. The aerosol generation systems used to generate soluble and insoluble aerosols for the large-scale tests are described. The report then focuses on those tests which deal with the containment bypass accident sequence. Test results are presented and discussed for three containment bypass scoping tests

  16. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  17. Reactor containment purge and vent valve performance experiments

    International Nuclear Information System (INIS)

    Hunter, J.A.; Steele, R.; Watkins, J.C.

    1985-01-01

    Three nuclear-designed butterfly valves typical of those used in domestic nuclear power plant containment purge and vent applications were tested. For a comparison of responses, two eight-inch nominal pipe size valves with differing internal design were tested. For extrapolation insights, a 24-inch nominal pipe size valve was also tested. The valve experiments were performed with various piping configurations and valve disc orientations to the flow, to simulate various installation options in field application. As a standard for comparing the effects of the installation options, testing was also performed in a standard ANSI test section. Test cycles were performed at inlet pressures of 5 to 60 psig, while monitoring numerous test parameters, such as the valve disc position, valve shaft torque, mass flow rate, and the pressure and temperature at multiple locations throughout the test section. An experimental data base was developed to assist in the evaluation of the current analytical methods and to determine the influence of inlet pressure, inlet duct geometry, and valve orientation to the flow media on valve torque requirements, along with any resulting limitations to the extrapolation methods. 2 refs., 15 figs

  18. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  19. Ion heating in minority ICRH experiments on JET

    International Nuclear Information System (INIS)

    Start, D.F.H.; Bhatnagar, V.; Bures, M.

    1991-06-01

    Bulk ion heating by high power H-minority ICRH has been demonstrated in JET during both pellet enhanced performance H-mode experiments (PEP + H - mode) and in density limit studies. In the PEP + H - mode plasmas the electron and ion temperatures both reached 10 keV at an electron density of 7 x 10 19 /m 3 . According to Fokker-Planck calculations the power from the minority was transfered almost equally to the electrons and majority ions as a result of both the high electron density, n e , and the high minority density, n h , (n h /n e ≅ 0.15). For the first time with ICRH on JET a central ion temperature greater than the central electron temperature was achieved. In the density limit experiments which involved strong gas puffing into limiter discharges, there was strong evidence of a transfer from electron heating to ion heating as the electron density was ramped up to 8 x 10 19 /m 3 . (Author)

  20. Restoration of the Apollo Heat Flow Experiments Metadata

    Science.gov (United States)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  1. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  2. Theoretical Support of Heat Exchanger Experiments of the EU-CONGA Project

    International Nuclear Information System (INIS)

    Herranz, L. E.; Lopez Jimenez, J.; Munoz-Cobo, J. L.; Palomo, M. J.

    1999-01-01

    In this report the work carried out within the Work Package 5 of the CONGA project under the auspices of the European Union has been presented. Primarily focused on studying from a theoretical perspective the degradation of heat exchangers to be used in next generation of European reactor containments under accident conditions, and particularly the effect of aerosols, the objective has been met quite satisfactorily and the results can be summed up in three specific items: - A mathematical model of a mechanistic nature that has been encapsulated into a FORTRAN code (HTCFOUL) capable of simulating condensation heat transfer to a horizontal finned tube internally cooled. - A theoretical correlation depending upon non-dimensional variables and numbers which embodies most of the HTCFOUL physics and gives results not beyond 20% of actual HTCFOUL estimates. - A reasonable interpretation of the major measurements and observations obtained in the heat exchanger experiments performed within the Work Package 2 of the CONGA project. (Author) 55 refs

  3. High Harmonic Fast Wave Heating Experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.; Bonoli, P.

    2000-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ and a toroidal beta, bT , =10% and bn = 2.7

  4. High harmonic fast wave heating experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, β T =10% and a normalized beta, β n =2.7. (author)

  5. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  6. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  7. Study on the application of thickened welds without post weld heat treatment for containment vessels

    International Nuclear Information System (INIS)

    Takeuchi, T.; Fukaya, T.; Sato, M.; Takano, G.

    1978-01-01

    As material for containment vessels, SGV49 steel plates are mainly used. However, those used for this purpose are limited in thickness to smaller than 38 mm. This is because the present standard requires welds thicker than 38 mm to be subjected to post weld heat treatment but operation on the site is practically difficult. In the case of 3-loop containment vessels of pressurized water type reactors, use of 38 mm SGV49 brings an increase in their height and this is disadvantageous from a seismic viewpoint. Therefore, use of 45 mm-thick steel material has become necessary in order to increase design internal pressure and reduce the height of the vessels. To investigate the propriety of the use of 45 mm-thick SGV49 for this purpose without post weld heat treatment we investigated the basic performances of base metal and welded joints. We also conducted large-scale embrittlement fracture tests (CT test, deep notch test, wide plate tensile test and ESSO test) in order to examine whether welds not subjected to post weld heat treatment are safe against embrittlement fracture under the operating conditions of the vessels. The results proved that the welds of SGV49 steel plates are safe enough under the operating conditions. (author)

  8. A Fresnel collector process heat experiment at Capitol Concrete Products

    Science.gov (United States)

    Hauger, J. S.

    1981-01-01

    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.

  9. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  10. Electron-cyclotron heating in the Constance 2 mirror experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  11. Recent TMX-U central cell heating and fueling experiments

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Barter, J.; Dimonte, G.; Falabella, S.; Molvik, A.W.; Pincosy, P.; Turner, W.C.

    1986-01-01

    Recent experiments have begun to test new methods of heating and fueling of the TMX-U central cell plasma. Heating is with ICRH and 2kV neutral beams. Fueling is by the 2kV beams and by gas puffing. The ICRH system used for fundamental-frequency slow-wave heating consists of two double half-turn antennas, with one on each side of the central cell midplane at mirror ratios of 1:3 and 1:5. Gas fueling is between these two antennas to ensure that recently ionized particles pass through an ICRH resonance before entering the thermal barrier and cells. In recent gas-fed experiments with 100 to 200kW power on each antenna, the end loss temperature was measured to increase from 30eV to above 150eV with perpendicular (cc) temperatures of >500eV. The TMX-U central cell has been equipped with 10 low energy neutral-beam injectors (LENI). These beams are designed to operate at 2kV (net) accel-voltage and deliver 17 atom amperes each to the TMX-U plasma. This low energy was selected to improve trapping (relative to higher energy) on the initial ICRH heated plasma (2X10/sup 12/ cm/sup -3/). At 2keV the beams are predicted to be capable of building up and fueling to 10/sup 13/ cm/sup -3/ density, with ion-ion scattering providing a warm, isotropic ion component in the central cell

  12. Electron-cyclotron heating in the Constance 2 mirror experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation

  13. Dryout heat flux experiments with deep heterogeneous particle bed

    International Nuclear Information System (INIS)

    Lindholm, I.; Holmstroem, S.; Miettinen, J.; Lestinen, V.; Hyvaerinen, J.; Pankakoski, P.; Sjoevall, H.

    2006-01-01

    A test facility has been constructed at Technical Research Centre of Finland (VTT) to simulate as accurately as possible the ex-vessel core particle bed in the conditions of Olkiluoto nuclear power plant. The STYX particle bed reproduces the anticipated depth of the bed and the size range of particles having irregular shape. The bed is immersed in water, creating top flooding conditions, and internally heated by an array of electrical resistance heating elements. Dryout tests have been successfully conducted at 0.1-0.7 MPa pressure for both uniformly mixed and stratified bed geometries. In all tests, including the stratified ones, the dry zone first formed near the bottom of the bed. The measured dryout heat fluxes increased with increasing pressure, from 232 kW/m 2 at near atmospheric pressure to 451 kW/m 2 at 0.7 MPa pressure. The data show some scatter even for the uniform bed. The tests with the stratified bed indicate a clear reduction of critical power due to the presence of a layer of small particles on top of the uniform bed. Comparison of data with various critical power (dryout heat flux) correlations for porous media shows that the most important parameter in the models is the effective particle diameter. Adiabatic debris bed flow resistance measurements were conducted to determine the most representative particle diameter. This diameter is close, but not equal, to the particle number-weighted average diameter of the bed material. With it, uniform bed data can be calculated to within an accuracy of 3-28% using Lipinski's 0-D model. In the stratified bed experiments, it appears that the top layer was partially fluidized, hence the measured critical power was significantly higher than calculated. Future experiments are being planned with denser top layer material to eliminate non-prototypic fluidization

  14. Design and experiment of a new solar air heating collector

    International Nuclear Information System (INIS)

    Shams, S.M.N.; Mc Keever, M.; Mc Cormack, S.; Norton, B.

    2016-01-01

    This paper presents the design and experiment of a CTAH (Concentrating Transpired Air Heating) system. A newly designed solar air heating collector comprised of an inverted perforated absorber and an asymmetric compound parabolic concentrator was applied to increase the intensity of solar radiation incident on the perforated absorber. An extensive literature review was carried out to find the vital factors to improve optical and thermal efficiency of solar air heating systems. A stationary optical concentrator has been designed and experimented. Experimental thermal efficiency remained high at higher air flow rates. The average thermal efficiency was found to be approximately 55%–65% with average radiation above 400 W/m"2 for flow rates in the range of 0.03 kg/s/m"2 to 0.09 kg/s/m"2. Experimental results at air flow rates of 0.03 kg/s/m"2 and 0.09 kg/s/m"2 showed temperature rise of 38 °C and 19.6 °C respectively at a solar radiation intensity of 1000 W/m"2. A comparative performance study shows the thermal performance of CTAH. As the absorber of the CTAH facing downward, it avoids radiation loss and the perforated absorber with tertiary concentrator reduces thermal losses from the system. - Highlights: • Literature review was carried out to improve SAH system performance. • Optimisation factors were optical efficiency; heat loss, weight and cost. • Concentrator was designed to concentrate radiation for 6–7 h. • The highest efficiency of CTAH can be 73%. • It can work as efficient as 60% for a temperature rise of 70 °C.

  15. Behaviour of the Callovo-Oxfordian clay around a converging heated borehole: thermal free wall experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.

    2012-01-01

    Document available in extended abstract form only. ANDRA has launched several heating experiments in the Meuse-Haute Marne Underground Laboratory (e.g. TER and TED). In these experiments, the heater-rock contact was ensured by a metal tubing that prevented any convergence of the heating borehole. The Thermal Free Wall experiment was run by ANDRA to investigate whether the rock behaviour around an un-cased borehole was similar as in the previous experiments. Additionally, the temperature increase in the TFW was applied faster than in the previous experiments in order to investigate the rock response to a heavier thermal load. It consists in a main borehole containing the heater and two instrumentation boreholes equipped with a temperature and a pore water pressure sensor each. The sensors installed in borehole TER1906 are at approximately 40 cm from the heater borehole wall in the bedding plane. The TER1907 sensors are in the direction perpendicular to the bedding planes at about 70 cm from the heater borehole. The boreholes were drilled from the GEX gallery in the direction of the major in situ stress (16 MPa). The heater has an effective heating length of 3.29 m and is located between 7 and 10 m from the GEX gallery. It was emplaced on a base to centre it in the borehole and to have a void between the heater and the rock mass for free convergence. Heating started on 10 January 2011 and lasted 56 days. One of the requirements of the experiment was to apply a relatively fast heating ramp in comparison with the previous tests in order to investigate the rock behaviour under stronger thermal load. The increase from 21 C to 90 C at the external heater wall was achieved in 14 hours. The initial pore water pressure is about 3.2 MPa, somewhat lower than the undisturbed pore water pressure at the level of the laboratory (4.5 MPa). This difference is attributed to the presence of the GEX gallery that was excavated in July-September 2005. In this work, we present the

  16. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  17. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  18. Progress on Electron Cyclotron Heating Experiments in LHD

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Nagasaki, K.; Notake, T.; Inagaki, S.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Takita, Y.; Ohkubo, K.; Saito, K.; Seki, T.; Kumazawa, R.; Watari, T.; Mutoh, T.

    2005-01-01

    Electron cyclotron resonance heating (ECH) is a powerful heating method because of its well-controlled local heating and high deposition power density. Together with the development of high power long pulse gyrotrons, ECH becomes one of the major heating scenarios to control electron temperature and current profiles for the improved plasma confinement and suppression of some magneto-hydro-dainamic (MHD) instabilities in both tokamaks and stellarators [1]. In the Large Helical Device (LHD), ECH has been worked as a method of plasma initiation and electron heating. The ECH system has been improved with respect to each experimental campaign. In the recent campaign, nine gyrotrons were operated reliably and steadily. As a diagnostic objective, a modulated ECH (MECH) was injected together with main ECH power. A Fourier analysis of the induced heat wave gave useful information of not only the heat transport in the plasmas but also precise power deposition layer [2]. Several kinds of ECH experiment were performed by using this flexible ECH system. In LHD, electron ITB formation have been observed by using strongly focused ECH in the plasma core [3].Two different kinds of improved confinement were realized depending on the direction of tangentially injected NBI. NBI beam driven currents modify the profiles of the rotational transform 2 ro and the existence low order rational surfaces, 2 = 0.5 in special, affects the difference of appearance of the improved confinement states. The MECH method was used to investigate the internal structure of the thermal diffusion in such plasmas [4]. Another important role of the MECH is the precise determination of the ECH power deposition. Shift of the deposition location by changing an injection polarization in the electron Bernstein wave (EBW) heating was clearly demonstrated by the MECH method. Electron cyclotron current drive (ECCD) experiments were proceeded by using a flexible antenna system, which had wide scanning range in both

  19. An experiment in heat conduction using hollow cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, M; Marquez, A; Gallego, S; Neipp, C; Belendez, A, E-mail: a.belendez@ua.es [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2011-07-15

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is analysed, and when the process reaches the steady state regime the thermal conductivity can be easily calculated. Several materials such as wood, plastic and metals are considered and the values of their thermal conductivities, obtained experimentally, are compared with those given in the reference list.

  20. Impact of bulk atmospheric motion on local and global containment heat transfer

    International Nuclear Information System (INIS)

    Green, J.A.; Almenas, K.

    1995-01-01

    Local and global correlations for condensing energy transfer in the presence of noncondensable gases in a containment facility have been evaluated. The database employed stems from the E11.2 and E11.4 tests conducted at the German HDR facility. The HDR containment is a 11060-ml, 60-m-high decommissioned light water reactor. The tests simulated long-term (up to 56 h) accident conditions. Numerous instrumented structural blocks (concrete and lead) were located throughout the containment to provide detailed local heat transfer measurements. These data represent what is probably the most extensive database of integral energy transfer measurements available. It is well established that the major resistance to condensation heat transfer in the presence of noncondensable gases is a gaseous boundary layer that builds up in front of the condensing surface. Correlations that seek to model heat transfer for these conditions should depend on parameters that most strongly determine the buildup and thickness of this boundary layer. Two of the most important parameters are the vapor/noncondensable concentration ratio and the local atmospheric motion. Secondary parameters include the atmosphere-to-surface temperature difference, the pressure, and condensing surface properties. The HDR tests are unique in terms of the quantity and variety of instrumentation employed. However, one of the most important parameters, the local bulk atmospheric velocity, is inherently difficult to measure, and only fragmentary measurements are available even in the HDR data-base. A detailed analysis of these data is presented by Green. This study uses statistical methods to evaluate local and global empirical correlations that do not include the atmospheric velocity. The magnitude of the differences between the correlations emphasizes the importance of the local atmospheric velocity and serves to illustrate the accuracy limits of correlations that neglect this essential parameter

  1. Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions

    International Nuclear Information System (INIS)

    Anderson, M.H.; Corradini, M.L.

    1998-01-01

    The new AP600 reactor designed by Westinghouse uses a passive safety system relying on heat removal by condensation to keep the containment within the design limits of pressure and temperature. Even though some research has been done so far in this regard, there are some uncertainties concerning the behavior of the system under postulated accident conditions. In this paper, steam condensation onto the internal surfaces of the AP600 containment walls has been investigated in two scaled vessels with similar aspect ratios to the actual AP600. The heat transfer degradation in the presence of noncondensable gas has been analyzed for different noncondensable mixtures of air and helium (hydrogen simulant). Molar fractions of noncondensables/steam ranged from (0.4-4.0) and helium concentrations in the noncondensable mixture were 0-50% by volume. In addition, the effects of the bulk temperatures, the mass fraction of noncondensable/steam, the cold wall surface temperature, the pressure, noncondensable composition, and the inclination of the condensing surface were studied. It was found that the heat transfer coefficients ranged from 50 to 800 J s -1 K -1 m -2 with the highest for high wall temperatures at high pressure and low noncondensable molar fractions. The effect of a light gas (helium) in the noncondensable mixture were found to be negligible for concentrations less than approximately 35 molar percent but could result in stratification at higher concentrations. The complete study gives a large and relatively complete data base on condensation within a scaled AP600 containment structure, providing an invaluable set of data against which to validate models. In addition, specific areas requiring further investigation are summarized. (orig.)

  2. Nuclear reactor melt-retention structure to mitigate direct containment heating

    Science.gov (United States)

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  3. Nuclear reactor melt-retention structure to mitigate direct containment heating

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klages, J.R.

    1991-01-01

    This patent describes a nuclear reactor melt-retention structure that functions to retain molten core material within a melt retention chamber to mitigate the extent of direct containment heating. The structure being adapted to be positioned within or adjacent to a pressurized or boiling water nuclear reactor containment building at a location such that at least a portion of the melt retention structure is lower than and to one side of the nuclear reactor pressure vessel, and such that the structure is adjacent to a gas escape channel means that communicates between the reactor cavity and the containment building of the reactor. It comprises a melt-retention chamber, wall means defining a passageway extending between the reactor cavity underneath the reactor pressure vessel and one side of the chamber, the passageway including vent means extending through an upper wall portion thereof. The vent means being in communication with the upper region of the reactor containment building, whereby gas and steam discharged from the reactor pressure vessel are vented through the passageway and vent means into the gas-escape channel means and the reactor containment building

  4. Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation

    Science.gov (United States)

    Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.

    2011-01-01

    The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.

  5. Orion EFT-1 Cavity Heating Tile Experiments and Environment Reconstruction

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Oliver, Brandon; Hyatt, Andrew; Rezin, Marc

    2016-01-01

    Developing aerothermodynamic environments for deep cavities, such as those produced by micrometeoroids and orbital debris impacts, poses a great challenge for engineers. In order to assess existing cavity heating models, two one-inch diameter cavities were flown on the Orion Multi-Purpose Crew Vehicle during Exploration Flight Test 1 (EFT1). These cavities were manufactured with depths of 1.0 in and 1.4 in, and they were both instrumented. Instrumentation included surface thermocouples upstream, downstream and within the cavities, and additional thermocouples at the TPS-structure interface. This paper will present the data obtained, and comparisons with computational predictions will be shown. Additionally, the development of a 3D material thermal model will be described, which will be used to account for the three-dimensionality of the problem when interpreting the data. Furthermore, using a multi-dimensional inverse heat conduction approach, a reconstruction of a time- and space-dependent flight heating distribution during EFT1 will be presented. Additional discussions will focus on instrumentation challenges and calibration techniques specific to these experiments. The analysis shown will highlight the accuracies and/or deficiencies of current computational techniques to model cavity flows during hypersonic re-entry.

  6. Heat wave experiments on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Gasparino, U.; Giannone, L.; Maassberg, H.; Tutter, M.

    1993-01-01

    Power modulation with well localized ECRH power deposition at both 70 and 140 GHz, has been used to generate temperature perturbations which propagate away from the deposition region. Radiometry of the ECE is used to diagnose the generated temperature perturbation as a function of distance to the deposition zone. The decay of the amplitude and the delay of the wave provide the information to determine the electron thermal diffusivity. This value is then compared with the one derived from a global power balance. It is found that both values agree with the error bars. The technique has also been applied in recent experiments during L-H-mode transitions in W7-AS demonstrating a significant reduction in the effective heat diffusivity in the plasma core during the H-phase. The modulated ECRH causes a modulation of the Shafranov shift. Interference of the prompt shift with the heat wave results in an apparent asymmetry of the decay length of the heat wave with respect to the plasma centre. (orig.)

  7. Experience with high heat flux components in large tokamaks

    International Nuclear Information System (INIS)

    Chappuis, P.; Dietz, K.J.; Ulrickson, M.

    1991-01-01

    The large present day tokamaks. i.e.JET, TFTR, JT-60, DIII-D and Tore Supra are machines capable of sustaining plasma currents of several million amperes. Pulse durations range from a few seconds up to a minute. These large machines have been in operation for several years and there exists wide experience with materials for plasma facing components. Bare and coated metals, bare and coated graphites and beryllium were used for walls, limiters and divertors. High heat flux components are mainly radiation cooled, but stationary cooling for long pulse duration is also employed. This paper summarizes the experience gained in the large machines with respect to material selection, component design, problem areas, and plasma performance. 2 tabs., 26 figs., 50 refs

  8. Evaluation of conceptual Heat Exchanger Design for passive containment cooling system of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Ki; Hong, Soon Joon [FNC Tech., Yongin (Korea, Republic of); Kim, Young In; Kim, Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    PCCS(Passive containment cooling system) is the passive safety system which ultimately removes the reactor decay heat. Cooling performance of the air-cooled type and water-circulation cooling type of PCCS were analyzed using CAP version 2.21. The analysis results show the water-circulation cooling PCCS is more effective in lowering the peak pressure and temperature in the containment building. However, the air-cooled PCCS is more effective to the long-term cooling. From this study, the efficiency evaluation results for the two PCCS designs are obtained. These results may be applied in the PCCS design improvement. Moreover, these results will be used as a reference for the later PCCS design and analysis.

  9. Microstructure and heat resistance of Mg-Al-Zn alloys containing metastable phase

    International Nuclear Information System (INIS)

    Kim, Jeong-Min; Park, Bong-Koo; Jun, Joong-Hwan; Shin, Keesam; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    In this research microstructural studies have been made on cast specimens of AZ91 base alloys containing various amounts of Zn. As the amount of Zn addition increased up to 2%, any new Zn-containing phase did not appear while the Zn content in Mg 17 Al 12 phase continuously increased. A quasi-crystalline phase started to form at Mg 17 Al 12 phase when the added Zn content was about 3 wt.%. The tensile strength and elongation of the alloys at 175 deg. C were observed to increase significantly with increasing Zn content. The quasi-crystalline phase was found to be stable up to 300 deg. C, based on scanning electron microscopy examinations of the specimens heated at different temperatures for 24 h

  10. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  11. Design of an experiment to measure fire exposure of packages aboard container cargo ships

    International Nuclear Information System (INIS)

    Koski, J.A.

    1998-01-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire abroad a container cargo ship. A stack of nice used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Fire environments, both inside and outside the containers, typical of on-deck stowage will be measured as well as the potential for container-to-container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container-to-container fire spread characteristics. (authors)

  12. First results of out-of-pile experiments concerning cooling phenomena of molten layers with internal heat sources

    International Nuclear Information System (INIS)

    Fieg, G.

    1977-01-01

    After severe hypothetical reactor accidents, large amounts of molten core material with internal heat generation may appear. It must be guaranteed that these materials can be kept within the containment. To clarify this situation, the knowledge of heat transport from liquid layers with internal heat generation is needed. First experimental results on heat transport from internally heated horizontal fluid layers are presented. The experiments have been performed in a smooth horizontal vessel with the base of 15 x 15 cm 2 . The Joule-heated liquid layer (depth L = 1 cm - 3.5 cm) is enclosed between two isothermal horizontal walls. They are polished fore parts of heat exchangers. The temperatures of the walls were held constant with thermostatically controlled water circulating through the heat exchangers. Horizontal heat fluxes were depressed by appropriate insulation of the side walls. The total heat transport to the upper and lower boundaries has been measured by the mass transport through the heat exchangers and the temperature rise of the cooling water

  13. Heat transfer analysis of the waste-container sleeve/salt configuration

    International Nuclear Information System (INIS)

    Callahan, G.D.; Ratigan, J.L.; Russell, J.E.; Fossum, A.F.

    1975-01-01

    Prior to this investigation, the heat transport considered was only that of straight conduction. The waste container, air gap, and sleeve arrangement was considered to be a single, consistent, time-dependent, heat-generating unit in intimate contact with the salt. The conduction model does not accurately model the heat transfer mechanisms available. Thus radiation and combined radiation and convection must also be considered in the determination of the temperature field. As would be expected, the canister temperatures are higher for the case of radiation across the airgap than those that result from conduction when the canister is in intimate contact with the salt. For the radiation case, the canister temperatures rise rapidly to a temperature of approximately 1,140 0 F and maintain an almost steady state condition for one year whereafter the temperatures slowly decrease. The far field temperatures, near the pillar centerline, are essentially equivalent for all cases. As time proceeds, the far field temperatures of the conduction models are about 15% different

  14. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    Science.gov (United States)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-04-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.

  15. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    International Nuclear Information System (INIS)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-01-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies-which are promising-are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants

  16. Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others

    1995-09-01

    In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.

  17. Technical specification improvements to containment heat removal and emergency core cooling systems: Final report

    International Nuclear Information System (INIS)

    Sullivan, W.P.; Ha, C.; Pentzien, D.C.; Visweswaran, S.

    1988-07-01

    This report presents the results of an analysis for technical specification improvements to the emergency core cooling systems (ECCS) and containment heat removal systems (EPRI Research Project 2142-3). The objective of this project is to further develop a reliability- and risk-based methodology to provide improvements by considering groups of surveillance test intervals and allowed out-of-service times jointly. This was done for the technical specifications for the ECCS, containment heat removal equipment, and supporting systems of a boiling water reactor plant. The project (1) developed a methodology for optimizing groups of surveillance test intervals and allowed out-of-service times jointly, (2) applied the methodology in a case study of a specific operating plant, Hatch-2, and (3) evaluated benefits of the application. The results of the case study demonstrate that beneficial technical specification improvements can be realized with application of the methodology. By tightening a small group of sensitive surveillance test intervals (STIs) and allowed out-of-service times (AOTs), a larger group of less sensitive STIs and AOTs can be extended resulting in an overall plant operating cost improvement without reducing the plant safety. The reliability- and risk-based methodology and results from this project can be effectively applied for technical specification improvements at other operating plants

  18. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    International Nuclear Information System (INIS)

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W.; Nichols, R.T.; Sweet, D.W.

    1991-08-01

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs

  19. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W. (Sandia National Labs., Albuquerque, NM (United States)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (United States)); Sweet, D.W. (AEA Technology, Winfrith (United Kingdom))

    1991-08-01

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

  20. Experimental investigation of melting behavior of PCM by using coil heat source inside cylindrical container

    Directory of Open Access Journals (Sweden)

    M. Tayssir

    2017-05-01

    Experiments were performed for different inlet temperatures of HTF 70 °C, 80 °C and 90 °C and for different volume flow rates 5 lpm, 10 lpm and 15 lpm. The transient variation of the molten fraction, the percentage of thermal energy storage and the average Nusselt number are obtained. A significant effect of the inlet HTF temperature more than that of volume flow rate on the paraffin melting process is observed. Also, empirical correlation for the molten fraction and percentage of heat stored are deduced in terms of the operating conditions.

  1. Fission products distributions in Candu primary heat transport and Candu containment systems during a severe accident

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivations to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated and a simplified FPs inventory, some simplifications in the feeders geometry and containment were used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The containment model consists of 4 rooms connected between by 6 links. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by the CATHENA code and the source term of FPs introduced into the PHT was estimated by the ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species are obtained by using SOPHAEROS module of ASTEC code. The distributions into the containment are obtained by the CPA module of ASTEC code (thermalhydraulics calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts and

  2. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    International Nuclear Information System (INIS)

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  3. Test results on direct containment heating by high-pressure melt ejection into the Surtsey vessel: The TDS test series

    International Nuclear Information System (INIS)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.M.

    1994-08-01

    The Technology Development and Scoping (TDS) test series was conducted to test and develop instrumentation and procedures for performing steam-driven, high-pressure melt ejection (HPME) experiments at the Surtsey Test Facility to investigate direct containment heating (DCH). Seven experiments, designated TDS-1 through TDS-7, were performed in this test series. These experiments were conducted using similar initial conditions; the primary variable was the initial pressure in the Surtsey vessel. All experiments in this test series were performed with a steam driving gas pressure of ≅ 4 MPa, 80 kg of lumina/iron/chromium thermite melt simulant, an initial hole diameter of 4.8 cm (which ablated to a final hole diameter of ≅ 6 cm), and a 1/10th linear scale model of the Surry reactor cavity. The Surtsey vessel was purged with argon ( 2 ) to limit the recombination of hydrogen and oxygen, and gas grab samples were taken to measure the amount of hydrogen produced

  4. TENERIFE program: high temperature experiments on A 4 tons UF6 container

    International Nuclear Information System (INIS)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.; Wataru, M.; Shiomi, S.; Ozaki, S.; Yamakawa, H.

    1993-01-01

    To know the input of the future thermo-mechanical code, we have to get a better understanding of the thermo-physical evolution of the UF 6 which pressurizes the container. This evolution is function of: a) the heat transfer rate from the fire to the container b) the UF 6 behaviour in the container. These tests are essentially analytical at simulated fire temperatures of between 800 and 1000degC. They use a representative mass of UF 6 (around 4 tons). The tests will not seek to rupture the test container which has a diameter equal to the 48Y container, but shorter length. These tests carried out in realistic conditions (typical thermal gradient at the wall, characteristic period for UF 6 internal mass transfer) should make possible to improve knowledge of two fundamental phenomena: 1) vaporization of UF 6 on contact with the heated wall (around 400degC), a phenomenon which controls the container internal pressurization kinetic, 2) the equivalent conductivity of solid UF 6 , a phenomenon which is linked to the heat transfer by UF 6 vaporization-condensation through the solid's porosities and which depends on the diameter of the container. In addition, they will allow the influence of other parameters to be studied, such as UF 6 container filling mode or the mechanical characteristics of the container material. A UF 6 container fitted with instruments (wall temperature, UF 6 temperature, pressure) is heated by a rapid heat transient in a radiating furnace where the temperature and thermal power supplied can be measured. The test continues until pre-established thresholds have been reached: 1) strain threshold measured on the container surface (strain gauges positioned on the outside), 2) maximum temperature threshold of UF 6 , 3) container internal pressure threshold. (J.P.N.)

  5. Geothermal District Heating Institutional Factors: The Klamath Falls Experience

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J

    1984-01-01

    The city of Klamath Falls Geothermal District Heating System started to provide heat to 10 government buildings on March 20, 1984. This startup was two and one-half years after construction of the system was completed and the operation is scheduled for only a four-month test period. The delay was the result of citizens objecting to pumping and injecting geothermal fluids in the reservoir and was legally enforced by means of a city ordinance passed by the voters. This Initiative Ordinance essentially regulates the resource by requiring any additional water pumped from a geothermal well be returned to that same well. The state of Oregon filed a lawsuit against the city, claiming that state regulation preempted city action. The issue currently is in the Court of Appeals, after Klamath County Circuit Court ruled that the state was not preempted and the ordinance was valid and enforceable. Historical description of development that led up to these institutional and legal problems are discussed. Citizens objections and third party mitigation measures by means of reservoir engineering studies and public meetings are described. Lessons learned from the Klamath Falls experience are pointed out so future developments in other communities may benefit.

  6. Experiments on Critical Heat Flux for CAREM -25 Reactor

    International Nuclear Information System (INIS)

    Mazufri, C.M

    2000-01-01

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data.Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions.Correlations found in the open literature are not sufficiently verified for the thermal hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities.To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions was carried out.The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation.A short description of facilities, details of the experimental program and some preliminary results obtained are presented in this work

  7. Modeling Heat Transfer and Pressurization of Polymeric Methylene Diisocyanate (PMDI) Polyurethane Foam in a Sealed Container.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Sarah Nicole

    2018-01-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container to protect the electronics from hostile en vironments, such as a crash that produces a fire. However, i n fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of the sealed system . In this work, a detailed study of thermally decomposing polymeric methylene diisocyanate (PMDI) - polyether - polyol based polyurethane foam in a sealed container is presented . Both experimental and computational work is discussed. Three models of increasing physics fidelity are presented: No Flow, Porous Media, and Porous Media with VLE. Each model us described in detail, compared to experiment , and uncertainty quantification is performed. While the Porous Media with VLE model matches has the best agreement with experiment, it also requires the most computational resources.

  8. Pharmaceutical cost-containment policies and sustainability: recent Irish experience.

    Science.gov (United States)

    Kenneally, Martin; Walshe, Valerie

    2012-01-01

    Our objective is to review and assess the main pharmaceutical cost-containment policies used in Ireland in recent years, and to highlight how a policy that improved fiscal sustainability but worsened economic sustainability could have improved both if an option-based approach was implemented. The main public pharmaceutical cost-containment policy measures including reducing the ex-factory price of drugs, pharmacy dispensing fees and community drug scheme coverage, and increasing patient copayments are outlined along with the resulting savings. We quantify the cost implications of a new policy that restricts the entitlement to free prescription drugs of persons older than 70 years and propose an alternative option-based policy that reduces the total cost to both the state and the patient. This set of policy measures reduced public spending on community drugs by an estimated €380m in 2011. The policy restricting free prescription drugs for persons older than 70 years, though effective in reducing public cost, increased the total cost of the drugs supplied. The policy-induced cost increase stems from a fees anomaly between the two main community drugs schemes which is circumvented by our alternative option-based policy. Our findings highlight the need for policymakers, even when absorbed with reducing cost, to design cost-containment policies that are both fiscally and economically sustainable. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  10. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  11. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...

  12. FFTF in-containment cell liner design and installation experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Swenson, L.D.

    1980-01-01

    Design features and liner construction techniques are discussed. Cell leak-rate tests and the methods used to locate and repair leaks are described. A brief analysis of the overall experience at FFTF is provided, with recommendations for future plant designs

  13. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  14. Containment

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The primary mission of the Containment Group is to ensure that underground nuclear tests are satisfactorily contained. The main goal is the development of sound technical bases for containment-related methodology. Major areas of activity include siting, geologic description, emplacement hole stemming, and phenomenological predictions. Performance results of sanded gypsum concrete plugs on the Jefferson, Panamint, Cornucopia, Labquark, and Bodie events are given. Activities are also described in the following areas: computational capabilities site description, predictive modeling, and cavity-pressure measurement. Containment publications are listed. 8 references

  15. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  16. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Lazarus, E.A.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal β. ((orig.))

  17. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.; Lazarus, E.A.

    1994-02-01

    This paper describes recent DIII-D high power heating and current drive experiments. Describes are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal beta

  18. Recent DIII-D high power heating and current drive experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C. [General Atomics, San Diego, CA (United States); Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Politzer, P.A. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); DIII-D Team

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal {beta}. ((orig.)).

  19. Comparison of heat stability of goat milk subjected to ultra-high temperature and in-container sterilization.

    Science.gov (United States)

    Chen, B Y; Grandison, A S; Lewis, M J

    2012-03-01

    Goat milk with and without stabilizing salt was subjected to in-container and UHT sterilization. Heat stability was assessed by measuring the amount of sediment in the milk. Without stabilizing salts, goat milk usually produced less sediment when subjected to in-container sterilization compared with UHT processing. Addition of stabilizing salts up to 12.8mM resulted in a progressive increase in sediment for in-container sterilization. In contrast, adding stabilizing salts at 6.4mM initially reduced sediment formation in UHT-treated milk but addition of stabilizing salts at 12.8mM increased sediment formation. Adding stabilizing salts to goat milk increased pH, decreased ionic calcium, and increased ethanol stability. Adding up to 2mM calcium chloride increased sediment formation more after UHT treatment than after in-container sterilization. These results suggest that no single mechanism or set of reactions causes milk to produce sediment during heating and that the favored pathway is different for UHT and in-container sterilization processes. Poor heat stability could be induced both by increasing ionic calcium and by decreasing it. Ethanol stability is not a good indicator of heat stability for in-container sterilization, but it may be for UHT sterilization, if milk does not enter the region of poor heat stability found at low concentrations of ionic calcium. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. On the possible role of thermal radiation in containment thermal–hydraulics experiments by the example of CFD analysis of TOSQAN T114 air–He test

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A.S.; Grigoryev, S.Yu. [Nuclear Safety Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology (Russian Federation); Tarasov, O.V. [Nuclear Safety Institute of the Russian Academy of Sciences, Moscow (Russian Federation)

    2016-12-15

    Highlights: • Neglecting by heat radiation in simulation of containment tests may cause discrepancies. • To show that, heat exchange in T114 air-helium test was analyzed in different ways. • Effect of thermal radiation on local temperature was numerically obtained in air with ∼1% steam content. • Model of gas-structure heat exchange in containment should include heat radiation. - Abstract: One of the experiments of ERCOSAM–SAMARA (E–S) projects (TOSQAN T114) is examined from the viewpoint of the radiative heat transfer (RHT) contribution to the overall heat exchange. E–S projects and T114 test were focused on investigation of light gas stratification in severe accident containment atmosphere and stratification break-up after the activation of mitigation systems. The first from two phases of T114 test is considered during which helium is quasistatically injected into the upper part of the TOSQAN vessel having isothermal walls and initially filled by air. The developing free convection removes most of the heat acquired, but not all. Thus stable local deviations in calculated temperatures were obtained in simulations that were interpreted as the deficiencies of the physical heat-transfer model. The modeling of RHT was included in full CFD simulation that resulted in a better agreement in local temperatures. The results of comparative calculations performed without/with RHT modeling are described in the paper. The RHT model implemented in the used CFD code (ANSYS FLUENT) was tested on known analytical solutions. The RHT contribution in T114 test was also estimated analytically to demonstrate independently that it may be noticeable in this experiment. The same estimations may be valid for stagnant zones of severe accident containment. All that shows the need in further detailing of the role of RHT in gas-structure heat exchange: as for interpretation of some containment tests performed in pressure vessel as for containment modeling.

  1. Phase Change Materials-Assisted Heat Flux Reduction: Experiment and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2016-01-01

    Full Text Available Phase change materials (PCM in the construction industry became attractive because of several interesting attributes, such as thermo-physical parameters, open air atmospheric condition usage, cost and the duty structure requirement. Thermal performance optimization of PCMs in terms of proficient storage of a large amount of heat or cold in a finite volume remains a challenging task. Implementation of PCMs in buildings to achieve thermal comfort for a specific climatic condition in Iraq is our main focus. From this standpoint, the present paper reports the experimental and numerical results on the lowering of heat flux inside a residential building using PCM, which is composed of oil (40% and wax (60%. This PCM (paraffin, being plentiful and cost-effective, is extracted locally from waste petroleum products in Iraq. Experiments are performed with two rooms of identical internal dimensions in the presence and absence of PCM. A two-dimensional numerical transient heat transfer model is developed and solved using the finite difference method. A relatively simple geometry is chosen to initially verify the numerical solution procedure by incorporating in the computer program two-dimensional elliptic flows. It is demonstrated that the heat flux inside the room containing PCM is remarkably lower than the one devoid of PCM.

  2. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  3. Effect of heating oils and fats in containers of different materials on their trans fatty acid content.

    Science.gov (United States)

    Kala, A L Amrutha; Joshi, Vishal; Gurudutt, K N

    2012-08-30

    The nature of the container material and temperature employed for deep-frying can have an influence on the development of trans fatty acids (TFAs) in the fat used. The present study was undertaken to determine the effect of heating vegetable oils and partially hydrogenated vegetable fats with different initial TFA content in stainless steel, Hindalium (an aluminium alloy), cast iron and glass containers. Ground nut oil (oil 1), refined, bleached and deodorised (RBD) palmolein (oil 2) and two partially hydrogenated vegetable oils with low (fat 1) and high (fat 2) TFA content were uniformly heated at 175-185 °C over a period of 12 h. An increase in TFA content to 20 g kg⁻¹ was observed in oil 2 in the cast iron container, while a decrease in TFA content of 20-30 g kg⁻¹ was observed in fat 2 in all containers. The heating process of fats and oils also led to an increase in Butyro refractometer reading and colour values. This study showed that the TFA 18:1t content of oil 1, oil 2 and fat 1 increased with repeated or prolonged heating. The cast iron container showed the highest increase in TFA 18:1t for RBD palmolein (oil 2). The amount of linoleic acid trans isomers formed in the heating process was negligible. Fat 2 with high initial TFA content showed a decrease in TFA 18:1 and 18:2 on heating in all containers. Oils heated in glass and stainless steel containers showed less TFA 18:1t formation. Copyright © 2012 Society of Chemical Industry.

  4. Energy confinement scaling in tokamaks: some implications of recent experiments with ohmic and strong auxiliary heating

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1984-02-01

    Recent results from confinement scaling experiments on tokamaks with ohmic and strong auxiliary heating are reviewed. An attempt is made to draw these results together into a low-density ohmic confinement scaling law, and a scaling law for confinement with auxiliary heating. The auxiliary heating confinement law may also serve to explain the saturation in tau/sub E/ vs anti n/sub e/ observed in some ohmic heating density scaling experiments

  5. Containment fan cooler heat transfer calculation during main steam line break for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Kao, Lain-Su, E-mail: lskao@iner.gov.tw

    2013-10-15

    Highlights: • Evaluate component cooling water (CCW) thermal response during MSLB for Maanshan. • Using GOTHIC to calculate CCW temperature and determine time required to boil CCW. • Both convective and condensation heat transfer from the air side are considered. • Boiling will not occur since T{sub B} is sufficiently longer than CCW pump restart time. -- Abstract: A thermal analysis has been performed for the Containment Fan Cooler Unit (FCU) during Main Steam Line Break (MSLB) accident, concurrent with loss of offsite power, for Maanshan PWR plant. The analysis is performed in order to address the waterhammer and two-phase flow issues discussed in USNRC's Generic Letter 96-06 (GL 96-06). Maanshan plant is a twin-unit Westinghouse 3-loop PWR currently operated at rated core thermal power of 2822 MWt for each unit. The design basis for containment temperature is Main Steam Line Break (MSLB) accident at power of 2830.5 MWt, which results in peak vapor temperature of 387.6 °F. The design is such that when MSLB occurs concurrent with loss of offsite power (MSLB/LOOP), both the coolant pump on the secondary side and the fan on the air side of the FCU loose power and coast down. The pump has little inertia and coasts down in 2–3 s, while the FCU fan coasts down over much longer period. Before the pump is restored through emergency diesel generator, there is potential for boiling the coolant in the cooling coils by the high-temperature air/steam mixture entering the FCU. The time to boiling depends on the operating pressure of the coolant before the pump is restored. The prediction of the time to boiling is important because it determines whether there is potential for waterhammer or two-phase flow to occur before the pump is restored. If boiling occurs then there exists steam region in the pipe, which may cause the so called condensation induced waterhammer or column closure waterhammer. In either case, a great amount of effort has to be spent to

  6. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    International Nuclear Information System (INIS)

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A.

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of ∼922 K (1200 degree F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs

  7. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  8. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng, E-mail: 510395453@qq.com [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China); Li, Le [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Junming [Tsinghua University, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Beijing 100084 (China); Zhang, Yajun [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Zhihui [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China)

    2017-03-15

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  9. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    International Nuclear Information System (INIS)

    Li, Cheng; Li, Le; Li, Junming; Zhang, Yajun; Li, Zhihui

    2017-01-01

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  10. Implosion heating studies in the Scylla 1B, implosion heating, and staged theta-pinch experiments

    International Nuclear Information System (INIS)

    Gribble, R.F.; Hammel, J.E.; Henins, I.; Jahoda, F.C.; Kristal, R.; Linford, R.K.; Marshall, J.; McKenna, K.F.; Sherwood, A.R.; Thomas, K.S.

    1975-01-01

    Three experiments designed to study various aspects of implosion heating in the plasma density range (10 14 -10 16 cm -3 ) used in present theta pinches are described. Initial plasma studies show that, provided a sufficiently high pre-ionization level (>10 14 cm -3 ) is achieved, plasma behaviour is qualitatively the same over a range of two in initial magnetic field rise and a range of four in initial gas fill. The implosion phase is characterized by rapid changes in magnetic-field diffusion rates, the plasma resistivity decreasing rapidly with time. During the implosion some of the plasma density observed is moving ahead of the magnetic piston. Magnetic-field gradients occur in the region outside the area of measurable plasma density implying the presence of hot, low-density plasma in this region. In experiments where the external magnetic field decreases before the maximum compression of the plasma column, secondary breakdown occurs at the discharge tube wall which slows the rate at which magnetic flux diffuses out of the discharge tube. (author)

  11. Transport in porous media containing residual hydrocarbon. 2: Experiments

    International Nuclear Information System (INIS)

    Hatfield, K.; Ziegler, J.; Burris, D.R.

    1993-01-01

    When liquid hydrocarbons or nonaqueous-phase liquids (NAPLs) become entrapped below the water table, flowing ground waters carry soluble NAPL components away from the spill zone. Transport of these dissolved NAPL components is controlled by several processes including advection, dispersion, sorption to aquifer materials, and liquid-liquid partitioning. To better understand these processes, miscible displacement experiments were conducted to generate break-through curves (BTCs) of pentafluorobenzoic acid (PFBA), benzene, and toluene on sand column with and without a fixed decane residual. A departure from equilibrium transport is observed in BTCs from the sand-decane system. These BTCs show characteristics of early breakthrough, asymmetry, and tailing. The cause of nonequilibrium is hypothesized to be rate-limited solute exchange between decane and water. A new transport model, capable of handling time-dependent exchange processes, is successfully applied to reproduce experimental BATCs. Results indicate that time-dependent partitioning becomes increasingly important as the solute decane-water partition coefficient and the aqueous-phase fluid velocity increase

  12. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  13. The use of dielectric heating in particulate bed dryout experiments

    International Nuclear Information System (INIS)

    Stevens, G.F.; Willshire, S.J.

    1984-09-01

    Decay-heated, liquid-saturated debris beds arise in hypothetical severe accidents with LMFBR and PWR, and a large international effort is currently engaged in experimental studies of the cooling limitations of such beds. Dryout is one of the important cooling limitations. Dielectric heating offers a means of closely simulating decay heating in beds of irregular particles, and is under development at AEE Winfrith for application to experimental studies of dryout. This report describes progress to date. (author)

  14. Household preferences of hybrid home heating systems – A choice experiment application

    International Nuclear Information System (INIS)

    Ruokamo, Enni

    2016-01-01

    The residential heating sector presents considerable energy savings potential, as numerous heating solutions for reducing electricity consumption and utilizing renewable energy sources are available in the market. The aim of this paper is to examine determinants of household heating system choices and to use this information for policy planning purposes. This paper investigates residential homeowner attitudes regarding innovative hybrid home heating systems (HHHS) with choice experiment. Heating system scenarios are designed to represent the most relevant primary and supplementary heating alternatives currently available in Finland. The choice sets include six main heating alternatives (district heat, solid wood, wood pellet, electric storage heating, ground heat pump and exhaust air heat pump) that are described by five attributes (supplementary heating systems, investment costs, operating costs, comfort of use and environmental friendliness). The results imply that HHHSs generally appear to be accepted among households; however, several factors affect perceptions of these technologies. The results reveal differing household attitudes toward the main heating alternatives and show that such views are affected by socio-demographic characteristics (age, living environment, education, etc.). The results suggest that households view supplementary heating systems (especially solar-based) favorably. The other attributes studied also play a significant role in decision making. - Highlights: •Study of hybrid heating where supplementary and main heating systems are combined. •Choice experiment is applied to study the determinants of hybrid heating adoption. •Hybrid heating appears to be generally accepted among households. •Households exhibit differing attitudes toward hybrid heating. •Policy makers should not underestimate the potential of hybrid heating.

  15. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  16. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  17. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming

    Science.gov (United States)

    Burley, Joel D.; Johnston, Harold S.

    2007-01-01

    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  18. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  19. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  20. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  1. Operation experiences of the JT-60 first walls during high-power additional heating experiments

    International Nuclear Information System (INIS)

    Takatsu, H.; Ando, T.; Yamamoto, M.; Arai, T.; Kodama, K.; Suzuki, M.; Shimizu, M.

    1989-01-01

    JT-60 started its operation in May 1985 with TiC-coated molybdenum or Inconel 625 first walls. They provided very clean surfaces as well as superior plasma characteristics during Joule heating discharges. Though 20 μm-thick TiC coatings showed good adhesion characteristics, melting of the TiC coating and also the molybdenum or Inconel 625 substrate was observed at some specific spots, and an influx of heavy metals to the main plasma was inevitable during discharges. Initial results of the additional heating experiments showed degrading effects of locally melted TiC-coated molybdenum or Inconel 625 on plasma operation. Therefore, about a half of the TiC-coated first walls were removed and new graphite first walls were installed during the venting period from April to May 1987. The start-up of the discharge conditioning after installation of a significant number of graphite tiles was very rapid. Flexibility in plasma operation was increased, and JT-60 extended the operation region beyond its original specifications. The graphite first walls of the main chamber performed admirably and maintained their integrity under the conditions of plasma current and additional heating power up to 3.2 MA and 30 MW, respectively. On the other hand, the number of damaged divertor plates was much larger than that expected. The reason of unexpected failure is now under examination. (orig.)

  2. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  3. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  4. Seasonal distributions of diabatic heating during the First GARP Global Experiment

    OpenAIRE

    Ying Wei, Ming; Johnson, Donald R.; Townsend, Ronald D.

    2011-01-01

    The seasonal and annual global distributions of diabatic heating during the First GARP Global Experiment (FGGE) are estimated using the isentropic mass continuity equation. The data used are from the FGGE Level IIIa analyses generated by the United States National Meteorological Center. Spatially and temporally coherent diabatic heating distributions are obtained from the isentropic planetary scale mass circulation that is forced by large-scale heat sources and sinks. The diabatic heating in...

  5. Steady natural convection heat transfer experiments in a horizontal annulus for the United States Spent Fuel Shipping Cask Technology Program

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1981-04-01

    This experimental study deals with the measurement of the heat transfer across a horizontal annulus which is formed by an inner hexagonal cylinder and an outer concentric circular cylinder. The geometry simulates, in two dimensions, a liquid metal fast breeder reactor radioactive fuel subassembly inside a shipping container. This geometry is also similar to a radioactive fuel pin inside a horizontal reactor subassembly. The objective of the experiments is to measure the local and mean heat transfer at the surface of the inner hexagonal cylinder

  6. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  7. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    experiments can reproduce molten salt phenomena including natural, mixed, and forced convection fluid mechanics and heat transfer, and free surface fluid mechanics, with very small scaling distortion. Weber number controlled phenomena like bubble entrainment and droplet formation are also simulated with relatively low distortion. Both molten salts and mineral oils are transparent, permitting flow visualization to be used, and the oil index of refraction nearly matches acrylic. Oils have much lower wetting angles than molten salts with typical container materials, so significant distortion of wetting-angle related phenomena, such as capillary driven flows, can be expected. Overall, scaled experiments using light mineral oils have very attractive benefits for studying molten salt fluid mechanics and heat transfer. This paper discusses scaling in detail, and presents examples from fusion chamber fluid mechanics experiments. (authors)

  8. High pressure melt ejection (HPME) and direct containment heating (DCH): state-of-the-art report

    International Nuclear Information System (INIS)

    1996-12-01

    This report first address the accident considerations leading to conditions with the reactor pressure vessel at a significant pressure. It also address those accident management actions that could prevent such a pressurized state and the effectiveness of operator actions since this is a principal focus of how a HPME could be prevented. Furthermore, it also investigates those situations, while very unlikely, in which the RCS could be at a significant pressure and possibly experience RPV failure. This represents a significant set of experimental information that, coupled with the integral effects models, provides the necessary insights for issue resolution for a number of containment types. Lastly, conclusions and recommendations are developed to be presented to the CSNI

  9. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  10. Effect of resins of heat exchanger fouling by asphaltene-containing oils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Atar, E.; Watkinson, A.P. [British Columbia Univ., Dept. of Chemical and Bio-Resource Engineering, Vancouver, BC (Canada)

    1999-07-01

    The effects of resins on the thermal fouling of asphaltene containing oils in heat exchangers was investigated as well as the nature of the deposits. Building on previous research, a sample of de-asphalted vacuum bottoms (DAO), serving as a source of natural resins, heavy oil (HO) and fuel oil was used to investigate the effects of resin concentration on the rate of thermal fouling. The conditions of the study included: fluid circulation through the UBC annular fouling test section for up to 30 hour periods, monitoring of thermal fouling by measurement, and nitrogen atmospheres at a bulk temperature of 85 degrees C, a bulk velocity of 0.85 am/s, and a pressure of 410 kPa. Physical and chemical characterization of the deposits was affected, and filtration at the bulk temperature before and after a run was used to determine the occurrence of fine solids in the fluid. The rate of fouling generally decreased tending generally towards asymptotic behavior in the limit, and after one day Rf values up to 0.3 m2K/kW occurred with severe fouling. An increase in the fouling rate occurred with increased DAO concentration in the mixture, at a fixed heavy oil concentration of 5 weight percent, and the relation between Asomaning's colloidal instability index and the trends in fouling rate was not observed, although there were some indications of reduced fouling as there was an increase in the ratio of resins to asphaltenes, however, blends of the DAO-HO-FO helped to control the concentration of asphaltenes and resins that are possible. (Abstract only).

  11. Effect of prolonged heating on the asphalt-aggregate bond strength of HMA containing liquid anti-strip additives

    Science.gov (United States)

    2008-09-01

    In this study, an attempt was made to determine the effect of prolonged heating on the bond strength between : aggregate and asphalt that contained anti-strip additives (LOF 6500 and Morelife 2200). On account of the : substantial decrease of anti-st...

  12. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.

    1994-01-01

    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  13. GOTHIC-IST 6.1b code validation exercises relating to heat removal by dousing and air coolers in CANDU containment

    International Nuclear Information System (INIS)

    Ramachandran, S.; Krause, M.; Nguyen, T.

    2003-01-01

    This paper presents validation results relating to the use of the GOTHIC containment analysis code for CANDU safety analysis. The validation results indicate that GOTHIC predicts heat removal by dousing and air cooler heat transfer with reasonable accuracy. (author)

  14. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinguo; Chen, Zhihao; Zhao, Jun [Department of Thermal Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-10-15

    This paper presented both the numerical simulations and experiments on the thermal performance of U-vertical ground coupled heat exchanger (UGCHE). The variation of the ground temperature and heat balance of the system were analyzed and compared in different operation modes in the numerical simulation. Experiments on the operation performance of the ground-coupled heat pump (GCHP) with the UGCHE were carried out. It shows that the ground source can be used as the heat source/sink for GCHP systems to have higher efficiency in saving energy. To preserve the ground resource for the sustainable utilization as heat source/sink, the heat emitted to ground and heat extracted from ground should be balanced. (author)

  15. Heat and water transfer in a rotating drum containing solid substrate particles

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Rinzema, A.; Boom, R.M.

    2003-01-01

    In previous work we reported on the simulation of mixing behavior of a slowly rotating drum for solid-state fermentation (SSF) using a discrete particle model. In this investigation the discrete particle model is extended with heat and moisture transfer. Heat transfer is implemented in the model via

  16. District heating from a community perspective : the Aboriginal experience

    Energy Technology Data Exchange (ETDEWEB)

    Wapachee, L. [Ouje-Bougoumou First Nation, Ouje-Bougoumou, PQ (Canada)

    2010-07-01

    This presentation discussed an alternative energy system that was incorporated into the planning and development of a new permanent village for the Ouje-Bougoumou Cree. The history of the Ouje-Bougoumou Cree people and its involvement with industry and governmental bodies were described at length. To provide for the long-term financial requirements of the community in a manner in harmony with Cree environmental philosophy, an appropriate alternative energy system was incorporated into the village architecture. Biomass district heating is an alternative energy system that uses a single source of energy to heat the community's houses and buildings. In this case, sawdust fuel is used to heat water, which is pumped through underground pipes to heat buildings before it cycles back to the plant for reheating. This system converts a waste product into usable energy, capturing and recycling energy while replacing conventional sources, such as oil, gas, or hydroelectricity, and creating local employment. Heat is the largest portion of the community's energy requirement. 11 figs., 1 tab.

  17. Review of ICRF antenna development and heating experiments up to advanced experiment I, 1989 on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki

    1992-03-01

    Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)

  18. ANL ITER high-heat-flux blanket-module heat transfer experiments

    International Nuclear Information System (INIS)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER

  19. Study of condensation heat transfer following a main steam line break inside containment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  20. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing

    1997-01-01

    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  1. Method of making Tl-Sr-Ca-Cu-oxide superconductors comprising heating at elevated pressures in a sealed container

    International Nuclear Information System (INIS)

    Lechtev, W.L.; Osofsky, M.S.; Skelton, E.F.; Toth, L.E.

    1992-01-01

    This patent describes a method of forming a Tl-Sr-Ca-Cu-oxide high T c superconductor. It comprises forming a reaction mixture of the oxides of Sr, Cu, Ca, and Tl in stoichiometric proportions to make a Tl-Sr-Ca-Cu-oxide high T c superconducting compound; compressing the reaction mixture into a hard body; placing the hard body into a container for containing thallium vapor; evacuating and sealing the hard body in the container; heating the hard body and the container at a temperature of about 800 degrees C to about 950 degrees C and under pressure of at least about 30,000 psi until the container metal around the hard body and the oxides of Tl, Sr, Ca, and Cu react to form a superconducting compound; and cooling the superconducting compound to room temperature and returning the superconducting compound to atmospheric pressure

  2. Study on solar chemical heat pump system. Basic experiment on falling film reaction for dehydrogenation of 2-propanol; Solar chemical heat pump no kenkyu. 2-propanol bunkai hanno ni okeru ryuka ekimakushiki hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T; Ando, Y; Tanaka, T; Takashima, T [Electrochemical Laboratory, Tsukuba (Japan); Nomura, T; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    An experiment and the examination were carried out in order to elucidate the optimum conditions in the falling liquid film reaction method, in the conversion of solar energy using the decomposition reaction of 2-propanol. The device for the experiment was constituted of a reaction container, tubular pump, cooling pipe, sampling container for effluent from the upper and lower part of the reaction container, and gas burette. Examined in the experiment were various factors such as a fibrous activated carbon (catalyst support), ratio for carrying catalyst, catalytic composition and heating temperature. In the experiment, with the temperature inside the reaction container fully stabilized under prescribed conditions, measurement was done for the hydrogen generation by the gas burette for 10 minutes as well as for the sampling of effluent. The experiment revealed that the heat utilization ratio reached the maximum of about 27% when the heating temperature was 90{degree}C using a catalyst with the ratio of RU and Pt 1 to 1 and the ratio for carrying catalyst 10wt%, so that a great improvement was obtained in the heat utilization ratio at a low temperature. Also obtained was a large inversion ratio of about 15%. 4 refs., 6 figs., 5 tabs.

  3. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  4. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  5. Preliminary study on the forgeability and heat treatment response of niobium - containing tool steels materials

    International Nuclear Information System (INIS)

    Cescon, T.; Papaleo, R.

    1981-01-01

    The forgeability and microstructure of tool steels materials based on the M-2 composition, where W and V were partially replaced by Nb, were examined. The optimum heat-treating conditions were established. The poor response to heat treatment of some of the alloys studied indicated the need of increasing the C content of the steels when Nb is used as a substitute for W and V. (Author) [pt

  6. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  7. Heat transfer characteristics of UF6 in a container heated from outer surface. Pt. 1. Thermal hydraulic analysis method taking account of phase change and volume expansion

    International Nuclear Information System (INIS)

    Wataru, Masumi; Gomi, Yoshio; Yamakawa, Hidetsugu; Tsumune, Daisuke

    1995-01-01

    Natural UF6 is transported in a steel container from foreign countries to the enrichment plant in Japan. If the container meets fire accident, it is heated by fire (800degC) and rupture of the container may occur. For the safety point of view, it is necessary to know whether rupture occurs or not. Because UF6 has a radiological and chemical hazards, it is difficult to perform a demonstration test with UF6. So thermal calculation method has to be developed. The rupture is caused by UF6 gaseous pressure or volume expansion of liquid UF6. To know time history of internal pressure and temperature distribution in the container, it is important to evaluate thermal phenomena of UF6. When UF6 is heated, it changes from solid to liquid or gas at low temperature (64degC) and then its volume expands little by little. In this study, thermal calculation method has been developed taking phase change and thermal expansion of UF6 into account. In the calculation, a two-dimensional model is adopted and natural convection of liquid UF6 is analyzed. As a result of this study, numerical solutions have been obtained taking phase change and volume expansion into account. (author)

  8. Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis

    Science.gov (United States)

    This experiment was conducted to evaluate the effects of dietary supplementation of green Brazilian propolis on behavioral patterns and feather condition of heat stressed broiler chickens. Five hundred and four (504) male Ross 708 broiler chicks at 15-day old were randomly allotted to six dietary tr...

  9. Using a thermalhydraulics system code to estimate heat transfer coefficients for a critical heat flux experiment

    International Nuclear Information System (INIS)

    Statham, B.A.

    2009-01-01

    RELAP5/SCDAPSIM MOD 3.4 is used to predict wall temperature before and after critical heat flux (CHF) is reached in a vertical, uniformly heated tube using light water as the working fluid. The heated test section is modeled as a 1 m long Inconel 600 tube having an OD of 6.35 mm and ID of 4.57 mm with a 0.5 m long unheated development length at the inlet. Simulations are performed at pressures of 0.5 to 2.0 MPa with mass fluxes from 500 to 2000 kg m -2 s -1 and inlet qualities ranging from -0.2 to 0. Loss of flow simulations are performed with flow reduction rates of 10, 20, 50, and 100 kg m -2 s -2 . Inlet mass flux at CHF was nominally independent of rate in the model; this may or may not be realistic. (author)

  10. Edge Minority Heating Experiment in Alcator C-Mod

    International Nuclear Information System (INIS)

    Zweben, S.J.; Terry, J.L.; Bonoli, P.; Budny, R.; Chang, C.S.; Fiore, C.; Schilling, G.; Wukitch, S.; Hughes, J.; Lin, Y.; Perkins, R.; Porkolab, M.; Alcator C-Mod Team

    2005-01-01

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of P RF (le) 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed

  11. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  12. Lower hybrid heating data on the Wega experiment revisited using ion stochastic heating and electron Landau damping theories

    International Nuclear Information System (INIS)

    Gormezano, C.; Hess, W.; Ichtchenko, G.

    1980-07-01

    The already obtained data on the Wega Tokamak by lower hybrid heating (f=500 MHz - Psub(HF)=130 KW) are revisited in the light of recent theories on ion stochastic heating and quasi-linear electron Landau damping. It is possible to correctly estimate with these theories the fast ion mean energy, the H.F. power density coupled to the ions and that coupled to the electrons. The values of the parallel index of refraction, Nsub(//), which are necessary to obtain a good quantitative agreement between experiment and theoretical estimates, are the same for the ions and for the electrons, even though at higher values than expected

  13. Experiences made with tritium-containing water used as tracer in laboratory experiments with fluvioglacial gravels

    International Nuclear Information System (INIS)

    Klotz, D.; Rauert, W.

    1982-01-01

    Batch tests performed on 11 different Bavarian fluvioglacial gravels led to tritium distribution coefficients, which deviated not or only insignificantly from zero within the range of experimental accuracy applied to routine testings. The result of nine flow experiments in a gravelfilled column was a mean retardation factor of 1.01 +- 0.01. These experiments thus showed - as it had been expected - that 3 HHO is not significantly delayed with regard to the flow or movement of the water. (orig.) [de

  14. Heat transfer in a seven-rod test bundle with supercritical pressure water (1). Experiments

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Seki, Yohji; Dairaku, Masayuki; Suzuki, Satoshi; Enoeda, Mikio; Akiba, Masato; Mori, H.; Oka, Y.

    2009-01-01

    Heat transfer experiments in a seven-rod test bundle with supercritical pressure water has been carried out. The pressure drop and heat transfer coefficients (HTCs) in the test section are evaluated. In the present limited conditions, difference between HTCs at the surface facing the sub-channel center and those at the surface in the narrowest region between rods is not observed. (author)

  15. Experiment on heat transfer in simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.

    1993-01-01

    In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)

  16. Comparing the analgesic effect of heat patch containing iron chip and ibuprofen for primary dysmenorrhea: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Navvabi Rigi Shahindokht

    2012-08-01

    Full Text Available Abstract Background Primary dysmenorrhea is a common and sometimes disabling condition. In recent years, some studies aimed to improve the treatment of dysmenorrhea, and therefore, introduced several therapeutic measures. This study was designed to compare the analgesic effect of iron chip containing heat wrap with ibuprofen for the treatment of primary dysmenorrhea. Methods In this randomized (IRCT201107187038N2 controlled trial, 147 students (18–30 years old with the diagnosis of primary dysmenorrhea were enrolled considering the CONSORT guideline. Screening for primary dysmenorrhea was done by a two-question screening tool. The participants were randomly assigned into one of the intervention groups (heat Patch and ibuprofen. Data regarding the severity and emotional impact of the pain were recorded by a shortened version of McGill Pain Questionnaire (SF-MPQ. Student's t test was used for statistical analysis. Results The maximum and minimum pain severities were observed at 2 and 24 hours in both groups. The severity of sensual pain at 8, 12, and 24 hours was non-significantly less in the heat Patch group. There was also no significant difference between the groups regarding the emotional impact of pain at the first 2, 4, 8, 12 and 12 hours of menstruation. Conclusions Heat patch containing Iron chip has comparable analgesic effects to ibuprofen and can possibly be used for primary dysmenorrhea. Trial registration IRCT201107187038N2

  17. Utilization of ruthenium volatilization at heating of residue containing phosphates and nitrates for ruthenium separation and for its qualitative proof

    International Nuclear Information System (INIS)

    Holgye, Z.

    1979-01-01

    The volatility of ruthenium during the heating of a residue after evaporation of a solution containing ruthenium, phosphates and nitrates may be utilized for the separation of ruthenium from various substances. Sup(103,106) Ru may be rapidly, selectively, and quantitatively separated from fission products mixture. Ruthenium may be also separated in this way from various inorganic salts or from biological material. The volatility of ruthenium may be used also for its qualitative proof. (author)

  18. Steam condensation heat transfer in the presence of noncondensables in a vertical tube of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hyun Sik

    1999-02-01

    A database for laminar condensation heat transfer is constructed from the previous experimental data at various condensation conditions. Based on the database, the condensation models in the standard RELAP5/MOD3.2 code are assessed and improved. Two wall film condensation models, the default and the alternative, are used in RELAP5/MOD3.2. The default model of the laminar film condensation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data. Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges. A set of condensation experiments in the presence of noncondensable gas in a vertical tube of the passive containment cooling system of the CP-1300 are performed. The experimental results show that the heat transfer coefficients (HTCs) increase as the inlet air mass fraction decreases and the inlet saturated steam temperature decreases. However, the dependence of the inlet mixture Reynolds number on the HTC is small for the operating range. An empirical correlation is developed, and its predictions are compared with experimental data to show good agreement with the standard deviation of 22.3%. The experimental HTCs are also compared with the predictions from the default and the alternative models used in RELAP5/MOD3.2. The experimental apparatus is modeled with two wall-film condensation models in RELAP5/MOD3.2 and the empirical correlation, and simulations are performed for several subtests to be compared with the experimental results. Overall, the simulation results show that the default model of RELAP5/MOD3.2 underpredicts the HTCs, and the alternative model overpredicts them, while the empirical correlation predicts them well throughout the condensing tube. Both the nodalization study and the sensitivity study are also performed. The nodalization study shows that the variation of the node number does not change both modeling

  19. Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1985-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)

  20. Standard Practice for Laboratory Screening of Metallic Containment Materials for Use With Liquids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 This practice covers several laboratory test procedures for evaluating corrosion performance of metallic containment materials under conditions similar to those that may occur in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these laboratory test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. This practice is not intended to preclude the use of other screening tests, particularly when those tests are designed to more closely simulate field service conditions. 1.2 This practice describes apparatus and procedures for several tests, any one or more of which may be used to evaluate the deterioration of the metallic containment material in a metal/fluid pair. The procedures are designed to permit simulation, heating...

  1. Alexithymic trait, painful heat stimulation and everyday pain experience

    Directory of Open Access Journals (Sweden)

    Olga ePollatos

    2015-10-01

    Full Text Available Background: Alexithymia was found to be associated with a variety of somatic complaints including somatoform pain symptoms. This study addressed the question of whether the different facets of alexithymia are related to responses in heat pain stimulation and its interrelations with levels of everyday pain as assessed by self report. Methods: In the study, sensitivity to heat pain was assessed in fifty healthy female participants. Alexithymia facets were assessed by the Toronto Alexithymia Scale. Pain threshold and tolerance were determined using a testing the limits procedure. Participants furthermore rated subjective intensities and unpleasantness of tonic heat stimuli (45.5 C to 47.5 C on visual analogue scales and on a questionnaire. Possible confounding with temperature sensitivity and mood was controlled. Everyday pain was assessed by self-report addressing everyday pain frequency, intensity and impairment experienced over the last two months. Results: Main results were that the facets of alexithymia were differentially associated with pain perception. The affective scale difficulties in describing feelings was associated with hyposensitivity to pain as indicated by higher pain tolerance scores. Furthermore, everyday pain frequency was related to increased alexithymia values on the affective scale difficulties in identifying feelings, whereas higher values on the cognitive alexithymia scale externally oriented thinking were related to lower pain impairment and intensity. Conclusions: We conclude that the different facets of alexithymia are related to alternations in pain processing. Further research on clinical samples is necessary to elucidate whether different aspects of alexithymia act as vulnerability factor for the development of pain symptoms.

  2. Heat Transfer Modes and their Coefficients for a Passive Containment Cooling System of PWR using a Multi-Pod Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Gyeongho; Park, Junseok; Kim, Sangnyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-05-15

    If a reactor core is damaged due to a disaster such as happened at TEPCO's Fukushima nuclear power plant, the inevitable rise of super-heated steam that could potentially convert to hydrogen resulting from unimpeded temperature and pressure rises will threaten the integrity of the containment structure. To prevent this, safety and regulatory standards typically specify that the gas vent and external cooling systems be designed to maintain containment up to the level C limit for 24 hours and integrity for 48 hours after any damage to the core. Furthermore, it is recommended that the installation of the exhaust penetration unit have a minimum diameter of 3ft. However, installation of such cooling measures or penetration units is burdensome in terms of operational and maintenance costs not to mention the need to ensure a fleet of fire trucks to be on standby as well as the need to ensure a plentiful supply of water for cooling and a filtration system to clean the water. Therefore, the development of a reliable passive cooling system will be economically advantageous because the extra cost burdens of the external system can be omitted. The Passive Containment Cooling System (PCCS) using a multi-pod heat pipe proposed in this study satisfies these conditions.

  3. Role of tin as a reducing agent in iron containing heat absorbing ...

    Indian Academy of Sciences (India)

    Unknown

    infrared region and a narrow weak band for Fe3+ ion at its λmax at around 380 nm was observed in the silicate glass. ... Tin reducing agent; iron heat absorption; silicate glass. 1. ... ing point of aluminium metal is far below than the glass.

  4. Latent heat storage by silica-coated polymer beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Horák, Daniel

    2016-01-01

    Roč. 132, July (2016), s. 405-414 ISSN 0038-092X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : latent heat storage * phase change materials * porous beads by suspension polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.018, year: 2016

  5. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  6. Review of direct electrical heating experiments on irradiated mixed-oxide fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Bandyopadhyay, G.

    1982-01-01

    Results of approximately 50 out-of-reactor experiments that simulated various stages of a loss-of-flow event with irradiated fuel are presented. The tests, which utilized the direct electrical heating technique to simulate nuclear heating, were performed either on fuel segments with their original cladding intact or on fuel segments that were extruded into quartz tubes. The test results demonstrated that the macro- and microscopic fuel behavior was dependent on a number of variables including fuel heating rate, thermal history prior to a transient, the number of heating cycles, type of cladding (quartz vs stainless steel), and fuel burnup

  7. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    International Nuclear Information System (INIS)

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-01-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers

  8. Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.

  9. Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong

    2005-01-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations

  10. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  11. Coupled analysis of passive safety injection and containment filtered venting for passive decay heat removal - 15140

    International Nuclear Information System (INIS)

    Kim, S.H.; Ham, J.H.; Jeong, Y.H.; Chang, S.H.

    2015-01-01

    Lots of interests for the safety of nuclear power plants have risen these days. The safety has to be continuously reviewed and enhanced in nuclear power plants currently operating as well as those designed and constructed in future. After the Fukushima accidents, many additional safety systems which can be applied to nuclear power plants in operation have been proposed. Those include alternating power source such as movable diesel generators and DC batteries in non-safety grade. Also, emergency preparedness for the prevention of a core damage accident was proposed to cope with the extended-SBO (station blackout) by using fire protection systems. In order to prevent the release of radioactive materials, safety systems for preserving the integrity of containment were proposed in two views of cooling and venting containment. Two approaches are effective for mitigating a severe accident. The design concept installing big water tanks besides containment at high level was proposed for various safety functions. One of the functions in the system is to inject the coolant from the elevated tank into a reactor vessel in the case of loss of coolant accident. When the pressure in reactor coolant system is sufficiently low, the coolant can be injected by gravity. If not, the depressurization in reactor vessel would be needed considering the containment pressure. Containment cooling in conventional pressurized water reactors is dependent on containment cooling pumps and sprays. Additional containment cooling systems cannot be simply and easily applied in the current nuclear power plants without major modifications. Therefore, for the operation of passive safety injection system, containment filtered venting system can be adopted for the depressurization of containment. In the design and operation of the passive safety injection system and the containment filtered venting system, main operating points related with open and close pressures in the filtered venting system were

  12. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    Science.gov (United States)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  13. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  14. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  15. Transient fission gas release during direct electrical heating experiments

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.

    1983-12-01

    The gas release behavior of irradiated EBR-II fuel was observed to be dependent on several factors: the presence of cladding, the retained gas content, and the energy absorbed. Fuel that retained in excess of 16 to 17 μmoles/g of fission gas underwent spallation as the cladding melted and released 22 to 45% of its retained gas, while fuel with retained gas levels below approx. 15 to 16 μmoles/g released less than approx. 9% of its gas as the cladding melted. During subsequent direct electrical heating ramps, fuel that did not spall released an additional quantity of gas (up to 4 μmoles/g), depending on the energy absorbed

  16. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments

    Science.gov (United States)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.

    2017-12-01

    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.

  17. Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi

    Directory of Open Access Journals (Sweden)

    Ahmed F. Alfahaid, R.Y. Sakr

    2012-10-01

    Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.

  18. Ageing Management Programme: An Experience of In-Service Inspection of the Kartini Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nitiswati, S., E-mail: nitis@batan.go.id [Centre for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency (BATAN), Jakarta (Indonesia); Syarip,; Tjiptono, T.; Wantana, [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-08-15

    This paper discusses an experience on ISI of the Kartini reactor heat exchanger, as part of the implementation of an ageing management programme. Kartini reactor is located in Yogyakarta, Indonesia. The heat exchanger was constructed for 250 kW capacity. The type of heat exchanger is shell with tube recirculation. Tube material is stainless steel 304, and the shell and baffle plate materials are carbon steel. The heat exchanger has 72 tubes, its outer and inner diameters respectively are 19 and 16 mm, and tube thickness is 1.5 mm. The aim of ISI was to obtain and evaluate the heat exchanger’s condition including the detection of any possible local tube thinning, pitting corrosion or gradual thinning, and determine whether any degradation or deterioration of the heat exchanger could have a significant impact to safety. The heat exchanger was inspected utilizing eddy current equipment in 2003 and 2006. Inspection results in 2003 determined that 12 heat exchanger tubes have a thinning degradation level ranging from 10% up to 60% of the outer diameter due to pitting corrosion. Deterioration of baffle plates has been linked to general corrosion attack. Inspection results in 2006 showed a consistent thinning degradation level with the previous inspection in 2003. So far heat exchanger performance is still satisfactory, as defined by the transfer of primary heat for a 2°C difference between inlet and outlet as required. (author)

  19. Analysis of direct containment heating in Ling'ao-2 nuclear power plant model With FCI-CMFD software

    International Nuclear Information System (INIS)

    Wang Xi; Yang Yanhua; Huang Xi

    2010-01-01

    Ling'ao 2 Nuclear Power Plant (NPP) model was established in the paper. Three dimensional numerical calculation code MC3D was used for analyzing the potential direct containment heating (DCH) accident in the model. MC3D is a special software for fuel coolant interaction (FCI) analysis. In order to predict the accident accurately, initial conditions provided by the SBO accident calculation and the geometric model of Ling'ao 2 NPP were combined to simulate the process of the accident. The calculation gives temperature field, droplet Janume fraction field, velocity field, and the pressure variation in the containment in the case of accident. The result shows that DCH will cause the pressure rising rapidly in the containment and in some local areas temperature rises too. (authors)

  20. Simulation of International Standard Problem No. 44 'KAEVER' experiments on aerosol behaviour with the CONTAIN code

    International Nuclear Information System (INIS)

    Kljenak, I.

    2001-01-01

    Experiments on aerosol behavior in a vapor-saturated atmosphere, which were performed in the KAEVER experimental facility and proposed for the OECD International Standard Problem No. 44, were simulated with the CONTAIN thermal-hydraulic computer code. The purpose of the work was to assess the capability of the CONTAIN code to model aerosol condensation and deposition in a containment of a light-water-reactor nuclear power plant at severe accident conditions. Results of dry and wet aerosol concentrations are presented and analyzed.(author)

  1. The assessment of containment codes by experiments simulating severe accident scenarios

    International Nuclear Information System (INIS)

    Karwat, H.

    1992-01-01

    Hitherto, a generally applicable validation matrix for codes simulating the containment behaviour under severe accident conditions did not exist. Past code applications have shown that most problems may be traced back to inaccurate thermalhydraulic parameters governing gas- or aerosol-distribution events. A provisional code-validation matrix is proposed, based on a careful selection of containment experiments performed during recent years in relevant test facilities under various operating conditions. The matrix focuses on the thermalhydraulic aspects of the containment behaviour after severe accidents as a first important step. It may be supplemented in the future by additional suitable tests

  2. Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments

    Science.gov (United States)

    Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.

    2012-01-01

    ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data

  3. Isotope distributions in primary heat transport and containment systems during a severe accident in CANDU type reactor

    International Nuclear Information System (INIS)

    Constantin, M.

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code. The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivation to begin with a simplified model. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU loss of coolant accident sequence (CATHENA code results). The source term of FPs introduced into the PHT was estimated by ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species were obtained by using SOPHAEROS module. The distributions within the containment are obtained by the CPA module (thermalhydraulic calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts of the containment and different hosts. (authors)

  4. Heat transfer modelling in the vertical tubes of a natural circulation passive containment loop with noncondensable gas

    International Nuclear Information System (INIS)

    Herranz, L.E.; Munoz-Cobo, J.L.; Tachenko, I.; Sancho, J.; Escriva, A.; Verdu, G.

    1994-01-01

    One of the key safety systems of the Simplified Boiling Water Reactor (SBWR) of General Electric is the Passive Containment Cooling System (PCCS). This system is designed to behave as a heat sink without need of operator actions in case of a reactor accident. Such a function relies on setting up a natural circulation loop between drywell and wetwell. Along this loop heat is removed by condensing the steam coming from the drywell onto the inner surface of externally cooled vertical tubes. Therefore, a successful design of the condenser requires a good knowledge of the local heat transmission coefficients. In this paper a model of steam condensation into vertical tubes is presented. Based on a modified diffusion boundary layer approach for noncondensables, this model accounts for the effect of shear stress caused by the cocurrent steam-gas mixture on the liquid film thickness. An approximate method to calculate film thickness, avoiding iterative algorithms, has been proposed. At present, this model has been implemented in HTCPIPE code and its results are being checked in terms of local heat transfer coefficients against the experimental data available. A good agreement between measurements and predictions is being observed for tests at atmospheric pressure. Further development and validation of the model is needed to consider aspects such as mist formation, wavy flow and high pressure. (author)

  5. NORDA contribution to the in-situ heat transfer experiment (ISHTE): FY84 annual report

    International Nuclear Information System (INIS)

    Valent, P.J.; Bennett, R.H.; Li, H.; Burns, J.T.

    1986-01-01

    The Subseabed Disposal Program (SDP) of the DOE, managed by Sandia National Laboratories, Albuquerque (SNLA), is studying the feasibility of disposing of high-level radioactive wastes by burial in fine-grained deep-sea sediments. The thermo-mechanical response of these sediments to the thermal gradient and temperatures generated by the decaying radionucleides in a buried waste container is being determined by the SDP-supported In Situ Heat Transfer Experiment (ISHTE). The Naval Ocean Research and Development Activity (NORDA) is responsible for the development and fielding of piezometer probes for measuring the pore water pressure gradients induced by the thermal gradient in the sediment. Pore pressure gradients measured in ISHTE will permit validation of theoretical models predicting the rate of radionucleide leakage from a buried waste container to the overlying seawater column. This report of describes the results of a laboratory simulation of ISHTE, conducted at SNLA, in which sediment cracking due to probe insertion was determined to not be a problem to the experiment. Specialized equipment developed for ISHTE, in particular a pressure transducer calibrator for ambient pressures to 69 MPa (10,000 psi), is described. Preliminary results gleaned from excess pore pressure data obtained during the ISHTE component test cruise, Sept 84, confirm that sediment cracking due to probe insertion will be slight and will have an insignificant influence on the measured excess pore pressure dissipation rates. Excess preenerated by insertion of the piezometer probes vary by a factor of two. No significant faults in the NORDA piezometer system were detected either in the laboratory stimulation or in the test in 5800 m water depth north of Hawaii

  6. Development of BNL Heat Transfer Facility 1: flashing experiments

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Klein, J.H.; Zimmer, G.A.; Abuaf, N.; Jones, O.C. Jr.

    1979-01-01

    A major area of interest to reactor safety technology is the prediction of actual vapor generation rates under conditions of thermal nonequilibrium as would be encountered during a loss-of-coolant accident (LOCA) in a light water reactor. In support of the development of advanced codes dealing with LOCA induced flashing, analytical models of the nonequilibrium vapor generation processes of interest have been formulated, and an experimental facility has been constructed to provide data to verify these models. This facility is known as BNL Heat Transfer Facility. The experimental facility consists of a flow loop, test section and the data acquisition and analysis system. The main portion of the flow loop is constructed from three inch nominal (7.6 cm) stainless steel pipe. High purity water is circulated through the loop using a centrifugal pump rated 1500 l/min at 600 kPa. Very close and stable control of all loop parameters is required since flashing is sensitive to very small changes in such parameters as flow rate, subcooling, and pressure

  7. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  8. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  9. Decay heat experiment and validation of calculation code systems for fusion reactor

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of ±10%. (author)

  10. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  11. Design of an experiment to measure the fire exposure of radioactive materials packages aboard container cargo ships

    International Nuclear Information System (INIS)

    Koski, J.A.

    1997-11-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire aboard a container cargo ship. A stack of nine used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Both internal and external fire container fire environments typical of on-deck stowage will be measured as well as the potential for container to container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container to container fire spread characteristics

  12. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable enclosure containing agricultural produce during natural convective cooling

    International Nuclear Information System (INIS)

    Chourasia, M.K.; Goswami, T.K.

    2007-01-01

    A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement

  13. Heat transfer analyses using computational fluid dynamics in the air blast freezing of guava pulp in large containers

    Directory of Open Access Journals (Sweden)

    W. M. Okita

    2013-12-01

    Full Text Available Heat transfer during the freezing of guava pulp conditioned in large containers such as in stacked boxes (34 L and buckets (20 L and unstacked drums (200 L is discussed. The air velocities across the cross-section of the tunnel were measured, and the values in the outlet of the evaporator were used as the initial conditions in computational fluid dynamics (CFD simulations. The model tested was turbulent standard k-ε. The CFD-generated convective heat transfer coefficients were mapped on the surfaces for each configuration and used in procedures for the calculation of freezing-time estimates. These estimates were compared with the experimental results for validation. The results showed that CFD determined representative coefficients and produced good correlations between the predicted and experimental values when applied to the freezing-time estimates for the box and drum configurations. The errors depended on the configuration and the adopted mesh (3-D grid construction.

  14. Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun

    1997-01-01

    A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments

  15. Simulation of the ACE L2 and ACE L5 MCCI experiment under dry surface conditions with ASTEC MEDICIS using an effective heat transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Agethen, Kathrin; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2013-07-01

    In a postulated severe accident the loss of cooling can lead to a melting of the core and to a failure of the vessel. The molten core material discharges to the containment cavity and interacts with the concrete basemat. The heat up of the concrete leads to the release of sparing gases (H{sub 2}, CO{sub 2}, SiO), which stir the pool und causes chemical reactions. Especially the metals (Zr, Fe, Ni, Cr) in the corium are oxidized und the exothermic energy is released to the melt, which raises the melt temperature further. The release of combustible gases (H{sub 2}, CO) and fission products to the containment atmosphere occurs as a result. In the long time (>10 h) containment failure and basemat penetration may occur, which can lead to fission product release to the environment. For further development and validation, simulations of experiments in which molten core concrete interaction (MCCI) is investigated, are necessary. In this work the new available effective heat transfer model in MEDICIS is used to calculate experiments of the ACE program, in which generic corium material is heated up and interacts with the concrete basemat. Here, especially the ACE L2 experiment with siliceous concrete and the ACE L5 experiment with limestone common sand (LCS) concrete will be presented. These experiments enable to analyze the heat transfer from the interior of the melt to the upper surface under dry conditions. Secondary the modeling in ASTEC version 2.p2 with the effective heat transfer module in MEDICIS is described. Results of MEDICIS simulations will be discussed by means of phenomena like ablation behavior and erosions depth, layer temperature and surface heat loss. Finally the issue of an effective heat transfer coefficient for the surface under dry conditions without top flooding is figured out. (orig.)

  16. Calculations of the SNL experiments Sup1 and Sup2 with CONTAIN 2

    International Nuclear Information System (INIS)

    Jacobs, G.; Noebel, R.; Wendlandt, T.

    2000-01-01

    Post-test calculations using the CONTAIN code were performed for the SNL melt dispersal/DCH tests SUP-1 und SUP-2, resulting in a workable input model for future applications to high-temperature melt dispersal experiments as well as for prototypes with tight annular reactor cavity geometries. (orig.) [de

  17. HECTR [Hydrogen Event: Containment Transient Response] analyses of the Nevada Test Site (NTS) premixed combustion experiments

    International Nuclear Information System (INIS)

    Wong, C.C.

    1988-11-01

    The HECTR (Hydrogen Event: Containment Transient Response) computer code has been developed at Sandia National Laboratories to predict the transient pressure and temperature responses within reactor containments for hypothetical accidents involving the transport and combustion of hydrogen. Although HECTR was designed primarily to investigate these phenomena in LWRs, it may also be used to analyze hydrogen transport and combustion experiments as well. It is in this manner that HECTR is assessed and empirical correlations, such as the combustion completeness and flame speed correlations for the hydrogen combustion model, if necessary, are upgraded. In this report, we present HECTR analyses of the large-scale premixed hydrogen combustion experiments at the Nevada Test Site (NTS) and comparison with the test results. The existing correlations in HECTR version 1.0, under certain conditions, have difficulty in predicting accurately the combustion completeness and burn time for the NTS experiments. By combining the combustion data obtained from the NTS experiments with other experimental data (FITS, VGES, ACUREX, and Whiteshell), a set of new and better combustion correlations was generated. HECTR prediction of the containment responses, using a single-compartment model and EPRI-provided combustion completeness and burn time, compares reasonably well against the test results. However, HECTR prediction of the containment responses using a multicompartment model does not compare well with the test results. This discrepancy shows the deficiency of the homogeneous burning model used in HECTR. To overcome this deficiency, a flame propagation model is highly recommended. 16 refs., 84 figs., 5 tabs

  18. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  19. The effect of heat treatment and irradiation on some physical properties of lithium borate glass containing transition elements

    International Nuclear Information System (INIS)

    Soliman, A.A.; Aly, S.A.; Frhan, H.; Abo-Zeid, Y.M.

    1999-01-01

    The effect of introducing iron, nickel and cobalt oxide on some physical properties investigated in this article. The electrical conductivity has a higher value in samples containing 1 mol% transition metal oxides. The conductivity decreased as the content of transition metal oxide increased up to 5 mol% which was due to the change of Fe 2+ to Fe 3+ and increase of Co and Ni ions in octahedral state. The effect of heat treatment on the conductivity measurements shows a decrease in the conductivity values for glass samples with increasing the heat treatment time up to 72 h. This decrease could be attributed to the change in the structure of the glass samples. The investigation of radiation doses with the electrical conductivity concluded that the conductivity increased with increase the irradiation doses. The reason of that may be due to increasing the number of vacancies and vacancy interstitial pairs which are created. The magnetic susceptibility measurements showed an increase in the magnetic susceptibility as Fe 2 O 3 and NiO were increased. While for samples containing CoO the magnetic susceptibility changed due to the change in coordination number of the Co ions. The effect of heat treatment on magnetic susceptibility of the investigated samples concluded that the magnetic susceptibilities have a random behavior with increasing time of heat treatment. By investigating irradiation doses with a magnetic susceptibility it was found that the increase of irradiation dose promotes a tendency to change the magnetic susceptibility values. This change can be related to the presence of structure defects and impurities in the samples before irradiation

  20. Photoacoustic study of heated binary mixtures containing whey and skimmed-milk powders

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.; Frankhuizen, R.

    1999-01-01

    A novel methodology is proposed to determine the amount of whey powder in a binary mixture containing whey and skimmed-milk powders. This new approach is based on measurement of the amplitude of the photoacoustic (PA) signal obtained when the mixture is exposed to a controlled thermal treatment; the

  1. Theory of electron cyclotron heating in the Constance II experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1981-03-01

    The bounce-averaged quasi-linear equation for a non-relativistic mirror-confined plasma interacting with electromagnetic waves is derived for use in the study of ECRH of the Constance II mirror experiment. The derivations follows the more formal examples given by Berk for electrostatic waves and Bernstein and Baxter for relativistic plasmas. The validity of the theory is discussed by examining individual particle orbits in an EM field. The local dispersion relation is found while deriving a self-consistent WKB theory which can be used to estimate the power transferred from the launching horn to the plasma

  2. Soil remediation by heat injection: Experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others

    1995-03-01

    In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.

  3. Analysis of the temperature and pore water pressure field in the TED heating experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Vaunat, J.; Gens, A.; Conil, N.; Armand, G

    2012-01-01

    Document available in extended abstract form only. The TED experiment is a heating experiment in Callovo-Oxfordian Clay performed in the Meuse Haute Marne underground research laboratory. It was set up by Andra to confirm the results obtained in a previous thermal experiment (TER). The main objectives are: characterisation of the thermal properties of intact argillite, identification of the Thermo-Hydro-Mechanical (THM) coupling parameters, improvement of the understanding of THM behaviour and comparison of parameters measured in-situ and in the laboratory. The three heaters in the TED experiment were installed parallel at a distance of about 2.7 m to reproduce as closely as possible the real storage case (HA cells). This arrangement should allow the verification of: i) the superposition of several temperature fields generated by the three heaters and ii) the overpressure generated in the symmetry planes between the three heaters. Three heaters 4 m long and 0.143 m diameter have been installed in parallel boreholes drilled form GED gallery. To limit the influence of the conditions prevailing in the gallery, a distance of 12 m have been left between the GED wall and the closest extremity of the heaters. Rock has been intensively instrumented within a zone of 15 m around the heaters. There are 108 thermal sensors, 10 pore pressure sensors, 2 extensometers/inclinometers, placed in 13 different small diameter boreholes (56 mm). 11 boreholes were filled with bentonite (those containing thermal and pore pressure sensors) and 2 of them left open (those equipped with extensometer/inclinometers). First heating started on 22 January 2010 at the central heater and consists of three steps: 120 days at 180 W, 150 days at 300 W and one last period at 600 W. The two lateral heaters have been switched on after 14 months following the same heating sequence. The concept and the results of the TED experiment are fully described in a companion paper. Concerning heat transport

  4. Thermal-Hydraulic Analysis of the Nuclear Power Engineering Corporation Containment Experiments with GOTHIC

    International Nuclear Information System (INIS)

    Wiles, Lawrence E.; George, Thomas L.

    2003-01-01

    GOTHIC version 7.0 was used to model five tests that were conducted in the Nuclear Power Engineering Corporation facility in Japan. The tests involved steam and helium injection into a preheated, spray-moderated, 1/4-scale model of a pressurized water reactor dry containment. Comparison of GOTHIC predictions to measured data for pressure, vapor temperatures, structure surface temperatures, and helium concentrations provided the opportunity to evaluate methods for modeling gas dispersion, drop heat and mass transfer, and surface heat transfer.The test facility includes three floors. The lower two floors are partitioned into a variety of rooms that simulate the lower regions of the modeled containment. On the upper floor, rooms that simulate the steam generator enclosures and the pressurizer enclosure extend into the dome, which represents about two-thirds of the total volume of the containment.The GOTHIC model was defined with 30 control volumes using a mix of lumped parameter volumes and subdivided volumes that employ a three-dimensional mesh. Each volume included several thermal conductors to model the various structures. More than 100 flow paths were used to model the hydraulic connections.Comparison of predictions to data showed that enhanced grid resolution in the vicinity of the steam-helium release point served to limit dispersion of the steam-helium plume. The data comparisons also suggested that spray effectiveness was reduced by drop impact with the containment wall and by the high drop concentration. The data comparisons further suggested that the presence of condensation, sprays, splashing, and other wetting mechanisms should be considered to obtain a reasonable estimate of the effect of liquid films on the structure surfaces

  5. Effect of sulfur addition and heat treatment on electrical conductivity of barium vanadate glasses containing iron

    Energy Technology Data Exchange (ETDEWEB)

    Hassaan, M.Y., E-mail: myhassaan@yahoo.com [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); Ebrahim, F.M.; Mostafa, A.G. [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Suez Canal University, Faculty of Science, Physics Department, Suez (Egypt)

    2011-09-15

    Highlights: {yields} Selected glasses of V{sub 2}O{sub 5}-BaO-5Fe{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. {yields} Glass ceramic nanocrystals are important because of their physical properties which are not obtainable in other classes of materials. {yields} Crystal and grain sizes are the most significant structural parameters in electronic nanocrystalline glassy phases. {yields} These phases have very high electrical conductivity, hence glass-ceramic nanocrystals are expected to be used, for example, as a gas sensor. - Abstract: Six glass samples with a composition of 75V{sub 2}O{sub 5} + 10BaO + 15Fe{sub 2}O{sub 3} mol%, with 0, 10, 15, 20, and 25 wt% of sulfur were prepared by using a quenching method. The samples were measured by XRD, DSC, TEM, Moessbauer spectrometry and D.C. conductivity. The prepared samples were heat treated at temperature close to their crystallization temperatures for 1 h, and then the previous measurements were repeated. The results showed that the treatment process caused the formation of V{sub 2}O{sub 5} and FeVO{sub 4} nanocrystals with size of 17-25 nm dispersed in the glass matrix. The addition of sulfur reduced only the vanadium ions to V{sup 4+}, while it was found that iron ions were Fe{sup 3+} only. D.C. conduction enhanced due to the small polaron or electron hopping from V{sup 4+} to V{sup 5+} ions. The heat treated samples exhibit much higher conductivity and much lower activation energy than the as-prepared glasses. The heat treated samples showed decreased thermal stability with the addition of sulfur. This considerable enhancement of electrical conductivity after nanocrystallization referred to the formation of extensive and dense network of electronic conduction paths which are situated between V{sub 2}O{sub 5} nanocrystals and their surfaces.

  6. Containment integrity and leak testing. Procedures applied and experiences gained in European countries

    International Nuclear Information System (INIS)

    1987-01-01

    Containment systems are the ultimate safety barrier for preventing the escape of gaseous, liquid and solid radioactive materials produced in normal operation, not retained in process systems, and for keeping back radioactive materials released by system malfunction or equipment failure. A primary element of the containment shell is therefore its leak-tight design. The report describes the present containment concepts mostly used in European countries. The leak-testing procedures applied and the experiences gained in their application are also discussed. The report refers more particularly to pre-operational testing, periodic testing and extrapolation methods of leak rates measured at test conditions to expected leak rates at calculated accident conditions. The actual problems in periodic containment leak rate testing are critically reviewed. In the appendix to the report a summary is given of the regulations and specifications applied in different member countries

  7. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  8. Safety-analysis report for packaging (SARP) general-purpose heat-source module 750-Watt shipping container

    International Nuclear Information System (INIS)

    Whitney, M.A.; Burgan, C.E.; Blauvelt, R.K.; Zocher, R.W.; Bronisz, S.E.

    1981-01-01

    The SARP includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. Extensive tests and evaluations were performed to show that the container will function effectively with respect to all required standards and when subjected to normal transportation conditions and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion). In addition, a steady state temperature profile and radiation profile were measured using two heat sources that very closely resemble the GPHS. This gave an excellent representation of the GPHS temperature and radiation profile. A nuclear criticality safety analysis determined that all safety requirements are met

  9. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  10. Evolution of Iron-containing Compounds in Al-Cu Alloys during Heat Treatment

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2016-01-01

    Full Text Available The evolution of iron-containing compounds in Al-Cu 206 cast alloy during solution treatment has been investigated. Results show that platelet β-Fe and Chinese script α-Fe are the two iron-containing compounds in as-cast condition. Little change is observed on β-Fe during solution treatment. However, fine blocky post β-Fe begins to form on α-Fe when solution treated at 520°C for 8hrs. When soaking time is extended to 24 hrs, α–Fe is found to decompose to fine branches while post β-Fe present as clusters on these branches. Al-Cu-Mg-Si Q phase is observed to form at the edge of decomposed α-Fe, possibly the result of Si from decomposed α-Fe.

  11. Simulation of the VISTA SG heat transfer experiment using MIDAS/SMR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won

    2011-01-01

    As the SMART plant was designed with the helical type tubes in the steam generators, the heat transfer model in that geometry has been implemented in the TASS/SMR-S code and used for the safety analysis. The same correlation was implemented in the MIDAS/SMR, which is being used for the severe accident analyses, to model heat transfer at the steam generators. In this study, the VISTA SG experiment with the helical steam generator tube was simulated with MIDAS/SMR to compare the heat transfer rates through the helical tube

  12. Experiments on nucleate boiling heat transfer with a highly-wetting dielectric fluid

    International Nuclear Information System (INIS)

    You, S.M.; Simon, T.W.; Bar-Cohen, A.

    1990-01-01

    This paper reports on experiments on pool boiling heat transfer in an electronic cooling fluid (Fluorinert, FC-72) that were conducted using a 0.51 mm diameter cylindrical heater. The effects of pressure, subcooling and dissolved gas content on nucleate boiling heat transfer are investigated. When boiling with dissolved gas in the bulk fluid, the fluid in the vicinity of the heating element appears to be liberated of dissolved gas by boiling. Thus, boiling under these conditions appears to be similar to subcooled boiling without dissolved gas. Nucleate boiling hysteresis is observed for subcooled and gassy-subcooled situations

  13. Atlas of the global distribution of atmospheric heating during the global weather experiment

    Science.gov (United States)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  14. Facility for the storage of spent, heat-emitting and container-enclosed nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Hennings, U.

    1987-01-01

    Patent for facility for the storage of spent, heat-emitting and container-enclosed nuclear reactor fuel assemblies, which are arranged within a building in a horizontal position and are cooled by a gas stream, whereby the building has a storage and a loading zone, characterized by the fact that pallet trucks arranged one above the other in a row and such that an interspace is left for the receiving positions for the containers, the the pallet trucks can be moved along rails that extend between two side walls arranged opposite to one another in the storage zone, that the storage zone can be loaded and unloaded by opening located in these two side walls, and that the gas stream only circulates within the building

  15. Large-scale experiments on aerosol behavior in light water reactor containments

    International Nuclear Information System (INIS)

    Schock, W.; Bunz, H.; Adams, R.E.; Tobias, M.L.; Rahn, F.J.

    1988-01-01

    Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m/sup 3/ steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m/sup 3/ concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; and 852-m/sup 3/ steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMONA and LACE experiments

  16. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  17. High frequency ion Bernstein wave heating experiment on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Seki, T.; Kumazawa, R.; Watari, T.

    1992-08-01

    An experiment in a new regime of ion Bernstein wave (IBW) heating has been carried out using 130 MHz high power transmitters in the JIPP T-IIU tokamak. The heating regime utilized the IBW branch between the 3rd and 4th harmonics of the hydrogen ion cyclotron frequencies. This harmonic number is the highest among those used in the IBW experiments ever conducted. The net radio-frequency (RF) power injected into the plasma is around 400 kW, limited by the transmitter output power. Core heating of ions and electrons was confirmed in the experiment and density profile peaking was found to feature the IBW heating (IBWH). The peaking of the density profile was also found when IBW was applied to the neutral beam injection heated discharges. An analysis by use of a transport code with these experimental data indicates that the particle confinement should be improved in the plasma core region on the application of IBWH. It is also found that the ion energy distribution function observed during IBWH has less high energy tail than those in conventional ion cyclotron range of frequency heating regimes. The observed IBWH-produced ion energy distribution function is in a reasonable agreement with the calculation based on the quasi-linear RF diffusion / Fokker-Planck model. (author)

  18. State of the art on the heat transfer experiments under supercritical pressure condition

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO 2 showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO 2 and Freon used for an alternating fluid are presented

  19. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  20. State of the art on the heat transfer experiments under supercritical pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO{sub 2} showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO{sub 2} and Freon used for an alternating fluid are presented.

  1. Steady natural convection in a horizontal channel containing heated rectangular blocks periodically mounted on its lower wall

    International Nuclear Information System (INIS)

    Bakkas, M.; Amahmid, A.; Hasnaoui, M.

    2006-01-01

    In this paper, we perform a numerical investigation of laminar steady natural convection flows in a two-dimensional horizontal channel containing heating rectangular blocks, periodically mounted on its lower wall. The blocks are heated at a constant temperature, T H ' and connected with adiabatic surfaces. The upper wall of the channel is maintained at a cold temperature T C ' . The parameters governing the problem are the Rayleigh number (10 2 = 6 ), the geometric parameter C (0.25=< C=l'/H'=<0.75) and the relative height of the blocks (1/8=< B=h'/H'=<1/2). The effect of the computational domain choice on the multiplicity of solutions is also investigated. The results obtained using air (Pr=0.72) as the working fluid show that the parameters B and C have a significant effect on the fluid flow and temperature fields. The symmetry of the flow is not always maintained although the boundary conditions for this problem are symmetrical, and the difference between two multiple solutions in terms of heat transfer may reach 34% for a given set of the governing parameters

  2. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  3. Design and operation of a transistorised bridge-type detector for burn-out in boiling heat transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salt, K J; Wintle, C A [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-04-15

    Theoretical, technical and operational details of an instrument to protect heater rods in heat transfer burn-out experiments from actual rupture under electrical heating, by a Wheatstone bridge method. (author)

  4. Design and operation of a transistorised bridge-type detector for burn-out in boiling heat transfer experiments

    International Nuclear Information System (INIS)

    Salt, K.J.; Wintle, C.A.

    1964-04-01

    Theoretical, technical and operational details of an instrument to protect heater rods in heat transfer burn-out experiments from actual rupture under electrical heating, by a Wheatstone bridge method. (author)

  5. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    Science.gov (United States)

    Testa, D.; Albergante, M.

    2012-08-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium-tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the so

  6. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    International Nuclear Information System (INIS)

    Testa, D.; Albergante, M.

    2012-01-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium–tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the

  7. Space chamber experiments of ohmic heating by high power microwave from the solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.

    1981-12-01

    It is quantitatively predicted that a high power microwave from the Solar Power Satellite (SPS) nonlinearly interacts with the ionospheric plasma. The possible nonlinear interactions are ohmic heating, self-focusing and parametric instabilities. A rocket experiment called MINIX (Microwave-Ionosphere Nonlinear Interaction Experiment) has been attempted to examine these effects, but is note reported here. In parallel to the rocket experiment, a laboratory experiment in a space plasma simulation chamber has been carried out in order to examine ohmic heating in detail and to develop a system of the rocket experiment. Interesting results were observed and these results were utilized to revise the system of the rocket experiments. A significant microwave heating of plasma up to 150% temperature increase was observed with little electron density decrease. It was shown that the temperature increase is not due to the RF breakdown but to the ohmic heating in the simulated ionospheric plasma. These microwave effects have to be taken into account in the SPS Project in the future.

  8. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    Science.gov (United States)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  9. Advanced energy systems: 2XIIB: heating and containing magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coensgen, F.H.

    1975-01-01

    Recent experiments on the 2XIIB mirror machine have produced encouraging results: a buildup of hot ion densities to 4 x 10 13 cm -3 , ion temperatures of 13 keV (the highest ever observed in a major fusion experiment), and a confinement time exceeding 5 ms. Two major factors in these achievements were the injection of twelve 20-keV neutral beams to increase plasma temperature and the introduction of warm streaming plasma to suppress microinstabilities. With them, near-classical confinement of a hot plasma was demonstrated. We are now doubling the injected neutral beam energy to see if plasma stability and energy scaling of plasma confinement persist at higher ion temperatures

  10. Fundamental study on the melting process of crushed ice in a heat storage container; Chikunetsu sonai ni takuwaeta saihyo no yukai ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yanadori, M; Kobori, H [Hitachi, Ltd., Tokyo (Japan); Tsubota, Y [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1998-03-25

    This report deals with heat transfer in the melting process of crushed ice filling in a ice/water heat storage container. Volumetric heat transfer rate and melting end-time are measured when rectangular-type, small-stone-type and particle-type ice in the container are melted by circulation hot water. Melting end-time of small-stone-type ice is the shortest and that of particle-type ice is the latest. Volumetric heat transfer rate of small-stone-type ice and rectangular-type ice is larger than that of particle-type ice. The flow rate of circulation hot water throwing in container through a inlet pipe influences remarkably on heat transfer rate. 4 refs., 10 figs.

  11. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    Science.gov (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  12. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  13. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  14. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  15. Research Proposal for the Design and Engineering Phase of a Solar Heating and Cooling System Experiment at the Warner Robins Public Library, Warner Robins, Georgia. Submitted to the United States Energy Research and Development Administration.

    Science.gov (United States)

    Phillips, Warren H.; And Others

    A number of reasons are advanced to include a solar heating and cooling experiment in a library building. The unique aspects of the experiment are to be a seasonally adjustable collector tilt and testing of a new generation of absorption air conditioners. After a brief description of the proposed experiment, the proposal contains forms filed by…

  16. Particles growth by steam nucleation in a containment. The PITEAS experiment

    International Nuclear Information System (INIS)

    Layly, V.D.

    1993-01-01

    One of the major issues of the fission products inventory in the containment of a nuclear power plant during the few hours following the initiating phase of a severe accident (involving core degradation and fission products release from the fuel) is the physical behaviour of the aerosols suspended in the containment atmosphere. The aerosol mass concentration versus time is controlled by agglomeration, sedimentation, deposition on walls and steam nucleation phenomena. In order to assess the Nuclear Safety codes dealing with such phenomena, analytical experiments are necessary. PITEAS is an analytical experiment, on the behaviour of soluble aerosols in humid atmosphere. The PITEAS program covers three topics: diffusiophoresis, agglomeration and particle growth by steam nucleation. In the present work, we analyse the results of the tests devoted to the soluble particle growth and how such results are used to assess the IPSN code AEROSOL-B2 code, part of the System of codes ESCADRE. (author)

  17. Model experiment and numerical simulation of drop impact response of multilayer-combinational container

    International Nuclear Information System (INIS)

    Xie Ruoze; Zhong Weizhou; Wan Qiang; Huang Xicheng; Zhang Fangju

    2015-01-01

    The drop impact process of multilayer-combinational container was simulated experimentally using a gas gun, and the normal impact and oblique impact of scaled models were tested. The experiments of scaled models were simulated numerically, and the stress distribution and plastic deformation in the tested structures during collision process were obtained. The results were compared with the experiment data. It was shown that the impact work mainly converted into plastic work due to the plastic deformation of the cushion wood and the plastic hinge in the buckled steel shell. The plastic deformation mainly happened at the collided end of the scaled models, and there was no plastic deformation found far from the collided end. The compressive stress-strain curve of the wood in texture direction can be used to simulate numerically the drop impact process of multilayer-combinational container. (authors)

  18. Heat transfer and friction characteristics of rotor-assembled strand heat exchanger studied by uniform design experiment

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2015-10-01

    Full Text Available The uniform distribution and experimental design is employed to study the thermo-hydraulic characteristics of a heat exchanger, which consists of the rotor-assembled strands mounted in circular smooth tubes. The uniform distribution and experimental design parameters include multiple rotor parameters such as rotor diameters, rotor lead, and height of blade, with the aim of studying their influence on the PEC, that is, ( ( Nu z / Nu g / ( f g / f z 1 / 3 , which stands for the heat transfer and friction characteristics. The best matching schemes of rotor-assembled strand, which significantly improves PEC to 2.01, are given by the regression analysis of uniform distribution and experimental design table. The single-factor experiments are performed to compare a tube installed with different kinds of rotor-assembled strands with a smooth tube without any strands when the Reynolds number changes between 20,000 and 60,000. The experimental result is in good agreement with the result obtained by the regression analysis of uniform distribution and experimental design. It is shown that the rotor diameters play important role in the heat transfer, and the optimal PEC value is obtained under the case that the rotor diameter is 21 mm. The rotor lead also contributes to the improvement of heat transfer and its optimal value is 700 mm in this study. The Nusselt number, friction factor and PEC increase with the increase in blade height. It shows that the uniform distribution and experimental design is an efficient method to find out the optimal parameters.

  19. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  20. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal, and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  1. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.; California Univ., Berkeley

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  2. The COLIMA experiment on aerosol retention in containment leak paths under severe nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Parozzi, Flavio, E-mail: flavio.parozzi@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Caracciolo, Eduardo D.J., E-mail: eduardo.caracciolo@rse-web.it [RSE, Power Generation Department, via Rubattino 54, I-20134 Milano (Italy); Journeau, Christophe, E-mail: christophe.journeau@cea.fr [CEA Cadarache (France); Piluso, Pascal, E-mail: pascal.piluso@cea.fr [CEA Cadarache (France)

    2013-08-15

    Highlights: ► Experiment investigating aerosol retention within concrete containment cracks under nuclear severe accident conditions. ► Provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. ► Prototypical aerosol particles generated with a thermite reaction and transported through the crack sample reproducing surface characteristics, temperature, pressure drop and gas leakage. ► The results indicate the significant retention due to zig-zag path. -- Abstract: CEA and RSE managed an experimental research concerning the investigation of aerosol retention within concrete containment cracks under severe accident conditions. The main experiment was carried out in November 2008 with aerosol generated from the COLIMA facility and a sample of cracked concrete with defined geometric characteristics manufactured by RSE. The facility provided representative conditions of the aerosols suspended inside the containment of PWRs under a severe accident. Prototypical aerosol particles were generated with a thermite reaction and transported through the crack sample, where surface characteristics, temperature, pressure drop and gas leakage were properly reproduced. The paper describes the approach adopted for the preparation of the cracked concrete sample and the dimensioning of the experimental apparatus, the test procedure and the measured parameters. The preliminary results, obtained from this single test, are also discussed in the light of the present knowledge about aerosol phenomena and the theoretical analyses of particle behaviour with the crack path.

  3. Core heat transfer experiment for JRR-3 to be upgraded at 20 MWt, 2

    International Nuclear Information System (INIS)

    Sudo, Yukio; Miyata, Keiichi; Ikawa, Hiromasa; Ohgawara, Masami; Kaminaga, Masanori

    1985-09-01

    Experiments were carried out to investigate the condition of onset of nucleate boiling (ONB) and the departure from nucleate boiling (DNB) heat flux under forced convection in a vertical rectangular channel, both of which take important roles in the core thermal-hydraulic design of the upgraded JRR-3. This report presents the validity and applicability of the correlations proposed for ONB condition and DNB heat flux, based on the analysis of the experimental results. The upgraded JRR-3 is a low-pressure, low-temperature research reactor and the core heat generation is removed by two cooling modes, one is natural circulation under upflow up to 200 kW and the other is forced circulation under downflow up to 20 MW. Therefore, the difference in heat transfer characteristics between upflow and downflow were investigated in the experiments, which were carried out by using a heated channel properly simulating a subchannel of fuel element because the heat transfer characteristics are considered to be strongly dependent on the configuration of flow channel. (author)

  4. On heat transfer characteristics of real and simulant melt pool experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Nourgaliev R.R.; Sehgal, B.R. [Royal Institute of Technology, Stockholm (Sweden)

    1995-09-01

    The paper presents results of analytical studies of natural convection heat transfer in scaled and/or simulant melt pool experiments related to the PWR in-vessel melt retention issue. Specific reactor-scale effects of a large decay-heated core melt pool in the reactor pressure vessel lower plenum are first reviewed, and then the current analytical capability of describing physical processes under prototypical situations is examined. Experiments and experimental approaches are analysed by focusing on their ability to represent prototypical situations. Calculations are carried out in order to assess the significance of some selected effects, including variations in melt properties, pool geometry and heating conditions. Rayleigh numbers in the present analysis are limited to 10{sup 12}, where uncertainties in turbulence modeling are not overriding other uncertainties. The effects of fluid Prandtl number on heat transfer to the lowermost part of cooled pool walls are examined for square and semicircular cavities. Calculations are performed also to explore limitations of using side-wall heating and direct electrical heating in reproducing the physical picture of interest. Needs for further experimental and analytical efforts are discussed as well.

  5. Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Oliver-Ramírez, A.

    2011-09-01

    Full Text Available This article describes the design and manufacture of a gypsum board which, despite its 45 % wt content of phase change materials, meets the minimum physical and mechanical requirements laid down in the legislation on gypsum plasters (Spanish and European standard UNE EN 13279 and Spanish specifications for gypsum acceptance, RY 85. Under this design, a one-metre square, 1.5-cm thick board contains 4.75 kg of PCM, much more than in any prior drylining (the maximum attained to date is 3 kg per m2. The mechanical and physical characteristics of this new composite were previously improved with two joint-action additives: polypropylene fibres and melamine formaldehyde as a dispersing agent. In the 20-30 ºC temperature range, a gypsum board 1.5 cm thick containing this percentage of PCMs can store five times more thermal energy than conventional plasterboard of the same thickness, and the same amount of energy as half-foot hollow brick masonry.

    En esta investigación se ha diseñado y fabricado un panel de escayola que incorpora un 45% en peso de material de cambio de fase, manteniendo las propiedades físicas y mecánicas exigidas en la normativa de aplicación para yesos de construcción (UNE EN 13279 y referencias a la RY 85. Así, un panel de 1,0 m2 y 1,5 cm de espesor, contiene 4,75 kg de PCM, cantidad muy superior a la conseguida hasta la fecha (3 kg/m2. Para ello se ha mejorado previamente sus prestaciones mecánicas y físicas mediante adiciones binarias: fibras de polipropileno y dispersión de melanina formaldehído. Este porcentaje es capaz de almacenar en 1,5 cm de espesor cinco veces la energía térmica de un panel de cartón yeso con el mismo espesor y la misma cantidad que una fábrica de 1/2 pie de ladrillo hueco, en el rango de temperaturas próximas a la de confort (20-30 ºC.

  6. High power plasma heating experiments on the Proto-MPEX facility

    Science.gov (United States)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  7. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States); Smirnov, A. P. [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  8. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  9. MDEP Common Position CP-EPRWG-04. Common position on EPR containment heat removal system in accident conditions

    International Nuclear Information System (INIS)

    2015-01-01

    the active parts; - containment heat removal, including corium cooling, during core melt accidents shall be provided; - it shall be possible to reduce containment pressure in a controlled manner in the long term taking into account the impact of non-condensable gases; - there shall be provisions to reduce the amount of fission products in the containment atmosphere in case of the core melt accident

  10. An Artificial Channel Experiment for Purifying Drainage Water Containing Arsenic by Using Eleocharis acicularis

    Science.gov (United States)

    Okazaki, Kenji; Yamazaki, Shusaku; Kurahashi, Toshiyuki; Sakakibara, Masayuki

    2017-06-01

    This paper reports the results of an artificial channel experiment in which water containing arsenic was purified by using Eleocharis acicularis. The experiment was conducted to investigate the feasibility of phytoremediation by Eleocharis acicularis in civil engineering projects. In the experiment, 15 m2 of Eleocharis acicularis mats were laid in an artificial channel. Three sessions of artificial flow were implemented by leading 100.0 L of river water containing 0.234 mg/L of arsenic into the channel each time. The arsenic concentration of the leachate from the channel was analyzed. As the results of experiment, the arsenic concentrations of the leachate for the three sessions were 0.045 mg/L, 0.133 mg/L, and 0.249 mg/L. This shows that the arsenic concentration decreased during the first two sessions, whose flow totaled 200 L. The arsenic concentrations in the Eleocharis acicularis were 0.87 mg/kg, 1.01 mg/kg, and 4.16 mg/kg, which show that the plant absorbs arsenic. Moreover, it was found that the amount of sample water was reduced through evapotranspiration from the plant and the artificial channel.

  11. CASTOR registered HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    International Nuclear Information System (INIS)

    Vossnacke, A.; Klein, K.; Kuehne, B.

    2004-01-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR registered HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR registered HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR registered HAW28M, meeting these future requirements. The CASTOR registered HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR registered HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be considered. For the CASTOR

  12. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  13. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  14. Containment analysis on the PHEBUS FPT-0, FPT-1 and FPT-2 experiments

    International Nuclear Information System (INIS)

    Gyenes, Gyorgy; Ammirabile, Luca

    2011-01-01

    Research highlights: → The CPA/ASTEC code can reproduce similar patterns of CFD-based codes. → The deposition on elliptic bottom and on the painted wet condenser are qualitatively predicted. → The gas circulation affects the quick mixing of aerosols in the containment atmosphere. → The flow fields in CPA/ASTEC have a medium impact on the airborne mass in the PHEBUS containment. - Abstract: In a severe accident, most of the fission-product species are already condensed in aerosols when they are released to the containment. The behaviour of these aerosol particles controls the fission-product transport into the containment and affects the global Source Term. The calculations presented here were performed using the CPA module (Containment Package implemented in the European integral code ASTEC) for the in-pile PHEBUS FPT-0, FPT-1 and FPT-2 experiments and are focused on the aerosol transport. A detailed thermal-hydraulic model was used in the CPA/ASTEC code to evaluate the gas circulation pattern in the closed containment volume. The comparison of ASTEC results showed that the patterns are similar to the ones predicted by the CFD-based codes. Good agreement was reached with the measured average thermo-hydraulic parameters such as containment gas pressure, temperature and the condensation rate on the condensers. The calculations with the detailed simulation of the flow in the PHEBUS containment qualitatively predicted the particle settling on the elliptic bottom and deposition on the painted wet condenser surfaces. It was shown that the influence of the gas circulation leads to a relatively quick mixing of aerosols in the containment atmosphere. In the tests investigated, the effect of the gas circulation on the airborne aerosol mass during the aerosol injection period is small because the injected mass flux is significantly higher compared to the deposition fluxes on the vessel surfaces. During the long-term aerosol deposition phase, the flow fields predicted

  15. Modelling of containment atmosphere mixing and stratification experiment using CFD approach

    International Nuclear Information System (INIS)

    Ivo Kljenak; Miroslav Babic; Borut Mavko; Ivan Bajsic

    2005-01-01

    An experiment on containment atmosphere mixing and stratification, which was originally performed in the TOSQAN facility in Saclay (France), was simulated with the Computational Fluid Dynamics code CFX. The TOSQAN facility consists of a large cylindrical vessel in which gases are injected. In the considered experiment, steam, air and helium were injected during different phases of the experiment, with steam condensing on vessel walls. Three intermediate steady states, which were obtained with different boundary conditions, were simulated independently. A two-dimensional axisymmetric model of the TOSQAN vessel for the CFX4.4 code was developed. The flow in the simulation domain was modelled as single-phase. Steam condensation on vessel walls was modelled as a sink of mass and energy. Calculated profiles of temperature, steam concentration, and velocity components are compared to experimental results. (authors)

  16. Warnings on alcohol containers and advertisements: international experience and evidence on effects.

    Science.gov (United States)

    Wilkinson, Claire; Room, Robin

    2009-07-01

    In light of possible introduction of alcohol warning labels in Australia and New Zealand, this paper discusses the international experience with and evidence of effects of alcohol warning labels. The report describes international experience with providing information and warnings concerning the promotion or sale of alcoholic beverages, and considers the evidence on the effects of such information and warnings. The experience with and evaluations of the effects of tobacco warning labels are also considered. The most methodologically sound evaluations of alcohol warning labels are based on the US experience. Although these evaluations find little evidence that the introduction of the warning label in the USA had an impact on drinking behaviour, there is evidence that they led to an increase in awareness of the message they contained. In contrast, evaluations of tobacco warning labels find clear evidence of effects on behaviour. There is a need and opportunity for a rigorous evaluation of the impacts of introducing alcohol warning labels to add to the published work on their effectiveness. The experience with tobacco labels might guide the way for more effective alcohol warning labels. Alcohol warning labels are an increasingly popular alcohol policy initiative. It is clear that warning labels can be ineffective, but the tobacco experience suggests that effective warning labels are possible. Any introduction of alcohol warning labels should be evaluated in terms of effects on attitudes and behaviour.

  17. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    Science.gov (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  18. Undergraduate Organic Experiment: Tetrazole Formation by Microwave Heated (3 + 2) Cycloaddition in Aqueous Solution

    Science.gov (United States)

    DeFrancesco, Heather; Dudley, Joshua; Coca, Adiel

    2018-01-01

    An undergraduate experiment for the organic laboratory is described that utilizes microwave heating to prepare 5- substituted 1H-tetrazole derivatives through a (3 + 2) cycloaddition between aryl nitriles and sodium azide. The reaction mixture is analyzed by thin layer chromatography. The products are purified through an acid-base extraction and…

  19. What is the best clothing to prevent heat and cold stress? Experiences with thermal manikin.

    Science.gov (United States)

    Magyar, Z; Tamas, R

    2013-02-01

    The present study summarizes the current knowledge of the heat and cold stress which might significantly affect military activities and might also occur among travellers who are not well adapted to weather variations during their journey. The selection of the best clothing is a very important factor in preserving thermal comfort. Our experiences with thermal manikin are also represented in this paper.

  20. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.J.; Nyqvist, R.G.; De Bruijn, F.A.; Stobbe, E.R. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2006-02-15

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC)) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.

  1. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, P.J.; Nyqvist, R.G.; de Bruijn, F.A.; Stobbe, E.R. [Energy Research Centre of The Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2006-09-22

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG. (author)

  2. Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-05-01

    Full Text Available Latent heat thermal energy storage (TES plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.

  3. Evaluation of the heat transfer in a geological repository concept containing PWR, VHTR and hybrid ads-fission spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jonusan, Raoni A.S.; Pereira, Fernando; Velasquez, Carlos E.; Salome, Jean A.D.; Cardoso, Fabiano; Pereira, Claubia; Fortini, Angela, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    The investigation of the thermal behavior of spent fuel (SF) materials is essential to determining appropriate potential sites to accommodate geological repositories as well as the design of canisters, considering their potential risk to people health and of environmental contamination. This work presents studies of the temperature in a canister containing spent fuels discharged from Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) reactor systems in a geological repository concept. The thermal analyses were performed with the software ANSYS, which is widely used to solve engineering problems through the Finite Element Method. The ANSYS Transient Thermal module was used. The spent nuclear fuels were set as heat sources using data of previous studies derived from decay heat curves. The studies were based on comparison of the mean temperature on a canister surface along the time under geological disposal conditions, for a same amount of each type of spent nuclear fuel evaluated. The results conclude that fuels from VHTR and ADS systems are inappropriate to be disposed in a standardized PWR canister, demanding new studies to determine the optimal amount of spent fuel and new internal canister geometries. It is also possible to conclude that the hypothetical situation of a single type of canister being used to accommodate different types of spent nuclear fuels is not technically feasible. (author)

  4. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  5. FLUENT calculations of the hydrogen distribution in a containment during the OECD-NEA THAI HM-2 experiment

    International Nuclear Information System (INIS)

    Visser, D.C.; Komen, E.M.J.; Houkema, M.; Siccama, N.B.; Kyttaelae, Juha; Huhtanen, Risto; Takasuo, Eveliina

    2009-01-01

    Hydrogen may be released into the containment atmosphere of a nuclear power plant during a severe accident. Locally, high hydrogen concentrations may be reached that can possibly cause fast deflagration or even detonation and put the integrity of the containment at risk. Therefore, the distribution and mixing of hydrogen is an important safety issue for nuclear power plants. Computer codes can be applied to predict the hydrogen distribution in the containment within the course of a hypothetical severe accident and get an estimate of the local hydrogen concentration in the various zones of the containment. In this way the risk associated with the hydrogen safety issue can be determined, and safety related measurements and procedures could be assessed. In order to validate the existing computer codes in the context of hydrogen distribution in the containment of a nuclear power plant, experimental benchmark studies have been performed in the German Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI) facility in the framework of the OECD-NEA THAI project. In order to demonstrate the capabilities of the commercial Computational Fluid Dynamics (CFD) code FLUENT the THAI HM-2 test was simulated independently by NRG and VTT. In the first phase of the HM-2 test a stratified hydrogen rich light gas layer was established in the upper part of the THAI containment. In the second phase steam was injected at a lower position inducing a rising plume that gradually dissolved the stratified hydrogen-rich layer from below. Thermo-dynamic phenomena like natural convection, mixing, condensation, heat transfer and distribution in different zones that are expected in severe accidents are involved. The calculated results by NRG and VTT (on hydrogen concentration, temperature, pressure and flow velocity) are compared to the experimental results. The most important differences between the CFD model of NRG and VTT are the computational mesh, condensation model and treatment of the solid

  6. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  7. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.

    2003-01-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  8. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-01-01

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  9. A megawatt-level 28 GHz heating system for the National Spherical Torus Experiment Upgrade

    Directory of Open Access Journals (Sweden)

    Taylor G.

    2015-01-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at axial toroidal fields of ≤ 1 T and plasma currents, Ip ≤ 2 MA. The development of non-inductive (NI plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0 before the plasma becomes overdense. The increased Te(0 will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  10. A heat transfer analysis of the CCI experiments 1-3

    International Nuclear Information System (INIS)

    Sevon, Tuomo

    2008-01-01

    This paper presents an attempt to evaluate the heat transfer rates and gas release rates in the CCI core-concrete interaction experiments 1-3, performed within the OECD MCCI project. A new method for calculating the heat transfer rates has been developed. It is based on calculating integrals of the concrete enthalpies with the help of piecewise exponential interpolation curves. The new method takes into account heat conduction in the concrete. Compared to traditional methods, the new method gives better results during slow concrete ablation, and its time resolution is significantly better. The gas release rates from the concrete were also calculated. A regression analysis was conducted for the heat transfer coefficients and gas release rates. Three correlations for the bubbling-enhanced heat transfer were developed. For the basemat, a single correlation can be used for both siliceous and limestone/common sand (LCS) concrete types. For the sidewall, two different correlations are needed for the two concrete types. With the same superficial gas velocity, the heat transfer rate to siliceous sidewalls is higher than to LCS sidewalls. This suggests that the reason for the different radial ablation rates of the concrete types observed in the tests is not the lower gas content of siliceous concrete

  11. Review of preliminary additional heating experiments in JT-60 (Aug. - Nov., 1986)

    International Nuclear Information System (INIS)

    1987-03-01

    This is a prompt report on preliminary additional heating experiments in JT-60 from August to November in 1986. Neutral beam heating power was raised up to 20 MW in about a month. Plasma stored energy is about 2 MJ and energy confinement time is 0.1 ∼ 0.12 sec with the maximum heating power. The energy confinement time shows L-mode like deterioration with power, while it has little dependence on electron density. The maximum ion temperature of ∼ 7 keV and electron temperature of 4.5 keV were obtained at relatively low electron density (n-bar e = 2 - 3 x 10 19 m -3 ). Lower hybrid wave could efficiently drive plasma current up to 1.7 MA with 1.2 MW LH power. The current drive efficiency is 1 ∼ 1.7 in ohmically heated plasmas and 2 ∼ 2.8 in NB heated plasmas. Futhermore the energy confinement was improved when neutral beam was injected into entirely current driven discharges of 1 MA by LH in contrast to inductively driven target plasmas. Similar improvement in energy confinement was observed during combined heating with NB and ion cyclotron wave. (author)

  12. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    Energy Technology Data Exchange (ETDEWEB)

    Duane Spencer; Kevin McCoy

    2010-02-02

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  13. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    International Nuclear Information System (INIS)

    Spencer, Duane; McCoy, Kevin

    2010-01-01

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  14. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Fritsching, G.; Wolf, G. [Internationale Atomreaktorbau G.m.b.H. (INTERATOM), Bergisch Gladbach (Germany, F.R.)

    1981-01-15

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen.

  15. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    International Nuclear Information System (INIS)

    Fritsching, G.; Wolf, G.

    1981-01-01

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen

  16. Reaction kinetics and reaction heat on thermal decomposition of solvent containing unstable reactive hydrocarbons with nitric acid at Tomsk-7 reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Watanabe, Kouji; Koike, Tadao; Miyato, Teijiro.

    1996-12-01

    For analyzing a cause of the Tomsk-7 accident at Russian reprocessing plant, it is necessary to determine reaction-rate constant and reaction heat for a thermal decomposition of TBP/kerosine containing unstable reactive hydrocarbons with nitric acid. In JAERI, the rate constant and reaction heat were obtained from data measured with a differential thermal analyzer (DTA) for unstable hydrocarbons such as n-butanol, n-butyl nitrate, aromatic hydrocarbons, and cyclic compounds. The safety evaluation of Tomsk tank ruptured by the reaction was carried out by heat balance calculations between heat generation and heat loss in the tank using these rate constants and reaction heats. Consequently, it is clear that the cause of the tank rupture would be due to an exothermic reaction of aromatic hydrocarbons in kerosine made by petroleum with the concentrated nitric acid of 14.2N. (author)

  17. Pretest parametric calculations for the heated pillar experiment in the WIPP In-Situ Experimental Area

    International Nuclear Information System (INIS)

    Branstetter, L.J.

    1983-03-01

    Results are presented for a pretest parametric study of several configurations and heat loads for the heated pillar experiment (Room H) in the Waste Isolation Pilot Plant (WIPP) In Situ Experimental Area. The purpose of this study is to serve as a basis for selection of a final experiment geometry and heat load. The experiment consists of a pillar of undisturbed rock salt surrounded by an excavated annular room. The pillar surface is covered by a blanket heat source which is externally insulated. A total of five thermal and ten structural calculations are described in a four to five year experimental time frame. Results are presented which include relevant temperature-time histories, deformations, rock salt stress component and effective stress profiles, and maximum stresses in anhydrite layers which are in close proximity to the room. Also included are predicted contours of a conservative post-processed measure of potential salt failure. Observed displacement histories are seen to be highly dependent on pillar and room height, but insensitive to other geometrical variations. The use of a tensile cutoff across slidelines is seen to produce more accurate predictions of anhydrite maximum stress, but to have little effect on rock salt stresses. The potential for salt failure is seen to be small in each case for the time frame of interest, and is only seen at longer times in the center of the room floor

  18. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  19. Some heat and moisture budgets over Bay of Bengal during MONSOON 17 experiment

    International Nuclear Information System (INIS)

    Bhaskar Rao, D.V.

    1985-12-01

    Heat and moisture budgets have been estimated for the period 13-18 August 1977 over Bay of Bengal using data collected from USSR ships during MONSOON 77 experiment. The divergence, relative vorticity and vertical p-velocity fields are derived. The apparent heat source and moisture sink are obtained for the period. The vertical-time sections of the derived fields are presented and the distributions are compared for undisturbed conditions during the period of study. The results show strong convective motions during the disturbed period indicating the importance of convection in the monsoon depressions. (author)

  20. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  1. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  2. JET ({sup 3}He)-D scenarios relying on RF heating: survey of selected recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D; Lerche, E; Andrew, Y; Biewer, T M; Casati, A; Crombe, K; De la Luna, E; Ericsson, G; Felton, R; Giacomelli, L; Giroud, C; Hawkes, N; Hellesen, C; Hjalmarsson, A; Joffrin, E; Kaellne, J; Kiptily, V; Lomas, P; Mantica, P; Marinoni, A [JET-EFDA Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)] (and others)

    2009-04-15

    Recent JET experiments have been devoted to the study of ({sup 3}He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[{sup 3}He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfven cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[{sup 3}He] < 10%) favors minority heating while for X[{sup 3}He] >> 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[{sup 3}He] ({approx}18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in ({sup 3}He)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of

  3. Experiments on FW-IBW mode conversion heating combined with LHCD on Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Imbeaux, F.; Nguyen, F.; Peysson, Y.; Monakhov, I.; Petrov, Y.; Petrov, Y.

    1999-01-01

    Recent RF heating and current drive investigations revealed a growing interest in a scheme based on mode conversion (MC) of externally excited fast waves (FW) to ion Bernstein waves (IBW). Suitability of MC scheme for on/off axis electron heating has already been reported on Tore Supra. New results, which were obtained during MC experiments combined with Low Hybrid Current Drive (LHCD) are presented in this paper. Application of new experimental tools and numerical techniques provided better insight into the problem of MC power deposition. an outcome of active search for synergistic LHCD-IBW current drive effects is also reported

  4. Freon Rig design for performing to heat transfer experiments for nuclear reactors fuel bundles

    International Nuclear Information System (INIS)

    Flores, L.F.V.

    1981-01-01

    The main features of a Freon Rig design for performing to heat transfer experiments for PWR and BWR fuel bundles, are presented. The project is based on a Freon Rig pressurized at 30 bar with a flow rate up to 80 m 3 /h. The maximum power fed to test sections is of about 420 KW D.C. The rig was designed to use scaling techniques wich would enable a fluid of low latente heat to be used in place of water, thereby reducing the cost of testes. (Author) [pt

  5. Water spray interaction with air-steam mixtures under containment spray conditions: comparison of heat and mass transfer modelling with the TOSQAN spray tests

    International Nuclear Information System (INIS)

    Malet, J.; Lemaitre, P.; Porcheron, E.; Vendel, J.

    2005-01-01

    Full text of publication follows: During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and water steam wall condensation. In order to mitigate the risk of detonation generated by a high local hydrogen concentration, spray systems are used in the containment. The TOSQAN programme has been created to simulate separate-effect tests representative of typical accidental thermal-hydraulic flow conditions in the reactor containment. The present work concerns the interaction of a water spray, used at the top of the containment in order to reduce the steam partial pressure, with air-steam mixtures. The main phenomena occurring when water spray is used are the mixing induced by spray entrainment and the condensation on droplets. In order to improve the latter phenomena, different levels of modelling can be used. The objective of this paper is to analyze experimental results obtained for water spray interaction with air-steam mixtures using different heat and mass transfer modelling. For this purpose, two modelling issues have been used: the first one is devoted for the determination of the gas thermodynamical properties, and the second one concerns the droplets characterization. In the first one, the gas thermodynamical analysis is performed using depressurization, gas temperature variation and humidity decrease during the spray injection. In this modelling, heat and mass transfer between the spray and the surrounding gas is treated in a global way by energy balance between the total amount of water and the gas. In the second one, droplets characterization is obtained by means of droplet size, temperature and velocities evolutions. In this modelling, the spray is considered as a single droplet falling with an initial velocity. Droplet interactions are neglected. Assessment of these two modelling is performed

  6. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  7. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    Science.gov (United States)

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The TN-GEMINI: experience on a versatile alpha waste transport container

    International Nuclear Information System (INIS)

    Roland, V.; Chanzy, Y.

    2001-01-01

    The present paper discusses experience gained in moving alpha wastes and its teachings regarding transport aspects of D and D. Alpha wastes are generated in fuel cycle facilities such as those involved in reprocessing, in manufacture of mixed oxide fuel, and by research laboratories. If a significant amount of wastes has to be transported, then a Type B packaging is required. Developed by Transnucleaire and COGEMA, the TN GEMINI container enables nuclear facilities operators to optimise their alpha waste transport management, and more generally contribute to their D and D projects. After describing succinctly the design of the TN GEMINI, the paper will explain how the packaging is being operated. Teachings from experience will be shared. (orig.)

  9. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  10. Study on solar chemical heat pump system. Basic experiment on dehydrogenation of 2-propanol using heteropoly-acid photo catalyst; Solar chemical heat pump no kenkyu. Heteropoly sankei hikari shokubai wo mochiita 2-propanol no dassuiso hanno

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T [Electrochemical Laboratory, Tsukuba (Japan); T-Raissi, A; Muradov, N [Florida Solar Energy Center, FL (United States)

    1996-10-27

    With the purpose of converting solar heat energy to an industrial heat energy, an examination was carried out empirically on the case of using a heteropoly-acid photo catalyst for the decomposition reaction process of 2-propanol. The experiment was performed in Florida Solar Energy Center, in the U.S.A.. The device for the experiment was constituted of a reaction part, distribution manifold for feeding from the lower part of the reaction part a 2-propanol solution for which a photo catalyst was suspended, storage tank served also as a gas-liquid separating container, and circulating pump. Silica-tangstic acid was used as the photo catalyst. In an outdoor experiment using solar radiation, the quantity of inclined global solar radiation was 530-950W/m{sup 2} in clear days and 100-600W/m{sup 2} in cloudy days, with temperatures between 17 and 26{degree}C throughout the experiment period. In addition, an indoor experiment was also conducted using an artificial light source (UV light). As a result of the experiment, the energy conversion efficiency was at most about 1% of incident UV light, a low figure compared to a heat utilization ratio of approximately 15% with a thermal catalyst. 6 refs., 8 figs.

  11. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  12. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  13. Effect of seasonal variation on some physical properties and heat stability of milk subjected to ultra-high temperature and in-container sterilisation.

    Science.gov (United States)

    Chen, Biye; Grandison, Alistair S; Lewis, Michael J

    2015-08-15

    Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2mM), disodium hydrogen phosphate (DSHP, 10mM) and trisodium citrate (TSC, 10mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The directors’ roles in containing the Robben Island Diversity Experience (RIDE

    Directory of Open Access Journals (Sweden)

    Frans Cilliers

    2012-03-01

    Research purpose: The purpose of the research was to describe the experiences of the directors of RIDE in the last 10 years. Motivation for the study: Of the many and different diversity events that South African organisations present, RIDE is the only systems psycho-dynamically designed and presented event. This research was an effort to explore the nature of the directors’ roles in working with unconscious diversity dynamics in such a provocative venue. Research design, approach and method: The researchers conducted qualitative, descriptive and double hermeneutic research. The various RIDE events served as case studies. The data consisted of researcher field notes collected during the 10 years. Thematic analysis resulted in four themes, for which the researchers formulated working hypotheses. They integrated them into the research hypothesis. Main findings: Four themes emerged. They were the diversity characteristics of the directors as containers, working on the boundary between RIDE and the macro role players, attacks on the programme as container and challenges from participants. Practical/managerial implications: The research highlighted the important roles of directors’ authorisation as a resilience factor in containing RIDE. Contribution/value-add: The research contributed towards the awareness of intergroup relations between role players during diversity dynamic events and of how authorisation cements relationships.

  15. Large scale fire experiments in the HDR containment as a basis for fire code development

    International Nuclear Information System (INIS)

    Hosser, D.; Dobbernack, R.

    1993-01-01

    Between 1984 and 1991 7 different series of large scale fire experiments and related numerical and theoretical investigations have been performed in the containment of a high pressure reactor in Germany (known as HDR plant). The experimental part included: gas burner tests for checking the containment behaviour; naturally ventilated fires with wood cribs; naturally and forced ventilated oil pool fires; naturally and forced ventilated cable fires. Many results of the oil pool and cable fires can directly be applied to predict the impact of real fires at different locations in a containment on mechanical or structural components as well as on plant personnel. But the main advantage of the measurements and observations was to serve as a basis for fire code development and validation. Different types of fire codes have been used to predict in advance or evaluate afterwards the test results: zone models for single room and multiple room configurations; system codes for multiple room configurations; field models for complex single room configurations. Finally, there exist codes of varying degree of specialization which have proven their power and sufficient exactness to predict fire effects as a basis for optimum fire protection design. (author)

  16. Experiments on a forced convection heat transfer at supercritical pressures - 6.32 mm ID tube

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Kim, Hwan Yeol

    2009-08-15

    The size of a sub-channel of the conceptual SCWR core design studied at KAERI is 6.5 mm. In order to provide heat transfer information in such a narrow sub-channel at supercritical pressure, an experiment was performed with a test section made of Inconel 625 tube of 6.32 mm ID. The test pressures were 7.75 and 8.12 MPa corresponding to 1.05 and 1.1 times the critical pressure of CO{sub 2}, respectively. The mass flux and heat flux, which were in the range of 285 {approx} 1200 kg/m2s and 30 {approx} 170 kW/m2, were changed at a given system pressure. The corresponding Reynolds numbers are 1.8 x 10{sup 4} {approx} 7.5 x 10{sup 4}. The effect of mass flux and heat flux was dominant factor in the supercritical pressure heat transfer while the effect of pressure was negligible. The Bishop's correlation predicted the test result most closely and Bae and Kim's recent correlation was the next. The heat transfer deterioration occurred when GR)b/Re{sub b}{sup 2.7} > 2.0 x 10{sup -5}. As soon as the heat transfer was deteriorated, it entered a new regime and did not recover the normal heat transfer nevertheless Gr{sub b}/Re{sub b}{sup 2.7} reduced below 2.0 x 10{sup -5}. It may mean that the correlation must be developed for the normal and deterioration regime separately.

  17. CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in Battelle model containment. Experimental phases 2, 3 and 4. Results of comparisons

    International Nuclear Information System (INIS)

    Fischer, K.; Schall, M.; Wolf, L.

    1993-01-01

    The present final report comprises the major results of Phase II of the CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in the Battelle model containment, experimental phases 2, 3 and 4, which was organized and sponsored by the Commission of the European Communities for the purpose of furthering the understanding and analysis of long-term thermal-hydraulic phenomena inside containments during and after severe core accidents. This benchmark exercise received high European attention with eight organizations from six countries participating with eight computer codes during phase 2. Altogether 18 results from computer code runs were supplied by the participants and constitute the basis for comparisons with the experimental data contained in this publication. This reflects both the high technical interest in, as well as the complexity of, this CEC exercise. Major comparison results between computations and data are reported on all important quantities relevant for containment analyses during long-term transients. These comparisons comprise pressure, steam and air content, velocities and their directions, heat transfer coefficients and saturation ratios. Agreements and disagreements are discussed for each participating code/institution, conclusions drawn and recommendations provided. The phase 2 CEC benchmark exercise provided an up-to-date state-of-the-art status review of the thermal-hydraulic capabilities of present computer codes for containment analyses. This exercise has shown that all of the participating codes can simulate the important global features of the experiment correctly, like: temperature stratification, pressure and leakage, heat transfer to structures, relative humidity, collection of sump water. Several weaknesses of individual codes were identified, and this may help to promote their development. As a general conclusion it may be said that while there is still a wide area of necessary extensions and improvements, the

  18. BEACON/MOD3, 1-D and 2-D 2 Phase Flow and Heat Transfer in Containment, LWR LOCA

    International Nuclear Information System (INIS)

    Broadus, C.R.; Doyle, R.J.; James, S.W.; Lime, J.F.; Mings, W.J.; Ramsthaler, J.A.; Sahota, M.S.

    1982-01-01

    1 - Description of problem or function: The BEACON series of programs is designed to perform a best-estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped- parameter representations for the various parts of the system. BEACON/MOD3 contains mass and heat transfer models for wall film and for wall conduction, and is suitable for the evaluation of short- term transients in PWR dry containment systems. The capability to examine the details of a two-components, two-phase flow field in one or two dimensions under nonhomogeneous, nonequilibrium conditions (unequal velocities, unequal temperatures between the two phases) allows analysis of such problems as the calculation of jet impact forces of a fluid leaving a pipe break, the motion of a large pressure wave across a compartment, the variation in flow properties as air is displaced from a compartment by steam and water, the water entrainment or de-entrainment by a high-speed vapor flow, the flow of a flashing liquid, and many other complex nonequilibrium problems of containment system analyses. 2 - Method of solution: The basic Eulerian flow solution procedure is based on the K-FIX two-dimensional two-phase numerical method. Each phase is described by its own density, velocity, and temperature as determined by separate sets of mass, momentum, and energy equations. The two phases are coupled by exchange parameters which model the exchange of mass, momentum, and energy between the two phases. The two sets of field equations are solved with a Eulerian finite- difference technique that implicitly treats the phase transitions and inter-phasic heat transfer in the pressure iteration. The implicit solution is accomplished iteratively without linearization and allows both phases to be

  19. Experiments on condensation heat transfer characteristics inside a microfin tube with R410A

    Energy Technology Data Exchange (ETDEWEB)

    Han, D H; Cho, Y J [Korea University Graduate School, Seoul (Korea); Lee, K J; Park, S S [Korea University, Seoul (Korea)

    2000-11-01

    Due to the ozone depletion and global warming potentials, some refrigerants (CFCs and HCFCs) have been rapidly substituted. R410A is considered as the alternative refrigerant of R22 for the air-conditioners used at home and in industry. Experiments on the condensation heat transfer characteristics inside a smooth or a micro-fin tube with R410A are performed in this study. The test tubes 7/9.52 mm in outer diameters and 3 m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. It is shown that the heat transfer is enhanced and the amount of pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficient and the pressure penalty factor, it is found that the high heat transfer enhancement coefficients are obtained in the range of small mass flux while the penalty factors are almost equal. (author). 13 refs., 12 figs., 1 tab.

  20. Mass transfer experiments for the heat load during in-vessel retention of core melt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Chung, Bum Jin [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-08-15

    We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a CuSO{sub 4}–H{sub 2}SO{sub 4} electroplating system were performed based on the analogy between heat and mass transfer. The Ra′{sub H} of 10{sup 14} order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.

  1. Major results of the electron cyclotron heating experiment in the PDX tokamak

    International Nuclear Information System (INIS)

    Hsuan, H.; Bol, K.; Bowen, N.

    1984-07-01

    Electron Cyclotron Heating (ECH) experiments on PDX have been carried out with two 60 GHz pulsed gyrotrons each yielding up to approximately 100 kW. The ECH system used two waveguide runs each about 30 meters long. One run included 5 bends and the other, 7 bends. Predetermined waveguide modes were transmitted. The electron cyclotron waves were launched in narrow beams from both the high field and the low field sides of the plasma torus. The major new physics results are: (1) efficient central electron heating for both ohmic and neutral beam heated target plasmas; (2) alteration of MHD behavior using ECH; (3) identification of the trapped electron population with ECH; and (4) signature of velocity-space time evolution during ECH. In the best heating results obtained, Thomson scattering data indicated a central temperature increase from less than or equal to 1.5 keV to greater than or equal to 2.5 keV. This occurred with an average density of about 10 13 cm -3 and approximately 80 kW outside-launch ordinary-mode heating

  2. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  3. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  4. Fast-wave ICRF minority-regime heating experiments on the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G; Beaumont, B; Becoulet, A; Kuus, H; Saoutic, B; Martin, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (FR). Dept. de Recherches sur la Fusion Controlee; Shepard, T D; Haste, G R; Baity, F W [Oak Ridge National Lab., TN (US); Evans, T E [General Atomics, San Diego, CA (US)

    1992-12-31

    Up to 4 MW of rf power at 57 MHz has been coupled to Ohmic target plasmas during the first ICRF heating experiments on Tore Supra. A total of 12 MW of rf power will ultimately be available from six tetrode amplifiers and will be coupled to the plasmas using three ORNL/CEA-designed resonant double-loop antennas. During these first experiments, two antennas were used, with one or two energized at a time. The antenna loading with plasma was observed to be well over an order of magnitude greater than that without plasma. In addition, one kilo-electron-volt of electron heating, significant minority nonthermal ions, and significant increases in diamagnetic stored energy were observed. A comparison of in-phase and out-of-phase antenna operation showed the same increase in stored energy, less radiated power, and a larger drop in loop voltage for out-of-phase operation. Confinement scaling agrees with the ITER scaling law.

  5. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  6. High temperature EXAFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids

    Science.gov (United States)

    Bessada, Catherine; Zanghi, Didier; Pauvert, Olivier; Maksoud, Louis; Gil-Martin, Ana; Sarou-Kanian, Vincent; Melin, Philippe; Brassamin, Séverine; Nezu, Atsushi; Matsuura, Haruaki

    2017-10-01

    An airtight double barrier cell with simple geometry has been developed for X-rays absorption measurements at high temperature in solid and molten actinide fluorides. The aim was both to improve the air tightness, to avoid any possible leakage and to maintain the high quality of the signal. The dimensions of the heating chamber were also constrained and minimized to be compatible with the limited space available usually on synchrotron beam lines and with a geometry suitable for absorption/diffraction measurements at high temperature. The design of the double barrier cell was also driven by the safety requirements in every experiment involving radioactive materials. The furnace itself was designed to ensure easy operating modes and disassembly, the aim being to consider the furnace as the ultimate containment. The cell has been tested with different molten fluorides up to more than 1000 °C, starting from non-radioactive LiF-ZrF4 mixtures in order to prove that the cell is absolutely airtight and that not any contamination of the environment occurs. Then it has been successfully applied to thorium fluoride- and uranium fluoride-alkali fluorides mixtures.

  7. Investigation of RF heating for tandem-mirror experiments. Phaedrus status report, Summer, 1983

    International Nuclear Information System (INIS)

    Breun, R.A.

    1983-01-01

    This report includes a summary description of experimental results obtained during the period of June, July and August, September 15, 1983 and details of major hardware changes to the Phaedrus experimental facility. Approximately one-third of the time was used to optimize conditions for neutral beam buildup. The remainder of the time was used to advance understanding of the RF heated and fueled tandem mirror experiments

  8. Ohmically heated toroidal experiment (OHTE) mobile ignition test reactor facility concept study

    International Nuclear Information System (INIS)

    Masson, L.S.; Watts, K.D.; Piscitella, R.R.; Sekot, J.P.; Drexler, R.L.

    1983-02-01

    This report presents the results of a study to evaluate the use of an existing nuclear test complex at the Idaho National Engineering Laboratory (INEL) for the assembly, testing, and remote maintenance of the ohmically heated toroidal experiment (OHTE) compact reactor. The portable reactor concept is described and its application to OHTE testing and maintenance requirements is developed. Pertinent INEL facilities are described and several test system configurations that apply to these facilities are developed and evaluated

  9. Nuclear heat applications: design aspects and operating experience. Proceedings of four technical meetings held between December 1995 and April 1998

    International Nuclear Information System (INIS)

    1998-11-01

    Proven to be safe, reliable, economic and having minimum impact on the environment, nuclear energy is playing an important role in electricity generation producing 175 of the world's electricity. But since most of the world's energy consumption is in the form of heat the market for nuclear heat has already been recognised. Considering the growing experience in application of power reactors for district heating, industrial processes and water desalination IAEA is periodically reviewing progress and new developments of nuclear heat applications. This proceedings includes the papers presented at the following four meetings: Advisory group meeting and consultancy on experience with nuclear heat applications: district heating, process heat and desalination, 13-15 December 1995 and 7-9 february 1996; Advisory group meeting on technology, design and safety aspects of non-electrical application of nuclear energy, 20-24 October 1997; Advisory group meeting on operational modes of nuclear desalination plants, 3-5 November 1997; Advisory group meeting on materials and equipment for the coupling interfaces of nuclear reactors with desalination and district heating plants, 21-23 April 1998. It is structured according to the subject areas: (1) design an safety aspects of nuclear heat application, (2) operational and material aspects of nuclear heat application and (3) operational experience with nuclear heat application. Each paper is described by a separate abstract

  10. LWR severe accident simulation: Iodine behaviour in FPT2 experiment and advances on containment iodine chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Girault, N., E-mail: nathalie.girault@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3 - 13115 St.-Paul-lez-Durance (France); Bosland, L. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3 - 13115 St.-Paul-lez-Durance (France); Dickinson, S. [National Nuclear Laboratory, Harwell, Oxon OX11 0QT (United Kingdom); Funke, F. [AREVA NP Gmbh, PO Box 1109, 91001 Erlangen (Germany); Guentay, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Herranz, L.E. [Centro des Investigaciones Energeticas, MedioAmbiantales y Tecnologicas, av. Complutense 2, 28040 Madrid (Spain); Powers, D. [Sandia National Laboratories, New Mexico, PO Box 5800, Albuquerque, NM 87185 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Short term gaseous iodine fraction can be produced either in primary circuit or on containment condensing surfaces. Black-Right-Pointing-Pointer Gaseous radiolytic reactions convert volatile iodine into non-volatile iodine oxide particulates. Black-Right-Pointing-Pointer Alkaline and evaporating sump decrease the iodine volatility in containment. Black-Right-Pointing-Pointer Release of volatile iodine from containment surfaces explained the long term stationary residual gaseous iodine concentration. - Abstract: The Phebus Fission Product (FP) Program studies key phenomena of severe accidents in water-cooled nuclear reactors. In the framework of the Phebus program, five in-pile experiments have been performed that cover fuel rod degradation and behaviour of fission products released via the coolant circuit into the containment vessel. The focus of this paper is on iodine behaviour during the Phebus FPT2 test. FPT2 used a 33 GWd/t uranium dioxide fuel enriched to 4.5%, re-irradiated in situ for 7 days to a burn-up of 130 MWd/t. This test was performed to study the impact of steam-poor conditions and boric acid on the fission product chemistry. For the containment vessel, more specifically, the objective was to study iodine chemistry in an alkaline sump under evaporating conditions. The iodine results of the Phebus FPT2 test confirmed many of the essential features of iodine behaviour in the containment vessel provided by the first two Phebus tests, FPT0 and FPT1. These are the existence of an early gaseous iodine fraction, the persistence of low gaseous iodine concentrations and the importance of the sump in suppressing the iodine partitioning from sump to atmosphere. The main new insights provided by the Phebus FPT2 test were the iodine desorption from stainless steel walls deposits and the role of the evaporating sump in further iodine depletion in the containment atmosphere. The current paper presents an interpretation of

  11. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency (∼ 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry

  12. Natural convection heat transfer experiments of horizontal plates with fin arrays

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je Young; Chung, Bum Jin [Jeju National University 102 Jejudaehakno, Jeju (Korea, Republic of)

    2012-10-15

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. The crust between the metallic layer and the oxide pool may be formed by solidification of the molten metallic materials. So the surface of the crust is formed irregularly. Experiments were performed to investigate the irregular crust as a preparatory study before an in-depth severe accident study. The natural convection heat transfer were investigated experimentally varying the height and spacing of fins, top plate of different kinds and the plate separation distance with/without the side walls. In order to simulate irregular crust surface condition, the finned plates was used. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H{sup 2S}O{sup 4-}CuSO{sup 4)} electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat transfer rates.

  13. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L

    2004-07-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency ({approx} 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry.

  14. Turbulent heat mixing of a heavy liquid metal flow in the MEGAPIE target geometry-The heated jet experiment

    International Nuclear Information System (INIS)

    Stieglitz, Robert; Daubner, Markus; Batta, A.; Lefhalm, C.-H.

    2007-01-01

    The MEGAPIE target installed at the Paul-Scherrer Institute is an example of a spallation target using eutectic liquid lead-bismuth (Pb 45 Bi 55 ) both as coolant and neutron source. An adequate cooling of the target requires a conditioning of the flow, which is realized by a main flow transported in an annular gap downwards, u-turned at a hemispherical shell into a cylindrical riser tube. In order to avoid a stagnation point close to the lowest part of the shell a jet flow is superimposed to the main flow, which is directed towards to the stagnation point and flows tangentially along the shell. The heated jet experiment conducted in the THEADES loop of the KALLA laboratory is nearly 1:1 representation of the lower part of the MEGAPIE target. It is aimed to study the cooling capability of this specific geometry in dependence on the flow rate ratio (Q main /Q jet ) of the main flow (Q main ) to the jet flow (Q jet ). Here, a heated jet is injected into a cold main flow at MEGAPIE relevant flow rate ratios. The liquid metal experiment is accompanied by a water experiment in almost the same geometry to study the momentum field as well as a three-dimensional turbulent numerical fluid dynamic simulation (CFD). Besides a detailed study of the envisaged nominal operation of the MEGAPIE target with Q main /Q jet = 15 deviations from this mode are investigated in the range from 7.5 ≤ Q main /Q jet ≤ 20 in order to give an estimate on the safe operational threshold of the target. The experiment shows that, the flow pattern establishing in this specific design and the turbulence intensity distribution essentially depends on the flow rate ratio (Q main /Q jet ). All Q main /Q jet -ratios investigated exhibit an unstable time dependent behavior. The MEGAPIE design is highly sensitive against changes of this ratio. Mainly three completely different flow patterns were identified. A sufficient cooling of the lower target shell, however, is only ensured if Q main /Q jet ≤ 12

  15. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  16. Thermomechanical modeling and data analysis for heating experiments at Stripa, Sweden

    International Nuclear Information System (INIS)

    Chan, T.; Littlestone, N.; Wan, O.

    1979-11-01

    Comparisons were made between predicted and measured thermomechanical displacements and stresses for in situ heating experiments at a depth of 340 m in a granite body at Stripa, Sweden. We found that taking into account the temperature dependence of the thermal expansion coefficient and the mechanical properties of the rock substantially improves the agreement between theory and experiment. In general, the displacements calculated using laboratory values of rock properties agree better with field data than in the case of stresses. This may be due to the difference between in situ and laboratory rock modulus. The significance of temperature-dependent rock properties and strength to thermomechanical failure is also discussed

  17. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    As Arctic sea ice coverage declines it is expected that marine traffic could increase in this northern region due to shorter routes. Navigating in the Arctic offers opportunities and challenges for waste heat recovery systems (WHRS). Lower temperatures require larger heating power on board, hence...... air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  18. Fast wave ion cyclotron resonance heating experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Shepard, T.D.

    1988-09-01

    Minority regime fast wave ICRF heating experiments have been conducted on the Alcator C tokamak at rf power levels sufficient to produce significant changes in plasma properties, and in particular to investigate the scaling to high density of the rf heating efficiency. Up to 450 kW of rf power at frequency f = 180 MHz, was injected into plasmas composed of deuterium majority and hydrogen minority ion species at magnetic field B 0 = 12 T, density 0.8 ≤ /bar n/sub e// ≤ 5 /times/ 10 20 m -3 , ion temperature T/sub D/(0) /approximately/ 1 keV, electron temperature T/sub e/(0) /approximately/ 1.5--2.5 keV, and minority concentration 0.25 /approx lt/ /eta/sub H// ≤ 8%. Deuterium heating ΔT/sub D/(0) = 400 eV was observed at /bar n/sub e// = 1 /times/ 10 20 m -3 , with smaller temperature increases at higher density. However, there was no significant change in electron temperature and the minority temperatures were insufficient to account for the launched rf power. Minority concentration scans indicated most efficient deuterium heating at the lowest possible concentration, in apparent contradiction with theory. Incremental heating /tau/sub inc// /equivalent to/ ΔW/ΔP up to 5 ms was independent of density, in spite of theoretical predictions of favorable density scaling of rf absorption and in stark contrast to Ohmic confinement times /tau/sub E// /equivalent to/ W/P. After accounting for mode conversion and minority losses due to toroidal field ripple, unconfined orbits, asymmetric drag, neoclassical and sawtooth transport, and charge-exchange, it was found that the losses as well as the net power deposition on deuterium do scale very favorably with density. Nevertheless, when the net rf and Ohmic powers deposited on deuterium are compared, they are found to be equally efficient at heating the deuterium. 139 refs

  19. Determining the effect of turbulent shear on containment aerosol dynamics using microgravity experiments

    International Nuclear Information System (INIS)

    Scott, C.K.; Abdelbaky, M.

    1997-01-01

    Determining the characteristics of large aerosol aggregates 'clusters' under turbulent conditions is fundamental for predicting the behaviour of radioactive aerosols inside the reactor containment following a severe accident. Studying such rapidly settling clusters is extremely difficult in ground-based experiments due to the effect of the earth's gravity. In this study, the microgravity environment is exploited to investigate the effect of turbulent shear on the aggregation and breakage of clusters by examining their structure and measuring their strength parameters while suspended under weightlessness conditions. A parametric model is introduced to correlate the experimental results over into nuclear aerosol models. It was demonstrated that the cluster parameters depend mainly on the turbulent field intensity as well as initial powder conditions. (author)

  20. Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall

    Science.gov (United States)

    Kareem, Ali Khaleel; Gao, Shian

    2018-02-01

    The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.

  1. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  2. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    Science.gov (United States)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required

  3. Simulation of D and E region high-power microwave heating with HF ionospheric modification experiments

    International Nuclear Information System (INIS)

    Meltz, G.; Rush, C.M.; Violette, E.J.

    1981-01-01

    The microwave power beam from a Solar Power Satellite (SPS) is sufficiently intense to cause large changes in the properties of the lower ionosphere by ohmic heating of the plasma. Power is absorbed from the beam at a rate that is proportional to the ratio of the flux s and the square of an effective frequency f/sub e/. Throughout most of the lower ionosphere f/sub e/ = f -+ f/sub L/, where f is the wave frequency and f/sub L is a reduced electron gyrofrequency. It follows that SPS equivalent heating can be simulated at much lower power fluxes with HF radio waves. A detailed examination of the frequency scaling, based on fluid and kinetic theory estimates of the change in electron temperature and density, shows that the high-power HF facility at Platteville, CO, can simulate or exceed the ohmic effects of the SPS beam up to 90 km. This paper describes the results of a series of 5.2 and 9.9 MHz underdense heating experiments undertaken to study the effect of high-power microwaves on the lower ionosphere. A pulsed ionosonde probe, located nearly below the most intense portion of the high-power beam, was used to observe the changes in the D and lower E region. Both phase and amplitude measurements were recorded during CW and intermittent heating

  4. Design of Hemispherical Downward-Facing Vessel for Critical Heat Flux Experiment

    International Nuclear Information System (INIS)

    Hwang, J. S.; Suh, K. Y.

    2009-01-01

    The in-vessel retention (IVR) is one of major severe accident management strategies adopted by some operating nuclear power plants during a severe accident. The recent Shin-Gori Units 3 and 4 of the Advanced Power Reactor 1400 MWe (APR1400) have adopted the external reactor vessel cooling (ERVC) by reactor cavity flooding as major severe accident management strategy. The ERVC in the APR1400 design resorts to active flooding system using thermal insulator. The Corium Attack Stopper Apparatus Spherical Channel (CASA SC) tests are conducted to measure the critical power and critical heat flux (CHF) on a downward hemispherical vessel scaled down from the APR1400 lower head by 1/10 on a linear scale. CASA is designed through scaling and thermal analysis to simulate the APR1400 vessel and thermal insulator. The heated vessel of CASA SC represents the external surface of a hemisphere submerged vessel in water. The heated vessel plays an important role in the ERVC experiment depending on the configuration of oxide pool and metallic layer. Hand calculation and computational analysis are performed to produce high heat flux from the downward facing hemisphere in excess of 1 MW/m 2

  5. Flow induced vibration characteristics in 2X3 bundle critical heat flux experiment

    International Nuclear Information System (INIS)

    Kim, Dae Hun; Chang, Soon Heung

    2005-01-01

    Above a certain heat flux, the liquid can no longer permanently wet the heater surface. This situation leads to an inordinate decrease in the surface heat transfer. This heat flux is commonly referred to as the critical heat flux (CHF). The CHF in nuclear reactors is one of the important thermal hydraulic parameters limiting the available power. Flow induced vibration (FIV) is the vibration caused by a fluid flowing around a body. In the fluid flowing system, FIV occurred by structures and flow condition. Many structures in nuclear power plant system are designed to prevent from structure failure due to FIV. Recently, Hibiki and Ishii (1998) carried out an experimental investigation on the effect of flow-induced vibration (FIV) on two-phase flow structure in vertical tube and reported that the FIV drastically changed the void fraction profiles. The void fraction profiles is one of the important parameter for determining CHF. Therefore, the investigation on the effect of FIV on CHF are needed. The research on FIV characteristics detection during CHF experiment in 2X3 bundle using R-134a has been carried out in KAIST. Using the results new FIV correlation in 2-pahse turbulent flow are suggested after finding out relation between CHF and dynamic pressure fluctuation value

  6. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  7. Microbial analysis of the buffer/container experiment at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; Hamon, C.J.; Haveman, S.A.; Delaney, T.L.

    1996-05-01

    The Buffer/Container experiment was carried out for 2.5 years to examine the in-situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived to conditions and to determine which groups of microorganisms would be dominant in such a simulated vault environment. Microbial analyses were initiated within 24 hour of sampling for all types of samples taken. The culture results showed an almost universal disappearance of viable microorganisms in the samples taken from near the heater surface. The microbial activity measurements confirmed the lack of viable organisms with very weak or no activity measured in most of these samples. Generally, aerobic heterotrophic culture conditions gave the highest mean colony-forming units (CFU) values at both 25 and 50 C. Under anaerobic conditions, and especially at 50 C, lower mean CFU values were obtained. In all samples analyzed, numbers of sulfate reducing bacteria were less than 1000 CFU/g dry material. Methanogens were either not present or were found in very low numbers. Anaerobic sulfur oxidizing bacteria were found in higher numbers in most sample types with sufficient moisture. The statistical evaluation of the culture data demonstrated clearly that the water content was the variable limiting the viability of the bacteria present, and not the temperature. 68 refs, 35 figs, 37 tabs

  8. Microbial analysis of the buffer/container experiment at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S; Hamon, C J; Haveman, S A; Delaney, T L [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs; Pedersen, K; Ekendahl, S; Jahromi, N; Arlinger, J; Hallbeck, L [Univ. of Goeteborg, (Sweden). Dept. of General and Marine Microbiology; Daumas, S; Dekeyser, K [Guiges Recherche Appliquee en Microbiologie, Aix-en-Provence, (France)

    1996-05-01

    The Buffer/Container experiment was carried out for 2.5 years to examine the in-situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived to conditions and to determine which groups of microorganisms would be dominant in such a simulated vault environment. Microbial analyses were initiated within 24 hour of sampling for all types of samples taken. The culture results showed an almost universal disappearance of viable microorganisms in the samples taken from near the heater surface. The microbial activity measurements confirmed the lack of viable organisms with very weak or no activity measured in most of these samples. Generally, aerobic heterotrophic culture conditions gave the highest mean colony-forming units (CFU) values at both 25 and 50 C. Under anaerobic conditions, and especially at 50 C, lower mean CFU values were obtained. In all samples analyzed, numbers of sulfate reducing bacteria were less than 1000 CFU/g dry material. Methanogens were either not present or were found in very low numbers. Anaerobic sulfur oxidizing bacteria were found in higher numbers in most sample types with sufficient moisture. The statistical evaluation of the culture data demonstrated clearly that the water content was the variable limiting the viability of the bacteria present, and not the temperature. 68 refs, 35 figs, 37 tabs.

  9. Criticality experiments with annular cylinders containing plutonium solutions; Experiences de criticite sur des cylindres annulaires contenant des solutions de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Molbert, M; Sauve, A; Houelle, M; Deilgat, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The criticality station of Dijon involves three cells, shielded by concrete walls of 1.46 meter thickness. Those cells are designed to contain the criticality experiment apparatus. The engineering building is also involving: one chemical laboratory where plutonium solutions are prepared, one analysis laboratory, several activated solutions storages, several control rooms, One cell contains the B system, which is designed to study: annular cylindrical geometries, slab of 10 cm thickness, interaction between annular cylinders. This report includes the first results given by experiments on annular cylinders defined by their own geometry (outer and inner diameter of ring containing plutonium solutions). Those results have been plotted in curves, for several concentrations and for different reflection conditions (outer or inner light water reflector, cadmium screen), H{sub c} and M{sub c} = f (c) (where H{sub c} is the critical height of solution, M{sub c} is the critical mass, c is the plutonium concentration: 42,3 g/lexperiments on this cylinder being unfinished to the date of this present report publication. On this miscellaneous results, we have following informations know: - Screen effect of light water in central hole. Strengthened effect by cadmium foil on the inside wall. - Normalized interaction curves ( {alpha}*H{sub c}/H{sub c{infinity}} ) versus the distance between the two vessels, where H{sub c{infinity}} critical height of an insulated cylinder, shows that: 1) In light water, two cylinders set aside from 15 cm, can be considers like separated. 2) For some configurations, {alpha} vary

  10. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-01-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  11. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  12. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: Choice of heat pipe medium and experiments under unsteady heating sources

    International Nuclear Information System (INIS)

    Wang, L.W.; Wang, R.Z.; Lu, Z.S.; Chen, C.J.

    2006-01-01

    The split heat pipe type compound adsorption ice maker for fishing boats not only has the advantage of large volume cooling density but also has the advantage of less power consumption and high heat transfer performance. The available heat pipe media for the split heat pipe type compound adsorption ice maker, which are methanol, acetone and water are studied and compared in this paper, and the heat pipe medium of water shows the better performance for the reason of its stable heating and cooling process and high heat transfer performance. Considering the waste heat recovered from the diesel engine on fishing boats varies when the velocity of the fishing boat changes, the refrigeration performances at the condition of different values of heating power are studied while water is used as the heat pipe medium. Results show that the cooling power, as while as COP and SCP decrease when the heating power decreases. The highest COP and SCP are 0.41 and 731 W/kg, respectively, at the highest heating power of 4.2 kW, and the values decrease by 22% and 33%, respectively, when the heating power decreases by 15%. The values decrease by 32% and 51%, respectively, when the heating power decreases by 30%. The performance of the adsorption ice maker for the fishing boat with the 6160A type diesel engine is estimated, and the results show that the cooling power and ice productivity are as high as 5.44 kW and 1032 kg ice per day, respectively, even if the recovered waste heat decreases by 30% compared with the normal value. It can satisfy the ice requirements of such a fishing boat

  13. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  14. Benchmark on hydrogen distribution in a containment based on the OECD-NEA THAI HM-2 experiment

    International Nuclear Information System (INIS)

    Schwarz, S.; Fischer, K.; Bentaib, A.

    2009-01-01

    Within the course of a hypothetical severe accident in a nuclear power plant, hydrogen can be generated in the primary circuit and released into the containment. Considering the possibility of a deflagration, the simulation of the hydrogen distribution in the containment by computer codes is of major importance. In order to create a data base for code validation, several distribution experiments using helium and hydrogen have been performed in the German THAI (Thermal-Hydraulics, Hydrogen, Aerosols, Iodine) facility. They started with the ISP-47 test TH13 and were followed by the HM (Hydrogen-Helium Material Scaling Tests) series. The objectives of the HM Tests are to confirm the transferability of existing helium distribution test data to hydrogen distribution problems, to understand the processes that lead to the formation and dissolution of a light cloud stratification. The test HM-2 was chosen for a code benchmark. During the first phase of test HM-2 a light gas cloud consisting of hydrogen and nitrogen was established in the upper half of the facility. In the second phase steam was injected at a lower position inducing a rising steam - nitrogen plume. The plume did not break through the cloud, because its density was higher than the density of the cloud. Therefore the cloud was gradually dissolved from its bottom. Eleven organisations performed 'blind' calculations to the HM-2 experiment. The lumped parameter (LP) codes ASTEC, COCOSYS and MELCOR and the CFD codes FLUENT, GASFLOW and GOTHIC were used. The main phenomena were natural convection, interaction between the rising plume and the light gas cloud, steam condensation on walls, fog behaviour and the heat up of the walls. The experimental data of the first phase had been published and the atmospheric stratification was simulated reasonably well. The data from the second phase stayed concealed until the simulated results were submitted. The thermal-hydraulic phenomena were predicted well by several LP- and

  15. Experience gained from high heat flux actively cooled PFCs in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2005-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) is one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW/m 2 of nominal convected heat flux. Technical information is drawn from the whole development up to the industrialisation and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non-destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about half of the injected gas during long discharges

  16. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  17. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  18. Review of European regulatory and tariff experience with the sale of heat and electricity from combined heat and power plants

    International Nuclear Information System (INIS)

    Dyrelund, A.

    1991-12-01

    The Prince Edward Island Energy Corporation, Edmonton Power, Energy, Mines and Resources Canada and the Canadian Electrical Association commissioned a study to understand how electrical power and district heat from combined heat and power (CHP) plants is priced in Europe. Four northern European countries were investigated, Denmark, Germany, Sweden and Finland. These countries produce 45.8 TWh of power from combined heat and power plants, 7.1% of their annual consumption. In the case of Denmark, CHP accounts for 37.5% of its total power production. The energy situation in each country is reviewed using published statistics, and in particular the rapidly changing situation with regard to environmental and fuel taxes is examined. In order to obtain practical insights with regard to tariffs used by the various utilities, a series of generic examples were examined, supported by specific case studies. Technologies reviewed included: CHP from coal-fuelled extraction plant, CHP from coal-fuelled back pressure plant, waste heat from a municipal waste plant, and gas turbine with waste heat recovery. The benefits and risks associated with different tariff designs are discussed in detail including tariff formulae. This should enable interested parties to develop appropriate tariffs for combined heat and power plants in the context of current electrical utility policies. As a complement to the tariffs for combined heat and power plants, the design of district heating tariffs is also addressed. The typical concepts used in different countries are presented and discussed. 23 tabs

  19. An experiment on the investigation of the possibilities of the detection of heated UCN at the IBR-2

    International Nuclear Information System (INIS)

    Kalchev, S.D.; Strelkov, A.V.

    1990-01-01

    An experiment on the investigation of the heating of ultracold neutrons (UCN) in the reactor IBR-2 is described. By measuring the flux of thermal neutrons (upscattered UCN heated on polyethylene) the UCN flux density in a neutron guide is estimated to be approx. 25 cm -2 s -1 . The paper reports on the analysis of the background of a counter of heated neutrons. 9 refs.; 5 figs

  20. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  1. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  2. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  3. Model validation of GAMMA code with heat transfer experiment for KO TBM in ITER

    International Nuclear Information System (INIS)

    Yum, Soo Been; Lee, Eo Hwak; Lee, Dong Won; Park, Goon Cherl

    2013-01-01

    Highlights: ► In this study, helium supplying system was constructed. ► Preparation for heat transfer experiment in KO TBM condition using helium supplying system was progressed. ► To get more applicable results, test matrix was made to cover the condition for KO TBM. ► Using CFD code; CFX 11, validation and modification for system code GAMMA was performed. -- Abstract: By considering the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) test blanket module (TBM) for testing in ITER. A performance analysis for the thermal–hydraulics and a safety analysis for the KO TBM have been carried out using a commercial CFD code, ANSYS-CFX, and a system code, GAMMA (GAs multicomponent mixture analysis), which was developed by the gas cooled reactor in Korea. To verify the codes, a preliminary study was performed by Lee using a single TBM first wall (FW) mock-up made from the same material as the KO TBM, ferritic martensitic steel, using a 6 MPa nitrogen gas loop. The test was performed at pressures of 1.1, 1.9 and 2.9 MPa, and under various ranges of flow rate from 0.0105 to 0.0407 kg/s with a constant wall temperature condition. In the present study, a thermal–hydraulic test was performed with the newly constructed helium supplying system, in which the design pressure and temperature were 9 MPa and 500 °C, respectively. In the experiment, the same mock-up was used, and the test was performed under the conditions of 3 MPa pressure, 30 °C inlet temperature and 70 m/s helium velocity, which are almost same conditions of the KO TBM FW. One side of the mock-up was heated with a constant heat flux of 0.3–0.5 MW/m 2 using a graphite heating system, KoHLT-2 (Korea heat load test facility-2). Because the comparison result between CFX 11 and GAMMA showed a difference tendency, the modification of heat transfer correlation included in GAMMA was performed. And the modified GAMMA showed the strong parity with CFX

  4. Diffusion behavior of anion in hardened low-heat portland cement paste containing fly ash. Dependence of effective diffusion coefficient on pore structure

    International Nuclear Information System (INIS)

    Chida, Taiji; Yoshida, Takahiro

    2012-01-01

    In the sub-surface disposal system, the closely packed concrete layer is expected the low diffusivity to retard the migration of radionuclides. Low-heat portland cement containing 30 wt% fly ash (FAC) is a candidate cement material for the construction of sub-surface repository because of its high dense structure and its resistance to cracking. Previously, we reported that FAC has lower diffusivity than Ordinary Portland Cement (OPC) for acetic acid and iodine. However, the mechanism for low diffusivity of FAC was not clear. In this study, the diffusion of multiple trace ions (chlorine, bromine and iodine) in hardened cement pastes was examined by through-diffusion experiments. The effective diffusion coefficients, D e , of the trace ions for hardened OPC cement pastes were on the order of 10 -12 m 2 s -1 for trace ions, and D e for hardened FAC cement pastes were on the order of 10 -13 m 2 s -1 for chlorine, 10 -14 m 2 s -1 for bromine and 10 -15 m 2 s -1 for iodine. Additionally, the pore size distribution and porosity of FAC changed to more closely packed structure for 13 months by the pozzolanic reaction, and the pore size distribution of FAC (mainly 3-10 nm) were an order of magnitude smaller than that of OPC. These results suggest that the low diffusivity of FAC is based on the continuous change in the pore structure and the nano-scale pore size retarding the migration of trace ions. (author)

  5. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    Science.gov (United States)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave

  6. Heat storage in the Hettangian aquifer in Berlin - results from a column experiment

    Science.gov (United States)

    Milkus, Chri(Sch)augott

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.

  7. Use of integral experiments to improve neutron propagation and gamma heating calculations

    International Nuclear Information System (INIS)

    Oceraies, Y.; Caumette, P.; Devillers, C.; Bussac, J.

    1979-01-01

    1) The studies to define and improve the accuracies of neutron propagation and gamma heating calculations from integral experiments are encompassed in the field of the fast reactor physics program at CEA. 2) A systematic analysis of neutron propagation in Fe-Na clean media, with variable volumic composition between 0 and 100% in sodium, has been performed on the HARMONIE source reactor. Gamma heating traverses in the core, the blankets and several control rods, have been measured in the R Z core program at MASURCA. The experimental techniques, the accuracies and the results obtained are given. The approximations of the calculational methods used to analyse these experiments and to predict the corresponding design parameters are also described. 3) Particular emphasis is given to the methods planned to improve fundamental data used in neutron propagation calculations, using the discrepancies observed between measured and calculated results in clean integral experiments. One of these approaches, similar to the techniques used in core physics, relies upon sensitivity studies and eventually on adjustment techniques applied to neutron propagation. (author)

  8. Phased-array antenna system for electron Bernstein wave heating and current drive experiments in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.

    2010-11-01

    The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)

  9. FIREX (Fire Influence on Regional and Global Environments Experiment): Measurements of Nitrogen Containing Volatile Organic Compounds

    Science.gov (United States)

    Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.

    2017-12-01

    A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.

  10. Benchmark of the HDR E11.2 containment hydrogen mixing experiment using the MAAP4 code

    International Nuclear Information System (INIS)

    Lee, Sung, Jin; Paik, Chan Y.; Henry, R.E.

    1997-01-01

    The MAAP4 code was benchmarked against the hydrogen mixing experiment in a full-size nuclear reactor containment. This particular experiment, designated as E11.2, simulated a small loss-of-coolant-accident steam blowdown into the containment followed by the release of a hydrogen-helium gas mixture. It also incorporated external spray cooling of the steel dome near the end of the transient. Specifically, the objective of this bench-mark was to demonstrate that MAAP4, using subnodal physics, can predict an observed gas stratification in the containment

  11. FIX-II. Loca-blowdown heat transfer and pump trip experiments. Summary report of phase 1: Design of experiments

    International Nuclear Information System (INIS)

    Waaranperae, Y.; Nilsson, L.; Gustafsson, P.Aa.; Jonsson, N.O.

    1979-06-01

    FIX-II is a loss of coolant blowdown heat transfer experiment, performed under contract for The Swedish Nuclear Power Inspectorate, SKI. The purpose of the experiments is to provide measurements from simulations of a pipe rupture on an external recirculation line in a Swedish BWR. Pump trips in BWRs with internal recirculation pumps will also be simulated. The existing FIX-loop at the Thermal Engineering Laboratory of Studsvik Energiteknik AB will be modified and used for the experiments. Components are included to simulate the steam dome, downcomer, two recirculation lines with one pump each, lower plenum, core (36-rod full length bundle), control rod guide tubes, core bypass, upper plenum and steam separators. The results of the first phase of the project are reported here. The following tasks are included in Phase 1: reactor reference analysis, scaling calculations of the FIX loop, development of fuel rod simulators, design of test section and test loop layout and proposal for test program. Further details of the work and results obtained for the different sub-projects are published in a number ofdetailed reports. (author)

  12. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  13. Characterization studies of lithium vapour generated in heat pipe oven for the Plasma Wakefield Accelerator Experiment

    International Nuclear Information System (INIS)

    Mohandas, K.K.; Mahavar, Kanchan; Ajai Kumar; Kumar, Ravi A.V.

    2013-01-01

    Characterization and optimization studies of lithium vapor by white light as well as UV laser absorption were carried out as part of generation of photo ionized Li plasma for the Plasma Wake Field Acceleration Experiment. Temperature and buffer gas pressure dependency of the neutral density of lithium vapor was studied in detail. The line integrated neutral density of Li(n o L) was found to be of the order of 10 17 -10 18 cm -2 at heat pipe oven temperatures in the range from 600-800℃ which is sufficient to obtain the required 1013-1014 cm -3 plasma densities by photo ionization. (author)

  14. Effect of heating rate and grain size on the melting behavior of the alloy Nb-47 mass % Ti in pulse-heating experiments

    International Nuclear Information System (INIS)

    Basak, D.; Boettinger, W.J.; Josell, D.; Coriell, S.R.; McClure, J.L.; Cezairliyan, A.

    1999-01-01

    The effect of heating rate and grain size on the melting behavior of Nb-47 mass% Ti is measured and modeled. The experimental method uses rapid resistive self-heating of wire specimens at rates between ∼10 2 and ∼10 4 K/s and simultaneous measurement of radiance temperature and normal spectral emissivity as functions of time until specimen collapse, typically between 0.4 and 0.9 fraction melted. During heating, a sharp drop in emissivity is observed at a temperature that is independent of heating rate and grain size. This drop is due to surface and grain boundary melting at the alloy solidus temperature even though there is very little deflection (limited melting) of the temperature-time curve from the imposed heating rate. Above the solidus temperature, the emissivity remains nearly constant with increasing temperature and the temperature vs time curve gradually reaches a sloped plateau over which the major fraction of the specimen melts. As the heating rate and/or grain size is increased, the onset temperature of the sloped plateau approaches the alloy liquidus temperature and the slope of the plateau approaches zero. This interpretation of the shapes of the temperature-time-curves is supported by a model that includes diffusion in the solid coupled with a heat balance during the melting process. There is no evidence of loss of local equilibrium at the melt front during melting in these experiments

  15. Experiment data report for Semiscale Mod-1 test S-02-5 (blowdown heat transfer test)

    International Nuclear Information System (INIS)

    1975-12-01

    Recorded test data are presented for Test S-02-5 of the Semiscale Mod-1 blowdown heat transfer test series. Test S-02-5 is one of several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a water-cooled nuclear reactor system and to provide data for the assessment of the Loss-of-Fluid Test (LOFT) design basis. Test S-02-5 was conducted from an initial cold leg fluid temperature of 544 0 F and an initial pressure of 2,253 psia. A simulated double-ended offset shear cold leg break was used to investigate the system response to a depressurization transient with full core power (1.6 MW). An electrically heated core was used in the pressure vessel to simulate the effects of a nuclear core. System flow was set to achieve the full design core temperature differential of 66 0 F. The flow resistance of the intact loop was based on core area scaling. During system depressurization, core power was reduced from the initial level of 1.6 MW in such a manner as to simulate the surface heat flux response of the LOFT nuclear fuel rods until such time that departure from nucleate boiling occurs

  16. Fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Bell, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-11-15

    In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delay of about 1–2 ms relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.

  17. Heat flux sensor calibration using noninteger system identification: Theory, experiment, and error analysis

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Loehle, Stefan

    2009-01-01

    This paper concerns the improvement of the calibration technique of null point calorimeters generally used in high enthalpy plasma flows. Based on the linearity assumption, this technique leads to calculate the impulse response that relates the heat flux at the tip of the sensor according to the temperature at the embedded thermocouple close to the heated surface. The noninteger system identification (NISI) procedure is applied. The NISI technique had been well described in previous study. The present work focuses on the accuracy of the identified system in terms of absorbed heat flux during the calibration experiment and of the estimated parameters in the model. The impulse response is thus calculated along with its associated standard deviation. Furthermore, this response is compared with that of the one-dimensional semi-infinite medium, which is classically used in practical applications. The asymptotic behavior of the identified system at the short times is analyzed for a better understanding of the noninteger identified system. Finally, the technique was applied to a new sensor geometry that has been developed particularly for high enthalpy plasma flows and it is shown that the method can be applied to any geometry suitable for a certain test configuration.

  18. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to invest