WorldWideScience

Sample records for contact strength reveal

  1. Solar cell contact pull strength as a function of pull-test temperature

    Science.gov (United States)

    Yasui, R. K.; Berman, P. A.

    1972-01-01

    Four types of solar cell contacts were given pull-strength tests at temperatures between -173 and +165 C. Contacts tested were: (1) solder-coated titanium-silver contacts on n-p cells, (2) palladium-containing titanium-silver contacts on n-p cells, (3) titanium-silver contacts on 0.2-mm-thick n-p cells, and (4) solder-coated electroless-nickel-plated contacts on p-n cells. Maximum pull strength was demonstrated at temperatures significantly below the air mass zero cell equilibrium temperature of +60 C. At the lowest temperatures, the chief failure mechanism was silicon fracture along crystallographic planes; at the highest temperatures, it was loss of solder strength. In the intermediate temperatures, many failure mechanisms operated. Pull-strength tests give a good indication of the suitability of solar cell contact systems for space use. Procedures used to maximize the validity of the results are described.

  2. Data analysis strategies for the characterization of normal: superconductor point contacts by barrier strength parameter

    Science.gov (United States)

    Smith, Charles W.; Reinertson, Randal C.; Dolan, P. J., Jr.

    1993-05-01

    The theoretical description by Blonder, Tinkham, and Klapwijk [Phys. Rev. B 25, 4515 (1982)] of the I-V curves of normal: superconductor point contacts encompasses a broad range of experimental behavior, from the tunnel junction case, on the one hand, to the clean metallic microconstriction limit on the other. The theory characterizes point contacts in terms of a single parameter, the barrier strength. The differential conductance of a point contact, at zero bias, as a function of temperature, offers a direct experimental method by which the barrier strength parameter can be evaluated. In view of the full range of phenomena incorporated by this theory, we suggest several different strategies for the evaluation of the barrier strength parameter from data in the low and intermediate barrier strength regimes and for measurements in the low temperature (near T=0 K) and high temperature (near T=Tc) limits.

  3. Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena

    International Nuclear Information System (INIS)

    He Jun; Guo Yongjin; Lin Zhongqin

    2008-01-01

    The theoretical equation of thermosonic bond strength involving interfacial deformation and microcontact phenomena is presented in this study. The constitutive equation of gold considering the ultrasonic softening mechanism was developed based on the thermosonic bonding experiments and coded into the FE software. The numerical model of bonding was established to estimate the surface exposure and the effective normal pressure. The real contact area was calculated by a microcontact model. Accordingly, the nominal bond strength can be obtained and verified by the experimental data. It is found that a better conjunction exists at the edge of the contact area because large surface exposure is produced there, which is also proved by the SEM image of a sheared ball bond. Increasing the bonding force or the ultrasonic power will increase the interfacial plastic deformation, the nominal and real contact areas, but decreases the effective normal pressure. The contact ratio increases to a maximum with the increase in the bonding force, and then decreases while it continues to decrease with the increase in the ultrasonic power. In addition, both the stress analysis and experimental result show that cratering and damage to the pad structure are easily produced below the edge region of the contact area under an excessive bonding force or ultrasonic power

  4. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  5. Near-ideal strength in metal nanotubes revealed by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingfei; Xiao, Fei [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Deng, Chuang, E-mail: dengc@ad.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, The University of Manitoba, 15Gillson Street, Winnipeg, Manitoba R3T 5V6 (Canada)

    2013-12-02

    Here we report extraordinary mechanical properties revealed by atomistic simulations in metal nanotubes with hollow interior that have been long overlooked. Particularly, the yield strength in [1 1 1] Au nanotubes is found to be up to 60% higher than the corresponding solid Au nanowire, which approaches the theoretical ideal strength in Au. Furthermore, a remarkable transition from sharp to smooth yielding is observed in Au nanotubes with decreasing wall thickness. The ultrahigh tensile strength in [1 1 1] Au nanotube might originate from the repulsive image force exerted by the interior surface against dislocation nucleation from the outer surface.

  6. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  7. Sorption of uranyl ions on silica. Effects of contact time, pH, ionic strength, concentration and phosphate

    International Nuclear Information System (INIS)

    Zhang Hongxia; Tao Zuyi

    2002-01-01

    The sorption of UO 2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO 2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO 2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO 2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength. (author)

  8. A Unique Method to Describe the Bonding Strength in a Bonded Solid–Solid Interface by Contact Acoustic Nonlinearity

    International Nuclear Information System (INIS)

    Jian-Jun, Chen; De, Zhang; Yi-Wei, Mao; Jian-Chun, Cheng

    2009-01-01

    We present a unique method to describe the bonding strength at a bonded solid–solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid–solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour

  9. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  10. The effect of temperature, matrix alloying and substrate coatings on wettability and shear strength of Al/Al2O3 couples

    Science.gov (United States)

    Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.

    2004-03-01

    A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.

  11. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  12. Mathematical Modeling of Contact Problems of Elasticity Theory with Unilateral Discrete Contact

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2015-01-01

    Full Text Available Development and operation of modern machinery and latest technology require reliable estimates of the strength characteristics of the critical elements of structures and technological equipment under the impact of high-intensity thermomechanical loading, accompanied, as a rule, by complex contact interaction. Mathematical modeling of stress-strain state of such parts and components in the contact area, based on adequate mathematical models, modern numerical methods and efficient algorithms that implement the direct determination of displacement fields, strains and stresses, is the main tool that allows fast acquisition of data required for the calculations of strength and durability. The paper considers an algorithm for constructing the numerical solution of the contact problem of elasticity theory in relation to the body, which has an obvious one-sided discrete contact interaction with an elastic half-space. The proposed algorithm is specially designed to have a correction of the tangential forces at discrete contact points, allowing us to achieve sufficiently accurate implementation of the adopted law of friction. The algorithm is embedded in a general finite element technology, with which the application code is generated. Numerical study of discrete unilateral contact interaction of an elastic plate and a rigid half-space showed a high efficiency of the developed algorithm and the application code that implements it.

  13. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

    International Nuclear Information System (INIS)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian

    2014-01-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation

  14. Increase of reliability of contact networks of electric transport, due to increase of strength of the joint unit of pipes of different diameters

    Science.gov (United States)

    Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.

    2017-09-01

    The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.

  15. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    Science.gov (United States)

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p knee OA were linearly associated with greater frontal-plane varus motion excursions (p knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  16. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  17. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact

    NARCIS (Netherlands)

    Shai, Nadav; Yifrach, Eden; van Roermund, Carlo W T; Cohen, Nir; Bibi, Chen; IJlst, Lodewijk; Cavellini, Laetitia; Meurisse, Julie; Schuster, Ramona; Zada, Lior; Mari, Muriel C; Reggiori, Fulvio M; Hughes, Adam L; Escobar-Henriques, Mafalda; Cohen, Mickael M; Waterham, Hans R; Wanders, Ronald J A; Schuldiner, Maya; Zalckvar, Einat

    2018-01-01

    The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their

  18. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  19. We'll meet again: revealing distributional and temporal patterns of social contact.

    Directory of Open Access Journals (Sweden)

    Thorsten Pachur

    Full Text Available What are the dynamics and regularities underlying social contact, and how can contact with the people in one's social network be predicted? In order to characterize distributional and temporal patterns underlying contact probability, we asked 40 participants to keep a diary of their social contacts for 100 consecutive days. Using a memory framework previously used to study environmental regularities, we predicted that the probability of future contact would follow in systematic ways from the frequency, recency, and spacing of previous contact. The distribution of contact probability across the members of a person's social network was highly skewed, following an exponential function. As predicted, it emerged that future contact scaled linearly with frequency of past contact, proportionally to a power function with recency of past contact, and differentially according to the spacing of past contact. These relations emerged across different contact media and irrespective of whether the participant initiated or received contact. We discuss how the identification of these regularities might inspire more realistic analyses of behavior in social networks (e.g., attitude formation, cooperation.

  20. Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification

    Science.gov (United States)

    Wang, Zhong Lin; Zhu, Guang

    2018-03-20

    A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductive layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.

  1. Motivation for social contact in horses measured by operant conditioning

    DEFF Research Database (Denmark)

    Søndergaard, Eva; Jensen, Margit Bak; Nicol, Christine J.

    2011-01-01

    and muzzle contact, respectively, to a familiar companion horse. Horses were housed individually next to their companion horse and separations between pens prevented physical contact. During daily test sessions horses were brought to a test area where they could access an arena allowing social contact. Arena......Although horses are social animals they are often housed individually with limited social contact to other horses and this may compromise their welfare. The present study included eight young female horses and investigated the strength of motivation for access to full social contact, head contact...... test session was recorded. All horses could access all three types of social contact in a cross-over design, and an empty arena was used as control. Motivational strength was assessed using elasticity of demand functions, which were estimated based on the number of rewards earned and FR. Elasticities...

  2. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  3. The effect of bottom boundary condition type on the behavior of adhesive contact of spherical probe on an elastic film

    International Nuclear Information System (INIS)

    Zhu, X; Xu, W

    2017-01-01

    This study presents an investigation on the behavior of adhesive contact between a rigid sphere and an elastic film which is either perfectly bonded (case I) or in frictionless contact (case II) with a rigid substrate. By using linear fracture mechanics, we formulate an convenient semi-analytical approach to develop relations between the applied force, penetration depth and contact radius. Finite element analysis (FEA) is used to verify the relationships. Our results reveal that the interfacial boundary conditions between the film and substrate have distinct effects on the adhesive contact behavior between the sphere and the film. The aim of the present study is to provide an instructive inspiration for controlling adhesion strength of the thin film subject to adhesive contact. (paper)

  4. Familiarity breeds contempt: combining proximity loggers and GPS reveals female white-tailed deer (Odocoileus virginianus) avoiding close contact with neighbors.

    Science.gov (United States)

    Tosa, Marie I; Schauber, Eric M; Nielsen, Clayton K

    2015-01-01

    Social interactions can influence infectious disease dynamics, particularly for directly transmitted pathogens. Therefore, reliable information on contact frequency within and among groups can better inform disease modeling and management. We compared three methods of assessing contact patterns: (1) space-use overlap (volume of interaction [VI]), (2) direct contact rates measured by simultaneous global positioning system (GPS) locations (<10 m apart), and (3) direct contact rates measured by proximity loggers (PLs; 1-m detection) among female white-tailed deer (Odocoileus virginianus). We calculated the PL∶GPS contact ratios to see whether both devices reveal similar contact patterns and thus predict similar pathogen transmission patterns. Contact rates measured by GPS and PLs were similarly high for two within-group dyads (pairs of deer in the same social groups). Dyads representing separate but neighboring groups (high VI) had PL∶GPS contact ratios near zero, whereas dyads further apart (intermediate VI) had higher PL∶GPS contact ratios. Social networks based on PL contacts showed the fewest connected individuals and lowest mean centrality measures; network metrics were intermediate when based on GPS contacts and greatest when based on VI. Thus, the VI network portrayed animals to be more uniformly and strongly connected than did the PL network. We conclude that simultaneous GPS locations, compared with PLs, substantially underestimate the impact of group membership on direct contact rates of female deer and make networks appear more connected. We also present evidence that deer coming within the general vicinity of each other are less likely to come in close contact if they are in neighboring social groups than deer whose home ranges overlap little if at all. Combined, these results provide evidence that direct transmission of disease agents among female and juvenile white-tailed deer is likely to be constrained both spatially and by social structure, more

  5. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.

    Science.gov (United States)

    Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun

    2016-02-01

    Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Static friction in elastic adhesive MEMS contacts, models and experiment

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2000-01-01

    Static friction in shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesive contact is analyzed. Special attention is paid to low loading conditions, in which the number of contact

  7. Degree-strength correlation reveals anomalous trading behavior.

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  8. Degree-strength correlation reveals anomalous trading behavior.

    Directory of Open Access Journals (Sweden)

    Xiao-Qian Sun

    Full Text Available Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  9. Static friction in elastic adhesion contacts in MEMS

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2003-01-01

    Static friction in a shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesion contact is analyzed. The effect of adhesion is included using Maugis' expansion of the Greenwood and

  10. Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Mussotter, Franz, E-mail: franz.mussotter@bfr.bund.de [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Tomm, Janina Melanie [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); El Ali, Zeina; Pallardy, Marc; Kerdine-Römer, Saadia [INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Chátenay-Malabry (France); Götz, Mario [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Bergen, Martin von [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); University of Leipzig, Institute of Biochemistry, Leipzig (Germany); Aalborg University, Department of Chemistry and Bioscience, Aalborg (Denmark); Haase, Andrea; Luch, Andreas [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany)

    2016-12-15

    Allergic contact dermatitis is a widespread disease with high clinical relevance affecting approximately 20% of the general population. Typically, contact allergens are low molecular weight electrophilic compounds which can activate the Keap1/Nrf2 pathway. We performed a proteomics study to reveal possible biomarkers for dendritic cell (DC) activation by contact allergens and to further elucidate the role of Keap1/Nrf2 signaling in this process. We used bone marrow derived dendritic cells (BMDCs) of wild-type (nrf2{sup +/+}) and Nrf2 knockout (nrf2{sup −/−}) mice and studied their response against the model contact sensitizers 2,4-dinitrochlorobenzene (DNCB), cinnamaldehyde (CA) and nickel(II) sulfate by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS). Sodium dodecyl sulfate (SDS, 100 μM) served as irritant control. While treatment with nickel(II) sulfate and SDS had only little effects, CA and DNCB led to significant changes in protein expression. We found 18 and 30 protein spots up-regulated in wild-type cells treated with 50 and 100 μM CA, respectively. For 5 and 10 μM DNCB, 32 and 37 spots were up-regulated, respectively. Almost all of these proteins were not differentially expressed in nrf2{sup −/−} BMDCs, indicating an Nrf2-dependent regulation. Among them proteins were detected which are involved in oxidative stress and heat shock responses, as well as in signal transduction or basic cellular pathways. The applied approach allowed us to differentiate between Nrf2-dependent and Nrf2-independent cellular biomarkers differentially regulated upon allergen-induced DC activation. The data presented might contribute to the further development of suitable in vitro testing methods for chemical-mediated sensitization. - Highlights: • Contact allergens induce proteins involved in DC maturation Nrf2-dependently. • Induction of these proteins points to a functional

  11. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  12. Assessing Reactive Strength Measures in Jumping and Hopping Using the Optojump™ System

    Directory of Open Access Journals (Sweden)

    Healy Robin

    2016-12-01

    Full Text Available The aim of this study was to assess the concurrent validity of the Optojump™ system (Microgate, Bolzano, Italy versus a force platform in the estimation of temporal and reactive strength measures. In two separate investigations, twenty physically active males performed double-leg and single-leg drop jumps from a box height of 0.3 m and a 10 s vertical bilateral hopping test. Contact time, flight time and total time (the sum of contact and flight time were concurrently assessed during single and double-leg drop jumps and during hopping. Jump height, the reactive strength index and the reactive strength ratio were also calculated from contact time and flight time. Despite intraclass correlation coefficients (ICCs for all variables being close to 1 (ICC > 0.975, a significant overestimation was found in contact time (0.005 ± 0.002 s and underestimations in flight time (0.005 ± 0.003 s, the reactive strength index (0.04 ± 0.02 m·s-1 and the reactive strength ratio (0.07 ± 0.04. Overestimations in contact time and underestimations in flight time were attributed to the physical design of the Optojump™ system as the transmitter and receiver units were positioned 0.003 m above the floor level. The Optojump™ demonstrated excellent overall temporal validity with no differences found between systems for total time. Coaches are advised to be consistent with the instrumentation used to assess athletes, however, in the case of comparison between reactive strength values collected with the Optojump™ and values collected with a force platform, regression equations are provided.

  13. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  14. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  15. From “Smaller is Stronger” to “Size-Independent Strength Plateau”: Towards Measuring the Ideal Strength of Iron

    KAUST Repository

    Han, Wei-Zhong; Huang, Ling; Ogata, Shigenobu; Kimizuka, Hajime; Yang, Zhao-Chun; Weinberger, Christopher; Li, Qing-Jie; Liu, Bo-Yu; Zhang, Xixiang; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2015-01-01

    The trend from “smaller is stronger” to “size-independent strength plateau” is observed in the compression of spherical iron nanoparticles. When the diameter of iron nanospheres is less than a critical value, the maximum contact pressure saturates at 10.7 GPa, corresponding to a local shear stress of ≈9.4 GPa, which is comparable to the theoretical shear strength of iron.

  16. From “Smaller is Stronger” to “Size-Independent Strength Plateau”: Towards Measuring the Ideal Strength of Iron

    KAUST Repository

    Han, Wei-Zhong

    2015-04-17

    The trend from “smaller is stronger” to “size-independent strength plateau” is observed in the compression of spherical iron nanoparticles. When the diameter of iron nanospheres is less than a critical value, the maximum contact pressure saturates at 10.7 GPa, corresponding to a local shear stress of ≈9.4 GPa, which is comparable to the theoretical shear strength of iron.

  17. Electroplated contacts and porous silicon for silicon based solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kholostov, Konstantin, E-mail: kholostov@diet.uniroma1.it [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Serenelli, Luca; Izzi, Massimo; Tucci, Mario [Enea Casaccia Research Centre Rome, via Anguillarese 301, 00123 Rome (Italy); Balucani, Marco [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Rise Technology S.r.l., Lungomare Paolo Toscanelli 170, 00121 Rome (Italy)

    2015-04-15

    Highlights: • Uniformity of the Ni–Si interface is crucial for performance of Cu–Ni contacts on Si. • Uniformly filled PS is the key to obtain the best performance of Cu–Ni contacts on Si. • Optimization of anodization and electroplating allows complete filling of PS layer. • Highly adhesive and low contact resistance Cu–Ni contacts are obtained on Si. - Abstract: In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ω/sq solar cell emitter formed on p-type silicon substrate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 μΩ cm{sup 2} on 80 Ω/sq emitter are achieved.

  18. Conciliating surface superhydrophobicities and mechanical strength of porous silicon films

    Science.gov (United States)

    Wang, Fuguo; Zhao, Kun; Cheng, Jinchun; Zhang, Junyan

    2011-01-01

    Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2‧) exhibited both good mechanical strength (Yong' modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.

  19. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  20. Relationship of Adhesive, Contact and Electret Properties of PTFE Modified by DC Discharge

    Science.gov (United States)

    Yablokov, M.; Piskarev, M.; Gilman, A.; Kechek'yan, A.; Kuznetsov, A.

    2018-02-01

    The relationship between the contact, adhesive and electret properties of PTFE films modified by direct current glow discharge has been studied. The film samples of 40 μm thickness were placed at the anode and cathode and treated in the air as a working gas. The contact properties of polymer surface were characterized by the values of deionized water contact angle. The peel strength was determined using T-peel test for the Scotch®810/PTFE film contact. The electret potential was measured by the compensation technique using dynamic capacitor, and from the measured potential value the effective surface charge density was calculated. It has been found that there is an undoubted correlation between the change in the value of water contact angle, the peel strength of the DC discharge-treated film, and the magnitude of the effective surface charge.

  1. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  2. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  3. A contact angle hysteresis model based on the fractal structure of contact line.

    Science.gov (United States)

    Wu, Shuai; Ma, Ming

    2017-11-01

    Contact angle is one of the most popular concept used in fields such as wetting, transport and microfludics. In practice, different contact angles such as equilibrium, receding and advancing contact angles are observed due to hysteresis. The connection among these contact angles is important in revealing the chemical and physical properties of surfaces related to wetting. Inspired by the fractal structure of contact line, we propose a single parameter model depicting the connection of the three angles. This parameter is decided by the fractal structure of the contact line. The results of this model agree with experimental observations. In certain cases, it can be reduced to other existing models. It also provides a new point of view in understanding the physical nature of the contact angle hysteresis. Interestingly, some counter-intuitive phenomena, such as the binary receding angles, are indicated in this model, which are waited to be validated by experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Physical modeling of glacier contact with bedrock (experiment

    Directory of Open Access Journals (Sweden)

    V. P. Epifanov

    2013-01-01

    Full Text Available Studies of the adhesive strength of glacial ice connection with bedrock has been studied using the analysis of the amplitude-frequency characteristics of acoustic emission (AE in the frequency range from 15 Hz to 20,000 Hz. Identification of signal source on bed is based on physical modeling of adhesive ice fracture at the complex shear and patterns of elastic waves propagation in the ice using data on ice thickness of the ice and its acoustic properties. The experimental dependence of the ice and serpentinite substrate adhesive strength with temperature (from 0 °C to −30 °C has been obtained at constraint axial shear. It is shown that the destruction of adhesive ice contact with substrate begins long before the maximum shear stress achieved, and AE signals in the coordinates amplitude-frequency-time have been obtained for the for static friction and sliding parts of deformation curves. Influence of shear to normal stresses ratio on the adhesive ice/substrate strength has been shown. Influence of the ratio of longitudinal and transverse shear stresses on the adhesive bond strength of ice to the substrate has been shown. The natural glacier spectra revealed periodic reduction of AE signals frequency in the middle range of frequencies. The similar effect of AE signals shifting along the frequency axis to the low frequency domain was obtained by testing of freshwater ice samples and related with expansion of the destruction scale. Practical application of the strain AE results for remote determination of the local glacial stability and for studies of glacier ice mechanics is discussed.

  5. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    Science.gov (United States)

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  6. Size effects in olivine control strength in low-temperature plasticity regime

    Science.gov (United States)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  7. Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy

    Science.gov (United States)

    Arnold, F.; Nyéki, J.; Saunders, J.

    2018-05-01

    In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.

  8. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.

    Science.gov (United States)

    Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher

    2018-04-11

    The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. EFFECTS OF WHOLE BODY VIBRATION ON STRENGTH AND JUMPING PERFORMANCE IN VOLLEYBALL AND BEACH VOLLEYBALL PLAYERS

    Science.gov (United States)

    Zmijewski, P.; Jimenez-Olmedo, J.M.; Jové-Tossi, M.A.; Martínez-Carbonell, A.; Suárez-Llorca, C.; Andreu-Cabrera, E.

    2014-01-01

    The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (pvolleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players. PMID:25187676

  10. Contact Allergy in Danish Healthcare Workers

    DEFF Research Database (Denmark)

    Schwensen, Jakob F; Menné, Torkil; Sommerlund, Mette

    2016-01-01

    Contact dermatitis in healthcare workers is a pan-European problem. We conducted a retrospective observational study of the patch-test results of 1402 healthcare workers and 1402 matched controls with contact dermatitis who were treated at 3 hospitals departments in Denmark between 2007 and 2014....... The primary objective was to determine whether healthcare work was associated with contact allergy to thiuram mix. Unadjusted univariate analyses revealed that healthcare work was significantly associated with occupational contact dermatitis and hand dermatitis. Contact allergy to thiuram mix was more common...... in healthcare workers was significantly associated with having occupational contact dermatitis, hand dermatitis and older age. In conclusion, we report here a potential problem of contact allergy to thiurams in healthcare workers with contact dermatitis. Legislative authorities may in the future focus...

  11. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  12. The steady-state tangential contact problem for a falling drop type of contact area on corrugated rail by simplified theory of rolling contact

    Science.gov (United States)

    Piotrowski, Jerzy

    1991-10-01

    Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.

  13. Using the reactive strength index modified to evaluate plyometric performance.

    Science.gov (United States)

    Ebben, William P; Petushek, Erich J

    2010-08-01

    The ability to develop force quickly is a requisite ability in most sports. The reactive strength index (RSI) has been developed as a measure of explosive strength and is derived by evaluating jump height divided by ground contact time during the depth jump (DJ). At present, the RSI is typically used to evaluate DJ performance, because it is the only plyometric exercise with an identifiable ground contact time. The purpose of this study was to introduce a modification of the RSI (RSImod) that can be used to evaluate the explosive power of any vertical plyometric exercise. This study will also assess the reliability of the RSImod, evaluate the RSImod of a variety of plyometric exercises, and examine gender differences. Twenty-six men and 23 women served as subjects. Subjects performed 3 repetitions for each of 5 plyometric exercises including the countermovement jump (CMJ), tuck jump, single-leg jump, squat jump, and dumbbell CMJ. Data were analyzed using a 2-way analysis of variance to evaluate differences in RSImod between the plyometric exercise and the interaction between plyometric exercise RSImod and gender. The analysis of RSImod revealed significant main effects for plyometric exercise type (p plyometric exercise type and gender (p > 0.05). Results of pairwise comparisons indicate that the RSImod is statistically different between all plyometric exercises studied. Intraclass correlation coefficients indicate that RSImod is highly reliable for all of the exercises studied. The RSImod offers a highly reliable method of assessing the explosiveness developed during a variety of plyometric exercises.

  14. In situ electric fields causing electro-stimulation from conductor contact of charged human

    International Nuclear Information System (INIS)

    Nagai, T.; Hirata, A.

    2010-01-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength- duration curves with parameters used in previous studies. (authors)

  15. Eye contact and Cross-cultural Communication

    Institute of Scientific and Technical Information of China (English)

    刘西娟

    2009-01-01

    It is commonly agreed by contemporary schohrs that it is important to understand the role of culture and its characteristics and potential impact on individuals engaged in cross-cultural communication.Nonverbal Communication often reveals basic culture traits.Eye contact,as a mediunq to convey emodon.attitudes and intention.phys an undeniably vital role in communication.The concentration of this paper is to discuss the functions of eye contact in communication,different information conveyed by eve contact on the basis of different cultures and the importance of understanding and respecting the rituals of eye contact in cross-culmral communication.

  16. Association between Contact allergy and Psoriasis

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie

    2011-01-01

    6. SUMMERY 6.1 Summery in English Allergic contact dermatitis (ACD) and psoriasis are the two most prevalent skin diseases in the western world. ACD is the clinical manifestation of contact allergy. Contact allergy and psoriasis are both due to inflammatory mechanisms involving the innate...... and adaptive immune system. Psoriasis is conceived to be an autoimmune disease. Recent studies have suggested an inverse relation between contact allergy and autoimmune diseases. The association between contact allergy and psoriasis could reveal mechanistic insights into both inflammatory processes....... The overall aim of this PhD study was to investigate the association between contact allergy and autoimmune disease, with focus on psoriasis. The work was done in three study parts. Part I Epidemiological studies. Part II Sensitization study and Part III Experimental studies. In part I the association between...

  17. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  18. ANTHROPOMETRIC, GAIT AND STRENGTH CHARACTERISTICS OF KENYAN DISTANCE RUNNERS

    Directory of Open Access Journals (Sweden)

    Pui W. Kong

    2008-12-01

    Full Text Available This study intended to take a biomechanical approach to understand the success of Kenyan distance runners. Anthropometric, gait and lower extremity strength characteristics of six elite Kenyan distance runners were analyzed. Stride frequency, relative stride length and ground contact time were measured at five running speeds (3.5 - 5.4 m/s using a motion capture system. Isometric knee extension and flexion torques were measured at six angles and hamstrings and quadriceps (H:Q ratios at three angular velocities were determined using an isokinetic dynamometer. These runners were characterized by a low body mass index (20.1 ± 1.8 kg·m- 2, low percentage body fat (5.1 ± 1.6% and small calf circumference (34.5 ± 2.3 cm. At all running speeds, the ground contact time was shorter (p < 0.05 during right (170 - 212 ms compared to left (177 - 220 ms foot contacts. No bilateral difference was observed in other gait or strength variables. Their maximal isometric strength was lower than other runners (knee extension: 1.4 - 2.6 Nm·kg-1, knee flexion: 1.0 - 1.4 Nm·kg-1 but their H:Q ratios were higher than athletes in other sports (1.03 ± 0.51 at 60o/s, 1.44 ± 0.46 at 120o/s, 1.59 ± 0.66 at 180o/s. The slim limbs of Kenyan distance runners may positively contribute to performance by having a low moment of inertia and thus requiring less muscular effort in leg swing. The short ground contact time observed may be related to good running economy since there is less time for the braking force to decelerate forward motion of the body. These runners displayed minor gait asymmetry, though the difference may be too small to be practically significant. Further investigations are needed to confirm whether the bilateral symmetry in strength and high H:Q ratios are related to genetics, training or the lack of injuries in these runners

  19. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    Science.gov (United States)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  20. Analytical Solution of Interface Effect on the Strength of Combined Model Composed of Different Geologic Bodies

    Directory of Open Access Journals (Sweden)

    Zeng-hui Zhao

    2014-01-01

    Full Text Available According to the special combined structure of surrounding rock in western mining area of China, a micromechanical model with variable parameters containing contact interface was proposed firstly. Then, the derived stresses in coal and rock near the interface were analyzed on the basis of the harmonized strain relation, and the analytical solutions with respect to stress states near the interface were drawn up. The triaxial compressive strength of coal and rock was further determined in case the contact interface was in the horizontal position. Moreover, effects of stiffness ratio, interface angle, and stress level on the strength of two bodies near the contact area were expounded in detail. Results indicate that additional stresses which have significant effect on the strength of combined model are derived due to the adhesive effect of contact interface and lithological differences between geologic bodies located on both sides. The interface effect on the strength of combined body is most associated with the stiffness, interface angle, and the stress level. These conclusions are also basically valid for three-body model and even for the multibody model and lay important theory foundation to guide the stability study of soft strata composed of different geologic bodies.

  1. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  2. Short Communications Strength Properties and Groups of Major ...

    African Journals Online (AJOL)

    Short Communications Strength Properties and Groups of Major Commercial Timbers Grown in Kenya. ... The strength groups developed revealed that most species in Kenya are suitable for heavy engineering works and building construction. ... strength properties, commercial timber, physical and mechanical properties

  3. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  4. Potential relationship between phenotypic and molecular characteristics in revealing livestock-associated Staphylococcus aureus in Chinese humans without occupational livestock contact

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    2016-09-01

    Full Text Available While some studies have defined Staphylococcus aureus based on its clonal complex and resistance pattern, few have explored the relations between the genetic lineages and antibiotic resistance patterns and immune evasion cluster (IEC genes. Our aim was to investigate the potential relationship between phenotypic and molecular characteristics so as to reveal livestock-associated S. aureus in humans. The study participants were interviewed, and they provided two nasal swabs for S. aureus analysis. All S. aureus and methicillin-resistant S. aureus (MRSA were tested for antibiotic susceptibility, multilocus sequence type and IEC genes. Of the 1162 participants, 9.3% carried S. aureus, including MRSA (1.4% and multidrug-resistant S. aureus (MDRSA, 2.8%. The predominant multidrug-resistant pattern among MDRSA isolates was nonsusceptibility to erythromycin, clindamycin and tetracycline. The most common S. aureus genotypes were ST7, ST6, ST188 and ST59, and the predominant MRSA genotype was ST7. Notably, the livestock-associated S. aureus isolates (IEC-negative CC9, IEC-negative tetracycline-resistant CC398, and IEC-negative tetracycline-resistant CC5 were found in people with no occupational livestock contact. These findings reveal a potential relationship between S. aureus CCs and IEC genes and antibiotic resistance patterns in defining livestock-associated S. aureus in humans and support growing concern about the potential livestock-to-human transmission of livestock-associated S. aureus by non-occupational livestock contact.

  5. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  6. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  7. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    Science.gov (United States)

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of

  8. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Electrical and structural properties of group-4 transition-metal nitride (TiN, ZrN, and HfN) contacts on Ge

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Keisuke; Nakashima, Hiroshi, E-mail: nakasima@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Noguchi, Ryutaro; Wang, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Mitsuhara, Masatoshi; Nishida, Minoru [Department of Engineering Sciences for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Hara, Toru [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-21

    Electrical and structural properties were investigated for group-4 transition-metal nitride contacts on Ge (TiN/Ge, ZrN/Ge, and HfN/Ge), which were prepared by direct sputter depositions using nitride targets. These contacts could alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. It was revealed that this phenomenon is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the nitride/Ge interfaces. The strength of FLP alleviation positively depended on the thickness of a-IL. TiN/Ge and ZrN/Ge contacts with ∼2 nm-thick a-ILs showed strong FLP alleviations with hole barrier heights (Φ{sub BP}) in the range of 0.52–56 eV, and a HfN/Ge contact with an ∼1 nm-thick a-IL showed a weaker one with a Φ{sub BP} of 0.39 eV. However, TaN/Ge contact without a-IL did not show such FLP alleviation. Based on the results of depth distributions for respective elements, we discussed the formation kinetics of a-ILs at TiN/Ge and ZrN/Ge interfaces. Finally, we proposed an interfacial dipole model to explain the FLP alleviation.

  10. Structural, Functional, and Metabolic Brain Markers Differentiate Collision versus Contact and Non-Contact Athletes.

    Science.gov (United States)

    Churchill, Nathan W; Hutchison, Michael G; Di Battista, Alex P; Graham, Simon J; Schweizer, Tom A

    2017-01-01

    There is growing concern about how participation in contact sports affects the brain. Retrospective evidence suggests that contact sports are associated with long-term negative health outcomes. However, much of the research to date has focused on former athletes with significant health problems. Less is known about the health of current athletes in contact and collision sports who have not reported significant medical issues. In this cross-sectional study, advanced magnetic resonance imaging (MRI) was used to evaluate multiple aspects of brain physiology in three groups of athletes participating in non-contact sports ( N  = 20), contact sports ( N  = 22), and collision sports ( N  = 23). Diffusion tensor imaging was used to assess white matter microstructure based on measures of fractional anisotropy (FA) and mean diffusivity (MD); resting-state functional MRI was used to evaluate global functional connectivity; single-voxel spectroscopy was used to compare ratios of neural metabolites, including N -acetyl aspartate (NAA), creatine (Cr), choline, and myo-inositol. Multivariate analysis revealed structural, functional, and metabolic measures that reliably differentiated between sport groups. The collision group had significantly elevated FA and reduced MD in white matter, compared to both contact and non-contact groups. In contrast, the collision group showed significant reductions in functional connectivity and the NAA/Cr metabolite ratio, relative to only the non-contact group, while the contact group overlapped with both non-contact and collision groups. For brain regions associated with contact sport participation, athletes with a history of concussion also showed greater alterations in FA and functional connectivity, indicating a potential cumulative effect of both contact exposure and concussion history on brain physiology. These findings indicate persistent differences in brain physiology for athletes participating in contact and collision sports

  11. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone

    Science.gov (United States)

    Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João

    2018-01-01

    Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853

  12. Friction and shear strength at the nanowire-substrate interfaces.

    Science.gov (United States)

    Zhu, Yong; Qin, Qingquan; Gu, Yi; Wang, Zhonglin

    2009-11-28

    The friction and shear strength of nanowire (NW)-substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09-0.12 and 0.10-0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134-139 MPa and 78.9-95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW-substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  13. Friction and Shear Strength at the Nanowire–Substrate Interfaces

    Directory of Open Access Journals (Sweden)

    Gu Yi

    2009-01-01

    Full Text Available Abstract The friction and shear strength of nanowire (NW–substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09–0.12 and 0.10–0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134–139 MPa and 78.9–95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW–substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  14. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  15. How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes

    Science.gov (United States)

    Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran

    2018-03-01

    T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.

  16. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  17. Meter of dynamics of restoring the electrical strength of spark gaps

    International Nuclear Information System (INIS)

    Kuznetsov, E.A.; Kravchenko, S.A.; Yagnov, V.A.; Shipuk, I.Ya.

    1997-01-01

    Method for diagnostics of the dynamics spark gap electric strength restoration and an electric device for its realization are described. The electric strength measurement error, conditioned by the breakdown current through electric probes or the contacts of a spark gap under investigation, is reduced to minimum due to fast switching off the probe voltage if the breakdown current exceeds some established value (1 mA). 1 ref

  18. Targeted testing with diethylthiourea often reveals clinically relevant allergic contact dermatitis caused by neoprene rubber

    DEFF Research Database (Denmark)

    Dall, Anne B-H; Andersen, Klaus Ejner; Mortz, Charlotte G

    2012-01-01

    Background. Diethylthiourea is widely used in the rubber industry, particularly in neoprene rubber, and may cause allergic contact dermatitis. However, as thiourea allergens are not part of the European baseline series, the diagnosis of allergic contact dermatitis caused by thiourea compounds...

  19. Effect of 3D fractal dimension on contact area and asperity interactions in elastoplastic contact

    Directory of Open Access Journals (Sweden)

    Abdeljalil Jourani

    2016-05-01

    Full Text Available Few models are devoted to investigate the effect of 3D fractal dimension Ds on contact area and asperity interactions. These models used statistical approaches or two-dimensional deterministic simulations without considering the asperity interactions and elastic–plastic transition regime. In this study, a complete 3D deterministic model is adopted to simulate the contact between fractal surfaces which are generated using a modified two-variable Weierstrass–Mandelbrot function. This model incorporates the asperity interactions and considers the different deformation modes of surface asperities which range from entirely elastic through elastic-plastic to entirely plastic contact. The simulations reveal that the elastoplastic model is more appropriate to calculate the contact area ratio and pressure field. It is also shown that the influence of the asperity interactions cannot be neglected, especially at lower fractal dimension Ds and higher load.

  20. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  1. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    Science.gov (United States)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz

  2. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  3. Grip Strength as an Indicator of Health-Related Quality of Life in Old Age-A Pilot Study.

    Science.gov (United States)

    Musalek, Christina; Kirchengast, Sylvia

    2017-11-24

    Over the last century life expectancy has increased dramatically nearly all over the world. This dramatic absolute and relative increase of the old aged people component of the population has influenced not only population structure but also has dramatic implications for the individuals and public health services. The aim of the present pilot study was to examine the impact of physical well-being assessed by hand grip strength and social factors estimated by social contact frequency on health-related quality of life among 22 men and 41 women ranging in age between 60 and 94 years. Physical well-being was estimated by hand grip strength, data concerning subjective wellbeing and health related quality of life were collected by personal interviews based on the WHOQOL-BREF questionnaires. Number of offspring and intergenerational contacts were not related significantly to health-related quality of life, while social contacts with non-relatives and hand grip strength in contrast had a significant positive impact on health related quality of life among old aged men and women. Physical well-being and in particular muscle strength-estimated by grip strength-may increase health-related quality of life and is therefore an important source for well-being during old age. Grip strength may be used as an indicator of health-related quality of life.

  4. Epidemic spreading on contact networks with adaptive weights.

    Science.gov (United States)

    Zhu, Guanghu; Chen, Guanrong; Xu, Xin-Jian; Fu, Xinchu

    2013-01-21

    The heterogeneous patterns of interactions within a population are often described by contact networks, but the variety and adaptivity of contact strengths are usually ignored. This paper proposes a modified epidemic SIS model with a birth-death process and nonlinear infectivity on an adaptive and weighted contact network. The links' weights, named as 'adaptive weights', which indicate the intimacy or familiarity between two connected individuals, will reduce as the disease develops. Through mathematical and numerical analyses, conditions are established for population extermination, disease extinction and infection persistence. Particularly, it is found that the fixed weights setting can trigger the epidemic incidence, and that the adaptivity of weights cannot change the epidemic threshold but it can accelerate the disease decay and lower the endemic level. Finally, some corresponding control measures are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Calculation of force and time of contact formation at diffusion metal joining

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V E [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR); Grushevskij, A V [Moskovskij Stankoinstrumental' nyj Inst., Moscow (USSR); Surovtsev, A P

    1989-03-01

    An analytical model of contact for mation at diffusion joining is suggested. It is based on the introduction of a rough surface with roughnesses in the form of absolutely rigid spherical segnunts into a smooth laminar body. Mathematical expressions, permitting to calculate maximum welding force (pressure) providing close contact of the surfaces welded and time for contact formation between rough surfaces joined, are obtained. Divergence of calculational and experimental data does not exceed 20%. It is confirmed that the most intensive formation of joining occurs in the initial period of welding -the stage of formation of a physical contact, when deformation processes proceed in tensively. Finite formation of a strength joint occurs at the stage of diffusion interaction.

  6. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  7. A thermodynamic model of contact angle hysteresis.

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  8. Flat punch adhesion: transition from fracture-based to strength-limited pull-off

    International Nuclear Information System (INIS)

    Jiang, Yijie; Turner, Kevin T; Grierson, David S

    2014-01-01

    The adhesion of a cylindrical flat punch to a surface due to interatomic forces is a well-known problem that is important in many applications, including indentation experiments and the adhesion of fibrillar structures. Traditionally, the pull-off force has been related to the work of adhesion and punch geometry via the Kendall solution that uses a Griffith energy balance to assess crack propagation and pull-off. More recently, it has been shown that under certain conditions, notably at small punch diameters, the contact can behave in a ‘strength-limited’ fashion in which the interface separates uniformly rather than via crack propagation. Here, a Maugis-Dugdale-type analysis of power-law-shaped bodies in contact is used to examine the change in behaviour from the fracture-based Kendall solution to strength-limited pull-off for cylindrical flat punches. The transition from fracture-based to strength-limited behaviour is described in terms of a non-dimensional parameter that is similar to previous quantities used to describe the transition and is a function of the punch size, the elasticity of the contact, and the adhesion properties. The results of this relatively simple analysis compare favourably with results from more complex computational simulations. In addition, the results are used to develop a function that quantifies the transition between the Kendall solution and the strength-limited solution in order to facilitate interpretation of adhesion measurements in the transition regime between the two limits. Finally, the power-law analysis is used to assess the sensitivity of the transition to the exact shape of the punch. (paper)

  9. Guidelines for the management of contact dermatitis: an update.

    LENUS (Irish Health Repository)

    Bourke, J

    2012-02-01

    These guidelines for management of contact dermatitis have been prepared for dermatologists on behalf of the British Association of Dermatologists. They present evidence-based guidance for investigation and treatment, with identification of the strength of evidence available at the time of preparation of the guidelines, including details of relevant epidemiological aspects, diagnosis and investigation.

  10. Guidelines for the management of contact dermatitis: an update.

    LENUS (Irish Health Repository)

    Bourke, J

    2009-05-01

    These guidelines for management of contact dermatitis have been prepared for dermatologists on behalf of the British Association of Dermatologists. They present evidence-based guidance for investigation and treatment, with identification of the strength of evidence available at the time of preparation of the guidelines, including details of relevant epidemiological aspects, diagnosis and investigation.

  11. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  12. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada)

    2008-01-21

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes. (author)

  13. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Science.gov (United States)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  14. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2012-01-01

    In this paper, we derive a modified Cassie's equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie's state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  15. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  16. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  17. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  18. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials

    Directory of Open Access Journals (Sweden)

    Sérgio Sábio

    2008-08-01

    Full Text Available In the present study, two types of tests (tensile strength test and polymerization inhibition test were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic, a polyether (Impregum, a condensation silicone (Xantopren and a polyvinylsiloxane (Aquasil ,3; when polymerized in contact with of one conventional (Hemostop and two experimental (Vislin and Afrin gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength

  19. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin

    2012-08-29

    In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  20. Current Quality-of-Life Tools Available for Use in Contact Dermatitis.

    Science.gov (United States)

    Swietlik, Jacquelyn; Reeder, Margo

    2016-01-01

    Contact dermatitis is a common dermatologic condition that can cause significant impairment in patients' overall quality of life (QoL). This impact is separate and potentially more clinically relevant than one's disease "severity" in contact dermatitis and should be consistently addressed by dermatologists. Despite this, QoL tools specific to contact dermatitis are lacking, and there is little consistency in the literature regarding the tool used to evaluate clinical response to therapies. Measurements currently available to evaluate disease-related QoL in contact dermatitis fit into 1 of the following 3 general types: generic health-related QoL measures, dermatology-related QoL measures, or specific dermatologic disease-related QoL measures. This article reviews the strengths and weaknesses of existing QoL tools used in contact dermatitis including: Short Form Survey 36, Dermatology Life Quality Index, Skindex-29, Skindex-16, Dermatology-Specific Quality of Life, and Fragrance Quality of Life Index.

  1. Analysis of the material's expenditure of electric contacts by means of the isotopic method

    International Nuclear Information System (INIS)

    Farkash, K.

    1979-01-01

    To investigate lifetime of the weak-current and heavy-current contacts different radioisotopic methods have been developed. Advantages of the radioisotopic methods as compared with other methods of testing consists of the fact that due to their sensitivity they permit to determine low expense of material; permit to determine quantitatively expense of each element separately from the elements, composing the contacts alloy; by means of these methods it is possible to evaluate quantitatively topological distribution of the matter separated from the contacts into the environment; it is possible to determine morphological characteristics of the matter separated from the contact. During investigation of the lifetime of contacts there were determined: value of the expense of the material of contacts; composition of the expense of the material of contacts; composition of the matter separated from the contact; distribution of the separated matter depending on the electrical parameters and number of the closings of contact in the case of different compositions of contacts and in different conditions. Strength of the contacts' alloys related to the electrical load was investigated at the special stand [ru

  2. The role of nano-contacts in electrical transport through a molecular wire

    International Nuclear Information System (INIS)

    Shokri, Ali A.; Mardaani, M.

    2006-01-01

    Theoretical studies on electrical transport in a nano-device which consisting of two semi-infinite cubic leads with finite cross-sections separated by a typical molecular wire (MW) are carried out by including the effect of single and multiple contacts. The calculations are based on the tight-binding model and Green's function method in the coherent regime. In order to calculate the effect of contact coupling on molecular wire transport, we derive a theoretical formula based on the nearest and next nearest neighbor coupling strengths between the MW and the surface atoms in the simple cubic leads. This approach can be generalized to other leads with different lattice structure. The results show small changes in the transport properties with changing next nearest neighbor coupling strength. Some asymmetry is noted in the strong multiple contact limit. Also, we observe that with enlarging the cross-section size of leads, the current density increases and then leads to the quantum unit of conductance. Hence, our derived formalism can be used for devices attached to macroscopic surfaces. The theoretical results obtained, can be a base for developments in designing nano-electronic devices

  3. Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, J.N.; Ravdin, J.I.; Rein, M.F.

    1985-12-01

    The cytopathogenic mechanisms of Trichomonas vaginalis have been debated since the 1940s. We examined the following three proposed pathogenic mechanisms: contact-dependent extracellular killing, cytophagocytosis, and extracellular cytotoxins. Serial observations of Chinese hamster ovary (CHO) cell monolayers exposed to trichomonads revealed that (i) trichomonads form clumps, (ii) the clumps adhere to cells in culture, and (iii) monolayer destruction occurs only in areas of contact with T. vaginalis. Kinetic analysis of target cell killing by trichomonads revealed that the probability of CHO cell death was related to the probability of contact with T. vaginalis, supporting the observation by microscopy that trichomonads kill cells only by direct contact. Simultaneous studies of /sup 111/indium oxine label release from CHO cells and trypan blue dye exclusion demonstrated that T. vaginalis kills target cells without phagocytosis. Filtrates of trichomonad cultures or from media in which trichomonads were killing CHO cells had no effect on CHO cell monolayers, indicating that trichomonads do not kill cells by a cell-free or secreted cytotoxin. The microfilament inhibitor cytochalasin D (10 micrograms/ml) inhibited trichomonad killing of CHO cell monolayers by 80% (P less than 0.0001). In contrast, the microtubule inhibitor vinblastine (10(-6) M) caused only 17% inhibition of trichomonad destruction of CHO cell monolayers (P less than 0.020), whereas colchicine (10(-6) M) had no effect. T. vaginalis kills target cells by direct contact without phagocytosis. This event requires intact trichomonad microfilament function; microtubule function appears not to be essential.

  4. Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis

    International Nuclear Information System (INIS)

    Krieger, J.N.; Ravdin, J.I.; Rein, M.F.

    1985-01-01

    The cytopathogenic mechanisms of Trichomonas vaginalis have been debated since the 1940s. We examined the following three proposed pathogenic mechanisms: contact-dependent extracellular killing, cytophagocytosis, and extracellular cytotoxins. Serial observations of Chinese hamster ovary (CHO) cell monolayers exposed to trichomonads revealed that (i) trichomonads form clumps, (ii) the clumps adhere to cells in culture, and (iii) monolayer destruction occurs only in areas of contact with T. vaginalis. Kinetic analysis of target cell killing by trichomonads revealed that the probability of CHO cell death was related to the probability of contact with T. vaginalis, supporting the observation by microscopy that trichomonads kill cells only by direct contact. Simultaneous studies of 111 indium oxine label release from CHO cells and trypan blue dye exclusion demonstrated that T. vaginalis kills target cells without phagocytosis. Filtrates of trichomonad cultures or from media in which trichomonads were killing CHO cells had no effect on CHO cell monolayers, indicating that trichomonads do not kill cells by a cell-free or secreted cytotoxin. The microfilament inhibitor cytochalasin D (10 micrograms/ml) inhibited trichomonad killing of CHO cell monolayers by 80% (P less than 0.0001). In contrast, the microtubule inhibitor vinblastine (10(-6) M) caused only 17% inhibition of trichomonad destruction of CHO cell monolayers (P less than 0.020), whereas colchicine (10(-6) M) had no effect. T. vaginalis kills target cells by direct contact without phagocytosis. This event requires intact trichomonad microfilament function; microtubule function appears not to be essential

  5. CD-SEM metrology of spike detection on sub-40 nm contact holes

    Science.gov (United States)

    Momonoi, Yoshinori; Osabe, Taro; Yamaguchi, Atsuko; Mclellan Martin, Erin; Koyanagi, Hajime; Colburn, Matthew E.; Torii, Kazuyoshi

    2010-03-01

    In this work, for the purpose of contact-hole process control, new metrics for contact-hole edge roughness (CER) are being proposed. The metrics are correlated to lithographic process variation which result in increased electric fields; a primary driver of time-dependent dielectric breakdown (TDDB). Electric field strength at the tip of spoke-shaped CER has been simulated; and new hole-feature metrics have been introduced. An algorithm for defining critical features like spoke angle, spoke length, etc has been defined. In addition, a method for identifying at-risk holes has been demonstrated. The number of spike holes can determine slight defocus conditions that are not detected though the conventional CER metrics. The newly proposed metrics can identify contact holes with a propensity for increased electric field concentration and are expected to improve contact-hole reliability in the sub-40-nm contact-hole process.

  6. Contact dermatitis due to xanthium strumarium

    Directory of Open Access Journals (Sweden)

    J S Pasricha

    1990-01-01

    Full Text Available A 50-year-old mining engineer at Dhanbad was having air bome contact Dermatitis suspected to be caused by Xanthium strumarium. Patch tests with a 15% aqueous extract of air dried leaves showed a severe positive reaction, but the patient also had positive patch tests with Parthenium hysterphorus and a few other weeds and trees known to cause air-borne contact dermatitis. The titre of contact hypersensitivity with the extract of Xanthium struma′rium was more than 1:100,000 and for Parthenium hysterophrous it was 1:10 indicating a high degree of hypersensitivity to Xanthium strumarium. Further tests in 14 other patients revealed a high prevalence of cross sensitivity between these two plants both of which belong to the compositae family.

  7. Estimated strength of shear keys in concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.D. [Hatch Energy, Niagara Falls, ON (Canada); Lum, K.K.Y. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro requested that Hatch Energy review the seismic stability of Ruskin Dam which was constructed in 1930 at Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock in a narrow valley. The vertical joints between blocks are keyed and grouted. The strength of the shear keys was assessed when a non-linear finite element model found that significant forces were being transferred laterally to the abutments during an earthquake. The lateral transfer of loads to the abutment relies on the strength of the shear keys. The dynamic finite element analysis was used to determine the stability of the dam. A review of the shear strength measurements reported in literature showed that the measurements compared well to those obtained by BC Hydro from cores taken from Ruskin Dam. The cohesive strength obtained using the Griffith failure criteria was also in good agreement with both sets of measurements. A simple ultimate shear strength equation was developed using the Mohr-Coulomb failure criteria to determine combined cohesive and frictional strength of shear keys. Safety factors of 2.0 for static loads and 1.5 for seismic loads were proposed to reduce the ultimate strength to allowable values. It was concluded that given the relatively high shear strength established for the shear keys, the abutment rock or dam/abutment contact will control the amount of load which can arch to the abutments. 8 refs., 4 tabs., 5 figs.

  8. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  9. Corneal ring infiltration in contact lens wearers

    Directory of Open Access Journals (Sweden)

    Seyed Ali Tabatabaei

    2017-01-01

    Full Text Available To report a case of atypical sterile ring infiltrates during wearing soft silicone hydrogel contact lens due to poor lens care. A 29-year-old woman presented with complaints of pain, redness, and morning discharge. She was wearing soft silicone hydrogel contact lens previously; her current symptoms began 1 week before presentation. On examination, best-corrected visual acuity was 20/40 in that eye. Slit-lamp examination revealed dense, ring-shaped infiltrate involving both the superficial and deep stromal layers with lucid interval to the limbus, edema of the epithelium, epithelial defect, and vascularization of the superior limbus. Cornea-specific in vivo laser confocal microscopy (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM, Heidelberg Engineering GmbH, Dossenheim, Germany revealed Langerhans cells and no sign of Acanthamoeba or fungal features, using lid scraping and anti-inflammatory drops; her vision completely recovered. We reported an atypical case of a sterile corneal ring infiltrate associated with soft contact lens wearing; smear, culture, and confocal microscopy confirmed a sterile inflammatory reaction.

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  11. Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation

    International Nuclear Information System (INIS)

    Luo, Shi; Jang, Dongchan; Greer, Julia R.; Lee, Jiun-Haw; Liu, Chee-Wee; Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta

    2014-01-01

    This work examines Cu(In,Ga)Se 2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  12. Determination of the nano-scaled contact area of staphylococcal cells.

    Science.gov (United States)

    Spengler, Christian; Thewes, Nicolas; Jung, Philipp; Bischoff, Markus; Jacobs, Karin

    2017-07-20

    Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.

  13. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  14. Evaluation of Blast Resistance of Fiber Reinforced Composite Specimens under Contact Blast Load

    Science.gov (United States)

    Janota, O.; Foglar, M.

    2017-09-01

    This paper presents results of experimental programme which took place in 2014, 2015 and 2016. Experiments were focused on the resistance of full scale concrete panels subjected to contact blast loading. Specimens were loaded by contact blast by plastic explosive. All specimens were reinforced concrete slabs made of fiber concrete. Basalt mesh and textile sheets were added to some of the experiments for creating more heterogeneous material to achieve better resistance of the specimens. Evaluation of experiments was mainly focused on the damaged area on the contact side and soffit of the specimens. Dependency of the final damage of concrete panels on the weight of explosive and concrete strength was assessed.

  15. Effect of Water on Coal Strength | Singh | Momona Ethiopian Journal ...

    African Journals Online (AJOL)

    Water content is one of the most important factors influencing the rock strength. The present study has been conducted to see how coal strength changes under dry and water saturated conditions. The study reveals that the strength of coal decreases with increasing moisture. For rock mechanics and rock engineering ...

  16. A new theory for the static contact between rough, unmated surfaces in non-elastically deforming rock and its implications for rock friction

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    The closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. The aperture decreases considerably more under normal stress and remains permanently reduced, for the same ratio of normal stress to unconfined compressive strength. Also, a larger permanent relative contact area develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these differences. We modeled this process by considering the surfaces to consist of paraboloids lying on a flat plane and having a range of initial heights. Closure occurs by pressing a plane rigid surface against the 'hills', flattening their peaks, keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is assumed to vary linearly with the shortening strain, to a first approximation. This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also by the cataclastic deformation observed petrographically. The number of contact spots and the total length of contact seen in profile are also reasonably well modeled. These results have important implications for our understanding of frictional strength of fractures. The overall resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the contacts, both of which are affected by normal stress. Application of this model approach shows that the initial frictional resistance of some fractures in ductile

  17. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  18. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  19. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  20. Ti/Al Ohmic Contacts to n-Type GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Gangfeng Ye

    2011-01-01

    Full Text Available Titanium/aluminum ohmic contacts to tapered n-type GaN nanowires with triangular cross-sections were studied. To extract the specific contact resistance, the commonly used transmission line model was adapted to the particular nanowire geometry. The most Al-rich composition of the contact provided a low specific contact resistance (mid 10−8 Ωcm2 upon annealing at 600 °C for 15 s, but it exhibited poor thermal stability due to oxidation of excess elemental Al remaining after annealing, as revealed by transmission electron microscopy. On the other hand, less Al-rich contacts required higher annealing temperatures (850 or 900 °C to reach a minimum specific contact resistance but exhibited better thermal stability. A spread in the specific contact resistance from contact to contact was tentatively attributed to the different facets that were contacted on the GaN nanowires with a triangular cross-section.

  1. The Effect of Eye Contact Is Contingent on Visual Awareness

    Directory of Open Access Journals (Sweden)

    Shan Xu

    2018-02-01

    Full Text Available The present study explored how eye contact at different levels of visual awareness influences gaze-induced joint attention. We adopted a spatial-cueing paradigm, in which an averted gaze was used as an uninformative central cue for a joint-attention task. Prior to the onset of the averted-gaze cue, either supraliminal (Experiment 1 or subliminal (Experiment 2 eye contact was presented. The results revealed a larger subsequent gaze-cueing effect following supraliminal eye contact compared to a no-contact condition. In contrast, the gaze-cueing effect was smaller in the subliminal eye-contact condition than in the no-contact condition. These findings suggest that the facilitation effect of eye contact on coordinating social attention depends on visual awareness. Furthermore, subliminal eye contact might have an impact on subsequent social attention processes that differ from supraliminal eye contact. This study highlights the need to further investigate the role of eye contact in implicit social cognition.

  2. Contact angle of a nanodrop on a nanorough solid surface.

    Science.gov (United States)

    Berim, Gersh O; Ruckenstein, Eli

    2015-02-21

    The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.

  3. Digestion of cheese whey with anaerobic rotating biological contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale anaerobic rotating biological contact reactor receiving full strength cheese whey was studied over a range of hydraulic retention times from 11 to 5 days at 35 degrees C. Methane production rates ranging from 1.68 to 3.26 litres CH/sub 4//litre/day and a 76 to 93% reduction in chemical oxygen demand were achieved. At hydraulic retention times shorter than 5 days, steady-state operation could not be maintained for reactors receiving either full strength or diluted whey. A two-stage fermentation system was also studied; the results indicated that stable operation and treatment efficiency (89.5% COD removal) could be achieved.

  4. THE INFLUENCE OF HIP STRENGTH ON KNEE KINEMATICS DURING A SINGLE-LEGGED MEDIAL DROP LANDING AMONG COMPETITIVE COLLEGIATE BASKETBALL PLAYERS.

    Science.gov (United States)

    Suzuki, Hidetomo; Omori, Go; Uematsu, Daisuke; Nishino, Katsutoshi; Endo, Naoto

    2015-10-01

    A smaller knee flexion angle and larger knee valgus angle during weight-bearing activities have been identified as risk factors for non-contact anterior cruciate ligament (ACL) injuries. To prevent such injuries, attention has been focused on the role of hip strength in knee motion control. However, gender differences in the relationship between hip strength and knee kinematics during weight-bearing activities in the frontal plane have not been evaluated. The purpose of this study was to determine the influence of hip strength on knee kinematics in both genders during a single-legged landing task in the frontal plane. The hypotheses were that 1) subjects with a greater hip strength would demonstrate larger knee flexion and smaller knee valgus and internal rotation angles and 2) no gender differences would exist during the single-legged landing task. Forty-three Japanese collegiate basketball players (20 males, 23 females) participated in this study. Three-dimensional motion analysis was used to evaluate knee kinematics during a single-legged medial drop landing (SML). A hand-held dynamometer was used to assess hip extensor (HEXT), abductor (HAB), and external rotator (in two positions: seated position [SHER] and prone [PHER]) isometric strength. Spearman rank correlation coefficients (ρ) were determined for correlations between hip strength and knee kinematics at initial contact (IC) and peak (PK) during SML (p genders. Hip strength may, therefore, play an important role in knee motion control during sports activities, suggesting that increased hip strength may help to prevent non-contact ACL injuries in athletes of both genders. Moreover, gender-specific programs may be needed to control abnormal knee motion, as the influence of hip strength on knee kinematics may differ based on gender. 3.

  5. Strength functions for fragmented doorway states

    International Nuclear Information System (INIS)

    MacDonald, W.M.

    1980-01-01

    Coupling a strongly excited ''doorway state'' to weak ''hallway states'' distributes its strength into micro-resonances seen in differential cross sections taken with very good energy resolution. The distribution of strength is shown to be revealed by reduced widths of the K-matrix rather than by the imaginary part of poles of the S-matrix. Different strength functions (SF) constructed by averaging the K-matrix widths are then investigated to determine their dependences on energy and on parameters related to averages of microscopic matrix elements. A new sum rule on the integrated strength of these SF is derived and used to show that different averaging procedures actually distribute the strength differently. Finally, it is shown that the discontinuous summed strength defines spreading parameters for the doorway state only in strong coupling, where it approximates the idefinite integral of the continuous SF of MacDonald-Mekjian-Kerman-De Toledo Piza. A new method of ''parametric continuation'' is used to relate a discontinuous sliding box-average, or a finite sum, of discrete terms to a continous function

  6. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    Science.gov (United States)

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  7. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein–Protein Interactions

    Directory of Open Access Journals (Sweden)

    Beom Sik Kang

    2017-10-01

    Full Text Available Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  8. Strength, stiffness, and microstructure of Cu(In,Ga)Se{sub 2} thin films deposited via sputtering and co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shi; Jang, Dongchan; Greer, Julia R., E-mail: jrgreer@caltech.edu [Division of Applied Science and Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125 (United States); Lee, Jiun-Haw [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec 4 Roosevelt, Taipei 10617, Taiwan (China); Liu, Chee-Wee [Department of Electrical Engineering, National Taiwan University, No 1, Sec 4 Roosevelt, Taipei 10617, Taiwan (China); Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta [National Nano Device Laboratories, Hsinchu Science Park, No. 26, Prosperity Road I, Hsinchu 30078, Taiwan (China)

    2014-07-07

    This work examines Cu(In,Ga)Se{sub 2} thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  9. Superconducting energy gap of YB6 studied by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao

    2007-01-01

    Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented

  10. Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body

    Science.gov (United States)

    Selivanov, M. F.

    2017-11-01

    An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.

  11. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    International Nuclear Information System (INIS)

    Waseem; Elahi, N.; Siddiqui, A.; Murtaza, G.

    2011-01-01

    Research highlights: → A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. → The spring hold-down force is calculated using the contact pressure obtained from the FE model. → Experiment has also been conducted in the same environment for the measurement of this force. → The spring hold-down force values obtained from both studies confirm the validation of this analysis. → The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  12. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, E-mail: wazim_me@hotmail.co [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan); Elahi, N.; Siddiqui, A.; Murtaza, G. [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan)

    2011-01-15

    Research highlights: A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies confirm the validation of this analysis. The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  13. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  14. Bone Mechanical Strength Estimation from Micro X-ray CT Image

    National Research Council Canada - National Science Library

    Matani, A

    2001-01-01

    ... (Bone Mineral Density), an index to evaluate the mechanical strength of the bone, does not always reflect the strength, On the other hand, micro X-ray CT has revealed the inner structure of bone, Under such circumstances...

  15. Detection of rock strength at Branisko massif

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2000-09-01

    Full Text Available When monitoring and optimizing the driving proces of the exploratory gallery by a computer system, conditions for verification of the interaction between desintegrating head of driving machine and rock massif were created. One of the output values of this mathematical model is the model strength at a simple pressure ótlH, which is defined as a pressure at the discus and the massif contact during the desintigration (a near limit of massif strength. By geological and geological engineering exploration, the section of length 2340 m was divided into fourty-two geological sections and five quasi-homogeneous massif enviroments. In the article, results of scleroscopic strength óCI , the strength in a simple pressure determined from the point load test and the strength at simple pressure ótlH are confronted . The main advance of the electronic geomechanical monitoring is the density of gained information. The two-seconds sample period of input and output data during the driving process makes it possible to describe driving circumstances in an almost continual way for each millimeter of the built tunnel. Then the information about changes of disintegrated rock properties, have the same density (frequency. By comparing a quantity of data gained by examining the index of point strength, scleroscopic strength and the model strength in a simple pressure from the monitoring process of driving process it is obvious that during the driving of exploratory gallery of motorway tunnel Branisko, a proportion of data number from the three “type examinations” of strength was reached and it was approximately 1:7:5000. Approximately in the same proportion, there were determined values for the 42 geologic sections (I. – XLII., which were defined in detail by the geologic, engineering geologic, hydrogeologic and geotechnic research.. The presented quantity values of presented rock mass strength for each geologic section are presented by their arithmetic average

  16. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  17. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  18. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Cross-Cultural Contact in Counseling Training.

    Science.gov (United States)

    Diaz-Lazaro, Carlos M.; Cohen, B. Beth

    2001-01-01

    Reports on the importance of cross-cultural contact in the development of multicultural counseling competencies (MCCs). Results reveal that the greater the prior cross-cultural life experience, the higher were students' MCCs measured at the beginning of a multicultural counseling course. MCCs measured at the end of the course were significantly…

  20. Applanation tonometry in silicone hydrogel contact lens wearers.

    Science.gov (United States)

    Allen, R J; Dev Borman, A; Saleh, G M

    2007-12-01

    Previous studies have investigated intraocular pressure (IOP) measurements through conventional soft (hydrogel) therapeutic contact lenses, and have found that an accurate IOP can be recorded in normal eyes, and in eyes with abnormal anterior segments. The IOP measurement through soft contact lenses may be affected by the water content and centre thickness of the lens. Silicone hydrogel contact lenses are now being used as therapeutic contact lenses due to their high oxygen permeability. The purpose of this study is to investigate if IOP can be accurately measured in a subject wearing a silicone hydrogel contact lens. In a cohort study, the IOP was measured with a Goldmann applanation tonometer without a contact lens and then repeated with a hydrogel contact lens in situ. The IOP of 20 eyes of 10 volunteers with no ocular pathology was measured. The mean difference (+/-S.D.) found between IOP measurement with (mean 15.55+/-1.70 mmHg) and without (mean 16.05+/-1.90 mmHg) contact lens was found to be -0.5+/-0.89 mmHg. Statistical analysis was performed which revealed a correlation coefficient of 0.89. No significant statistical difference was found between the two groups with paired t-test (p=0.19). Accurate measurement of IOP by applanation tonometry can be achieved through a silicone hydrogel contact lens.

  1. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  2. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    Science.gov (United States)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  3. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    Science.gov (United States)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  4. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  5. Sizing Optimization and Strength Analysis for Spread-type Gear Reducers

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Hsu

    2014-08-01

    Full Text Available A reducer is now developed towards the trend of customization service and cost-saving. In this study, a sizing program for the reducer has been developed in order to replace the manual sizing process. We aim at the total center distance of the gear reducer for optimization to reduce gear volume and weight. Also, we checked constrains such as, tooth root bending, tooth contact strength, gear shaft endangered cross-section, bearing life, gear shaft deflection, and torsion angle deformation, etc., to obtain reliable drive strength. Comparisons of sizes and weights before and after optimization confirm that the purpose for reducing production cost is achieved.

  6. Adhesive contact: from atomistic model to continuum model

    International Nuclear Information System (INIS)

    Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan

    2011-01-01

    Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self-consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve. (atomic and molecular physics)

  7. Occupational irritant contact dermatitis diagnosed by analysis of contact irritants and allergens in the work environment.

    Science.gov (United States)

    Friis, Ulrik F; Menné, Torkil; Schwensen, Jakob F; Flyvholm, Mari-Ann; Bonde, Jens P E; Johansen, Jeanne D

    2014-12-01

    Irritant contact dermatitis (ICD) is a common diagnosis in patients with occupational contact dermatitis (OCD). Studies are lacking on the usefulness of material safety data sheets (MSDSs) in making the diagnosis of ICD. To characterize irritant exposures leading to the diagnosis of occupational ICD (OICD), and to evaluate the occurrence of concomitant exposures to contact allergens. We included 316 patients with suspected occupational hand dermatitis, referred to the Department of Dermato-Allergology, Copenhagen University Hospital Gentofte, Denmark during January 2010-August 2011, in a programme consisting of a clinical examination, exposure assessment, and extensive patch/prick testing. OCD was diagnosed in 228 patients. Of these patients, 118 were diagnosed with OICD. The main irritant exposures identified were wet work (n = 64), gloves (n = 45), mechanical traumas (n = 19), and oils (n = 15). Exposure to specific irritant chemicals was found in 9 patients, and was identified from MSDSs/ingredients labelling in 8 of these patients. Review of MSDSs and ingredients labelling showed that 41 patients were exposed to 41 moderate to potent contact allergens, and 18 patients were exposed to 25 weak workplace contact allergens. In the present study, the systematic exposure assessment did not reveal any new irritants. MSDSs have a limited role in the investigation of ICD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Gabrielle Goldenberg

    Full Text Available During Drosophila gastrulation, amnioserosa (AS cells flatten and spread as an epithelial sheet. We used AS morphogenesis as a model to investigate how adherens junctions (AJs distribute along elongating cell-cell contacts in vivo. As the contacts elongated, total AJ protein levels increased along their length. However, genetically blocking this AJ addition indicated that it was not essential for maintaining AJ continuity. Implicating other remodeling mechanisms, AJ photobleaching revealed non-directional lateral mobility of AJs along the elongating contacts, as well as local AJ removal from the membranes. Actin stabilization with jasplakinolide reduced AJ redistribution, and live imaging of myosin II along elongating contacts revealed fragmented, expanding and contracting actomyosin networks, suggesting a mechanism for lateral AJ mobility. Actin stabilization also increased total AJ levels, suggesting an inhibition of AJ removal. Implicating AJ removal by endocytosis, clathrin endocytic machinery accumulated at AJs. However, dynamin disruption had no apparent effect on AJs, suggesting the involvement of redundant or dynamin-independent mechanisms. Overall, we propose that new synthesis, lateral diffusion, and endocytosis play overlapping roles to populate elongating cell-cell contacts with evenly distributed AJs in this in vivo system.

  9. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  10. Processes linked to contact changes in adoptive kinship networks.

    Science.gov (United States)

    Dunbar, Nora; van Dulmen, Manfred H M; Ayers-Lopez, Susan; Berge, Jerica M; Christian, Cinda; Gossman, Ginger; Henney, M Susan M; Mendenhall, Tai J; Grotevant, Harold D; McRoy, Ruth G

    2006-12-01

    The purpose of this study was to reveal underlying processes in adoptive kinship networks that experienced increases or decreases in levels of openness during the child's adolescent years. Intensive case study analyses were conducted for 8 adoptive kinship networks (each including an adoptive mother, adoptive father, adopted adolescent, and birth mother), half of whom had experienced an increase in openness from indirect (mediated) to direct (fully disclosed) contact and half of whom had ceased indirect contact between Waves 1 and 2 of a longitudinal study. Adoptive mothers tended to be more involved in contact with the birth mother than were adoptive fathers or adopted adolescents. Members of adoptive kinship networks in which a decrease in level of contact took place had incongruent perspectives about who initiated the stop in contact and why the stop took place. Birth mothers were less satisfied with their degree of contact than were adoptive parents. Adults' satisfaction with contact was related to feelings of control over type and amount of interactions and permeability of family boundaries. In all adoptive kinship networks, responsibility for contact had shifted toward the adopted adolescent regardless of whether the adolescent was aware of this change in responsibility.

  11. Adhesion strength of lead zirconate titanate sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berfield, Thomas A., E-mail: tom.berfield@louisville.edu [Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292 (United States); Kitey, Rajesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur (India); Kandula, Soma S. [Intel Corporation, Portland, OR (United States)

    2016-01-01

    The adhesion strength between a thin film and substrate is often the critical parameter that controls the initiation as well as the mode of film failure. In this work, a laser-based spallation method is used to determine the adhesion strength of “as deposited” lead zirconate titanate (PZT) sol-gel thin films on the two functionally different substrates. For the first case, PZT sol-gel film is deposited onto bare Si/SiO{sub 2} substrates via spin casting. The extremely high adhesion strength between the film and the substrate necessitated an additional platinum mass superlayer to be deposited on top of the PZT film in order to induce interfacial failure. For the superlayer film system, a hybrid experimental/numerical method is employed for determining the substrate/film interfacial strength, quantified to be in the range of 460–480 MPa. A second substrate variation with lower adhesion strength is also prepared by applying a self-assembled octadecyltrichlorosilane (ODS) monolayer to the Si/SiO{sub 2} substrate prior to the film deposition. For the monolayer-coated substrate case, the adhesion strength is observed to be significantly lower (54.7 MPa) when compared to the earlier case. - Highlights: • A non-contact laser spallation method is used to determine PZT film adhesion. • A mediated self-assembled monolayer is shown to greatly reduce interface strength. • Adhesion strength for even well-bonded thin films was found using a superlayer.

  12. The Mathematical and Computer Aided Analysis of the Contact Stress of the Surface With 4th Order

    Science.gov (United States)

    Huran, Liu

    Inspired from some gears with heavy power transmission in practical usage after serious plastic deformation in metallurgical industry, we believe that there must existed some kind of gear profile which is most suitable in both the contact and bending fatigue strength. From careful analysis and deep going investigation, we think that it is the profile of equal conjugate curvature with high order of contact, and analyzed the forming principle of this kind of profile. Based on the second curve and comparative analysis of fourth order curves, combined with Chebyshev polynomial terms of higher order contact with tooth contact stress formula derived. Note high exposure in the case of two extreme points of stress and extreme positions and the derived extreme contact stress formula. Finally, a pair of conjugate gear tooth profile curvature provides specific contact stress calculation.

  13. Jet Fuel-Associated Occupational Contact Dermatitis.

    Science.gov (United States)

    Contestable, James J

    2017-03-01

    Occupational contact dermatitis is a ubiquitous problem. Sailors onboard U.S. Navy vessels are at high risk given the multitude of potential workplace exposures. Solvents, petrochemicals, and fuels are abundant and can cause irritant or allergic contact dermatitis. Symptoms of contact dermatitis can cause inability to work and, if chronic, may require a change in rating or job. Prevention of this issue requires patient education about the risks and correct personnel protective equipment. Even with preventative strategies in place, exposures and cases of contact dermatitis will occur. Treatment consists of topical steroids and immunomodulators, as well as barrier creams and emollients. The goal of treatment is to fully restore the skin's natural barrier and prevent further exposure. A classic case of jet fuel-associated contact dermatitis is reviewed. A literature review utilizing PubMed, Google Scholar, and Google Search was conducted to elucidate our understanding of this issue, current occupational health guidelines, preventative approaches, and treatments. This case report provides guidance and recommendations for providers who encounter contact dermatitis related to petrochemicals, such as jet fuel. The literature review revealed limited knowledge surrounding in vivo human skin effects of jet fuel, specifically JP-5. Even larger gaps were found in our understanding of, and guidelines for, protective modalities against jet fuel exposure and dermatitis. A case is presented to facilitate recognition of jet fuel contact dermatitis and guidance for treatment and prevention. Given our current limited knowledge and guidelines concerning protective equipment and skin protectants, multiple proposals for future studies are suggested. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  14. Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations, its robustness, and applications.

    Science.gov (United States)

    Fačkovec, Boris; Vondrášek, Jiří

    2012-10-25

    Although a contact is an essential measurement for the topology as well as strength of non-covalent interactions in biomolecules and their complexes, there is no general agreement in the definition of this feature. Most of the definitions work with simple geometric criteria which do not fully reflect the energy content or ability of the biomolecular building blocks to arrange their environment. We offer a reasonable solution to this problem by distinguishing between "productive" and "non-productive" contacts based on their interaction energy strength and properties. We have proposed a method which converts the protein topology into a contact map that represents interactions with statistically significant high interaction energies. We do not prove that these contacts are exclusively stabilizing, but they represent a gateway to thermodynamically important rather than geometry-based contacts. The process is based on protein fragmentation and calculation of interaction energies using the OPLS force field and relies on pairwise additivity of amino acid interactions. Our approach integrates the treatment of different types of interactions, avoiding the problems resulting from different contributions to the overall stability and the different effect of the environment. The first applications on a set of homologous proteins have shown the usefulness of this classification for a sound estimate of protein stability.

  15. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  16. Optimal contact definition for reconstruction of Contact Maps

    Directory of Open Access Journals (Sweden)

    Stehr Henning

    2010-05-01

    Full Text Available Abstract Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a to what accuracy does a contact map represent its corresponding 3D structure, b what is the best contact map representation with regard to reconstructability and c what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through

  17. Addition of Silica Fume to Improve Strength of Cement Paste

    Science.gov (United States)

    Chen, Jiajian; Chen, Hongniao; Li, Gu

    2018-03-01

    This study measured the packing densities of 0 to 30% silica fume (SF) added cementitious materials and strength of the cementitious pastes with various water content. The results revealed that addition of silica fume up to a certain level has great effects on packing density and strength. In-depth analysis illustrated that a lower W/CM ratio would not always result in a higher cube strength, and the range between 0.05 and 0.07 µm would be the amount of water film thickness (WFT) for muximum strength.

  18. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2016-04-01

    Full Text Available A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  19. Occupational protein contact dermatitis.

    Science.gov (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  20. Contact Disturbances, Self-Esteem and Life Satisfaction of University Students: A Structural Equation Modelling Study

    Science.gov (United States)

    Tagay, Özlem

    2015-01-01

    Problem Statement: A literature analysis revealed that contact disturbances, self-esteem and life satisfaction have been examined in different studies separately. In particular, the researchers observed that the studies conducted on Gestalt contact disturbances are limited in number. In this study, the variables of contact disturbances,…

  1. Contact angle and local wetting at contact line.

    Science.gov (United States)

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  2. [Sport injuries in full contact and semi-contact karate].

    Science.gov (United States)

    Greier, K; Riechelmann, H; Ziemska, J

    2014-03-01

    Karate enjoys great popularity both in professional and recreational sports and can be classified into full, half and low contact styles. The aim of this study was the analysis of sports injuries in Kyokushinkai (full contact) and traditional Karate (semi-contact). In a retrospective study design, 215 active amateur karateka (114 full contact, 101 semi-contact) were interviewed by means of a standardised questionnaire regarding typical sport injuries during the last 36 months. Injuries were categorised into severity grade I (not requiring medical treatment), grade II (single medical treatment), grade III (several outpatient medical treatments) and grade IV (requiring hospitalisation). In total, 217 injuries were reported in detail. 125 injuries (58%) occurred in full contact and 92 (42%) in semi-contact karate. The time related injury rate of full contact karateka was 1.9/1000 h compared to 1.3/1000 h of semi-contact karateka (p injuries were musculoskeletal contusions (33% full contact, 20% semi-contact), followed by articular sprains with 19% and 16%. The lower extremity was affected twice as often in full contact (40%) as in semi-contact (20%) karate. Training injuries were reported by 80% of the full contact and 77% of the semi-contact karateka. Most injuries, both in training and competition, occurred in kumite. 75% of the reported injuries of full contact and 70% of semi-contact karateka were classified as low grade (I or II). The high rate of injuries during training and kumite (sparring) points to specific prevention goals. The emphasis should be put on proprioceptive training and consistent warm-up. In the actual competition the referees play a vital role regarding prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  3. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  4. Effects of pressure and temperature on thermal contact resistance between different materials

    Directory of Open Access Journals (Sweden)

    Zhao Zhe

    2015-01-01

    Full Text Available To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.

  5. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  6. The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies.

    Science.gov (United States)

    Schweizer, Katrin; Romkes, Jacqueline; Brunner, Reinald

    2013-09-01

    This study provides an overview on the association between premature plantarflexor muscle activity (PPF), muscle strength, and equinus gait in patients with various pathologies. The purpose was to evaluate whether muscular weakness and biomechanical alterations are aetiological factors for PPF during walking, independent of the underlying pathology. In a retrospective design, 716 patients from our clinical database with 46 different pathologies (orthopaedic and neurologic) were evaluated. Gait analysis data of the patients included kinematics, kinetics, electromyographic activity (EMG) data, and manual muscle strength testing. All patients were clustered three times. First, patients were grouped according to their primary pathology. Second, all patients were again clustered, this time according to their impaired joints. Third, groups of patients with normal EMG or PPF, and equinus or normal foot contact were formed to evaluate the association between PPF and equinus gait. The patient groups derived by the first two cluster methods were further subdivided into patients with normal or reduced muscle strength. Additionally, the phi correlation coefficient was calculated between PPF and equinus gait. Independent of the clustering, PPF was present in all patient groups. Weak patients revealed PPF more frequently. The correlations of PPF and equinus gait were lower than expected, due to patients with normal EMG during loading response and equinus. These patients, however, showed higher gastrocnemius activity prior to foot strike together with lower peak tibialis anterior muscle activity in loading response. Patients with PPF and a normal foot contact possibly apply the plantarflexion-knee extension couple during loading response. While increased gastrocnemius activity around foot strike seems essential for equinus gait, premature gastrocnemius activity does not necessarily produce an equinus gait. We conclude that premature gastrocnemius activity is strongly associated

  7. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  8. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  9. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  10. Examining Citizens’ Contact to Local Public Institutions

    Directory of Open Access Journals (Sweden)

    Florina Bente

    2013-08-01

    Full Text Available Objective - This study aims to explore the communication process within local public administration as a determinant of citizens` satisfaction. Prior work - Several authors had examined if having contact with certain service providers will affect people’s attitudes toward the service quality, but the researchers have not focused yet on the effect of citizens` contact to local authorities on satisfaction. Approach - This research seeks to address this field using an exploratory approach. Following a quantitative methodological approach, a survey was applied to a sample of 380 citizens within Western Romanian. Findings - By analyzing data it was possible to determine citizen satisfaction and to assess its relationship with costumer contact. In addition it was revealed that in Crisana Region city hall is the most frequented local public institution. Implications – The results showed a negative effect of frequency of access to local authorities on overall customer satisfaction. The effect of citizens` contact to local authorities received less attention from the academic researchers, as a need in the literature is to expand this field. Value - This research is the first to specifically examine the contact to local authorities and the effect of frequency of addressing on citizen satisfaction within Crisana Region.

  11. Prediction of serviceability of the material working under conditions of dynamic contact with liquid medium

    International Nuclear Information System (INIS)

    Veksler, Yu.G.; Poluyanov, V.B.

    1977-01-01

    A method is suggested for selecting materials working in contact with fusible liquid metals under namic loading. It is recommended to determine the rate of failure in short-time tests of materials which have shown good corrosion resistence. A material thus selected is subject to short-time cavitation mechanical strength test and a creep test. After that the cavitation-mechanical strength is to be calculated with an account for variation of transverse cross-section area. An equation of cavitation failure rate vs. time is given

  12. Microscopic contact area and friction between medical textiles and skin.

    Science.gov (United States)

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modeling the Effect of Nail Corrosion on the Lateral Strength of Joints

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2012-01-01

    This article describes a theoretical method of linking fastener corrosion in wood connections to potential reduction in lateral shear strength. It builds upon published quantitative data of corrosion rates of metals in contact with treated wood for several different wood preservatives. These corrosion rates are then combined with yield theory equations to calculate a...

  14. The Character Strengths of Class Clowns

    Directory of Open Access Journals (Sweden)

    Willibald F. Ruch

    2014-09-01

    Full Text Available Class clowns traditionally were studied as a type concept and identified via sociometric procedures. In the present study a variable-centered approach was favored and class clown behaviors were studied in the context of character strengths, orientations to happiness and satisfaction with life. A sample of 672 Swiss children and adolescents filled in an 18 item self-report instrument depicting class clown behaviors. A hierarchical model of class clown behaviors was developed distinguishing a general factor and the four positively correlated dimensions of identified as a class clown, comic talent, disruptive rule-breaker, and subversive joker. Analysis of the general factor showed that class clowns were primarily male, and tended to be seen as class clowns by the teacher. Analyses of the 24 character strengths of the VIA-Youth (Park & Peterson, 2006 showed that class clowns were high in humor and leadership, and low in strengths like prudence, self-regulation, modesty, honesty, fairness, perseverance, and love of learning. An inspection of signature strengths revealed that 75% of class clowns had humor as a signature strength. Furthermore, generally class clown behaviors were shown by students indulging in a life of pleasure, but low life of engagement. The four dimensions yielded different character strengths profiles. While all dimensions of class clowns behaviors were low in temperance strengths, the factors identified as the class clown and comic talent were correlated with leadership strengths and the two negative factors (disruptive rule-breaker, subversive joker were low in other directed strengths. The disruptive rule breaking class clown was additionally low in intellectual strengths. While humor predicted life satisfaction, class clowning tended to go along with diminished satisfaction with life. It is concluded that different types of class clowns need to be kept apart and need different attention by teachers.

  15. The character strengths of class clowns.

    Science.gov (United States)

    Ruch, Willibald; Platt, Tracey; Hofmann, Jennifer

    2014-01-01

    Class clowns traditionally were studied as a type concept and identified via sociometric procedures. In the present study a variable-centered approach was favored and class clown behaviors were studied in the context of character strengths, orientations to happiness and satisfaction with life. A sample of 672 Swiss children and adolescents filled in an 18 item self-report instrument depicting class clown behaviors. A hierarchical model of class clown behaviors was developed distinguishing a general factor and the four positively correlated dimensions of "identified as a class clown," "comic talent," "disruptive rule-breaker," and "subversive joker." Analysis of the general factor showed that class clowns were primarily male, and tended to be seen as class clowns by the teacher. Analyses of the 24 character strengths of the VIA-Youth (Park and Peterson, 2006) showed that class clowns were high in humor and leadership, and low in strengths like prudence, self-regulation, modesty, honesty, fairness, perseverance, and love of learning. An inspection of signature strengths revealed that 75% of class clowns had humor as a signature strength. Furthermore, class clown behaviors were generally shown by students indulging in a life of pleasure, but low life of engagement. The four dimensions yielded different character strengths profiles. While all dimensions of class clowns behaviors were low in temperance strengths, the factors "identified as the class clown" and "comic talent" were correlated with leadership strengths and the two negative factors ("disruptive rule-breaker," "subversive joker") were low in other directed strengths. The disruptive rule breaking class clown was additionally low in intellectual strengths. While humor predicted life satisfaction, class clowning tended to go along with diminished satisfaction with life. It is concluded that different types of class clowns need to be kept apart and need different attention by teachers.

  16. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use.

    Science.gov (United States)

    Schwensen, Jakob Ferløv; Friis, Ulrik Fischer; Menné, Torkil; Flyvholm, Mari-Ann; Johansen, Jeanne Duus

    2017-05-01

    The aim of the study is to investigate risk factors for sensitization to preservatives and to examine to which extent different preservatives are registered in chemical products for occupational use in Denmark. A retrospective epidemiological observational analysis of data from a university hospital was conducted. All patients had occupational contact dermatitis and were consecutively patch tested with 11 preservatives from the European baseline series and extended patch test series during a 5-year period: 2009-2013. Information regarding the same preservatives in chemical products for occupational use ('substances and materials') registered in the Danish Product Register Database (PROBAS) was obtained. The frequency of preservative contact allergy was 14.2% (n = 141) in 995 patients with occupational contact dermatitis. Patients with preservative contact allergy had significantly more frequently facial dermatitis (19.9 versus 13.1%) and age > 40 years (71.6 versus 45.8%) than patients without preservative contact allergy, whereas atopic dermatitis was less frequently observed (12.1 versus 19.8%). Preservative contact allergy was more frequent in painters with occupational contact dermatitis as compared to non-painters with occupational contact dermatitis (p contact allergy to methylisothiazolinone and contact allergy to formaldehyde. Analysis of the registered substances and materials in PROBAS revealed that preservatives occurred in several product categories, e.g., 'paints and varnishes', 'cleaning agents', 'cooling agents', and 'polishing agents'. Formaldehyde and isothiazolinones were extensively registered in PROBAS. The extensive use of formaldehyde and isothiazolinones in chemical products for occupational use may be problematic for the worker. Appropriate legislation, substitution, and employee education should be prioritized.

  17. Effect of contact area on electron transport through graphene-metal interface.

    Science.gov (United States)

    Liu, Hongmei; Kondo, Hisashi; Ohno, Takahisa

    2013-08-21

    We perform first-principles investigations of electron transport in armchair graphene nanoribbons adsorbed on Cu(111) and Ni(111) surfaces with various contact areas. We find that the contact area between metals and graphene has different influences on the conductance. The Cu-graphene system shows an increase in differential conductance for more contact area at a low bias voltage, primarily originating from the shift of transmission peaks relative to the Fermi energy. As the bias increases, there is an irregular change of conductance, including a weak negative differential conductance for more contact area. In contrast, the conductance of the Ni-graphene junction is monotonically enhanced with increasing overlap area. The minority spin which shows a broad transmission is responsible for the conductance increase of Ni-graphene. These behaviors can be attributed to different mechanisms of the interfacial electron transport: Charge transfer between graphene and Cu largely dominates the transmission enhancement of Cu-graphene, whereas hybridization between graphene and Ni states plays a more important role in the transmission enhancement of Ni-graphene. The different behaviors of transmission increase correlate with not only the strength of the graphene-metal interaction but also the location of metal d states.

  18. The impact of cellular debris on Pseudomonas aeruginosa adherence to silicone hydrogel contact lenses and contact lens storage cases.

    Science.gov (United States)

    Burnham, Geoffrey W; Cavanagh, H Dwight; Robertson, Danielle M

    2012-01-01

    To evaluate neutrophil-enhanced Pseudomonas aeruginosa (PA) biofilm formation on silicone hydrogel contact lenses and to determine the effect of epithelial biodebris on PA adherence in contact lens storage cases. A fully invasive PA corneal isolate stably conjugated to green fluorescent protein was used. Unworn lotrafilcon A contact lenses were incubated at various ratios of PA to polymorphonuclear neutrophil (PMN) for 24 hours at 37°C. Lens-associated PA was evaluated using laser scanning confocal microscopy and nonviable PA were visualized using propidium iodide. Viable bacteria were enumerated by colony-forming unit (CFU) analysis. For acute epithelial cell studies, PA viability was determined after coincubation with freeze-thaw epithelial cell lysates in 96-well polystyrene plates. Levels of residual cellular debris and bacterial viability were further assessed in used contact lens storage cases. Laser scanning confocal microscopy demonstrated that cotreatment with PMA-stimulated neutrophils increased PA adherence over 24 hours to lens surfaces with a striking alteration of PA architecture. Propidium iodide staining showed that the adherent bacteria consisted of a mixture of viable and nonviable PA; a PMN-associated increase in viable PA was confirmed by CFU (PA:PMN 0.1:1, P = 0.025; PA:PMN 1:1, P = 0.005). Acute epithelial cell debris studies revealed a significant increase in viable PA in 96-well plates in the presence of epithelial freeze-thaw lysates (PA:debris 1:1, P = 0.002; PA:debris 100:1, P = 0.002). Crystal violet staining of used lens storage cases revealed residual cellular debris at all time points, which was independent of microbial contamination; all lens cases used for periods of 9 months or more were uniformly associated with high levels of viable microorganisms. These results demonstrate that prolonged corneal inflammation with the presence of PMNs when confronted with simultaneous PA challenge in extended contact lens wear has the potential

  19. An Experimental Study on the Water-Induced Strength Reduction in Zigong Argillaceous Siltstone with Different Degree of Weathering

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The water-softening property of soft rocks is a key problem in geotechnical engineering. A typical red-bed soft rock (the Zigong argillaceous siltstones with different weathering degree is selected as an example to study the water-softening property and the influence of degree of weathering. A series of mechanical and microstructure tests are carried out to analyze the weathering characteristics and mechanism of the Zigong argillaceous siltstones. The results of mechanical experiments reveal that the water content and the weathering degree of rock specimens both have a weakening effect on the compressive and shear strengths. According to the results of present microstructure tests, the mechanical properties of the Zigong argillaceous siltstones are closely correlated with their physical properties, including internal microstructure and material composition for highly weathered rocks or moderately weathered rocks (in both natural and saturation conditions. Finally, experimental results indicate that the changes of microstructure and internal materials are two main factors that influence rock strength parameters after contacting with water and that these properties reflect the rock weathering degree. In a word, when red-bed soft rocks are encountered in geotechnical engineering, special attention should be paid to presence of water.

  20. Interaction of radionickel with diatomite as a function of pH, ionic strength and temperature

    International Nuclear Information System (INIS)

    Xue Wang

    2013-01-01

    Sequestration of Ni(II) on diatomite as a function of reaction time, pH, ionic strength, foreign ions and temperature were investigated by batch sorption technique. The results indicated that the sorption of Ni(II) on diatomite was quickly in the first contact time of 2 h and then slowly with increasing contact time. The interaction of Ni(II) with diatomite was strongly pH- and ionic strength-dependent at low pH values (i.e., which was dominated by ion exchange or outer-sphere surface complexation), while the pH-dependent and ionic strength-independent sorption at high pH suggested that inner-sphere or multinuclear surface complexation was the main sorption mechanism. With increasing temperature, the sorption of Ni(II) on diatomite increased and the experimental data were well fitted by Langmuir model. The sorption samples at pH 6.8 and 10.0 were also characterized by XPS spectroscopy, and the results suggested that Si atoms also participated in Ni(II) sorption on diatomite. The results are important to evaluate the physicochemical behavior of Ni(II) and other similar radionuclides and heavy metal ions in the environment. (author)

  1. The effect of medial arch support over the plantar pressure and triceps surae muscle strength after prolonged standing

    Directory of Open Access Journals (Sweden)

    Hindun Saadah

    2015-11-01

    Full Text Available Background: The activity with prolonged standing position is one of the causes of abnormalities in the lower leg and foot. The aim of this study is to discover the effect of medial arch support over the distribution of plantar pressure when standing and walking.Methods: This was an experimental study with pre- and post-design the strength of triceps surae muscle after prolonged standing, was also evaluated in an experimental study with pre- and post-design. Variables of plantar pressure measurement are the contact area and pressure peak were measured by using the Mat-scan tool. The measurement of the triceps surae muscle strength was done with a hand-held dynamometer, before and after using the medial arch support. Measurement was performed before and after working with prolonged standing position which took place about seven hours using the medial arch support inserted in the shoes. Data was analyzed using paired T-test.Results: There was a significant difference of peak pressure between standing (p = 0.041 and walking (p = 0.001. Whereas the contact area showed a significant decrease in the width of the contact area when standing (104.12 ± 12.42 vs 99.08 ± 10.21 p = 0.023. Whereas, the triceps surae muscle strength pre- and post-standing prolonged did not indicate a significant difference.Conclusion: There was decrease in peak pressure when standing and walking and decrease in contact area when standing on plantar after used of the medial arch support after prolonged standing.

  2. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  3. An elastic-plastic contact model for line contact structures

    Science.gov (United States)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  4. Imaging electron flow from collimating contacts in graphene

    Science.gov (United States)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  5. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  6. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices

    International Nuclear Information System (INIS)

    He Ze-Zhao; Yang Ke-Wu; Yu Cui; Li Jia; Liu Qing-Bin; Lu Wei-Li; Feng Zhi-Hong; Cai Shu-Jun

    2015-01-01

    We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 ω·mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4H-SiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance R c of bilayer graphene improves from an average of 0.24 ω·mm to 0.1 ω·mm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density, high carrier transmission probability, and p-type doping introduced by contact metal Au. (paper)

  8. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  9. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.

    OpenAIRE

    Wu, Y; Montes, J G; Sjodin, R A

    1992-01-01

    Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...

  10. Dynamic Contact Angle at the Nanoscale: A Unified View.

    Science.gov (United States)

    Lukyanov, Alex V; Likhtman, Alexei E

    2016-06-28

    Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.

  11. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    International Nuclear Information System (INIS)

    Zhang, Y.; Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B.; Majkic, G.; Selvamanickam, V.

    2012-01-01

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90° to 180°) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  12. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  13. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  14. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  15. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    Science.gov (United States)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  16. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    Science.gov (United States)

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  17. Evaluating the impact of direct and indirect contact on the mental health stigma of pharmacy students.

    Science.gov (United States)

    Nguyen, Elizabeth; Chen, Timothy F; O'Reilly, Claire L

    2012-07-01

    Contact with mental health consumers has shown to be a promising strategy to address mental health stigma, particularly in the context of pharmacy education. This research aimed to compare the effectiveness of a direct (face-to-face) contact intervention with an indirect (film based) contact intervention in reducing the mental health stigma of pharmacy students. A two-group, non-randomized, comparative study was conducted with third year pharmacy students (n = 198) allocated to the direct contact arm and fourth year pharmacy students (n = 278) allocated to the indirect contact arm. Baseline and immediate post-intervention data were collected using a validated 39 item survey instrument to assess the impact of the interventions on mental health stigma as well as attitudes towards providing mental health pharmaceutical services. Participants in the direct contact group showed a significant improvement in 37 out of 39 survey items and participants in the indirect contact group showed a significant improvement in 27 out of 39 items (P direct contact had a stronger impact than indirect contact for 22 items (P interventions was equivalent. Both indirect and direct contact may positively impact mental health stigma. While the strength of the stigma-change process may be heightened by face-to-face interactions, the largely positive impact of indirect contact suggests that stigma reduction may depend less on the medium of contact but more on the transcendent messages contributed by the consumers facilitating the contact experience.

  18. Strength Analysis and Process Simulation of Subway Contact Rail Support Bracket of Composite Materials

    Science.gov (United States)

    Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.

    2016-10-01

    An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.

  19. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill.

    Science.gov (United States)

    Zhang, Tao; Cai, Guojun; Duan, Weihong

    2018-02-01

    The disposal of scrap rubber tires has induced critical environmental issue worldwide due to the rapid increase in the number of vehicles. Recycled scrap tires as a construction material in civil engineering have significant environmental benefits from a waste management perspective. A systematic study that deals with strength and microstructure characteristics of the rubber-sand mixtures is initiated, and mechanical response of the mixtures is discussed in this investigation. Experiments were conducted to evaluate the effects of rubber fraction on the basic properties including mass density (ρ), stress-strain characteristics, shear strength, and unconfined compression strength (q u ) of the rubber-sand mixtures. Additionally, scanning electron microscopy (SEM) was carried out to reveal the microstructure characteristics of the mixtures with various rubber fractions. A discussion on the micromechanics of the mixtures also was conducted. This study demonstrates that the ρ, friction angle, and q u decrease linearly with an increase in rubber fraction, whereas shear strain at peak increases. The stress-strain characteristics of the rubber-sand mixtures shift from brittle to ductile as the rubber fraction increase. These changes are attributed to remarkably lower stiffness and higher compressibility of the rubber particle compared with those of the conventional mineral aggregates. With an increase in the rubber fraction, the mechanical response of rubber-sand mixtures exhibits two types: sand-like material and rubber-like material. Rubber particle possesses the capacity to prevent the contacted sand particles from sliding at lower rubber fraction, whereas it transmits the applied loadings as the rubber fraction increased. This outcome reinforces the practicability of using recycled rubber tire-sand mixtures as a lightweight backfill in subbase/base applications.

  20. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  1. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods.

    Science.gov (United States)

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2018-04-15

    Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Reducing contact resistance in graphene devices through contact area patterning.

    Science.gov (United States)

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  3. Comparison of the Contact stress and friction behavior of SiC and ZrO2 materials

    International Nuclear Information System (INIS)

    Lindberg, L.J.; Richerson, D.W.

    1985-01-01

    Studies were performed to further elucidate the friction and contact- stress characteristics of structural ceramic materials. New data for fully stabilized and partially stabilized zirconia ceramics are compared with prior test results for sintered SiC. The comparison provides further evidence that the high temperature friction characteristics of sinstered SiC are strongly influenced by the presence of a viscous surface layer. The results also show that a ceramic material with lower coefficient of friction and higher fracture toughness has increased resistance to strength-reducing surface damage due to contact stress

  4. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  5. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared...... on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, deposit composition, sintering duration, and steel type...... on the adhesion strength....

  6. Sound Photographs to reveal vehicle pass-by sources with a calibrated source-strength level

    NARCIS (Netherlands)

    Mast, A.; Dool, T.C. van den; Toorn, J.D. van der; Watts, G.

    2003-01-01

    In national and European discussions, it appears that the conventional sound measurement techniques are insufficient to answer some relevant questions with respect to source strength of road vehicles. An example of such a question is: What is the importance of tyre-road noise on the one hand and

  7. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    Science.gov (United States)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  9. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  10. The mechanisms and models of interaction between electrical arc and contact materials

    International Nuclear Information System (INIS)

    Kharin, S.N.

    1999-01-01

    Mechanisms of arc erosion in electrical contacts are different and depends on the conditions of contact separation. The first one, which occurs at low current with relatively slow rate of heat transfer, involves the evaporation of material from the contact surface. The second mechanism can be characterized by the formation of droplets of molten metal caused by high currents and vapor or magnetic pressure on a molten metal pool. However, in certain cases it is impossible to explain the formation of molten metal droplets in terms of pressure only. Therefore a new hypothesis regarding thermo-capillary mechanism of ejection of liquid metal is discussed. This hypothesis is based on the Marangoni effect which is important when the temperature gradient along the liquid contact zone and the temperature dependence of surface tension become significant (tungsten, zirconium, molybdenum etc.). The fourth erosion mechanism is associated with the ejection of solid particles of contact material with distinct crystalline structure during high current pulses of a short duration. It occurs when thermo-elastic processes overcome the mechanical strength. A mathematical model describing each of the four mechanisms of erosion is presented. Temperature fields and erosion characteristics are determined as a function of the commutation regime and the properties of contact materials. The experimental data are discussed in terms of theoretical approach with respect to the solid phase and droplet formation. Dynamics of each type of arc erosion is described, and recommendations for optimal selection of contact material with minimum erosion are given. (author)

  11. American Contact Dermatitis Society Contact Allergy Management Program: An Epidemiologic Tool to Determine Relative Prevalence of Contact Allergens.

    Science.gov (United States)

    Scheman, Andrew; Severson, David

    2016-01-01

    Data on the prevalence of contact allergy in North America are currently reported by groups of academic contact allergy specialists at select academic centers. Sampling of data from numerous centers across North America, including practices performing more limited patch testing, would provide a broader perspective of contact allergen prevalence in North America. The American Contact Dermatitis Society Contact Allergy Management Program is an ideal tool for collection of epidemiologic data regarding contact allergy prevalence in North America. The aim of the study was to identify the relative prevalence of contact allergy to common contact allergens in North America. Mapping of Contact Allergy Management Program (CAMP) data was performed to allow analysis of how frequently searches were performed for various contact allergens. The number of searches performed for specific allergens provides a measure of the relative prevalence of contact allergy to these allergens. The top 35 allergens for the period from November 18, 2012 to November 18, 2013 are reported. Although these data are useful, specific recommendations for minor alterations to CAMP are discussed, which will allow future CAMP data to be stratified and more powerful. With minor modifications, CAMP can provide a quantum leap in the reporting of contact allergy epidemiologic data in North America.

  12. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yzhang@superpower-inc.com [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Majkic, G.; Selvamanickam, V. [University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2012-02-15

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90 Degree-Sign to 180 Degree-Sign) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  13. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  14. The German Version of the Strengths Use Scale: The Relation of Using Individual Strengths and Well-being

    Directory of Open Access Journals (Sweden)

    Alexandra Huber

    2017-04-01

    Full Text Available Theoretical perspectives in positive psychology have considered the possession and use of strengths equally but in applied research more studies focused on having them, probably due to the absence of psychometrically adequate scales. Therefore, the aim of this study was to assess the psychometric characteristics of the German language version of the Strengths Use Scale (SUS and to explore relationships between strengths use and several indicator measures of well-being: the presence of positive and the absence of negative affect, self-esteem as identity aspect, vitality as self-regulatory resource, and stress for capturing the evaluation of difficulties and obstacles impinging on well-being. The original English version of the SUS was translated following recommended independent forward-backward translation techniques. Exploratory and confirmatory factor analyses were conducted, including a German-speaking convenience sample of university students (N = 374. Additionally, the relations of strengths use and well-being indicators were analyzed. Factorial validity revealed a single-factor structure of the German version of the SUS, explaining 58.4% variance (factor loadings: 0.58 to 0.86, approving the scale’s design and showing high internal consistency (Cronbach’s α 0.95. The hypothesized positive relationships of strengths use with positive affect, self-esteem, and vitality were confirmed as well as the negative relationships with negative affect and stress. The German version of the SUS is psychometrically sound and data indicate that individual strengths use and well-being related measures interact. The instrument can be recommended for future research questions such as if and how the promotion of applying individual strengths during education enhances levels of well-being, or how the implementation of strengths use in job-design guidelines or working conditions can result in higher levels of well-being or healthiness.

  15. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  16. Shorter Ground Contact Time and Better Running Economy: Evidence From Female Kenyan Runners.

    Science.gov (United States)

    Mooses, Martin; Haile, Diresibachew W; Ojiambo, Robert; Sang, Meshack; Mooses, Kerli; Lane, Amy R; Hackney, Anthony C

    2018-06-25

    Mooses, M, Haile, DW, Ojiambo, R, Sang, M, Mooses, K, Lane, AR, and Hackney, AC. Shorter ground contact time and better running economy: evidence from female Kenyan runners. J Strength Cond Res XX(X): 000-000, 2018-Previously, it has been concluded that the improvement in running economy (RE) might be considered as a key to the continued improvement in performance when no further increase in V[Combining Dot Above]O2max is observed. To date, RE has been extensively studied among male East African distance runners. By contrast, there is a paucity of data on the RE of female East African runners. A total of 10 female Kenyan runners performed 3 × 1,600-m steady-state run trials on a flat outdoor clay track (400-m lap) at the intensities that corresponded to their everyday training intensities for easy, moderate, and fast running. Running economy together with gait characteristics was determined. Participants showed moderate to very good RE at the first (202 ± 26 ml·kg·km) and second (188 ± 12 ml·kg·km) run trials, respectively. Correlation analysis revealed significant relationship between ground contact time (GCT) and RE at the second run (r = 0.782; p = 0.022), which represented the intensity of anaerobic threshold. This study is the first to report the RE and gait characteristics of East African female athletes measured under everyday training settings. We provided the evidence that GCT is associated with the superior RE of the female Kenyan runners.

  17. Magnetism in Pd: Magnetoconductance and transport spectroscopy of atomic contacts

    Science.gov (United States)

    Strigl, F.; Keller, M.; Weber, D.; Pietsch, T.; Scheer, E.

    2016-10-01

    Since the rapid technological progress demands for ever smaller storage units, the emergence of stable magnetic order in nanomaterials down to the single-atom regime has attracted huge scientific attention to date. Electronic transport spectroscopy has been proven to be a versatile tool for the investigation of electronic, magnetic, and mechanical properties of atomic contacts. Here we report a comprehensive experimental study of the magnetoconductance and electronic properties of Pd atomic contacts at low temperature. The analysis of electronic transport (d I /d V ) spectra and the magnetoconductance curves yields a diverse behavior of Pd single-atom contacts, which is attributed to different contact configurations. The magnetoconductance shows a nonmonotonous but mostly continuous behavior, comparable to those found in atomic contacts of band ferromagnets. In the d I /d V spectra, frequently, a pronounced zero-bias anomaly (ZBA) as well as an aperiodic and nonsymmetric fluctuation pattern are observed. While the ZBA can be interpreted as a sign of the Kondo effect, suggesting the presence of magnetic impurity, the fluctuations are evaluated in the framework of conductance fluctuations in relation to the magnetoconductance traces and to previous findings in Au atomic contacts. This thorough analysis reveals that the magnetoconductance and transport spectrum of Au atomic contacts can completely be accounted for by conductance fluctuations, while in Pd contacts the presence of local magnetic order is required.

  18. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  19. Size Effects on the Strength of Metals

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2014-01-01

    The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistanc...

  20. Thermal effect on the thermomechanical behavior of contacts in a Traveling Wave Tube

    Directory of Open Access Journals (Sweden)

    Chbiki Mounir

    2016-01-01

    Full Text Available A new elasto-plastic study of the contact between the helix and the rods of the delay line of Traveling Waves Tubes (TWT was realized. Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In order to maximize the contact area and to homogenize the contact pressure, a soft thermal conductive material is coated on the helix: copper was chosen for this study. In the present work, an analytical model is used to identify the properties of the copper coating at a given temperature. We focused on the mechanical properties in order to improve the assembly process with a better numerical study. Experimental method have been made to validate the proposed model. The first comparison results seem to indicate that the model represents the reality with a good agreement. It is very clearly shown that the temperature decreases the mechanical properties. (Young’s modulus, yield strength, tensile strength…. And the thickness of the coating increases the contact area. This last point is less important at room temperature (6% of increase than at 140°C (22%.

  1. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  2. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  3. Evaluation of anti-tuberculosis antibodies in healthy contact and non-contacts persons

    International Nuclear Information System (INIS)

    Aziz, N; Bukhari, M.H; Muneer, M; Tayyab, M; Chaudhry, N.A.

    2006-01-01

    This study was conducted to see the presence of the antimycobacterial antibodies in healthy household contacts of tuberculosis patients and healthy normal subjects who have never been in contact with tuberculosis patients. A total of 200 subjects, 120 with history of household contact and 80 without such history were included in the study. Routine Haematological investigations were performed and all the sera of 200 subjects were tested who 19M, 19G and IgA anti tuberculosis antibodies using ELISA technique. There was no difference in the average age of the household contacts and non-contacts. The complaints of pyrexia, night sweats and loss of weight was more in house hold contacts as compared to non-contacts. The awareness about BCG vaccination was equal among the household contacts and non-contacts. The combined serological positivity of the household contacts was 65.8% and the combined serological positivity for non-contacts was 34.1%. There was no statistically significant difference in the presence of 19M among household contacts as compared to non-contacts. However both IgG and 19A were present in significantly higher number of household contacts as compared to non contacts. This study concludes that the persons living in the house with a patient suffering from active pulmonary tuberculosis (household contact) have more chances of being infected with Mycobacterium tuberculosis as compared to the healthy non-contacts. (author)

  4. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  5. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The formation mechanism for printed silver-contacts for silicon solar cells.

    Science.gov (United States)

    Fields, Jeremy D; Ahmad, Md Imteyaz; Pool, Vanessa L; Yu, Jiafan; Van Campen, Douglas G; Parilla, Philip A; Toney, Michael F; van Hest, Maikel F A M

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 °C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 °C, Ag(+) dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

  7. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  8. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A. [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Seifert, Gotthard [Theoretical Chemistry, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany); Mothes, Sven; Schroter, Michael; Claus, Martin [Chair for Electron Devices and Integrated Circuits, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany)

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  9. [Effect of sandblasting particle sizes on bonding strength between porcelain and titanium fabricated by rapid laser forming].

    Science.gov (United States)

    Zhang, Li-jun; Wang, Zhong-yi; Gao, Bo; Gao, Yang; Zhang, Chun-bao

    2009-11-01

    To evaluate the effect of sandblasting particle sizes of Al2O3 on the bonding strength between porcelain and titanium fabricated by laser rapid forming (LRF). The thermal expansion coefficient, roughness (Ra), contact angle, surface morphology of titanium surface and the bonding strength between titanium and porcelain were evaluated after the titanium surface being sandblasted using different sizes of Al2O3 (50 microm, 120 microm, 250 microm) at a pressure of 0.5 MPa. The cast titanium specimens were used as control, and were sandblasted with 50 microm Al2O3 at the same pressure. The thermal expansion coefficient of cast titanium [(9.84 +/- 0.42) x 10(-6)/ degrees C] and LRF Ti [(9.79 +/- 0.31) x 10(-6)/ degrees C) matched that of Noritake Ti-22 dentin porcelain [(8.93 +/- 0.36) x 10(-6)/ degrees C). When larger size of Al2O3 was used, the value of Ra and contact angle increased as well. There was no significant difference in bonding strength between the LRF Ti-50 microm [(25.91 +/- 1.02) MPa] and cast titanium [(26.42 +/- 1.65) MPa]. Significantly lower bonding strength was found in LRF Ti-120 microm [(21.86 +/- 1.64) MPa] and LRF Ti-250 microm [(19.96 +/- 1.03) MPa]. The bond strength between LRF Ti and Noritake Ti-22 dentin porcelain was above the lower limit value in the ISO 9693 (25 MPa) after using 50 microm Al2O3 sandblasting in 0.5MPa air pressure.

  10. Soft structures of γ-ray strength functions studied with the Oslo method

    Directory of Open Access Journals (Sweden)

    Voinov A.

    2010-03-01

    Full Text Available We present experimental γ-ray strength functions up to Eγ ∼ Sn measured at the Oslo Cyclotron Laboratory for several Sc, V, Mo, and Sn isotopes. For the lighter nuclei, an unexpected enhancement of the strength function at low γ-ray energies has been revealed. This enhancement could potentially have an impact on neutron-capture cross sections for unstable, neutron-rich nuclei. For the Sn isotopes, we observe increased strength around the neutron separation energy Sn.

  11. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Behm, David G.; Young, James D.; Whitten, Joseph H. D.; Reid, Jonathan C.; Quigley, Patrick J.; Low, Jonathan; Li, Yimeng; Lima, Camila D.; Hodgson, Daniel D.; Chaouachi, Anis; Prieske, Olaf; Granacher, Urs

    2017-01-01

    Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral

  12. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    David G. Behm

    2017-06-01

    Full Text Available Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics, there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass and power training programs (e.g., plyometric training on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with

  13. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  14. Tunneling spectroscopy of a spiral Luttinger liquid in contact with superconductors

    Science.gov (United States)

    Liu, Dong E.; Levchenko, Alex

    2014-03-01

    One-dimensional wires with Rashba spin-orbit coupling, magnetic field, and strong electron-electron interactions are described by a spiral Luttinger liquid model. We develop a theory to investigate the tunneling density of states into a spiral Luttinger liquid in contact with superconductors at its two ends. This approach provides a way to disentangle the delicate interplay between superconducting correlations and strong electron interactions. If the wire-superconductor boundary is dominated by Andreev reflection, we find that in the vicinity of the interface the zero-bias tunneling anomaly reveals a power law enhancement with the unusual exponent. This zero-bias due to Andreev reflections may coexist and thus mask possible peak due to Majorana bound states. Far away from the interface strong correlations inherent to the Luttinger liquid prevail and restore conventional suppression of the tunneling density of states at the Fermi level, which acquires a Friedel-like oscillatory envelope with the period renormalized by the strength of the interaction. D.E.L. was supported by Michigan State University and in part by ARO through Contract No. W911NF-12-1-0235. A.L. acknowledges support from NSF under Grant No. PHYS-1066293, and the hospitality of the Aspen Center for Physics.

  15. Optimal estimation of the optomechanical coupling strength

    Science.gov (United States)

    Bernád, József Zsolt; Sanavio, Claudio; Xuereb, André

    2018-06-01

    We apply the formalism of quantum estimation theory to obtain information about the value of the nonlinear optomechanical coupling strength. In particular, we discuss the minimum mean-square error estimator and a quantum Cramér-Rao-type inequality for the estimation of the coupling strength. Our estimation strategy reveals some cases where quantum statistical inference is inconclusive and merely results in the reinforcement of prior expectations. We show that these situations also involve the highest expected information losses. We demonstrate that interaction times on the order of one time period of mechanical oscillations are the most suitable for our estimation scenario, and compare situations involving different photon and phonon excitations.

  16. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  17. Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths

    Science.gov (United States)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis

    2018-04-01

    The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated body prior to disruption is diminished, the disruption process is more abrupt, and the component size of the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a rubble pile’s friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity for making quantitative comparisons with continuum theory. The results show that the present technique has great potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.

  18. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  19. Contextualizing Intergroup Contact: Do Political Party Cues Enhance Contact Effects?

    DEFF Research Database (Denmark)

    Sønderskov, Kim Mannemar; Thomsen, Jens Peter Frølund

    2015-01-01

    This article examines intergroup contact effects in different political contexts. We expand on previous efforts of social psychologists by incorporating the messages of political parties as a contextual trigger of group membership awareness in contact situations. We argue that the focus among...... political parties on us-them categorizations heightens the awareness of group memberships. This focus in turn enhances the positive intergroup contact effect by stimulating majority members to perceive contacted persons as prototypical outgroup members. A multilevel analysis of 22 countries and almost 37......,000 individuals confirms that the ability of intergroup contact to reduce antiforeigner sentiment increases when political parties focus intensively on immigration issues and cultural differences. Specifically, both workplace contact and interethnic friendship become more effective in reducing antiforeigner...

  20. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    International Nuclear Information System (INIS)

    Kaminski, Yelena; Shauly, Eitan; Paz, Yaron

    2015-01-01

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect

  1. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Yelena [Department of Chemical Engineering, Technion, Haifa (Israel); TowerJazz Ltd. Migdal Haemek (Israel); Shauly, Eitan [TowerJazz Ltd. Migdal Haemek (Israel); Paz, Yaron, E-mail: paz@tx.technion.ac.il [Department of Chemical Engineering, Technion, Haifa (Israel)

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  2. Measuring contact area in a sliding human finger-pad contact.

    Science.gov (United States)

    Liu, X; Carré, M J; Zhang, Q; Lu, Z; Matcher, S J; Lewis, R

    2018-02-01

    The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effect of Abrasion-Induced Contact Damage on the Optical Properties and Strength of Float Glass

    Science.gov (United States)

    2018-06-07

    in glass. J Am Ceram Soc. 1969;52(6):338–339. 2. Mecholsky JJ Jr, Freiman SW, Rice RW. Effect of grinding on flaw geometry and fracture of glass. J...Am Ceram Soc. 1977;60(3–4):114–117. 3. Rice RW, Mecholsky JJ Jr. The nature of strength controlling machining flaws in ceramics. In: Hockey BJ, Rice...National Bureau of Standards; 1979. p. 351–378. 4. Rice RW, Mecholsky JJ Jr, Becher PF. The effect of grinding direction on flaw character and

  4. Chemical control of electrical contact to sp² carbon atoms.

    Science.gov (United States)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-16

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.

  5. Chemical control of electrical contact to sp2 carbon atoms

    Science.gov (United States)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.

  6. Healing of shear strength and its time dependency in a single rock fracture

    International Nuclear Information System (INIS)

    Kawaguchi, Yuta; Nakashima, Shinichiro; Yasuhara, Hideaki; Kishida, Kiyoshi

    2011-01-01

    Evolution of the long-term mechanical, hydraulic, and transport characteristics of rock fractures should be, in advance, predicted in considering an issue on entombment of energy byproducts of high level radioactive wastes. Under stressed and temperature conditions, those behaviors of the rock fractures of interest may be evolved in time and space likely due to the change in topographical aperture distributions. This irreversible process may be induced by pure mechanical and/or chemo-mechanical creeps such as water-rock reactions like stress corrosion and pressure solution, and chemical effects including mineral dissolution and reprecipitation in the free-walls of fractures. Specifically, the chemo-mechanical processes active at the contacting asperities within rock fractures may exert a significant influence on the mechanical, hydraulic, and transport behaviors throughout a long period, and thus, should be vigorously examined theoretically and experimentally. This paper presents the slide-hold-slide shear test results for fully saturated, single-jointed mortar specimens so as to investigate the effects of load holding on mechanical properties of rock joints. From the test results, it was confirmed that shear strength increased for mortar specimens in both short and long time holding cases. However, the evolution of shear strength recovery in two cases is different. This is because a dominant factor of shear strength recovery during the short time holding may be attributed to a pure mechanical process like creep deformation at contacting asperities, while the one during long time holding is affected by both mechanical and chemical processes like pressure solution. Moreover, to reproduce the shear strength recovery during short time holding we develop a direct shear model by including temporal variation of dilation during holding. The model predictions are in relatively good agreement with the test measurements. (author)

  7. Development of Low Surge Vacuum Contact with Te

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, H. W.; Woo, B. C.; Kim, B. G. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1996-12-01

    The purpose of this study is to develop of low surge Te contact for vacuum circuit breaker. The vacuum circuit breaker have various advantages such that it is free from maintenance, does not bring about public pollution, is excellent in its current breaking property, and so forth, on account of which the extent of its application has become broadened rapidly. For the characteristics of the contact material for the vacuum circuit breaker to satisfy, there may be enumerated: (1)large current breaking capacity; (2)high voltage withstand; (3)small contact resistance; (4)small melt-adhesive force; (5)low chopping current value; (6)good workability; (7)sufficient mechanical strength; and so forth. In this study we used cobalt for based refractory material having high melting temperature and intermetallic material between tellurium and silver to reduce chopping current. The contact materials were produced in accordance with the powder metallurgy using the method of infiltration. Production of the contact material was carried out in such a method that cobalt powder having average particle size of 50{mu}m, pre sintered in H{sub 2} atmosphere, 900 degree C , 2 hour. Ag ingot and Te(Se) were alloyed using high frequency furnaced in vacuum. And then Ag-Te(Se) alloy was infiltrated to Co skeleton in H{sub 2} atmosphere, 1000 degree C , 1 hour. The melting of the alloy to be infiltrated was carried out in a vacuum sealed quartz tube and be analysed by X-ray diffraction, scanning electron microscope, optical microscope and energy dispersive energy spectrometer. In the alloying of silver and tellurium, tellurium does not exist in single element but Ag{sub 2}Te intermetallic compound. And In Ag and Se, Se does not exist in single element but Ag{sub 2}Se intermetallic compound. We also produced the test vacuum interruptor to evaluate the electrode properties in vacuum atmosphere. The electrical properties of Co-(Ag-Se) electrode have better value than that of Co-(Ag-Te) electrode

  8. Strength and conditioning practices of National Basketball Association strength and conditioning coaches.

    Science.gov (United States)

    Simenz, Christopher J; Dugan, Carrie A; Ebben, William P

    2005-08-01

    This study describes the results of a survey of the practices of National Basketball Association strength and conditioning (NBA S&C) coaches. The response rate was 68.9% (20 of 29). This survey examines (a) background information, (b) physical testing, (c) flexibility development, (d) speed development, (e) plyometrics, (f) strength/power development, (g) unique aspects, and (h) comments from coaches providing additional information. Results indicate, in part, that coaches assess an average of 7.3 parameters of fitness, with body composition testing being the most common. All coaches used a variety of flexibility development strategies. Results reveal that 17 of 20 (85.0%) of NBA S&C coaches follow a periodization model. Nineteen of 20 coaches (95.0%) indicated that their athletes used Olympic-style lifts. All coaches employed plyometric exercises with their athletes. The squat and its variations, as well as the Olympic-style lifts and their variations, were the most frequently used exercises. The survey serves as a review and a source of applied information and new ideas.

  9. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  10. Systematic description of the effect of particle shape on the strength properties of granular media

    Directory of Open Access Journals (Sweden)

    Azéma Emilien

    2017-01-01

    Full Text Available In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CDMethod, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.

  11. Forensic geotechniques in the re-evaluation of Ruskin Dam foundation shear strength

    Energy Technology Data Exchange (ETDEWEB)

    Rigbey, S.; Lawrence, M.S. [BC Hydro, Vancouver, BC (Canada); Daw, D. [Hatch Energy, Vancouver, BC (Canada)

    2008-07-01

    The 59 metre high Ruskin Dam was constructed in the 1930s at the south end of Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock. Although the dam has performed satisfactorily since its construction, it is categorized as a very high consequence structure based on criteria established in British Columbia Dam Safety Regulations. It was considered to have insufficient withstand for Maximum Designs earthquake (MDE). Stability analyses performed in the late 1990's relied on simplified geometry with presumed planar concrete-rock interfaces, and relatively conservative estimates of sliding resistance and no consideration for canyon geometry. The analyses suggested that the concrete base may need to be anchored to the rock foundation to achieve satisfactory seismic withstand. The sliding resistance of the dam's foundation had to be assessed in order to determine if remedial measures were needed to meet updated design criteria. A reliable 3-dimensional topographic model for the Ruskin Dam was created in 2006 following a review of construction records and drilling investigation programs. Irregularities were found in the rock concrete contact, and the canyon walls showed a positive downstream converging geometry. The potential critical failure modes were determined along the contact, along the potential subhorizontal joints within the foundation, and through a broken rock mass under the contact. Roughness for each selected case was evaluated and the Barton-Bandis basic friction angle for the rock was determined by laboratory testing. The resulting shear strengths were used in a series of dynamic stability analyses which revealed that the body of the dam would be stable in the updated design earthquake. The 3-D geotechnical model was the key to the new analyses, which showed that the abutment wedges are stable under seismic loading. As such, costly base anchoring of the dam was deemed unnecessary. 6 refs., 6 tabs., 12 figs.

  12. Posterior labral injury in contact athletes.

    Science.gov (United States)

    Mair, S D; Zarzour, R H; Speer, K P

    1998-01-01

    Nine athletes (seven football offensive linemen, one defensive lineman, and one lacrosse player) were found at arthroscopy to have posterior labral detachment from the glenoid. In our series, this lesion is specific to contact athletes who engage their opponents with arms in front of the body. All patients had pain with bench pressing and while participating in their sport, diminishing their ability to play effectively. Conservative measures were ineffective in relieving their symptoms. Examination under anesthesia revealed symmetric glenohumeral translation bilaterally, without evidence of posterior instability. Treatment consisted of glenoid rim abradement and posterior labral repair with a bioabsorbable tack. All patients returned to complete at least one full season of contact sports and weightlifting without pain (minimum follow-up, > or = 2 years). Although many injuries leading to subluxation of the glenohumeral joint occur when an unanticipated force is applied, contact athletes ready their shoulder muscles in anticipation of impact with opponents. This leads to a compressive force at the glenohumeral joint. We hypothesize that, in combination with a posteriorly directed force at impact, the resultant vector is a shearing force to the posterior labrum and articular surface. Repeated exposure leads to posterior labral detachment without capsular injury. Posterior labral reattachment provides consistently good results, allowing the athlete to return to competition.

  13. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...... is dependent on two factors: ash melt fraction, and corrosion occurring at the deposit–tube interface. Adhesion strength increases with increasing sintering temperature, sharply increasing at the ash deformation temperature. However, sintering time, as well as the type of steel used, does not have...

  14. The influence of main bar corrosion on bond strength in selfcompacting concrete

    Science.gov (United States)

    Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.

    2017-11-01

    The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.

  15. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2014-12-01

    Full Text Available Multi-pass equal-channel angular pressing (EACP was applied to produce ultrafine-grained (UFG Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD routes were investigated by microscopic observation, tensile and electric tests. The results show that the Cu-Mg alloy after multi-pass ECAP at 473 K obtains ultrafine grains, higher strength and desired conductivity. More passes of ECAP leads to finer grains and higher strength, but increasing ECAP temperature significantly lower the strength increment of the UFG alloy. Grain refinement via continuous SPD processing can endow the Cu-Mg alloy superior strength and good conductivity characteristics, which are advantageous to high-speed electrification railway systems.

  16. Control over the Strength of Connections Between Modules: A Double Dissociation Between Stimulus Format and Task Revealed by Granger Causality Mapping in fMRI

    Directory of Open Access Journals (Sweden)

    Britt eAnderson

    2015-03-01

    Full Text Available Drawing on theoretical and computational work with the localist Dual Route reading model and results from behavioral studies, Besner, Moroz, and O'Malley (2011 proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used fMRI to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger Causality Mapping (GCM. Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words. This frontal region (BA 10 has previously been shown to be involved in goal-directed behaviour and maintenance of a specific task-set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing.

  17. COMPARISON OF CONCENTRIC AND ECCENTRIC HAMSTRING STRENGTH TRAINING IN IMPROVING MUSCLE STRENGTH AND POWER AMONG FUTSAL PLAYERS A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Arunkumar Nedunchezhiyan

    2016-12-01

    Full Text Available Background: Hamstring injury is a common problem in many sports, especially those involving acceleration and maximal sprints. Hamstring strains are both common and painful. During sprinting the hip flexor and knee extensor torques are frequently produced and is opposed by the hamstring muscles, hence there are numerous studies done on the muscle strength training to prevent the hamstring strain injury as it is statistically stated as the highest rate involved injury in the contact sport. This study has been focused to evaluate the effectiveness of concentric and eccentric exercises in improving hamstring muscle strength and power among futsal players. Method: Thirty recreational futsal players were recruited for the study and were randomly divided into two groups. Each group received either hamstring curl exercise (concentric or Nordic hamstring exercise (eccentric twice a week for 4 weeks. The manual muscle test (MMT and 40-yard dash test was used to evaluate the muscle strength and power respectively by comparing the pretest and posttest values for both groups. Results: Wilcoxon signed rank test showed that there is no statistically significant difference between pre and post test values of MMT (Concentric (right side, z=.317; left side, z=.157, Eccentric (right side, z=.157; left side, z=.317 in both groups. Based on paired 't' test there is a significant difference between the pre and post test on improving muscle power [Concentric group, P=.020; Eccentric Group, P=.000]. Mann–Whitney U test and unpaired 't' test showed that there is no significant difference between both groups of MMT (z=.775 and 40-yard dash test (P=.707 respectively. Conclusion: The concentric strength training and eccentric strength training have a similar effect in improving hamstring muscle power in futsal players.

  18. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  19. Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness.

    Science.gov (United States)

    Eldridge, Will J; Steelman, Zachary A; Loomis, Brianna; Wax, Adam

    2017-02-28

    There have been sustained efforts on the part of cell biologists to understand the mechanisms by which cells respond to mechanical stimuli. To this end, many rheological tools have been developed to characterize cellular stiffness. However, measurement of cellular viscoelastic properties has been limited in scope by the nature of most microrheological methods, which require direct mechanical contact, applied at the single-cell level. In this article, we describe, to our knowledge, a new analysis approach for quantitative phase imaging that relates refractive index variance to disorder strength, a parameter that is linked to cell stiffness. Significantly, both disorder strength and cell stiffness are measured with the same phase imaging system, presenting a unique alternative for label-free, noncontact, single-shot imaging of cellular rheologic properties. To demonstrate the potential applicability of the technique, we measure phase disorder strength and shear stiffness across five cellular populations with varying mechanical properties and demonstrate an inverse relationship between these two parameters. The existence of this relationship suggests that predictions of cell mechanical properties can be obtained from examining the disorder strength of cell structure using this, to our knowledge, novel, noncontact technique. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. STRENGTH AND CONDITIONING PRACTICES OF IRAN Wrestling League STRENGTH AND CONDITIONING COACHES

    Directory of Open Access Journals (Sweden)

    Far Saeed Jamshidi

    2014-08-01

    Full Text Available Purpose : The purpose of this study describes the results of a survey of the practices of Iranian Wrestling League strength and conditioning (IWL S&C coaches. Material: The response rate was 88.5% (100 of 113. The contents survey examines include: (a background information, (b physical testing, (c flexibility development, (d speed development, (e plyometrics, (f strength/power development, (g unique aspects, and (h comments from coaches providing additional information. Results: Results indicate, in part, that coaches assess an average of 7.3 parameters of fitness, with tests speed being the most common. All coaches used a variety of flexibility development strategies. Results reveal that all of IWL S&C coaches follow a periodization model. Speed as the first priority (100% and muscular endurance, power and strength as second priority (97% of importance in evaluating their athletes. Sixty-six percent coaches (66% indicated that their athletes used Olympic-style lifts. All coaches employed plyometric exercises with their athletes. Ninety-two percent (92% of the coaches reported that used plyometric trainings for increasing the speed of their wrestlers and 82% of the coaches used plyometric jump in place exercises as regular practice in their trainings. Conclusions: The squat and its variations, as well as the Olympic-style lifts and their variations, were the most frequently used exercises. The survey serves as a review and a source of applied information and new ideas.

  1. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  2. Argument Strength and the Persuasiveness of Stories

    Science.gov (United States)

    Schreiner, Constanze; Appel, Markus; Isberner, Maj-Britt; Richter, Tobias

    2017-01-01

    ABSTRACT Stories are a powerful means to change people’s attitudes and beliefs. The aim of the current work was to shed light on the role of argument strength (argument quality) in narrative persuasion. The present study examined the influence of strong versus weak arguments on attitudes in a low or high narrative context. Moreover, baseline attitudes, interindividual differences in working memory capacity, and recipients’ transportation were examined. Stories with strong arguments were more persuasive than stories with weak arguments. This main effect was qualified by a two-way interaction with baseline attitude, revealing that argument strength had a greater impact on individuals who initially were particularly doubtful toward the story claim. Furthermore, we identified a three-way interaction showing that argument strength mattered most for recipients who were deeply transported into the story world in stories that followed a typical narrative structure. These findings provide an important specification of narrative persuasion theory. PMID:29805322

  3. Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Meltem Önder

    2009-03-01

    Full Text Available Allergic contact dermatitis is the delayed type hypersensitivity reaction to exogenous agents. Allergic contact dermatitis may clinically present acutely after allergen exposure and initial sensitization in a previously sensitized individual. Acute phase is characterized by erythematous, scaly plaques. In severe cases vesiculation and bullae in exposed areas are very characteristic. Repeated or continuous exposure of sensitized individual with allergen result in chronic dermatitis. Lichenification, erythematous plaques, hyperkeratosis and fissuring may develop in chronic patients. Allergic contact dermatitis is very common dermatologic problem in dermatology daily practice. A diagnosis of contact dermatitis requires the careful consideration of patient history, physical examination and patch testing. The knowledge of the clinical features of the skin reactions to various contactans is important to make a correct diagnosis of contact dermatitis. It can be seen in every age, in children textile product, accessories and touch products are common allergens, while in adults allergic contact dermatitis may be related with topical medicaments. The contact pattern of contact dermatitis depends on fashion and local traditions as well. The localization of allergic reaction should be evaluated and patients’ occupation and hobbies should be asked. The purpose of this review is to introduce to our collaques up dated allergic contact dermatitis literatures both in Turkey and in the World.

  4. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures

    Science.gov (United States)

    Karpiak, Bogdan; Dankert, André; Cummings, Aron W.; Power, Stephen R.; Roche, Stephan; Dash, Saroj P.

    2018-03-01

    We report the fabrication of one-dimensional (1D) ferromagnetic edge contacts to two-dimensional (2D) graphene/h-BN heterostructures. While aiming to study spin injection/detection with 1D edge contacts, a spurious magnetoresistance signal was observed, which is found to originate from the local Hall effect in graphene due to fringe fields from ferromagnetic edge contacts and in the presence of charge current spreading in the nonlocal measurement configuration. Such behavior has been confirmed by the absence of a Hanle signal and gate-dependent magnetoresistance measurements that reveal a change in sign of the signal for the electron- and hole-doped regimes, which is in contrast to the expected behavior of the spin signal. Calculations show that the contact-induced fringe fields are typically on the order of hundreds of mT, but can be reduced below 100 mT with careful optimization of the contact geometry. There may be an additional contribution from magnetoresistance effects due to tunneling anisotropy in the contacts, which needs further investigation. These studies are useful for optimization of spin injection and detection in 2D material heterostructures through 1D edge contacts.

  5. [Effects of different surface treatments on the zirconia-resin cement bond strength].

    Science.gov (United States)

    Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G

    2018-02-18

    To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (Pbond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (PUV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface

  6. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Directory of Open Access Journals (Sweden)

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  7. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.

    Science.gov (United States)

    Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-03-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.

  8. Direct contact membrane distillation: Capability to desalt raw water

    Directory of Open Access Journals (Sweden)

    Ali Boubakri

    2017-05-01

    Full Text Available In this work, the potentialities of membrane distillation to desalt raw waters were investigated. The experiments were performed on a direct contact membrane distillation (DCMD unit using a flat sheet polypropylene (PP membrane with a low pore size of 0.064 μm. The effect of relevant operating parameters such as transmembrane temperature difference, hydrodynamic conditions and ionic strength on permeate flux and conductivity was studied. The results indicated that a permeate flux increases with increasing transmembrane temperature difference and Reynolds number, and slightly decreases with increasing ionic strength. The permeate flux reached 4.24 L/m2 h at a temperature difference of 60 °C and Reynolds number of 3740 and ionic strength of 8.56 × 10−2 M. DCMD process using PP with low pore size membrane present a very low salt passage through the membrane which was not affected by feed concentration. DCMD process has been applied during a long period to desalt raw water without any pretreatment. For brackish water, the variation of permeate flux and conductivity were slightly changed as function of operating time. For seawater, the permeate flux decreased slightly and the permeate conductivity increased sharply in which a simple pretreatment step is recommended to ameliorate the performance of DCMD process.

  9. Experimental investigation on the electrical contact behavior of rolling contact connector

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  10. Strength asymmetry of the shoulders in elite volleyball players.

    Science.gov (United States)

    Hadzic, Vedran; Sattler, Tine; Veselko, Matjaž; Markovic, Goran; Dervisevic, Edvin

    2014-01-01

    Volleyball players are reported to have shoulder strength imbalances. Previous authors have primarily investigated small samples of male players at a single skill level, without considering playing position, and with inconsistent findings. To evaluate shoulder strength asymmetry and a history of shoulder injury in a large sample of professional volleyball players of both sexes across different playing positions and skill levels. Descriptive laboratory study. A sample of 183 volleyball players (99 men, 84 women). We assessed shoulder internal-rotator and external-rotator concentric strength at 60°/s using an isokinetic dynamometer and dominant-nondominant differences in shoulder strength and strength ratios using repeated-measures analyses of variance. Peak torque was normalized for body mass and external-rotation/internal-rotation concentric strength. Internal-rotation strength was asymmetric in favor of the dominant side in both sexes, regardless of previous shoulder injury status. Male volleyball players had a lower shoulder strength ratio on the dominant side, regardless of previous shoulder injury status. However, this finding was valid only when hand dominance was taken into account. Female volleyball players playing at a higher level (ie, first versus second division) were 3.43 times more likely to have an abnormal strength ratio. Playing position was not associated with an abnormal shoulder strength ratio or strength asymmetry. In male volleyball players, the external-rotation/internal-rotation strength ratio of the dominant shoulder was lower, regardless of playing position, skill level, or a previous shoulder injury. In female players, the ratio was less only in those at a higher skill level. Although speculative, these findings generally suggest that female volleyball players could have a lower risk of developing shoulder-related problems than male volleyball players. Isokinetic shoulder testing may reveal important information about the possible risk

  11. Multiply gapped density of states in a normal metal in contact with a superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Reutlinger, Johannes; Belzig, Wolfgang [Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Nazarov, Yuli V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft (Netherlands); Glazman, Leonid I. [Department of Physics, Yale University, New Haven CT 06511-8499 (United States)

    2012-07-01

    The spectral properties of a normal metal adjacent to a superconductor are strongly dependent on the characteristic mesoscopic energy scale - the Thouless energy E{sub Th} - and the strength of the connection. In this work, we predict that the local density of states (LDOS), besides the well know minigap {proportional_to}E{sub Th}, can exhibit a multiple gap structure, which strongly depends on the type of the contact. For ballistic contacts we calculate these secondary gaps analytically in the framework of quantum circuit theory of mesoscopic transport. The secondary gaps are absent in the case of tunnel contacts. In the general case the equations are solved numerically for more realistic contacts, like for example diffusive connectors or dirty interfaces, which are characterized by continuous distributions of transmission eigenvalues between 0 and 1. We find that the gap vanishes in these cases, but the density of states is still suppressed around the superconducting gap edge. Distribution functions with a stronger weight at higher transmissions can be modeled through asymmetric ballistic double junctions, which even exhibit multiple gaps. Such spectral signatures are fundamental to disordered nanoscopic conductors and experimentally accessible.

  12. Retrieval Search and Strength Evoke Dissociable Brain Activity during Episodic Memory Recall

    Science.gov (United States)

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks. PMID:23190328

  13. Effect of the periphery of metal-semiconductor contacts with Schottky barriers on their static current-voltage characteristic

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2010-01-01

    Kelvin probe atomic-force microscopy of the electrostatic surface potential of gold Schottky contacts on n-GaAs showed that there is an extended transition area (halo) (tens of micrometers) around contacts in which the surface potential varies from the n-GaAs free surface potential to the gold contact surface potential. The contact potential and its distribution in the surrounding halo are controlled by the contact structure. The study of spreading currents showed that there is a high-conductance area (periphery) around the contact perimeter due to strong electric fields of the halo, which causes leakage currents. The conductivity of the main contact area is caused by 100- to 200-nm local areas with higher and lower conducting abilities. Mesa formation around contacts causes a decrease in the work function, a decrease in the halo extent and electric field strength, which is accompanied by spreading and decreasing of the peripheral area conductance. This results in disappearance of leakage currents and a decrease in the ideality index. In contrast, protection of the peripheral area by a SiO 2 insulating film 0.5 μm thick increases the work function, which is accompanied by the formation of potential lobes around the contact in two mutually perpendicular crystallographic directions. A stronger penetration of halo electric fields into the contact area results in an increase in the ideality index and disappearance of high-conductance peripheral area and leakage currents. The difference between the electrical properties of the periphery, gold grains, and their boundaries controls the contact switching mechanism when applying forward or reverse biases.

  14. CONTACT RESISTANCE MODELING

    Directory of Open Access Journals (Sweden)

    S. V. LOSKUTOV

    2018-05-01

    Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

  15. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  16. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  17. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    Science.gov (United States)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  18. Friction and universal contact area law for randomly rough viscoelastic contacts.

    Science.gov (United States)

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  19. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis

    DEFF Research Database (Denmark)

    Koppes, Sjors A.; Engebretsen, Kristiane A.; Agner, Tove

    2017-01-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant...... and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include...... genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet...

  20. Coordinate transformation in the model of long Josephson contacts: geometrically equivalent contacts

    International Nuclear Information System (INIS)

    Semerdzhieva, E.G.; Boyadzhiev, T.L.; ); Shukrinov, Yu.M.; Physical Technical Institute Dushanbe, 734063

    2005-01-01

    The transition from model of long Josephson variable-width contact to the contact model with coordinate-dependent Josephson current amplitude is realized by transforming the coordinates. This sets up a correspondence between Josephson contacts of variable width and quasi-one-dimensional contacts of variable thickness barrier layer. It is shown, that for contacts of exponentially varying width the barrier layer of the corresponding quasi-one-dimensional contact contains the distributed resistive inhomogeneity which is an attractor to magnetic flux vortices. With numerical experiments, a 'critical current-magnetic field' dependence for a resistive microinhomogeneity Josephson contact was plotted, and its comparison with the critical curve for a contact of exponentially varying width was made. Thus, this demonstrates that the distributed inhomogeneity may be replaced by a local one at the JC end what technologically, may offer definite advantages

  1. Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells

    Directory of Open Access Journals (Sweden)

    Vinay Budhraja

    2017-01-01

    Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.

  2. Contact analysis and experimental investigation of a linear ultrasonic motor.

    Science.gov (United States)

    Lv, Qibao; Yao, Zhiyuan; Li, Xiang

    2017-11-01

    The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spontaneous Marangoni Mixing of Miscible Liquids at a Liquid-Liquid-Air Contact Line.

    Science.gov (United States)

    Kim, Hyoungsoo; Lee, Jeongsu; Kim, Tae-Hong; Kim, Ho-Young

    2015-08-11

    We investigate the flow patterns created when a liquid drop contacts a reservoir liquid, which has implications on various physicochemical and biochemical reactions including mixing in microfluidic systems. The localized vortical flow spontaneously triggered by the difference of surface tension between the two liquids is studied, which is thus termed the Marangoni vortex. To quantitatively investigate the strength of vortices, we performed particle image velocimetry (PIV) experiments by varying the surface tension difference, the gap of the flow cell, the density and viscosity of the reservoir liquid, and the size of the drop. A scaling law that balances the interfacial energy of the system with the kinetic energy of the vortical flows allows us to understand the functional dependence of the Marangoni vortex strength on various experimental parameters.

  4. Allergic Contact Dermatitis to Benzoyl Peroxide Resembling Impetigo.

    Science.gov (United States)

    Kim, Changhyun; Craiglow, Brittany G; Watsky, Kalman L; Antaya, Richard J

    2015-01-01

    A 17-year-old boy presented with recurring severe dermatitis of the face of 5-months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris. © 2015 Wiley Periodicals, Inc.

  5. Incarcerated mothers' contact with children, perceived family relationships, and depressive symptoms.

    Science.gov (United States)

    Poehlmann, Julie

    2005-09-01

    Concurrent relations among contact with children, perceived family relationships, early experiences of relationship disconnection and trauma, and maternal depressive symptoms were examined in 94 incarcerated mothers with children between the ages of 2 and 7 years. Qualitative analysis revealed that most mothers experienced intense distress when initially separated from their children, although many women currently viewed the situation in a more balanced way. Quantitative findings indicated that fewer visits from children and early experiences of relationship disconnection and trauma were associated with elevated maternal depressive symptoms. Mother-child relationships were more positive when mothers had more frequent telephone contact with older children. Moreover, conflicted relationships with caregivers related to less contact between mothers and their children. Results highlight the need for mental health services for incarcerated women and suggest that interventions aimed at increasing contact between imprisoned mothers and their children should consider the quality of the mother-caregiver relationship. (c) 2005 APA, all rights reserved

  6. First contact diagnosis and management of contact lens-related complications.

    Science.gov (United States)

    Fagan, Xavier J; Jhanji, Vishal; Constantinou, Marios; Amirul Islam, F M; Taylor, Hugh R; Vajpayee, Rasik B

    2012-08-01

    To describe the spectrum of contact lens-related problems in cases presenting to a tertiary referral eye hospital. A retrospective case record analysis of 111 eyes of 97 consecutive patients was undertaken over a period of five months at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia. Contact lens-related complications (CLRC) were classified into microbial keratitis, sterile corneal infiltrates, corneal epitheliopathy and contact lens-related red eye (CLARE). Main parameters examined were nature of the first contact, clinical diagnosis, and management pattern. Forty-two percent of the initial presentations were to health care practitioners (HCPs) other than ophthalmologists. Mean duration from the onset of symptoms to presentation was 6.3 ± 10.9 days. Forty-nine percent (n = 54) of patients had an associated risk factor, most commonly overnight use of contact lenses (n = 14, 13 %). Most common diagnosis at presentation was corneal epitheliopathy (68 %) followed by sterile infiltrates (10 %), CLARE (8 %) and microbial keratitis (6 %). No significant differences were found in the pattern of treatment modalities administered by ophthalmologists and other HCPs. HCPs other than ophthalmologists are the first contact for contact lens-related problems in a significant proportion of patients. These HCPs manage the majority of CLRC by direct treatment or immediate referral.

  7. Isometric and swallowing tongue strength in healthy adults.

    Science.gov (United States)

    Todd, J Tee; Lintzenich, Catherine Rees; Butler, Susan G

    2013-10-01

    The tongue contributes to a safe swallow. It facilitates bolus control during mastication, maintains a bolus in the oral cavity to prevent premature entry of the bolus into the hypopharynx, and helps generate pressure in the hypopharynx during swallowing. This study examined isometric tongue strength and tongue pressure measured during swallowing in healthy young and older adults. Prospective group design. One hundred twenty-six healthy individuals who were recruited as part of a larger study on swallowing participated in this study. Participants were divided into three age groups: 20 to 40 years, 41 to 60 years, and ≥61 years. A KayPentax Digital Swallowing Workstation with an air-filled bulb array was placed on the tongue of each participant (anterior to posterior). Participants completed three isometric tongue presses and three swallows. Repeated measures analyses of variance revealed a significant main effect of age (P = .01) and gender by tongue bulb location interaction (P = .02) for isometric tongue strength. That is, older adults had lower isometric tongue strength than young adults, and females had a greater difference between anterior and posterior tongue strength than males. Tongue strength during swallowing yielded significantly greater anterior versus posterior tongue pressure. This study comprises one of the largest in terms of number of healthy participants reported to date and confirms previous findings that isometric tongue strength decreases with age. Furthermore, given young and older adults generate similar swallowing pressures, swallowing is a submaximal strength activity, yet older adults have less functional reserve. 4. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Association between maximal hamstring strength and hamstring muscle pre-activity during a movement associated with non-contact ACL injury

    DEFF Research Database (Denmark)

    Skov Husted, Rasmus; Bencke, Jesper; Thorborg, Kristian

    2014-01-01

    Introduction Reduced hamstring pre-activity during side-cutting may predispose for non-contact ACL injury. During the last decade resistance training of the lower limb muscles has become an integral part of ACL injury prevention in e.g. soccer and handball. However, it is not known whether a strong...... hamstring (ACL-agonist) musculature is associated with a high level of hamstring muscle pre-activity during high risk movements such as side-cutting. The purpose of this study was to examine the relationship between hamstring muscle pre-activity recorded during a standardized sidecutting maneuver...... translate into high levels of muscle pre-activity during movements like the sidecutting maneuver. Thus, other exercise modalities (i.e. neuromuscular training) are needed to optimize hamstring muscle pre-activity during movements associated with non-contact ACL injury....

  10. Concerns about Appearing Prejudiced Get Under the Skin: Stress Responses to Interracial Contact in the Moment and across Time.

    Science.gov (United States)

    Trawalter, Sophie; Adam, Emma K; Chase-Lansdale, P Lindsay; Richeson, Jennifer A

    2012-05-01

    Many White Americans are concerned about appearing prejudiced. How these concerns affect responses during actual interracial interactions, however, remains understudied. The present work examines stress responses to interracial contact-both in the moment, during interracial interactions (Study 1), and over time as individuals have repeated interracial contact (Study 2). Results of Study 1 revealed that concerns about appearing prejudiced were associated with heightened stress responses during interracial encounters (Study 1). White participants concerned about appearing prejudiced exhibited significant increases in cortisol "stress hormone" levels as well as increases in anxious behavior during interracial but not same-race contact. Participants relatively unconcerned about appearing prejudiced did not exhibit these stress responses. Study 2 examined stress responses to interracial contact over an entire academic year. Results revealed that White participants exhibited shifts in cortisol diurnal rhythms on days after interracial contact. Moreover, participants' cortisol rhythms across the academic year, from fall to spring, were related to their concerns about appearing prejudiced and their interracial contact experiences. Taken together, these data offer the first evidence that chronic concerns about appearing prejudiced are related to short- and longer-term stress responses to interracial contact. Implications for life in diverse spaces are discussed.

  11. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  12. Does modifying the particle size distribution of a granular material (i.e., material scalping alters its shear strength?

    Directory of Open Access Journals (Sweden)

    Azéma Emilien

    2017-01-01

    Full Text Available By means of two dimensional contact dynamics simulations, we analyzed the effect of the particle size distribution (PSD on the shear strength of granular materials composed of un-breakable disks. We modelled PSDs with a normalized beta function, which allows for building S-shaped gradation curves, such as those that typically occur in soils. We systematically controlled and varied the size span and the shape of the PSD, and found that the shear strength is independent both characteristics. This implies that PSD modification procedures such as material scalping (i.e., removing the smallest and/or largest particles in the sample should not affect significantly the shear strength of the material composed of unbreakable discs. In order to explore the origins of the invariance of the shear strength with PSD, we analyzed the connectivity, force transmission, and friction mobilization in terms of anisotropies, finding that the constant shear strength is due to a subtle compensation of anisotropies.

  13. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  14. Kettlebell swing training improves maximal and explosive strength.

    Science.gov (United States)

    Lake, Jason P; Lauder, Mike A

    2012-08-01

    The aim of this study was to establish the effect that kettlebell swing (KB) training had on measures of maximum (half squat-HS-1 repetition maximum [1RM]) and explosive (vertical jump height-VJH) strength. To put these effects into context, they were compared with the effects of jump squat power training (JS-known to improve 1RM and VJH). Twenty-one healthy men (age = 18-27 years, body mass = 72.58 ± 12.87 kg) who could perform a proficient HS were tested for their HS 1RM and VJH pre- and post-training. Subjects were randomly assigned to either a KB or JS training group after HS 1RM testing and trained twice a week. The KB group performed 12-minute bouts of KB exercise (12 rounds of 30-second exercise, 30-second rest with 12 kg if 70 kg). The JS group performed at least 4 sets of 3 JS with the load that maximized peak power-Training volume was altered to accommodate different training loads and ranged from 4 sets of 3 with the heaviest load (60% 1RM) to 8 sets of 6 with the lightest load (0% 1RM). Maximum strength improved by 9.8% (HS 1RM: 165-181% body mass, p < 0.001) after the training intervention, and post hoc analysis revealed that there was no significant difference between the effect of KB and JS training (p = 0.56). Explosive strength improved by 19.8% (VJH: 20.6-24.3 cm) after the training intervention, and post hoc analysis revealed that the type of training did not significantly affect this either (p = 0.38). The results of this study clearly demonstrate that 6 weeks of biweekly KB training provides a stimulus that is sufficient to increase both maximum and explosive strength offering a useful alternative to strength and conditioning professionals seeking variety for their athletes.

  15. Studying Hardness Meter Spring Strength to Understand Hardness Distribution on Body Surfaces.

    Science.gov (United States)

    Arima, Yoshitaka

    2017-10-01

    For developing a hardness multipoint measurement system for understanding hardness distribution on biological body surfaces, we investigated the spring strength of the contact portion main axis of a biological tissue hardness meter (product name: PEK). We measured the hardness of three-layered sheets of six types of gel sheets (90 mm × 60 mm × 6 mm) constituting the acupuncture practice pads, with PEK measurements of 1.96 N, 2.94 N, 3.92 N, 4.90 N, 5.88 N, 6.86 N, 7.84 N, 8.82 N, and 9.81 N of the main axis spring strength. We obtained measurements 10 times for the gel sheets and simultaneously measured the load using a digital scale. We measured the hardness distribution of induration embedded and breast cancer palpation models, with a main axis with 1.96 N, 4.90 N, and 9.81 N spring strengths, to create a two-dimensional Contour Fill Chart. Using 4.90 N spring strength, we could obtain measurement loads of ≤3.0 N, and the mean hardness was 5.14 mm. This was close to the median of the total measurement range 0.0-10.0 mm, making the measurement range the largest for this spring strength. We could image the induration of the induration-embedded model regardless of the spring strength. Overall, 4.90 N spring strength was best suited for imaging cancer in the breast cancer palpation model. Copyright © 2017. Published by Elsevier B.V.

  16. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-01-01

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  17. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong

    2018-05-20

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  18. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    Science.gov (United States)

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  19. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis.

    Science.gov (United States)

    Koppes, Sjors A; Engebretsen, Kristiane A; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M; Khnykin, Denis; Molin, Sonja; Holm, Jan O; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F; Thyssen, Jacob P

    2017-07-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem

    CERN Document Server

    Ivanov, Stefan; Vassilev, Dimiter

    2014-01-01

    A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.

  1. Publication analysis of the contact lens field: what are the current topics of interest?

    Science.gov (United States)

    Cardona, Genís; Sanz, Joan P

    2015-01-01

    To determine the main current research interests of scientists working in the contact lens field. All articles published in the 2011 issues of all journals included in the Journal Citation Reports subject category Ophthalmology were inspected to expose those papers related to the contact lens field. Information regarding source journal was obtained and authorship details were recorded to determine the top most prolific authors, institutions and countries. A comprehensive list of key words was compiled to generate a two-dimensional term map in which the frequency of occurrence of a particular term is defined by label size and the distance between two terms is an indication of the relatedness of these terms, based on their co-occurrences within groups of key words. Clusters of related terms were also identified. Visual examination of all articles uncovered a total of 156 papers, published in 28 different journals. Contact Lens & Anterior Eye, Eye & Contact Lens and Optometry and Vision Science had 27 articles each. The most prolific authors and institutions revealed the predominance of countries with long research tradition in the contact lens field. Ten different word clusters or areas of interest were identified, including both traditional, yet unresolved issues (e.g., comfort or dry eye), and the latest research efforts (e.g., myopia control). These findings, which revealed contact lenses to be a fertile area of research, may be of relevance to new researchers as well as to those interested in exploring the latest research trends in this scientific discipline. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  2. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.

  3. Evolution of the Digital Society Reveals Balance between Viral and Mass Media Influence

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2014-07-01

    Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain the rapid growth of OSNs emphasize the importance of unraveling the laws governing their evolution. Empirical results show that, unlike many real-world growing networked systems, OSNs follow an intricate path that includes a dynamical percolation transition. In light of these results, we present a quantitative two-parameter model that reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real preexisting underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is 4-5 times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the "strength of weak ties" paradigm.

  4. Strength evaluation of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Won, S. Y.; Ryu, C. H.; Kim, Y. J.; Lee, K. S.; Jeon, K. L.

    2002-01-01

    Holddown springs are required to maintain the nuclear fuel assembly in contact with lower core plate and permit thermal and irradiation-induced length changes. Therefore, the holddown spring screw must be designed such that it is capable of sustaining the loads imposed by the initial tensile preload and operational loads. Prior to assessing the structural integrity of the spring screw in the corrosive and irradiating environment throughout the design lifetime of the fuel assembly, the strength evaluation of screw was made in this paper using the mechanics of materials and finite element methods. Calculations based on the mechanics of materials, showed that the preloaded screw with an operating holddown force had a quite large margin of safety in strength. However, the elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Preloading on the screw applied for tightening had beneficial effects on the screw strength by reducing the stress level at the critical regions, compared to the screw without preload. Calculated spring deflection using the finite element analysis was in close agreement with the experimentally measured deflection

  5. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Directory of Open Access Journals (Sweden)

    Kiesha Prem

    2017-09-01

    Full Text Available Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school, and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for

  6. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Science.gov (United States)

    Prem, Kiesha; Cook, Alex R; Jit, Mark

    2017-09-01

    Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which

  7. The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia

    Science.gov (United States)

    Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli

    2018-04-01

    The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.

  8. Contact allergy and allergic contact dermatitis in adolescents: prevalence measures and associations

    DEFF Research Database (Denmark)

    Mørtz, Charlotte G; Lauritsen, Jens Martin; Bindslev-Jensen, Carsten

    2002-01-01

    The aims of this cross-sectional study were to establish the prevalence measures of contact allergy and allergic contact dermatitis in 8th grade schoolchildren (aged 12-16 years) in Odense, Denmark, and to examine the associations with atopic dermatitis, inhalant allergy and hand eczema. Contact...... allergy to a standard series allergen was found in 15.2% of schoolchildren. The point prevalence of allergic contact dermatitis was 0.7% and the lifetime prevalence 7.2%, predominantly in girls. The most common contact allergens were nickel (8.6%) and fragrance mix (1.8%). Nickel allergy was clinically...... relevant in 69% and fragrance allergy in 29% of cases. A significant association was found between contact allergy and hand eczema while no association was found between contact allergy and atopic dermatitis or inhalant allergy. In the future this cohort of schoolchildren will be followed with regard...

  9. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    Science.gov (United States)

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  10. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis

    NARCIS (Netherlands)

    Koppes, Sjors A.; Engebretsen, Kristiane A.; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M.; Khnykin, Denis; Molin, Sonja; Holm, Jan O.; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F.; Thyssen, Jacob P.

    2017-01-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and

  11. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  12. Relationship between the real contact area and contact force in pre-sliding regime

    International Nuclear Information System (INIS)

    Song Baojiang; Yan Shaoze

    2017-01-01

    The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper. With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu’s method is used for measurement. Through an experimental study performed on polymethyl methacrylate (PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge. (paper)

  13. Strategies to Optimize Strength and Endurance Concurrent Training in Elite Handball

    Directory of Open Access Journals (Sweden)

    Sergio Sánchez López

    2017-06-01

    Conclusions: The study revealed that when combining different intensities with the objective of avoiding the interference phenomenon, the intensities used should not be those that could produce peripheral adaptations, and that an 8-hour interval must be left in case of having two sessions on the same day. Furthermore, it became clear that players with more strength and power might have a head start in the game actions due to the strength requirements of the sport.

  14. Contact Lens Risks

    Science.gov (United States)

    ... There is a risk of eye infection from bacteria in swimming pool water, hot tubs, lakes and the ocean Replace your contact lens storage case every 3 months or as directed by your eye care professional. Other Risks of Contact Lenses Other risks of contact lenses include pink eye ( ...

  15. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  16. Noneczematous Contact Dermatitis

    Science.gov (United States)

    Foti, Caterina; Vestita, Michelangelo; Angelini, Gianni

    2013-01-01

    Irritant or allergic contact dermatitis usually presents as an eczematous process, clinically characterized by erythematoedematovesicous lesions with intense itching in the acute phase. Such manifestations become erythematous-scaly as the condition progresses to the subacute phase and papular-hyperkeratotic in the chronic phase. Not infrequently, however, contact dermatitis presents with noneczematous features. The reasons underlying this clinical polymorphism lie in the different noxae and contact modalities, as well as in the individual susceptibility and the various targeted cutaneous structures. The most represented forms of non-eczematous contact dermatitis include the erythema multiforme-like, the purpuric, the lichenoid, and the pigmented kinds. These clinical entities must obviously be discerned from the corresponding “pure” dermatitis, which are not associated with contact with exogenous agents. PMID:24109520

  17. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running.

    Science.gov (United States)

    Lenhart, Rachel L; Smith, Colin R; Vignos, Michael F; Kaiser, Jarred; Heiderscheit, Bryan C; Thelen, Darryl G

    2015-08-20

    Interventions used to treat patellofemoral pain in runners are often designed to alter patellofemoral mechanics. This study used a computational model to investigate the influence of two interventions, step rate manipulation and quadriceps strengthening, on patellofemoral contact pressures during running. Running mechanics were analyzed using a lower extremity musculoskeletal model that included a knee with six degree-of-freedom tibiofemoral and patellofemoral joints. An elastic foundation model was used to compute articular contact pressures. The lower extremity model was scaled to anthropometric dimensions of 22 healthy adults, who ran on an instrumented treadmill at 90%, 100% and 110% of their preferred step rate. Numerical optimization was then used to predict the muscle forces, secondary tibiofemoral kinematics and all patellofemoral kinematics that would generate the measured primary hip, knee and ankle joint accelerations. Mean and peak patella contact pressures reached 5.0 and 9.7MPa during the midstance phase of running. Increasing step rate by 10% significantly reduced mean contact pressures by 10.4% and contact area by 7.4%, but had small effects on lateral patellar translation and tilt. Enhancing vastus medialis strength did not substantially affect pressure magnitudes or lateral patellar translation, but did shift contact pressure medially toward the patellar median ridge. Thus, the model suggests that step rate tends to primarily modulate the magnitude of contact pressure and contact area, while vastus medialis strengthening has the potential to alter mediolateral pressure locations. These results are relevant to consider in the design of interventions used to prevent or treat patellofemoral pain in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    International Nuclear Information System (INIS)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-01-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel ® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel ® MF films had better physicochemical properties than those of the LF films. Klucel ® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects. - Highlights: • Glycerol increases, whereas xylitol decreases the free volume of both LF and MF HPC. • Both xylitol and glycerol increase the tensile strength of MF films. • The tensile strength of the MF product makes it suitable for pharmaceutical use. • The surface properties reveal a macroscopically stable film structure. • All measurements indicate a macroscopically homogeneous film structure

  19. A novel aluminum based nanocomposite with high strength and good ductility

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanalizadeh, Hossein, E-mail: hralizadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokouhimehr, Mohammadreza [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)

    2015-11-15

    Aluminum based nanocomposite containing nano-sized Al{sub 3}Mg{sub 2} reinforcing was fabricated via mechanical milling followed by hot extrusion techniques. For this, Al and Al{sub 3}Mg{sub 2} powders were mixed mechanically and milled at different times (0, 2, 5, 7, 10, 15 and 20 h) to achieve Al–10 wt.% Al{sub 3}Mg{sub 2} composite powders. Hot extrusion of cold pressed powders was done at 400 °C with extrusion ratio of 6:1. Microstructures of the powders and consolidated materials were studied using transmission electron microscopy, scanning electron microscope and X-ray diffraction. Fracture surfaces were also investigated by scanning electron microscopy equipped with EDS analyzer. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. In addition, the fabricated composites exhibited homogeneous distribution and less agglomerations of the n-Al{sub 3}Mg{sub 2} with increasing milling time. The mechanical behavior of these nanocomposites was investigated by hardness and tensile tests, which revealed it has four times the strength of a conventional Al along with good ductility. It was found that the ultimate tensile strength (UTS) and elongation of the nanocomposites were significantly improved with increases in milling time up to 15 h. This improvement was attributed to the grain refinement strengthening and homogeneous distribution of the n-Al{sub 3}Mg{sub 2}. Fracture surfaces showed that the interfacial bonding between Al and Al{sub 3}Mg{sub 2} could be improved with increasing in milling time. Also HRTEM results from interface showed that a metallurgical clean interface and intimate contact between matrix and second phase. By extending the milling process up to 20 h, there was no significant improvement in mechanical behavior of materials, due to the completion of milling process and dynamic and static recovery of composite at higher milling times. - Highlights: • A novel aluminum

  20. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Lorente, N.; Paulsson, Magnus

    2007-01-01

    The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT......) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due...... change in conductance is quantitatively well approximated by the simplest calculation where only the apex atoms are allowed to vibrate. Our study is completed by the application of a simplified model where the relevant parameters are obtained from the above DFT-based calculations....

  1. Strengths only or strengths and relative weaknesses? A preliminary study.

    Science.gov (United States)

    Rust, Teri; Diessner, Rhett; Reade, Lindsay

    2009-10-01

    Does working on developing character strengths and relative character weaknesses cause lower life satisfaction than working on developing character strengths only? The present study provides a preliminary answer. After 76 college students completed the Values in Action Inventory of Strengths (C. Peterson & M. E. P. Seligman, 2004), the authors randomly assigned them to work on 2 character strengths or on 1 character strength and 1 relative weakness. Combined, these groups showed significant gains on the Satisfaction With Life Scale (E. Diener, R. A. Emmons, R. J. Larsen, & S. Griffin, 1985), compared with a 32-student no-treatment group. However, there was no significant difference in gain scores between the 2-strengths group and the 1-character-strength-and-1-relative-character-weakness group. The authors discuss how focusing on relative character weaknesses (along with strengths) does not diminish-and may assist in increasing-life satisfaction.

  2. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  3. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  4. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  5. Characteristics of structural loess strength and preliminary framework for joint strength formula

    OpenAIRE

    Rong-jian Li; Jun-ding Liu; Rui Yan; Wen Zheng; Sheng-jun Shao

    2014-01-01

    The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress (Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural lo...

  6. Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear

    Directory of Open Access Journals (Sweden)

    Zhiheng Feng

    2017-01-01

    Full Text Available Considering the geometry design parameters, a quasi-static mesh model of spiral bevel gears was established and the mesh characteristics were computed. Considering the time-varying effects of mesh points, mesh force, line-of-action vector, mesh stiffness, transmission error, friction force direction, and friction coefficient, a nonlinear lumped parameter dynamic model was developed for the spiral bevel gear pair. Based on the mesh model and the nonlinear dynamic model, the effects of main geometry parameters on the contact and bending strength were analyzed. Also, the effects on the dynamic mesh force and dynamic transmission error were investigated. Results show that higher value for the pressure angle, root fillet radius, and the ratio of tooth thickness tend to improve the contact and bending strength and to reduce the risk of tooth fracture. Improved gears have a better vibration performance in the targeted frequency range. Finally, bench tests for both types of spiral bevel gears were performed. Results show that the main failure mode is the tooth fracture and the life was increased a lot for the spiral bevel gears with improved geometry parameters compared to the original design.

  7. Effect of bar sealing parameters on OPP/MCPP heat seal strength

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of bar sealing parameters on the heat seal strength of oriented polypropylene (OPP/metallic cast polypropylene (MCPP laminate film was investigated. Based on the results obtained from the parametric study, a bar sealing process window was developed. All points drop within the process window are combinations of platen temperature and dwell time that produce acceptable heat seal. Optimum combinations are indicated by the lower border of the window. The plateau initiation temperature, Tpi of OPP/MCPP laminate film used in the present study occurred before the final melting temperature, Tmf of the sealant material. The highest achievable heat seal strength was at the plateau region, and the corresponding failure modes were delaminating, tearing or combine failure modes (delaminating and tearing. Minimum pressure level of 1.25 bars is necessary to bring the laminate interface into intimate contact in order to effect sealing.

  8. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    International Nuclear Information System (INIS)

    Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B

    2010-01-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  9. The role of contact allergens in chronic idiopathic urticaria.

    Science.gov (United States)

    Hession, Meghan T; Scheinman, Pamela L

    2012-01-01

    The objective of this study was to determine whether contact allergens play a role in chronic idiopathic urticaria (CIU). We conducted a longitudinal prospective study of 23 patients with CIU. Patients were patch tested to a modified North American Contact Dermatitis Group standard, fragrance, and cosmetic series; other series were tested as warranted by relevant history and physical examination. Readings were performed at 48 and 72 hours. Patients were counseled to avoid proven contact allergens and were followed up 2 to 9 months after testing. Twenty-one of 23 patients were female. The mean age was 46 years. The mean duration of urticaria was 32 months. Of the 23 patients, 8 (35%) experienced improvement of their symptoms with allergen avoidance. Four (17%) experienced a complete remission, and 4 (17%) experienced partial improvement. Two of the complete responders challenged themselves to proven contact allergens and developed urticaria, which resolved upon allergen avoidance. The most common allergens were potassium dichromate (n = 9), nickel sulfate (n = 7), Myroxylon pereirae (n = 6), cobalt chloride, neomycin, p-phenylenediamine (n = 5); fragrance mix I, fragrance mix II (n = 4); cinnamic aldehyde (n = 3); and formaldehyde (n = 2). Patch testing may be helpful in the evaluation of CIU patients for whom previous workup has failed to reveal an etiology.

  10. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating

    International Nuclear Information System (INIS)

    Zeng Ya-Ping; Qu Bai-Hua; Yu Hong-Chun; Wang Yan-Guo

    2012-01-01

    Controllable interfacial alloying is achieved at a Au-ZnSe nanowire (M-S) contact via in situ Joule heating inside transmission electron microscopy (TEM). TEM inspection reveals that the Au electrode is locally molten at the M-S contact and the tip of the ZnSe nanowire is covered by the Au melting. Experimental evidences confirm that the alloying at the reversely biased M-S contact is due to the high resistance of the Schottky barrier at this M-S contact, coincident to cathode-control mode. Consequently, in situ Joule heating can be an effective method to improve the performance of nanoelectronics based on a metal-semiconductor-metal nanostructure. (cross-disciplinary physics and related areas of science and technology)

  11. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics.

    Science.gov (United States)

    Shaw, A D; Champneys, A R; Friswell, M I

    2016-08-01

    Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.

  12. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  13. Contact with turf algae alters the coral microbiome: contact versus systemic impacts

    Science.gov (United States)

    Pratte, Zoe A.; Longo, Guilherme O.; Burns, Andrew S.; Hay, Mark E.; Stewart, Frank J.

    2018-03-01

    Coral reefs are degrading to algae-dominated reefs worldwide, with alterations of coral microbiomes commonly co-occurring with reef demise. The severe thermal anomaly during the 2016 El Niño event in the South Pacific killed many corals and stressed others. We examined the microbiome of turf algae and of the coral Porites sp. in contact with turf during this thermal event to investigate algal turf effects on the coral microbiome during a period of environmental stress. The microbial composition of turf did not differ between coral-contacted and non-contacted turfs. However, microbiomes of corals in direct contact with turf were similar to those of the turf microbiome, but differed significantly from coral portions 5 cm from the point of turf/coral contact and from portions of the coral that looked most healthy, regardless of location. Although the majority of significant differences occurred in coral samples at the point of contact, a small subset of microbial taxa was enriched in coral tissues taken 5 cm from turf contact compared to all other sample types, including samples from areas of the coral that appeared most healthy. These results suggest that the coral microbiome is susceptible to colonization by microbes from turf, but not vice versa. Results also suggest that algal contact elicits a subtle shift in the coral microbiome just beyond the contact site. The combination of turf microbiome stability and coral microbiome vulnerability at areas of contact may contribute to the continued decline in coral cover and increase in algal cover associated with coral-algae phase shifts.

  14. Patients with multiple contact allergies

    DEFF Research Database (Denmark)

    Carlsen, Berit Christina; Andersen, Klaus Ejner; Menné, Torkil

    2008-01-01

    Patients with multiple contact allergies, also referred to as polysensitized, are more frequent than predicted from prevalence of single sensitivities. The understanding of why some people develop multiple contact allergies, and characterization of patients with multiple contact allergies...... of developing multiple contact allergies. Evidence of allergen clusters among polysensitized individuals is also reviewed. The literature supports the idea that patients with multiple contact allergies constitute a special entity within the field of contact allergy. There is no generally accepted definition...... of patients with multiple contact allergies. We suggest that contact allergy to 3 or more allergens are defined as multiple contact allergies....

  15. Muscular strength is associated with self-esteem in college men but not women.

    Science.gov (United States)

    Ciccolo, Joseph T; SantaBarbara, Nicholas J; Dunsiger, Shira I; Busch, Andrew M; Bartholomew, John B

    2016-12-01

    Muscular strength is a well-known predictor of morbidity and mortality. Similarly, self-esteem is a predictor of health and well-being. The relationship between these two variables, however, is currently unknown. This study examined the cross-sectional relationship between maximal muscular strength (i.e. handgrip and one-repetition-maximum (1-RM) squat) and global self-esteem in 126 college students. Significant correlations were found between both measures of muscular strength and self-esteem. Further analyses revealed that these relationships were only significant for men. Based on these results, additional research is needed to further explore the relationship between muscular strength and self-esteem, especially in other demographic groups and longitudinally. © The Author(s) 2015.

  16. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.

    Science.gov (United States)

    Hartmann, Hagen; Wirth, Klaus; Keiner, Michael; Mickel, Christoph; Sander, Andre; Szilvas, Elena

    2015-10-01

    Dividing training objectives into consecutive phases to gain morphological adaptations (hypertrophy phase) and neural adaptations (strength and power phases) is called strength-power periodization (SPP). These phases differ in program variables (volume, intensity, and exercise choice or type) and use stepwise intensity progression and concomitant decreasing volume, converging to peak intensity (peaking phase). Undulating periodization strategies rotate these program variables in a bi-weekly, weekly, or daily fashion. The following review addresses the effects of different short-term periodization models on strength and speed-strength both with subjects of different performance levels and with competitive athletes from different sports who use a particular periodization model during off-season, pre-season, and in-season conditioning. In most periodization studies, it is obvious that the strength endurance sessions are characterized by repetition zones (12-15 repetitions) that induce muscle hypertrophy in persons with a low performance level. Strictly speaking, when examining subjects with a low training level, many periodization studies include mainly hypertrophy sessions interspersed with heavy strength/power sessions. Studies have demonstrated equal or statistically significant higher gains in maximal strength for daily undulating periodization compared with SPP in subjects with a low to moderate performance level. The relatively short intervention period and the lack of concomitant sports conditioning call into question the practical value of these findings for competitive athletes. Possibly owing to differences in mesocycle length, conditioning programs, and program variables, competitive athletes either maintained or improved strength and/or speed-strength performance by integrating daily undulating periodization and SPP during off-season, pre-season and in-season conditioning. In high-performance sports, high-repetition strength training (>15) should be

  17. CoSix contact resistance after etching and ashing plasma exposure

    International Nuclear Information System (INIS)

    Katahira, Ken; Fukasawa, Masanaga; Kobayashi, Shoji; Takizawa, Toshifumi; Isobe, Michio; Hamaguchi, Satoshi; Nagahata, Kazunori; Tatsumi, Tetsuya

    2009-01-01

    The authors investigated the contact resistance fluctuation caused by CoSi x damage in plasma etching and ashing processes. They found that CoSi x layers damaged by plasma process exposure are readily oxidized when exposed to air resulting in increased resistance. They also found that the contact resistance increases more when CH 3 F is used instead of CF 4 during etching process. The lower the mass number of dominant ions becomes, the deeper the ions penetrate. Molecular dynamics simulation revealed that dissociated species from lighter ions penetrate deeper and that this stimulates deeper oxidation. They also found that contact resistance further increased by using postetch ashing plasma even in an H 2 /N 2 ashing process in which O 2 was not used. Here, too, the reason for this is that the ion penetration causes deep oxidation. They observed that the contact resistance has a linear relationship with the oxide concentration in CoSi x . This leads to the conclusion that it is essential to precisely control the ion energy as well as to properly select the ion species in the plasma process in the fabrication of next-generation semiconductor devices.

  18. Strength testing and training of rowers: a review.

    Science.gov (United States)

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2011-05-01

    In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio training may be counterproductive to strength development over the shorter term (i.e. training within the sequence of training units should be considered, particularly over the non-competition phase (e.g. 2-6 sets × 4-12 repetitions, three sessions a week). Maximal strength was sustained when infrequent (e.g. one or two sessions a week) but intense (e.g. 73-79% of maximum) strength training units were scheduled; however, it was unclear whether training adaptations should emphasize maximal strength, endurance or power in order to enhance

  19. Thermal characterization of radiation processed contact lens material

    International Nuclear Information System (INIS)

    Varshney, L.; Choughule, S.V.

    1998-01-01

    Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and thermogravimetry analysis (TGA) were used to characterize radiation processed contact lens gel material of 2-hydroxy ethyl methacrylate(HEMA). DSC revealed two types of water in the gels. DSC and TGA in combination were used to quantitate the percentage of different types of the water in the gel material. Temperature expansion coefficients values indicate more dimensions stability in the radiation processed lenses of similar water contents. (author)

  20. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  1. Eye contact perception in the West and East: a cross-cultural study.

    Directory of Open Access Journals (Sweden)

    Shota Uono

    Full Text Available This study investigated whether eye contact perception differs in people with different cultural backgrounds. Finnish (European and Japanese (East Asian participants were asked to determine whether Finnish and Japanese neutral faces with various gaze directions were looking at them. Further, participants rated the face stimuli for emotion and other affect-related dimensions. The results indicated that Finnish viewers had a smaller bias toward judging slightly averted gazes as directed at them when judging Finnish rather than Japanese faces, while the bias of Japanese viewers did not differ between faces from their own and other cultural backgrounds. This may be explained by Westerners experiencing more eye contact in their daily life leading to larger visual experience of gaze perception generally, and to more accurate perception of eye contact with people from their own cultural background particularly. The results also revealed cultural differences in the perception of emotion from neutral faces that could also contribute to the bias in eye contact perception.

  2. Eye contact perception in the West and East: a cross-cultural study.

    Science.gov (United States)

    Uono, Shota; Hietanen, Jari K

    2015-01-01

    This study investigated whether eye contact perception differs in people with different cultural backgrounds. Finnish (European) and Japanese (East Asian) participants were asked to determine whether Finnish and Japanese neutral faces with various gaze directions were looking at them. Further, participants rated the face stimuli for emotion and other affect-related dimensions. The results indicated that Finnish viewers had a smaller bias toward judging slightly averted gazes as directed at them when judging Finnish rather than Japanese faces, while the bias of Japanese viewers did not differ between faces from their own and other cultural backgrounds. This may be explained by Westerners experiencing more eye contact in their daily life leading to larger visual experience of gaze perception generally, and to more accurate perception of eye contact with people from their own cultural background particularly. The results also revealed cultural differences in the perception of emotion from neutral faces that could also contribute to the bias in eye contact perception.

  3. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  4. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    Science.gov (United States)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  5. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    Science.gov (United States)

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  6. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  7. An approximate JKR solution for a general contact, including rough contacts

    Science.gov (United States)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  8. HTSC-Josephson step contacts

    International Nuclear Information System (INIS)

    Herrmann, K.

    1994-03-01

    In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)

  9. [Contact allergic gastritis : Rare manifestation of a metal allergy].

    Science.gov (United States)

    Pföhler, C; Vogt, T; Müller, C S L

    2016-05-01

    Only a few cases of contact allergic gastritis in patients with nickel allergy have been reported in the literature. We report a case of probable contact-allergic gastritis in a 46-year-old woman. Clinical examination revealed lichenoid mucosal lesions of the gums adjacent to a bridge and crowns that had been implanted several weeks previously. Since implantation, the patient suffered from gastrointestinal complaints including stomach pain. Gastroscopy and histological investigation of stomach biopsies showed eosinophilic gastritis. Patch testing done under the diagnosis of contact allergic stomatitis showed positive reactions to gold sodium thiosulphate, manganese (II) chloride, nickel (II) sulphate, palladium chloride, vanadium (III) chloride, zirconium (IV) chloride, and fragrances. The crowns and the bridge contained gold, palladium, and zirconium, hence they were replaced by titan-based dentition. Shortly after replacing the artificial dentition, all gastrointestinal symptoms resolved spontaneously without further treatment. Delayed-type allergy to components in the artificial dentition seem to have caused the gastritis.

  10. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring

    Directory of Open Access Journals (Sweden)

    Seungho Kuk

    2018-04-01

    Full Text Available The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different

  11. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring.

    Science.gov (United States)

    Kuk, Seungho; Kim, Junha; Park, Yongtae; Kim, Hyogon

    2018-04-27

    The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different countries. Specifically, we

  12. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  13. Sibling Relation, Ethnic Prejudice, Direct and Indirect Contact: There is a Connection?

    Directory of Open Access Journals (Sweden)

    Sara Alfieri

    2015-11-01

    Full Text Available The literature on the socialisation of prejudice has concentrated on “vertical” processes (from parents to children, ignoring siblings’ contribution. This work aims to investigate the effect of contact (direct or indirect with the outgroup that young people experience a directly or b indirectly through older or younger siblings’ friendships. Our hypotheses are a that young people with friends in the outgroup will report lower prejudice levels (direct contact, as will young people who have older or younger siblings with friends in the outgroup (indirect contact; b that other forms of contact such as having classmates/coworkers, neighbours, or employees are not effective in reducing either direct or indirect prejudice. 88 sibling dyads were administered the blatant and subtle prejudice questionnaire (Pettigrew & Meertens, 1995 and some ad hoc items aimed at investigating the typology of the contact experienced. The analysis of mixed ANOVA reveals that the first hypothesis was partially confirmed in that prejudice (subtle for the younger sibling and blatant for the older one decreases in a statistically significant way only when there is the co-presence of direct and indirect contact. The second hypothesis is fully confirmed as no statistically significant differences emerged between the groups.

  14. Sibling Relation, Ethnic Prejudice, Direct and Indirect Contact: There is a Connection?

    Science.gov (United States)

    Alfieri, Sara; Marta, Elena

    2015-01-01

    The literature on the socialisation of prejudice has concentrated on “vertical” processes (from parents to children), ignoring siblings’ contribution. This work aims to investigate the effect of contact (direct or indirect) with the outgroup that young people experience a) directly or b) indirectly through older or younger siblings’ friendships. Our hypotheses are a) that young people with friends in the outgroup will report lower prejudice levels (direct contact), as will young people who have older or younger siblings with friends in the outgroup (indirect contact); b) that other forms of contact such as having classmates/coworkers, neighbours, or employees are not effective in reducing either direct or indirect prejudice. 88 sibling dyads were administered the blatant and subtle prejudice questionnaire (Pettigrew & Meertens, 1995) and some ad hoc items aimed at investigating the typology of the contact experienced. The analysis of mixed ANOVA reveals that the first hypothesis was partially confirmed in that prejudice (subtle for the younger sibling and blatant for the older one) decreases in a statistically significant way only when there is the co-presence of direct and indirect contact. The second hypothesis is fully confirmed as no statistically significant differences emerged between the groups. PMID:27247684

  15. Putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

    Science.gov (United States)

    Sung, Hyun-Jeong; Yoon, In-Hwa; Kim, Jung-Hyun

    2017-09-01

    A 10-year-old spayed female cocker spaniel dog was referred for an evaluation of acute-onset generalized pustular cutaneous lesions following application of ketoconazole shampoo. Cytologic and histopathologic examinations of the lesions revealed intra-epidermal pustules with predominantly neutrophils and acantholytic cells. This is the first description of putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

  16. Effects of excipients on the tensile strength, surface properties and free volume of Klucel{sup ®} free films of pharmaceutical importance

    Energy Technology Data Exchange (ETDEWEB)

    Gottnek, Mihály [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary); Süvegh, Károly [Laboratory of Nuclear Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Pintye-Hódi, Klára [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary); Regdon, Géza [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary)

    2013-08-15

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel{sup ®} hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel{sup ®} MF films had better physicochemical properties than those of the LF films. Klucel{sup ®} MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects. - Highlights: • Glycerol increases, whereas xylitol decreases the free volume of both LF and MF HPC. • Both xylitol and glycerol increase the tensile strength of MF films. • The tensile strength of the MF product makes it suitable for pharmaceutical use. • The surface properties reveal a macroscopically stable film structure. • All measurements indicate a macroscopically homogeneous film structure.

  17. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  18. Optimization of Contact Force and Pull-in Voltage for Series based MEMS Switch

    Directory of Open Access Journals (Sweden)

    Abhijeet KSHIRSAGAR

    2010-04-01

    Full Text Available Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RF MEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. The cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied, but it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. Again it results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the finding of optimum contact force and pull-in voltage.

  19. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength.

    Science.gov (United States)

    Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar

    2018-08-01

    The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2017-08-29

    Residue-residue contacts are key features for accurate de novo protein structure prediction. For the optimal utilization of these predicted contacts in folding proteins accurately, it is important to study the challenges of reconstructing protein structures using true contacts. Because contact-guided protein modeling approach is valuable for predicting the folds of proteins that do not have structural templates, it is necessary for reconstruction studies to focus on hard-to-predict protein structures. Using a data set consisting of 496 structural domains released in recent CASP experiments and a dataset of 150 representative protein structures, in this work, we discuss three techniques to improve the reconstruction accuracy using true contacts - adding secondary structures, increasing contact distance thresholds, and adding non-contacts. We find that reconstruction using secondary structures and contacts can deliver accuracy higher than using full contact maps. Similarly, we demonstrate that non-contacts can improve reconstruction accuracy not only when the used non-contacts are true but also when they are predicted. On the dataset consisting of 150 proteins, we find that by simply using low ranked predicted contacts as non-contacts and adding them as additional restraints, can increase the reconstruction accuracy by 5% when the reconstructed models are evaluated using TM-score. Our findings suggest that secondary structures are invaluable companions of contacts for accurate reconstruction. Confirming some earlier findings, we also find that larger distance thresholds are useful for folding many protein structures which cannot be folded using the standard definition of contacts. Our findings also suggest that for more accurate reconstruction using predicted contacts it is useful to predict contacts at higher distance thresholds (beyond 8 Å) and predict non-contacts.

  1. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  2. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    Science.gov (United States)

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  3. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    Science.gov (United States)

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect

  4. Improving the Q:H strength ratio in women using plyometric exercises.

    Science.gov (United States)

    Tsang, Kavin K W; DiPasquale, Angela A

    2011-10-01

    Plyometric training programs have been implemented in anterior cruciate ligament injury prevention programs. Plyometric exercises are designed to aid in the improvement of muscle strength and neuromuscular control. Our purpose was to examine the effects of plyometric training on lower leg strength in women. Thirty (age = 20.3 ± 1.9 years) recreationally active women were divided into control and experimental groups. The experimental group performed a plyometric training program for 6 weeks, 3 d·wk(-1). All subjects attended 4 testing sessions: before the start of the training program and after weeks 2, 4, and 6. Concentric quadriceps and hamstring strength (dominant leg) was assessed using an isokinetic dynamometer at speeds of 60 and 120°·s(-1). Peak torque, average peak torque, and average power (AvgPower) were measured. The results revealed a significant (p plyometric group than in the control group at testing session 4 and that AvgPower was greater in the plyometric group than in the control group in testing sessions 2-4. Our results indicate that the plyometric training program increased hamstring strength while maintaining quadriceps strength, thereby improving the Q:H strength ratio.

  5. Healthcare worker contact networks and the prevention of hospital-acquired infections.

    Directory of Open Access Journals (Sweden)

    Donald E Curtis

    Full Text Available We present a comprehensive approach to using electronic medical records (EMR for constructing contact networks of healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC--a 3.2 million square foot facility with 700 beds and about 8,000 healthcare workers--by obtaining 19.8 million EMR data points, spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks, which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based on large-scale data and do not make any a priori assumptions about edges (contacts between healthcare workers, degree distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the healthcare worker contact networks we generate and social networks that arise in other (e.g., online settings. Furthermore, our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to random networks of similar size and density. Using the generated contact networks, we evaluate several alternate vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust and quite effective relative to a random vaccination policy.

  6. Effect of implanted doses of N+-ions on the contact resistance of copper contacts

    International Nuclear Information System (INIS)

    Dubravec, B.; Kovac, P.; Lipka, F.; Padysak, M.

    1997-01-01

    The paper deals with the effect of implanted doses of N + ions on the contact resistance. Dependencies of the contact resistance versus contact force R c =f(F c ) and microhardness of implanted surfaces were measured for three implanted profiles. The influence of the aggressive environs on the contact resistance of implanted contact is given too

  7. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  8. Contact kinematics of biomimetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan, E-mail: vaziri@coe.neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  9. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  10. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  11. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    Science.gov (United States)

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P low back pain in oarsmen.

  12. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Directory of Open Access Journals (Sweden)

    Ulfah Rimayanti

    Full Text Available PURPOSE: To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP reading changes caused by wearing soft contact lenses (CLs. METHODS: One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL, with -5.0 diopters (D, -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. RESULTS: The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. CONCLUSIONS: Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  13. Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts

    International Nuclear Information System (INIS)

    Czaplewski, David A; Nordquist, Christopher D; Dyck, Christopher W; Patrizi, Gary A; Kraus, Garth M; Cowan, William D

    2012-01-01

    We present lifetime limitations and failure analysis of many packaged RF MEMS ohmic contacting switches with Au–Au, Au–Ir, and Au–Pt contact materials operating with 100 µN of contact force per contact in hermetically sealed glass wall packages. All metals were tested using the same switch design in a controlled environment to provide a comparison between the performance of the different materials and their corresponding failure mechanisms. The switch lifetimes of the different contact materials varied from several hundred cycles to 200 million cycles with different mechanisms causing failures for different contact materials. Switches with Au–Au contacts failed due to adhesion when thoroughly cleaned while switches with dissimilar metal contacts (Au–Ir and Au–Pt) operated without adhesion failures but failed due to carbon accumulation on the contacts even in a clean, packaged environment as a result of the catalytic behavior of the contact materials. Switch lifetimes correlated inversely with catalytic behavior of the contact metals. The data suggests the path to increase switch lifetime is to use favorable catalytic materials as contacts, design switches with higher contact forces to break through any residual contamination, and use cleaner, probably smaller, packages. (paper)

  14. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  15. A Proactive Approach of Robotic Framework for Making Eye Contact with Humans

    Directory of Open Access Journals (Sweden)

    Mohammed Moshiul Hoque

    2014-01-01

    Full Text Available Making eye contact is a most important prerequisite function of humans to initiate a conversation with others. However, it is not an easy task for a robot to make eye contact with a human if they are not facing each other initially or the human is intensely engaged his/her task. If the robot would like to start communication with a particular person, it should turn its gaze to that person and make eye contact with him/her. However, such a turning action alone is not enough to set up an eye contact phenomenon in all cases. Therefore, the robot should perform some stronger actions in some situations so that it can attract the target person before meeting his/her gaze. In this paper, we proposed a conceptual model of eye contact for social robots consisting of two phases: capturing attention and ensuring the attention capture. Evaluation experiments with human participants reveal the effectiveness of the proposed model in four viewing situations, namely, central field of view, near peripheral field of view, far peripheral field of view, and out of field of view.

  16. Performance assessment on high strength steel endplate connections after fire

    NARCIS (Netherlands)

    Qiang, X.; Wu, N.; Jiang, X.; Bijlaard, F.S.K.; Kolstein, M.H.

    2017-01-01

    Purpose – This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire. Design/methodology/approach – An experimental and numerical study on seven endplate connections after

  17. Estimates of pitch strength for musicians and nonmusicians

    Science.gov (United States)

    Clarkson, Marsha G.; Zettler, Cynthia M.; Follmer, Michelle J.; Faulk, Margaret; Takagi, Michael J.

    2003-04-01

    To measure the strength of the pitch of iterated rippled noise (IRN), 19 adults were tested in an operant conditioning procedure. Seven adults had music training and currently played an instrument; 12 adults had no training and did not currently play an instrument. To generate IRN, a 500-ms Gaussian noise stimulus was delayed by 5 or 6 ms (pitches of 200 or 166 Hz) and added to the original for 16 iterations. IRN stimuli having one delay were presented repeatedly. On signal trials the delay changed for 6 s. Stimulus level roved from 63-67 dBA (background of 28 dBA). Adults learned to press a button when the stimulus changed. Testing started with IRN stimuli having 0-dB attenuation (i.e., maximal pitch strength). Stimuli having weaker pitches (i.e., progressively greater attenuation applied to the delayed noise) followed. Strength of pitch was quantified as the maximum attenuation for which pitch was discerned. For each subject, threshold attenuation for pitch strength was extrapolated as the 71% point on a psychometric function depicting percent correct performance as a function of attenuation. Mean thresholds revealed that the pitch percept was similar for both nonmusically trained (18.70 dB) and musically trained adults (18.73 dB).

  18. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.

    2008-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O 2 and N 2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N 2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O 2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N 2 plasma pre-treatment was more effective than the O 2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N 2 plasma pre-treatment showed good wear resistance, compared with that with O 2 plasma pre-treatment

  19. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability.

    Science.gov (United States)

    Prieske, O; Muehlbauer, T; Borde, R; Gube, M; Bruhn, S; Behm, D G; Granacher, U

    2016-01-01

    Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 ± 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band® Stability Trainer, Togu© Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P training. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  1. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  2. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  3. Negative intergroup contact is more influential, but positive intergroup contact is more common: Assessing contact prominence and contact prevalence in five Central European countries

    Czech Academy of Sciences Publication Activity Database

    Graf, Sylvie; Paolini, S.; Rubin, M.

    2014-01-01

    Roč. 44, č. 96 (2014), 536–547 ISSN 0046-2772 R&D Projects: GA ČR GA13-25656S Institutional support: RVO:68081740 Keywords : intergroup contact * negative contact * outgroup attitudes Subject RIV: AN - Psychology Impact factor: 1.712, year: 2014

  4. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  5. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  6. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    Science.gov (United States)

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps

  7. 78 FR 14549 - National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey

    Science.gov (United States)

    2013-03-06

    ...] National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey AGENCY... National Contact Center customer evaluation surveys. In this request, the previously approved surveys have... several months. These temporary surveys will allow the National Contact Center to compare its customer...

  8. The local strength of microscopic alumina reinforcements

    International Nuclear Information System (INIS)

    Žagar, Goran; Pejchal, Václav; Mueller, Martin G.; Rossoll, Andreas; Cantoni, Marco; Mortensen, Andreas

    2015-01-01

    We measure, using an adaptation of a method designed for ceramic ball bearings, the local strength of a brittle second phase that serves to reinforce a metal. The method uses focused ion beam milling and a nanoindentation device, and is free of artifacts commonly present in micromachined specimens. It is demonstrated on Nextel 610™ nanocrystalline alumina fibers embedded in an aluminum matrix composite. Results reveal a size effect that does not follow, across size scales, usual Weibull statistics: the fiber strength distribution differs between measurements at the microscale and macroscopic tensile testing. This implies that, in micromechanical analysis of multiphase materials, highly localized events such as the propagation of internal damage require input data that must be measured at the same, local, microscale as the event; the present work opens a path to this end.

  9. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  10. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  11. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    Science.gov (United States)

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P values than the Baseline hydraulic dynamometer (P values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used, assessment posture, and elbow position. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  14. Span-Dependent Distributions of the Bending Strength of Spruce Timber

    DEFF Research Database (Denmark)

    Ditlevsen, Ove; Källsner, Bo

    2005-01-01

    Tests data of bending strengths of a large number of timber beams of different spans obtained at the Swedish Institute for Wood Technology Research reveal a statistical structure that can be represented in a simple probabilistic model of series system type. A particular feature of the data from one...

  15. Evaluation of contact sensitivity to topical drugs in patients with contact dermatitis

    Directory of Open Access Journals (Sweden)

    Bilge Bülbül Şen

    2013-03-01

    Full Text Available Background and Design: Topical drugs are an important group of contact allergens. The present study aimed to evaluate contact sensitivity to topical drugs in patients with contact dermatitis. Materials and Methods: Between 2003 and 2008, 129 patients were followed up at the Department of Dermatology at Ankara University School of Medicine with clinically suspected contact sensitivity to topical drugs. In this study, the patch test reactions to the European Standard Battery and topical drugs used by the patients and medicament patch test results were evaluated. Results: Positive patch test reaction to one or more allergens was found in 80 (62.0% of 129 patients included in the study. Sixty-one of the 80 patients (61/129, 47.3% had positive patch test reaction to medicaments. Medicament sensitivity was detected in 37.9% (49/129 of subjects. Nitrofurazone was found to be the most common allergen (18.6%. Discussion: The present study showed that topical drugs are a frequent cause of allergic contact dermatitis. Therefore, the probability of contact sensitivity to topical drugs should also be considered in patients with the clinical diagnosis of allergic contact dermatitis and, suspected cases should be evaluated further with patch testing in order to find the responsible allergens.

  16. Satisfaction strength and intention to purchase a new product

    DEFF Research Database (Denmark)

    Tudoran, Ana Alina; Olsen, Svein Ottar; Dopico, Domingo C.

    2012-01-01

    This study examines the role of satisfaction strength on the correspondence between reported satisfaction and intention to purchase a new product. The market testing underlying this study analyzes the market opportunities for a novel prototype. The research was conducted at a central location wit...... satisfaction level alone. The study argues on the nomological validity of the satisfaction construct and reveals that assessment of satisfaction strength should support the management goal of identifying truly satisfied customers.......This study examines the role of satisfaction strength on the correspondence between reported satisfaction and intention to purchase a new product. The market testing underlying this study analyzes the market opportunities for a novel prototype. The research was conducted at a central location...... with 239 randomly selected consumers. Results indicate that (un)certainty, ambivalence, and importance cognitions and feelings significantly moderate the relationship between reported satisfaction and individuals’ intention to purchase. For example, the association between consumers’ reported satisfaction...

  17. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  18. Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout

    Science.gov (United States)

    Sedgwick, Hal A.

    1990-03-01

    An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.

  19. Attention to eye contact in the West and East: autonomic responses and evaluative ratings.

    Science.gov (United States)

    Akechi, Hironori; Senju, Atsushi; Uibo, Helen; Kikuchi, Yukiko; Hasegawa, Toshikazu; Hietanen, Jari K

    2013-01-01

    Eye contact has a fundamental role in human social interaction. The special appearance of the human eye (i.e., white sclera contrasted with a coloured iris) implies the importance of detecting another person's face through eye contact. Empirical studies have demonstrated that faces making eye contact are detected quickly and processed preferentially (i.e., the eye contact effect). Such sensitivity to eye contact seems to be innate and universal among humans; however, several studies suggest that cultural norms affect eye contact behaviours. For example, Japanese individuals exhibit less eye contact than do individuals from Western European or North American cultures. However, how culture modulates eye contact behaviour is unclear. The present study investigated cultural differences in autonomic correlates of attentional orienting (i.e., heart rate) and looking time. Additionally, we examined evaluative ratings of eye contact with another real person, displaying an emotionally neutral expression, between participants from Western European (Finnish) and East Asian (Japanese) cultures. Our results showed that eye contact elicited stronger heart rate deceleration responses (i.e., attentional orienting), shorter looking times, and higher ratings of subjective feelings of arousal as compared to averted gaze in both cultures. Instead, cultural differences in the eye contact effect were observed in various evaluative responses regarding the stimulus faces (e.g., facial emotion, approachability etc.). The rating results suggest that individuals from an East Asian culture perceive another's face as being angrier, unapproachable, and unpleasant when making eye contact as compared to individuals from a Western European culture. The rating results also revealed that gaze direction (direct vs. averted) could influence perceptions about another person's facial affect and disposition. These results suggest that cultural differences in eye contact behaviour emerge from differential

  20. Attention to eye contact in the West and East: autonomic responses and evaluative ratings.

    Directory of Open Access Journals (Sweden)

    Hironori Akechi

    Full Text Available Eye contact has a fundamental role in human social interaction. The special appearance of the human eye (i.e., white sclera contrasted with a coloured iris implies the importance of detecting another person's face through eye contact. Empirical studies have demonstrated that faces making eye contact are detected quickly and processed preferentially (i.e., the eye contact effect. Such sensitivity to eye contact seems to be innate and universal among humans; however, several studies suggest that cultural norms affect eye contact behaviours. For example, Japanese individuals exhibit less eye contact than do individuals from Western European or North American cultures. However, how culture modulates eye contact behaviour is unclear. The present study investigated cultural differences in autonomic correlates of attentional orienting (i.e., heart rate and looking time. Additionally, we examined evaluative ratings of eye contact with another real person, displaying an emotionally neutral expression, between participants from Western European (Finnish and East Asian (Japanese cultures. Our results showed that eye contact elicited stronger heart rate deceleration responses (i.e., attentional orienting, shorter looking times, and higher ratings of subjective feelings of arousal as compared to averted gaze in both cultures. Instead, cultural differences in the eye contact effect were observed in various evaluative responses regarding the stimulus faces (e.g., facial emotion, approachability etc.. The rating results suggest that individuals from an East Asian culture perceive another's face as being angrier, unapproachable, and unpleasant when making eye contact as compared to individuals from a Western European culture. The rating results also revealed that gaze direction (direct vs. averted could influence perceptions about another person's facial affect and disposition. These results suggest that cultural differences in eye contact behaviour emerge from

  1. Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs

    Science.gov (United States)

    Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo

    2018-03-01

    The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.

  2. Dermatitis, contact (image)

    Science.gov (United States)

    This picture shows a skin inflammation (dermatitis) caused by contact with a material that causes an allergic reaction in this person. Contact dermatitis is a relatively common condition, and can be caused ...

  3. [News on occupational contact dermatitis].

    Science.gov (United States)

    Crépy, Marie-Noëlle; Bensefa-Colas, Lynda

    2014-03-01

    Contact dermatitis--irritant contact dermatitis, allergic contact dermatitis and protein contact dermatitis--are the most common occupational skin diseases, most often localized to the hands. Contact urticaria is rarer The main occupational irritants are wet work, detergents and disinfectants, cutting oils, and solvents. The main occupational allergens are rubber additives, metals (chromium, nickel, cobalt), plastics (epoxy resins, acrylic), biocides and plants. Diagnosis is based on clinical examination, medical history and allergy testing. For a number of irritating or sensitizing agents, irritant or allergic dermatitis can be notified as occupational diseases. The two main prevention measures are reducing skin contact with irritants and complete avoidance of skin contact with offending allergens.

  4. Lettuce contact allergy.

    Science.gov (United States)

    Paulsen, Evy; Andersen, Klaus E

    2016-02-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22%. The majority of cases are non-occupational, and may partly be caused by cross-reactivity. The sesquiterpene lactone mix seems to be a poor screening agent for lettuce contact allergy, as the prevalence of positive reactions is significantly higher in non-occupationally sensitized patients. Because of the easy degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-to-prick tests, and possibly scratch patch tests as well. Any person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  6. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  7. Contact and symplectic topology

    CERN Document Server

    Colin, Vincent; Stipsicz, András

    2014-01-01

    Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

  8. Follicular contact dermatitis revisited: A review emphasizing neomycin-associated follicular contact dermatitis

    Science.gov (United States)

    Cohen, Philip R

    2014-01-01

    Follicular contact dermatitis clinically presents as individual papules that include a central hair follicle. Pathologic features involve the follicle and the surrounding dermis: spongiosis and vesicle formation of the follicular epithelium associated with perifollicular and perivascular lymphocytic inflammation. Using the PubMed database, an extensive literature search was performed on follicular contact dermatitis and neomycin. Relevant papers were reviewed and the clinical and pathologic features, the associated chemicals (including a more detailed description of neomycin), the hypothesized pathogenesis, and the management of follicular contact dermatitis were described. Several agents-either as allergens or irritants-have been reported to elicit follicular contact dermatitis. Several hypotheses have been suggested for the selective involvement of the follicles in follicular contact dermatitis: patient allergenicity, characteristics of the agent, vehicle containing the agent, application of the agent, and external factors. The differential diagnosis of follicular contact dermatitis includes not only recurrent infundibulofolliculitis, but also drug eruption, mite infestation, viral infection, and dermatoses that affect hair follicles. The primary therapeutic intervention for follicular contact dermatitis is withdrawal of the causative agent; treatment with a topical corticosteroid preparation may also promote resolution of the dermatitis. In conclusion, follicular contact dermatitis may be secondary to allergens or irritants; topical antibiotics, including neomycin, may cause this condition. Several factors may account for the selective involvement of the hair follicle in this condition. Treatment of the dermatitis requires withdrawal of the associated topical agent; in addition, topical corticosteroids may be helpful to promote resolution of lesions. PMID:25516854

  9. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  10. Power profiles of single vision and multifocal soft contact lenses.

    Science.gov (United States)

    Wagner, Sandra; Conrad, Fabian; Bakaraju, Ravi C; Fedtke, Cathleen; Ehrmann, Klaus; Holden, Brien A

    2015-02-01

    The purpose of this study was to investigate the optical zone power profile of the most commonly prescribed soft contact lenses to assess their potential impact on peripheral refractive error and hence myopia progression. The optical power profiles of six single vision and ten multifocal contact lenses of five manufacturers in the powers -1.00 D, -3.00 D, and -6.00 D were measured using the SHSOphthalmic (Optocraft GmbH, Erlangen, Germany). Instrument repeatability was also investigated. Instrument repeatability was dependent on the distance from the optical centre, manifesting unreliable data for the central 1mm of the optic zone. Single vision contact lens measurements of -6.00 D lenses revealed omafilcon A having the most negative spherical aberration, lotrafilcon A having the least. Somofilcon A had the highest minus power and lotrafilcon A the biggest deviation in positive direction, relative to their respective labelled powers. Negative spherical aberration occurred for almost all of the multifocal contact lenses, including the centre-distance designs etafilcon A bifocal and omafilcon A multifocal. Lotrafilcon B and balafilcon A seem to rely predominantly on the spherical aberration component to provide multifocality. Power profiles of single vision soft contact lenses varied greatly, many having a negative spherical aberration profile that would exacerbate myopia. Some lens types and powers are affected by large intra-batch variability or power offsets of more than 0.25 dioptres. Evaluation of power profiles of multifocal lenses was derived that provides helpful information for prescribing lenses for presbyopes and progressing myopes. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  12. The effect of isokinetic and proprioception training on strength, movement and gait parameters after acute supination injury of the ankle ligaments

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2009-01-01

    Full Text Available The effects of a three-week isokinetic training compared to typical proprio -ceptive training on parameters of strength, movement and gait function after acute ankle ligament sprain were investigated. Thirty-nine patients were randomly allocated to two comparison groups. In group 1 (n=20a proprioceptive training and in group 2 (n=19 an isokinetic strength training (Cybex 6000® were administered. Thepatients of both groups underwent training five times a week for three weeks. Before and at the end of the treatmentcourse, in both groups isokinetic strength was tested, the range of motion in the ankle joint was recorded and gait wasanalyzed (multicomponent strength measurement platform, Henschel-System®. The maximum isokinetic torque(60°/s [Nm] and the contact time (monopedal support time of the injured leg during gait cycle were the basis for evaluation.The data obtained show that in group 2 a significantly greater increase of the maximum isokinetic torque wasattained in almost all range of motion of the ankle joint in the course of treatment. A t the same time, in group 2 theshortening of the contact time in the stance phase of the injured leg could be compensated. The active range of motionin the ankle joint was less at the end of treatment in group 2 than in group 1. The isokinetic training obviously did notonly lead to better strength regeneration, but also to a functionally more stable ankle joint with a rhythmically moreevenly balanced stance phase of the gait cycle.  These results suggest that the used isokinetic training had positive effects on functional stability after acute ankle sprain.

  13. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    Science.gov (United States)

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any

  14. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  15. Contact Lens-Related Eye Infections

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related Eye ... Six Steps to Avoid Contact Lens Infections Contact Lens-Related Eye Infections Leer en Español: Infecciones relacionadas ...

  16. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  17. Are diverse societies less cohesive? Testing contact and mediated contact theories.

    Science.gov (United States)

    McKenna, Sarah; Lee, Eunro; Klik, Kathleen A; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J

    2018-01-01

    Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation 'majority' Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities.

  18. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  19. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  20. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  1. Focusing on Contact Lens Safety

    Science.gov (United States)

    ... their practices. Decorative contacts (also called “costume,” colored,” “fashion,” or “plano” contacts). The FDA has often warned ... Lenses Decorative Contact Lenses Hydrogen Peroxide Solution Related Consumer Updates 'Colored' and Decorative Contact Lenses: A Prescription ...

  2. A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy.

    Science.gov (United States)

    Tian, Jialong; Wang, Wei; Babar Shahzad, M; Yan, Wei; Shan, Yiyin; Jiang, Zhouhua; Yang, Ke

    2017-11-10

    A new maraging stainless steel with superior strength-toughness-corrosion synergy has been developed based on an innovative concept of alloy design. The high strength-toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni₃Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.

  3. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Mei, Xuesong; Wang, Wenjun [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Xinju [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Xie, Hui; Yang, Lijun; Wang, Yang [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO{sub 2} substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  4. Contact-impact algorithms on parallel computers

    International Nuclear Information System (INIS)

    Zhong Zhihua; Nilsson, Larsgunnar

    1994-01-01

    Contact-impact algorithms on parallel computers are discussed within the context of explicit finite element analysis. The algorithms concerned include a contact searching algorithm and an algorithm for contact force calculations. The contact searching algorithm is based on the territory concept of the general HITA algorithm. However, no distinction is made between different contact bodies, or between different contact surfaces. All contact segments from contact boundaries are taken as a single set. Hierarchy territories and contact territories are expanded. A three-dimensional bucket sort algorithm is used to sort contact nodes. The defence node algorithm is used in the calculation of contact forces. Both the contact searching algorithm and the defence node algorithm are implemented on the connection machine CM-200. The performance of the algorithms is examined under different circumstances, and numerical results are presented. ((orig.))

  5. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Ghoneim, Mohamed T.; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-01-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  6. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  7. Improving body composition and strength in athletes through a 4-month combined martial arts and strength training program

    Directory of Open Access Journals (Sweden)

    Aleksandra Stachoń

    2016-06-01

    2Zakład Sportów Indywidualnych, Akademia Wychowania Fizycznego, ul. Paderewskiego 35, Wrocław       Corresponding author: Dr Aleksandra Jadwiga Stachoń, e-mail: aleksandra.stachon@awf.wroc.pl Departament of Physical Anthropology, University School of Physical Education in Wrocław, al. I.J. Paderewskiego 35, bud. P2, 51-612 Wrocław; Poland Phone: 71 347 33 44         Key words: resistance training, body build, body composition, combat sport.   Abstract Background and aim. Body composition is one of key components of health in both general and athletic populations. In martial arts great significance is attached to the development of mesomorphy and strength, which are crucial for performing offensive and defensive actions during fights. The study proposes to introduce progressive strength training programme - arranged primarily for beginners – in order to improve body composition of non-elite male martial arts competitors. The present study aims to evaluate the changes in body massiveness, body composition and strength in 31 martial arts practitioners from academic sports clubs after a combined martial arts and strength training programme. Material and methods. The 16-week intervention was based on a targeted progressive resistance training protocol developed by Stefaniak [1995]. The anthropometric, physical and motoric measurements were performed twice at four months interval. This programme includes training three times weekly with increased number of repetitions (19-24, number of sets (1-3 and increased loads (5%. Results. After the completion of the training program, significant increase for about 1.8 kgin body mass was observed. Body massiveness (BMI increased from 23.2 ± 1.8 kg/m2 to 23.9 ± 1.8 kg/m2. The analysis using Sheldon’s somatotypes revealed an increase of mesomorphy (from 5.5 to 5.7 and decrease of ectomorphy (from 2.5 to 2.4. The level of endomorphy became stable (2.1. The maximal circumferences of flexed arm, forearm, calf and

  8. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  9. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    Science.gov (United States)

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  10. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  11. Are only Emotional Strengths Emotional? Character Strengths and Disposition to Positive Emotions.

    Science.gov (United States)

    Güsewell, Angelika; Ruch, Willibald

    2012-07-01

    This study aimed to examine the relations between character strengths and dispositional positive emotions (i.e. joy, contentment, pride, love, compassion, amusement, and awe). A sample of 574 German-speaking adults filled in the Dispositional Positive Emotion Scales (DPES; Shiota, Keltner, & John, 2006), and the Values in Action Inventory of Strengths (VIA-IS; Peterson, Park, & Seligman, 2005). The factorial structure of the DPES was examined on item level. Joy and contentment could not be clearly separated; the items of the other five emotions loaded on separate factors. A confirmatory factor analysis assuming two latent factors (self-oriented and object/situation specific) was computed on scale level. Results confirmed the existence of these factors, but also indicated that the seven emotions did not split up into two clearly separable families. Correlations between dispositional positive emotions and character strengths were positive and generally low to moderate; a few theoretically meaningful strengths-emotions pairs yielded coefficients>.40. Finally, the link between five character strengths factors (i.e. emotional strengths, interpersonal strengths, strengths of restraint, intellectual strengths, and theological strengths) and the emotional dispositions was examined. Each of the factors displayed a distinctive "emotional pattern"; emotional strengths evidenced the most numerous and strongest links to emotional dispositions. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.

  12. Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton

    International Nuclear Information System (INIS)

    Gray, Darren S.; Liu, Wendy F.; Shen, Colette J.; Bhadriraju, Kiran; Nelson, Celeste M.; Chen, Christopher S.

    2008-01-01

    Endothelial cell-cell contact via VE-cadherin plays an important role in regulating numerous cell functions, including proliferation. However, using different experimental approaches to manipulate cell-cell contact, investigators have observed both inhibition and stimulation of proliferation depending on the adhesive context. In this study, we used micropatterned wells combined with active positioning of cells by dielectrophoresis in order to investigate whether the number of contacting neighbors affected the proliferative response. Varying cell-cell contact resulted in a biphasic effect on proliferation; one contacting neighbor increased proliferation, while two or more neighboring cells partially inhibited this increase. We also observed that cell-cell contact increased the formation of actin stress fibers, and that expression of dominant negative RhoA (RhoN19) blocked the contact-mediated increase in stress fibers and proliferation. Furthermore, examination of heterotypic pairs of untreated cells in contact with RhoN19-expressing cells revealed that intracellular, but not intercellular, tension is required for the contact-mediated stimulation of proliferation. Moreover, engagement of VE-cadherin with cadherin-coated beads was sufficient to stimulate proliferation in the absence of actual cell-cell contact. In all, these results demonstrate that cell-cell contact signals through VE-cadherin, RhoA, and intracellular tension in the actin cytoskeleton to regulate proliferation

  13. [Ocular and visual alterations in computer workers contact lens wearers: scoping review].

    Science.gov (United States)

    Tauste Francés, Ana; Ronda-Pérez, Elena; Seguí Crespo, María del Mar

    2014-01-01

    The high number of computer workers wearing contact lenses raises the question whether the sum of these two risk factors for eye health may cause a worsening of Computer Vision Syndrome. The aim of this review is to synthesize the knowledge about ocular and visual alterations related with computer use in contact lens wearers. International review of scientific papers (2003-2013) in Spanish and English, using Scoping Review method, in Medline through PubMed and in Scopus. The initial search provided 114 references, after applying inclusion/exclusion criteria six of them were included. All of them reveal that symptoms when using computer are more prevalent in contact lens wearers, with values of symptoms presentation prevalence ranging from 95.0% to 16.9% in wearers and from 57.5% to 9.9% in non-wearers, and four times more likely to develop dry eye [OR: 4.07 (95% CI: 3.52 to 4.71)]. Computer workers suffer more ocular and visual disturbances if they also are contact lens users, but studies are few and non conclusive. Likewise, further research regarding contact lens type and their conditions of use, both in symptoms and tear quality and ocular surface are needed. Silicone hydrogel lenses are associated with more comfort.

  14. Occupational allergic and irritant contact dermatitis in workers exposed to polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marta Kieć-Świerczyńska

    2014-04-01

    Full Text Available Objectives: To evaluate sensitization to chemicals present in work environment after an outbreak of contact dermatitis in workers of vehicle equipment factory, exposed to polyurethane foam, based on 4,4'-diphenylmethane diisocyanate (MDI. Material and Methods: From among 300 employees, 21 individuals reporting work-related skin and/or respiratory tract symptoms underwent clinical examination, patch testing, skin prick tests, spirometry and MDI sIgE measurement in serum. Patch tests included isocyanates series, selected rubber additives, metals, fragrances, preservatives, and an antiadhesive agent. Results: Clinical examination revealed current eczema in the area of hands and/or forearms in 10 workers. Positive patch test reactions were found in 10 individuals, the most frequent to diaminodiphenylmethane and 4-phenylenediamine (7 persons. Reactions to an antiadhesive agent were assessed as irritant (5 workers. Except for sensitization to common aeroallergens, no significant abnormalities were found in the remaining tests. Occupational allergic contact dermatitis was diagnosed in 7 workers, irritant contact dermatitis in 10 and coexisiting allergic and irritant contact dermatitis in 3 workers. Conclusions: In workers manufacturing products from polyurethane foam, attention should be paid to the risk of developing contact dermatitis. Skin problems in our study group were attributable probably to insufficient protection of the skin.

  15. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  16. Mathematical Modeling of Contact Problems of Elasticity Theory with Continuous Unilateral Contact

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2015-01-01

    Full Text Available The work [1] presents the formulation and numerical solution of the problem concerning the unilateral discrete contact interaction of an elastic body and a rigid half-space. However, many parts and components of engineering structures have a pronounced continuous contact within a given surface [2, 3]. In this paper we consider a special case of this option of contact interaction when, the elastic body of finite size, subjected to external forces, is based on a rigid half-space. Contact occurs through a dedicated contact surface, which in general can change their sizes.Developed to solve this problem, a numerical algorithm is a further adaptation and development of the approaches described in [1]. The paper shows results of solving the model problem of the elasticity theory with and without taking friction into account. In the latter case, were additionally obtained numerical data characterizing the convergence of the solution.

  17. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  18. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts

    Science.gov (United States)

    Zhu, Mengjian; Luo, Wei; Wu, Nannan; Zhang, Xue-ao; Qin, Shiqiao

    2018-04-01

    2H phase Molybdenum ditelluride (MoTe2) is a layered two-dimensional (2D) semiconductor that has recently gained extensive attention for its intriguing properties, demonstrating great potential for nanoelectronics and optoelectronics. Optimizing the electric contacts to MoTe2 is a critical step for realizing high performance devices. Here, we demonstrate Co/hBN tunnel contacts to few-layer MoTe2. In sharp contrast to the p-type conduction of Co contacted MoTe2, Co/hBN tunnel contacted MoTe2 devices show clear n-type transport properties. Our first principles calculation reveals that the inserted few-layer hBN strongly interacts with Co and significantly reduces its work-function by ˜1.2 eV, while MoTe2 itself has a much weaker influence on the work-function of Co. This allows us to build MoTe2 diodes using the mixed Co/hBN and Co contact architecture, which can be switched from p-n type to n-p type by changing the gate-voltage, paving the way for engineering multi-functional devices based on atomically thin 2D semiconductors.

  19. Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection

    Directory of Open Access Journals (Sweden)

    Agus Risdiyanto

    2012-12-01

    Full Text Available This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.

  20. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  1. Impact-Contact Analysis of Prismatic Graphite Blocks Using Abaqus

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Gyeong Ho; Choi, Woo Seok

    2010-12-01

    Graphite blocks are the important core components of the high temperature gas-cooled reactor. As these blocks are simply stacked in array, collisions among neighboring components may occur during earthquakes or accidents. The final objective of the research project is to develop a reliable seismic model of the stacked graphite blocks from which their behavior can be predicted and, thus, they are designed to have sufficient strength to maintain their structural integrity during the anticipated occurrences. The work summarized in this report is a first step toward the big picture and is dedicated to build a realistic impact-contact dynamics model of the graphite block using a commercial FEM package, Abaqus. The developed model will be further used to assist building a reliable lumped dynamics model of these stacked graphite components

  2. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  3. Contact sensitization and allergic contact dermatitis in patients with eczematous lesions

    Directory of Open Access Journals (Sweden)

    Perpetua U Ibekwe

    2018-01-01

    Conclusions: Most ACD patients showed contact sensitization to leather products, metal, and perfume use. This knowledge is important when considering preventive measures. However, further studies are needed to provide more insight into contact allergy in Nigeria.

  4. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    Science.gov (United States)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  5. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    International Nuclear Information System (INIS)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-01-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF 6 plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF 6 pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF 6 pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  6. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  7. Graphene-based superconducting quantum point contacts

    International Nuclear Information System (INIS)

    Moghaddam, A.G.; Zareyan, M.

    2007-01-01

    We investigate the Josephson effect in the graphene nanoribbons of length L smaller than the superconducting coherence length and an arbitrary width W. We find that in contrast to an ordinary superconducting quantum point contact (SQPC), the critical supercurrent I c is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers, I c decreases monotonically with lowering W/L and tends to a constant minimum for a narrow nanoribbon with W c is zero for the smooth edges but eΔ 0 /ℎ for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further analysis of the current-phase relation and the Josephson coupling strength I c R N in terms of W/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other hand for a zigzag nanoribbon, we find that, similar to an ordinary SQPC, I c is quantized but to the half-integer values (n+1/2)4eΔ 0 /ℎ. (orig.)

  8. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    Science.gov (United States)

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  9. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  10. Allergic contact dermatitis induced by zinc pyrithione in shampoo: a case report

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hsieh

    2010-12-01

    Full Text Available Shampoo-induced allergic contact dermatitis is difficult to diagnose clinically because it can involve multiple and variable areas where the shampoo flows. Zinc pyrithione is a common active agent in medicated shampoo that is known to have good anti-dandruff and antifungal effects. Despite its low risk of sensitization, cases of allergic contact dermatitis still occur because of the popularity of such products. We report a 33-year-old man who developed pruritic rash on his scalp, face, neck, and hands after using a new shampoo containing zinc pyrithione. A patch test revealed a positive reaction to zinc pyrithione and personal shampoo containing zinc pyrithione.

  11. SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources

    International Nuclear Information System (INIS)

    Reed, J; Radtke, J; Micka, J; Culberson, W; DeWerd, L

    2015-01-01

    Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm 10 3 Pd sources each containing four regions of variable 103 Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using a well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable 103 Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the 103 Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity can be verified experimentally and

  12. Frequency shift and hysteresis suppression in contact-mode AFM using contact stiffness modulation

    Directory of Open Access Journals (Sweden)

    Belhaq M.

    2012-07-01

    Full Text Available In this paper the frequency response shift and hysteresis suppression of contact-mode atomic force microscopy is investigated using parametric modulation of the contact stiffness. Based on the Hertzian contact theory, a lumped single degree of freedom oscillator is considered for modeling the cantilever dynamics contact-mode atomic force microscopy. We use the technique of direct partition of motion and the method of multiple scales to obtain, respectively, the slow dynamic and the corresponding slow flow of the system. As results, this study shows that the amplitude of the contact stiffness modulation has a significant effect on the frequency response. Specifically, increasing the amplitude of the stiffness modulation suppresses hysteresis, decreases the peak amplitude and produces shifts towards higher and lower frequencies.

  13. Sorption properties of Th(IV) on the raw diatomite-Effects of contact time, pH, ionic strength and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guodong; Hu Jun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)], E-mail: xkwang@ipp.ac.cn

    2008-10-15

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO{sub 4}{sup -}, NO{sub 3}{sup -} and Cl{sup -}) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data ({delta}H{sup 0}, {delta}S{sup 0}, {delta}G{sup 0}) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  14. Secondary transfer effects of interracial contact: the moderating role of social status.

    Science.gov (United States)

    Bowman, Nicholas A; Griffin, Tiffany M

    2012-01-01

    The contact hypothesis asserts that intergroup attitudes can be improved when groups have opportunities to interact with each other. Recent research extending the contact hypothesis suggests that contact with a primary outgroup can decrease bias toward outgroups not directly involved in the interaction, which is known as the secondary transfer effect (STE). The present study contributes to growing research on STEs by investigating effects among Asian, Black, Hispanic, and White undergraduate students (N = 3,098) attending 28 selective colleges and universities. Using hierarchical linear modeling, our results reveal numerous positive STEs among Asian, Black, and Hispanic college students. No significant STEs were observed among White students. Mediated moderation analyses support an attitude generalization mechanism, because STEs were explained by changes in attitudes toward the primary outgroup. This research speaks to equivocal findings in the extant STE literature and highlights directions for future research on social cohesion and bias reduction.

  15. 78 FR 30303 - National Contact Center; Submission for OMB Review; National Contact Center Customer Evaluation...

    Science.gov (United States)

    2013-05-22

    ...] National Contact Center; Submission for OMB Review; National Contact Center Customer Evaluation Survey... regarding the National Contact Center customer evaluation surveys. In this request, the previously approved... customer service levels to those of private industry contact centers. A notice was published in the Federal...

  16. Association between maximal hamstring muscle strength and hamstring muscle pre-activity during a movement associated with non-contact ACL injury

    DEFF Research Database (Denmark)

    Zebis, M. K.; Sorensen, R. S.; Thorborg, K.

    2015-01-01

    Background: Reduced hamstring pre-activity during sidecutting increases the risk for non-contact ACL injury. During the last decade resistance training of the lower limb muscles has become an integral part ofACLinjury prevention in e.g. soccer and handball. However, it is not known whether a stro...

  17. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  18. Association Between Maximal Bench Press Strength and Isometric Handgrip Strength Among Breast Cancer Survivors.

    Science.gov (United States)

    Rogers, Benjamin H; Brown, Justin C; Gater, David R; Schmitz, Kathryn H

    2017-02-01

    To characterize the relationship between 1-repetition maximum (1-RM) bench press strength and isometric handgrip strength among breast cancer survivors. Cross-sectional study. Laboratory. Community-dwelling breast cancer survivors (N=295). Not applicable. 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer, with 3 maximal contractions of the left and right hands. All measures were conducted by staff with training in clinical exercise testing. Among 295 breast cancer survivors, 1-RM bench press strength was 18.2±6.1kg (range, 2.2-43.0kg), and isometric handgrip strength was 23.5±5.8kg (range, 9.0-43.0kg). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7kg (95% limits of agreement, -8.2 to 17.6kg). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=.31; Pstrength (R 2 =.23). Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among breast cancer survivors. 1-RM bench press strength and isometric handgrip strength quantify distinct components of muscular strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. GAS-FOVEAL CONTACT

    DEFF Research Database (Denmark)

    Alberti, Mark; la Cour, Morten

    2018-01-01

    PURPOSE: To compare gas-foveal contact in face-down positioning (FDP) and nonsupine positioning (NSP), to analyze causes of gas-foveal separation and to determine how gas-foveal contact affects clinical outcome after idiopathic macular hole repair. METHODS: Single center, randomized controlled...... study. Participants with an idiopathic macular hole were allocated to either FDP or NSP. Primary outcome was gas-foveal contact, calculated by analyzing positioning in relation to intraocular gas fill. Positioning was measured with an electronic device recording positioning for 72 hours postoperatively....... RESULTS: Positioning data were available for 33/35 in the FDP group and 35/37 in the NSP group, thus results are based on 68 analyzed participants. Median gas-foveal contact was 99.82% (range 73.6-100.0) in the FDP group and 99.57% (range 85.3-100.0) in the NSP group (P = 0.22). In a statistical model...

  20. Contact Line Dynamics

    Science.gov (United States)

    Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca

    2017-11-01

    The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.

  1. External ocular surface and lens microbiota in contact lens wearers with corneal infiltrates during extended wear of hydrogel lenses.

    Science.gov (United States)

    Willcox, Mark; Sharma, Savitri; Naduvilath, Thomas J; Sankaridurg, Padmaja R; Gopinathan, Usha; Holden, Brien A

    2011-03-01

    To determine whether carriage of microbes on the contact lens or ocular surfaces during extended wear (EW) with soft hydroxyethyl methacrylate (HEMA)-based contact lenses predisposes the wearer to adverse events. Participants (non-contact lens wearers) were enrolled in a clinical study involving wear of HEMA-based hydrogel lenses on a six night EW basis with weekly replacement. Type and number of bacteria colonizing the lower lid margins, upper bulbar conjunctiva, and contact lenses during EW after one night, 1 week, 1 month, and thereafter every 3 months for 3.5 years were determined. The association of bacteria with adverse responses was compared between carriers (defined as having significant microbes cultured from two or more samples with 1 year) and noncarriers, and the strength of the association was estimated using multivariate logistic regression. Carriers of gram-positive bacteria on lenses (particularly coagulase negative staphylococci or Corynebacterium spp.) were approximately three and eight times more likely to develop contact lens-induced peripheral ulcers (CLPUs) and asymptomatic infiltrates (AIs), respectively. Staphylococcus aureus was most frequently isolated from lenses during CLPU. Carriers of gram-negative bacteria on lenses were five times more likely to develop contact lens-induced acute red eye (CLARE). Haemophilus influenzae was isolated most frequently from lenses during CLARE and AI events. Bacterial carriage on contact lenses during EW predisposes the wearer to the development of corneal inflammatory events including CLARE, CLPU, and AI.

  2. Nature of the Ag-Si interface in screen-printed contacts. A detailed transmission electron microscopy study of cross-sectional structures

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, C. [Fraunhofer ISE, Laboratory and Service Center Gelsenkirchen (Germany); Huljic, D.M.; Willeke, G. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Hessler-Wyser, A. [Swiss Federal Inst. of Technology, CIME, Lausanne (Switzerland)

    2002-07-01

    As screen printed contacts are the predominant metallisation technique in industrial production of Si solar cells, a better understanding of their properties is necessary. In this work, we show that high-quality cross-sectional samples can be prepared, whose study by transmission electron microscopy (TEM) reveals precisely the structure of the contact between the silver fingers and the Si. On diffused [100] Si wafers, direct firing of an Ag paste results in interfaces which are mainly composed of shaped Ag crystallites penetrating the emitter up to 120 nm. These crystallites are in epitaxial relation with the Sl substrate. When firing the contacts through a SiN{sub x} layer, larger Ag crystallites are present at the interface with Si and the orientation relation is lost. In both cases, high resolution TEM imaging and EDX analyses reveal a crystalline Ag/Si interface, where neither oxide nor glass frit can be detected. The presence of a significant glass frit layer between the Ag crystallites contacting the Si and the large Ag grains forming the bulk of the fingers can partly explain why lowly doped emitters are difficult to contact by screen-printing. (orig.)

  3. Evidence for transmission of bluetongue virus serotype 26 through direct contact.

    Directory of Open Access Journals (Sweden)

    Carrie Batten

    Full Text Available The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26 in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.

  4. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  5. Non-contact ultrasound techniques

    International Nuclear Information System (INIS)

    Khazali Mohd Zin

    2001-01-01

    Non-contact ultrasound plays significant role in material characterisation and inspection. Unlike conventional ultrasonic techniques, non-contact ultrasonic is mostly applicable to areas where the former has its weaknesses and limitations. It is interesting to note that the non-contact ultrasonic technique has an important significant application in industry. The technique is signified by the fact that the object to be inspected is further away from the ultrasonic source, no couplant is needed and inconsistent pressure between the transducer and the specimen can be eliminated. The paper discusses some of the non-contact ultrasound technique and its applications. (Author)

  6. Colors and contact dermatitis.

    Science.gov (United States)

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  7. The effects of modification for contact stabilization activated sludge on EBPR

    Directory of Open Access Journals (Sweden)

    Hamdy I. Ali

    2015-04-01

    Available design and research information for the EBPR process were directly related to organic strength, solids and phosphorus content in wastewater. The success of excess biological phosphorus removal (EBPR process is largely dependent on the characteristics of organic carbon present in wastewater. The COD and BOD5 content of wastewater will also determine whether a phosphorus removal EBPR system is required. For this paper, the performance of EBPR was investigated using modified contact stabilization activated sludge pilot plant. The study involved the construction of pilot plant which was setup in Quhafa WasteWater Treatment Plant (WWTP, Al Fayoum, Egypt. Results showed average removal efficiencies of COD, BOD5 and TP are 91%, 92% and 85% respectively.

  8. The importance of contact quality

    DEFF Research Database (Denmark)

    van Bakel, Marian; Gerritsen, Marinel; van Oudenhoven, Jan Pieter

    Establishing contact between expatriates and a local host has been found to reap benefits with regard to Interaction Adjustment, Host National Social Support, Open-mindedness, and Social Initiative. This longitudinal study examines the role of the quality of contact for these four aspects....... Expatriates in the Netherlands were randomly divided into an experimental group (n = 33) of which 21 developed high-quality contact with their host, and a control group (n = 32) without host. The results show that contact quality plays an important role and suggest that the higher the quality of the contact......, the more benefit the expatriate experienced. Moreover, expatriates with low-quality contact did not experience a detrimental effect....

  9. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property.

    Science.gov (United States)

    Li, Hui; Yang, Jin; Li, Pan; Lan, Tianqing; Peng, Lincai

    2017-03-15

    We proposed a green and facile method to fabricate superhydrophobic paper in this study, which is layer-by-layer (LBL) deposition of TiO 2 nanoparticles/sodium alginate (ALG) multilayers on paper surface followed by an adsorption treatment of colloidal carnauba wax. The formation of TiO 2 /ALG multilayers on paper surface was characterized by X-ray photoelectron spectroscopy (XPS), zeta potential measurement, scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The wetting property of modified paper was investigated by water contact angle (WCA) measurement. Moreover, the modified paper tensile strength has been evaluated. The results showed that WCA of paper modified with a wax-treated (TiO 2 /ALG) 3.5 multilayer reached up to 151.5°, and this obtained superhydrophobic paper exhibited improved tensile strength (increased by 4.1% compared to the pristine paper), excellent moisture-proofing property and high strength stability under high relative humidity condition, which might has a great potential for use in the liquid paper packaging and moisture-proof paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluation of mechanical strength and hydrate products evolution of calcium aluminate cement, for endodontic applications

    International Nuclear Information System (INIS)

    Luz, A.P.; Borba, N.Z.; Pandolfelli, V.C.

    2011-01-01

    Mineral trioxide aggregate (MTA) is the most used retrograde filling cement in the endodontic area. Nevertheless, although its composition is similar to the conventional Portland cement, its high cost, long setting time and low mechanical strength have led to a continuous search for new alternative materials. Considering these aspects, the mechanical strength and crystalline phase evolution of a calcium aluminate cement (CAC), during its hydration process, have been evaluated in this work aiming to apply such material for endodontic treatments. Secar 71 cement samples were prepared and kept in contact with water or SBF (simulated body fluid) during 15 days at 37 deg C. Compressive strength, apparent porosity, X ray diffraction and thermogravimetric tests were carried out for the samples evaluation after 1, 3, 7 and 15 days. The main identified phases were CAH_1_0, C_2AH_8, C_3AH_6 and AH_3. Moreover, when in the presence of SBF, some changes in the amount of the hydrates in the CAC samples were observed, which affected the mechanical behavior of the cement. (author)

  11. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  12. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    Science.gov (United States)

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  13. Interfacial Shear Strength of Multilayer Graphene Oxide Films.

    Science.gov (United States)

    Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer

    2016-02-23

    Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.

  14. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  15. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2010-02-01

    Recently, it was shown that the interaction of each of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered saline (PBS) promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. This study analyzes the influence of the biomineralization process on the push-out strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK), MTA Branco (Angelus Soluções Odontológicas, Londrina, PR, Brazil), MTA BIO (Angelus Soluções Odontológicas), or Portland cement with and without calcium chloride. Dentin discs with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2). The specimens were randomly divided into two groups: cement in contact with a wet cotton pellet for 72 hours or immersed in PBS for 2 months. The bond strengths were measured with the Instron Testing machine (Model 4444; Instron Corp, Canton, MA), and the fractured surfaces on the root walls were observed by scanning electron microscopy. All samples immersed in PBS displayed a significantly greater resistance to displacement than that observed for the samples in contact with a wet cotton pellet for 72 hours (p Portland cements. It was concluded that the biomineralization process positively influenced the push-out bond strength of the cements, particularly the MTA groups. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  17. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  18. Crystal Structure of Chicken γS-Crystallin Reveals Lattice Contacts with Implications for Function in the Lens and the Evolution of the βγ-Crystallins.

    Science.gov (United States)

    Sagar, Vatsala; Chaturvedi, Sumit K; Schuck, Peter; Wistow, Graeme

    2017-07-05

    Previous attempts to crystallize mammalian γS-crystallin were unsuccessful. Native L16 chicken γS crystallized avidly while the Q16 mutant did not. The X-ray structure for chicken γS at 2.3 Å resolution shows the canonical structure of the superfamily plus a well-ordered N arm aligned with a β sheet of a neighboring N domain. L16 is also in a lattice contact, partially shielded from solvent. Unexpectedly, the major lattice contact matches a conserved interface (QR) in the multimeric β-crystallins. QR shows little conservation of residue contacts, except for one between symmetry-related tyrosines, but molecular dipoles for the proteins with QR show striking similarities while other γ-crystallins differ. In γS, QR has few hydrophobic contacts and features a thin layer of tightly bound water. The free energy of QR is slightly repulsive and analytical ultracentrifugation confirms no dimerization in solution. The lattice contacts suggest how γ-crystallins allow close packing without aggregation in the crowded environment of the lens. Published by Elsevier Ltd.

  19. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    Science.gov (United States)

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society

  20. Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes

    International Nuclear Information System (INIS)

    Li, Dong-Fang; Mao, Jin-Chuan; Chen, De-Li; Chen, Fang; Ze-Wen, Hong; Zhou, Xiao-Yi; Wang, Ya-Hao; Zhou, Xiao-Shun; Niu, Zhen-Jiang; Maisonhaute, Emmanuel

    2015-01-01

    The single-molecule conductance of 1,4-dicyanobenzene (DCB), 1,4-benzenediamine (BDA) and 4,4'-biphenyldicarbonitrile (BPDC) with Ag and/or Cu electrodes is measured by electrochemical jump-to-contact STM-break junction. All single-molecule junctions present three sets of conductance values revealing different contact geometries. We observe that the single-molecule conductance of Ag-BDA-Ag junction is larger that of Ag-DCB-Ag junction, and DCB with Ag contacts are more conductive than that with Cu ones. This is related to a different electronic coupling between the molecules and the electrodes. Tunneling decay constants of 1.70 and 1.68 per phenyl group were found for Ag and Cu electrodes, respectively. The present study therefore shows that nitrile and amino groups can also be used as effective anchors for other metals than gold

  1. PREFACE: Non-contact AFM Non-contact AFM

    Science.gov (United States)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  2. Lettuce contact allergy

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus E

    2016-01-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present...... person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy.......Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present...... new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22...

  3. ZERODUR: deterministic approach for strength design

    Science.gov (United States)

    Hartmann, Peter

    2012-12-01

    There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two

  4. Gastrocnemius recession leads to medial shift of gait line, impairment of muscle strength and improved dorsal extension in forefoot overload syndrome

    DEFF Research Database (Denmark)

    Schmal, Hagen; Walther, Markus; Hirschmüller, Anja

    2018-01-01

    . A strength power analysis of plantar flexors and a pedobarography was performed. Clinical outcome was measured by Foot Function Index (FFI). RESULTS: Plantarflexors are impaired about 40% six weeks and around 10% 24 weeks following GR compared to the contralateral side. Patients experienced a pain relief...... and an improvement of ankle dorsiflexion from 2° to 15°. An increased contact time of the heel (15%) and a shift of metatarsal plantar pressure from lateral to medial could be demonstrated. CONCLUSIONS: This study suggests that GR leads to pain reduction by an increase in heel contact time and a shift of gait line...

  5. An Experimental Study on Strength and Durability for Utilization of Fly Ash in Concrete Mix

    Directory of Open Access Journals (Sweden)

    Abdulhalim Karaşin

    2014-01-01

    Full Text Available The intention of this study is to discuss the variation of concrete exposed to high sulfate environment of a specific region with respect to strength and durability. Secondly, it is aimed to discuss the possibility of reducing the cement amount in construction of concrete structures. For this purpose, laboratory tests were conducted to investigate compressive strength and sulfate resisting capacity of concrete by using 20% fly ash as mineral additives, waste materials, instead of cement. As a case study the soil samples, received from Siirt Province areas which contain high sulfate rate, have been compared with respect to sulfate standard parameters of TS 12457-4. In such regions contact of underground water seep into hardened concrete substructures poses a risk of concrete deterioration. In order to determine the variation of strength and durability for concrete exposed to such aggressive environment, the samples were rested in a solution of Na2SO4 (150 g/lt in accordance with ASTM C 1012 for the tests. As a result of this experimental study, it is noted that the use of 20% fly ash, replacement material instead of cement, has no significant effect on compressive strength of concrete over time.

  6. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  7. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches

    International Nuclear Information System (INIS)

    Basu, A; Adams, G G; McGruer, N E

    2016-01-01

    Direct contact, ohmic MEMS switches for RF applications have several advantages over other conventional switching devices. Advantages include lower insertion loss, higher isolation, and better switching figure-of-merit (cut-off frequency). The most important aspect of a direct-contact RF MEMS switch is the metal microcontact which can dictate the lifetime and reliability of the switch. Therefore, an understanding of contact reliability is essential for developing robust MEMS switches. This paper discusses and reviews the most important work done over the past couple of decades toward understanding ohmic micro-contacts. We initially discuss the contact mechanics and multi-physics models for studying Hertzian and multi-asperity contacts. We follow this with a discussion on models and experiments for studying adhesion. We then discuss experimental setups and the development of contact test stations by various groups for accelerated testing of microcontacts, as well as for analysis of contact reliability issues. Subsequently, we analyze a number of material transfer mechanisms in microcontacts under hot and cold switching conditions. We finally review the material properties that can help determine the selection of contact materials. A trade-off between contact resistance and high reliability is almost always necessary during selection of contact material; this paper discusses how the choice of materials can help address such trade-offs. (paper)

  8. Microgeographical patterns of schistosomiasis and water contact behavior; examples from Africa and Brazil

    Directory of Open Access Journals (Sweden)

    Helmut Kloos

    1998-01-01

    Full Text Available This paper examines the results of spatial (microgeographical water contact/schistosomiasis studies in two African (Egyptian and Kenyan and one Brazilian communities. All three studies used traditional cartographic and statistical methods but one of them emploeyd also GIS (geographical information systems tools. The advantage of GIS and their potential role in schistosomiasis control are briefly described. The three cases revealed considerable variation in the spatial distribution of water contact, transmission parameters and infection levels at the household and individual levels. All studies showed considerable variation in the prevalence and intensity of infection between households. They also show a variable influence of distance on water contact behavior associated with type of activity, age, sex, socioeconomic level, perception of water quality, season and availability of water in the home. Water contact behavior and schistosomiasis were evaluated in the Brazilian village of Nova União within the context of water sharing between household and age/sex groups. Recommendations are made for further spatial studies on the transmission and control of schistosomiasis.

  9. The beta strength function structure in β+ decay of lutetium, thulium and cesium isotopes

    International Nuclear Information System (INIS)

    Alkhazov, G.D.; Bykov, A.A.; Vitman, V.D.; Naumov, Yu.V.; Orlov, S.Yu.

    1981-01-01

    The spectra of total γ-absorption in the decays of some Lutecium, Thulium and Cesium isotopes have been measured. The probabilities for level population in the decay of the isotopes have been determined. The deduced beta strength functions reveal pronounced structure. Calculations of the strength functions using the Saxon-Woods potential and the residual Gamow-Teller interaction are presented. It is shown that in β + decay of light Thulium and Cesium isotopes the strength function comprises more than 70% of the Gamow-Teller excitations with μsub(tau) = +1. This result is the first direct observation of the Gamow-Teller resonance in β + decay of nuclei with Tsub(z) > O. (orig.)

  10. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  11. Scanning tunneling microscope-quartz crystal microbalance study of temperature gradients at an asperity contact.

    Science.gov (United States)

    Pan, L; Krim, J

    2013-01-01

    Investigations of atomic-scale friction frequently involve setups where a tip and substrate are initially at different temperatures. The temperature of the sliding interface upon contact has thus become a topic of interest. A method for detecting initial tip-sample temperature differences at an asperity contact is described, which consists of a scanning tunneling microscope (STM) tip in contact with the surface electrode of a quartz crystal microbalance (QCM). The technique makes use of the fact that a QCM is extremely sensitive to abrupt changes in temperature. In order to demonstrate the technique's capabilities, QCM frequency shifts were recorded for varying initial tip-substrate temperature differences as an STM tip was brought into and out of contact. The results are interpreted within the context of a recent model for thermal heat conduction at an asperity contact, and it is concluded that the transient frequency response is attributable to small changes in temperature close to the region of contact rather than a change in the overall temperature of the QCM itself. For the assumed model parameters, the results moreover reveal substantial temperature discontinuities at the boundary between the tip and the sample, for example, on the order of 10-15 °C for initial temperature differences of 20 °C.

  12. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  13. The effects of indirect intergroup contact on willingness to engage in direct contact with former adversary

    Czech Academy of Sciences Publication Activity Database

    Voca, S.; Graf, Sylvie

    2018-01-01

    Roč. 12, č. 1 (2018), s. 47-57 ISSN 2309-3455 R&D Projects: GA ČR(CZ) GA17-14387S Institutional support: RVO:68081740 Keywords : positive intergroup contact * negative intergroup contact * extended intergroup contact * mass-mediated intergroup contact * willingness to engage in intergroup contact * empathy * outgroup trust Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations)

  14. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  15. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors

    International Nuclear Information System (INIS)

    Di Bartolomeo, A; Giubileo, F; Iemmo, L; Romeo, F; Santandrea, S; Gambardella, U

    2013-01-01

    We produced graphene-based field-effect transistors by contacting mono- and bi-layer graphene by sputtering Ni or Ti as metal electrodes. We performed electrical characterization of the devices by measuring their transfer and output characteristics. We clearly observed the presence of a double-dip feature in the conductance curve for Ni-contacted transistors, and we explain it in terms of charge transfer and graphene doping under the metal contacts. We also studied the contact resistance between the graphene and the metal electrodes with larger values of ∼30 kΩμm 2 recorded for Ti contacts. Importantly, we prove that the contact resistance is modulated by the back-gate voltage. (paper)

  16. Sciences & Nature: Contact

    African Journals Online (AJOL)

    Principal Contact. Ehouan Etienne Ehile Professor University of Abobo-Adjamé 02 BP 801 Abidjan 02. Phone: (+225) 2030 4201. Fax: (+225) 2030 4203. Email: eh_ehile@yahoo.fr. Support Contact. Irie Zoro Bi Email: banhiakalou@yahoo.fr. ISSN: 1812-0741. AJOL African Journals Online. HOW TO USE AJOL.

  17. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    Science.gov (United States)

    Vakis, Antonis I.; Polycarpou, Andreas A.

    2010-06-01

    In the effort to achieve Tbit/inch2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  18. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    International Nuclear Information System (INIS)

    Vakis, Antonis I; Polycarpou, Andreas A

    2010-01-01

    In the effort to achieve Tbit/inch 2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  19. Relationship between strength qualities and short track speed skating performance in young athletes.

    Science.gov (United States)

    Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S

    2016-02-01

    This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.