WorldWideScience

Sample records for contact silicon heterojunctions

  1. Three-dimensional numerical analysis of hybrid heterojunction silicon wafer solar cells with heterojunction rear point contacts

    Directory of Open Access Journals (Sweden)

    Zhi Peng Ling

    2015-07-01

    Full Text Available This paper presents a three-dimensional numerical analysis of homojunction/heterojunction hybrid silicon wafer solar cells, featuring front-side full-area diffused homojunction contacts and rear-side heterojunction point contacts. Their device performance is compared with conventional full-area heterojunction solar cells as well as conventional diffused solar cells featuring locally diffused rear point contacts, for both front-emitter and rear-emitter configurations. A consistent set of simulation input parameters is obtained by calibrating the simulation program with intensity dependent lifetime measurements of the passivated regions and the contact regions of the various types of solar cells. We show that the best efficiency is obtained when a-Si:H is used for rear-side heterojunction point-contact formation. An optimization of the rear contact area fraction is required to balance between the gains in current and voltage and the loss in fill factor with shrinking rear contact area fraction. However, the corresponding optimal range for the rear-contact area fraction is found to be quite large (e.g. 20-60 % for hybrid front-emitter cells. Hybrid rear-emitter cells show a faster drop in the fill factor with decreasing rear contact area fraction compared to front-emitter cells, stemming from a higher series resistance contribution of the rear-side a-Si:H(p+ emitter compared to the rear-side a-Si:H(n+ back surface field layer. Overall, we show that hybrid silicon solar cells in a front-emitter configuration can outperform conventional heterojunction silicon solar cells as well as diffused solar cells with rear-side locally diffused point contacts.

  2. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  3. Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells

    Science.gov (United States)

    Stang, Johann-Christoph; Haschke, Jan; Mews, Mathias; Merkle, Agnes; Peibst, Robby; Rech, Bernd; Korte, Lars

    2017-08-01

    Back-contact silicon heterojunction solar cells with an efficiency of 22% were manufactured, featuring a simple aluminium metallisation directly on the doped amorphous silicon films. Both the open-circuit voltage and the fill factor heavily depend on the parameters of the annealing step after aluminium layer deposition. Using numerical device simulations and in accordance with the literature, we demonstrate that the changes in solar cell parameters with annealing can be explained by the formation of an aluminium silicide layer at temperatures as low as 150 °C, improving the contact resistance and thus enhancing the fill factor. Further annealing at higher temperatures initialises the crystallisation of the amorphous silicon layers, yielding even lower contact resistances, but also introduces more defects, diminishing the open-circuit voltage.

  4. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells.

    Science.gov (United States)

    Jäckle, Sara; Liebhaber, Martin; Gersmann, Clemens; Mews, Mathias; Jäger, Klaus; Christiansen, Silke; Lips, Klaus

    2017-05-19

    We show that the highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) can successfully be applied as a hole selective front contact in silicon heterojunction (SHJ) solar cells. In combination with a superior electron selective heterojunction back contact based on amorphous silicon (a-Si), mono-crystalline n-type silicon (c-Si) solar cells reach power conversion efficiencies up to 14.8% and high open-circuit voltages exceeding 660 mV. Since in the PEDOT:PSS/c-Si/a-Si solar cell the inferior hybrid junction is determining the electrical device performance we are capable of assessing the recombination velocity (v I ) at the PEDOT:PSS/c-Si interface. An estimated v I of ~400 cm/s demonstrates, that while PEDOT:PSS shows an excellent selectivity on n-type c-Si, the passivation quality provided by the formation of a native oxide at the c-Si surface restricts the performance of the hybrid junction. Furthermore, by comparing the measured external quantum efficiency with optical simulations, we quantify the losses due to parasitic absorption of PEDOT:PSS and reflection of the device layer stack. By pointing out ways to better passivate the hybrid interface and to increase the photocurrent we discuss the full potential of PEDOT:PSS as a front contact in SHJ solar cells.

  5. Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Colina, M., E-mail: monicacolinb@gmail.com; Morales-Vilches, A.; Voz, C.; Martín, I.; Ortega, P.; Orpella, A.; López, G.; Alcubilla, R.

    2015-05-01

    Highlights: • LIFT technique is investigated to improve heterojunction HJ solar cells. • Doped silicon films are adequate precursors for LIFT application in HJ cells. • LIFT leads to a reduction of the series resistance of a-Si HJ diodes. • LIFT allows the improvement of the front contact resistance in a-Si HJ solar cells. - Abstract: In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064 nm, lamp-pumped system, working at pulse durations of 100 and 400 ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n + p local junctions were created by LIFT and the resulting J–V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency.

  6. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

    KAUST Repository

    Tomasi, Andrea

    2017-04-24

    For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

  7. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    internal quantum efficiency shows that both types of back contacts lead to effective diffusion lengths in excess of 600 {mu}m. An extended fill factor analysis shows that fill factor limitations for the full-area a-Si:H/c-Si contacts result from non-ideal diode behavior, ascribed to the injection dependence of the heterojunction interface recombination velocity. Analysis of the external quantum efficiency under back side illumination with different bias light intensities delivers the effective surface recombination S{sub eff}({phi}) in dependance of the illumination intensity {phi}. The front contact (emitter) uses a sequence of intrinsic and phosphorous doped amorphous silicon layers together with a ZnO:Al or a SnO{sub 2}:In layer and an Al front contact grid. The emitter is prepared at a maximum temperature of 220 C. Measurements of the minority carrier lifetime on symmetric i/n-a-Si:H coated wafers judge the emitter passivation quality. The best solar cells that use a thermal oxide back side passivation with Al-point contacts and flat a-Si:H emitters have open circuit voltages up to 683 mV and efficiencies up to 17.4 %. The efficiency of such devices is limited by a low short circuit current due to the flat front side. Using the same back contact structure with random pyramid textured wafer front sides and a-Si:H emitters yields open circuit voltages up to 660 mV and efficiencies up to 18.5 %, so far limited by a relatively low fill factor FF {<=} 74.3 %. Analysis of the external quantum efficiency underlines the excellent surface passivation properties of the amorphous emitter. Combining both, amorphous front- and back contacts yields p-type heterojunction solar cells completely fabricated at temperatures below 220 C. The best devices reach an open circuit voltage V{sub oc} = 678 mV and an efficiency {eta} = 18.1 % with random textured wafers, limited by low fill factors FF {approx} 75 %. Besides the cell fabrication and characterization, this thesis reveals that the

  8. Development of LASER fired contacts on silicon heterojunction solar cells for the application to rear contact structures

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D.; Desrues, T.; Ribeyron, P.J. [INES-CEA, Le Bourget du Lac (France); Orpella, A.; Martin, I.; Voz, C.; Alcubilla, R. [Grup de Recerca en Micro i Nanotecnologies, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2010-04-15

    In this work, we present our progress in contacting both doped and undoped a-Si:H layers using a LASER tool and show some applications for three different HJ solar cell designs: standard (p-type), rear emitter (n-type) and back contact (n-type). First, we have fabricated 25 cm{sup 2} standard and rear emitter double heterojunction (DHJ) solar cells on planar 1-5 {omega}.cm n-type FZ c-Si wafers using intrinsic instead of the p-doped a-Si:H layers. The influence of the different parameters of the LASER firing (pitch, number of pulses and energy) has been deeply studied to find optimized conditions. Solar cells have been obtained systematically with reasonable efficiencies although we have observed that the V{sub oc} is limiting the efficiency. Finally, we have also performed the Laser Fired Contacts (LFC) on lowly-doped (p) a-Si:H layers to compare the results obtained. We have observed that the LFC of the rear emitter contact enhances both short circuit current and fill factor while keeping the same V{sub oc} (646 mV). This leads to a 0.8% absolute increase of the cell efficiency. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  10. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  11. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  13. Light-induced performance increase of silicon heterojunction solar cells

    Science.gov (United States)

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-10-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  14. Surface recombination analysis in silicon-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, R.; Gandia, J.J.; Carabe, J.; Gonzalez, N.; Torres, I. [CIEMAT, Madrid (Spain); Munoz, D.; Voz, C. [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2010-02-15

    The origin of this work is the understanding of the correlation observed between efficiency and emitter-deposition temperature in single silicon-heterojunction solar cells prepared by depositing an n-doped hydrogenated-amorphous-silicon thin film onto a p-type crystalline-silicon wafer. In order to interpret these results, surface-recombination velocities have been determined by two methods, i.e. by fitting the current-voltage characteristics to a theoretical model and by means of the Quasi-Steady-State Photoconductance Technique (QSSPC). In addition, effective diffusion lengths have been estimated from internal quantum efficiencies. The analysis of these data has led to conclude that the performance of the cells studied is limited by back-surface recombination rather than by front-heterojunction quality. A 12%-efficient cell has been prepared by combining optimum emitter-deposition conditions with back-surface-field (BSF) formation by vacuum annealing of the back aluminium contact. This result has been achieved without using any transparent conductive oxide. (author)

  15. Silicon nanowire array architecture for heterojunction electronics

    Energy Technology Data Exchange (ETDEWEB)

    Solovan, M. M., E-mail: m.solovan@chnu.edu.ua [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Brus, V. V. [Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Institute for Silicon Photovoltaics (Germany); Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T. [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Abashin, S. L. [National Aerospace University “Kharkiv Aviation Institute”, Department of Physics (Ukraine)

    2017-04-15

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V{sub oc} = 0.8 V, short-circuit current I{sub sc} = 3.72 mA/cm{sup 2} and fill factor FF = 0.5 under illumination of 100 mW/cm{sup 2}.

  16. Silicon nanowire array architecture for heterojunction electronics

    International Nuclear Information System (INIS)

    Solovan, M. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T.; Abashin, S. L.

    2017-01-01

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V oc = 0.8 V, short-circuit current I sc = 3.72 mA/cm 2 and fill factor FF = 0.5 under illumination of 100 mW/cm 2 .

  17. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  18. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  19. Metal Oxide/Semiconductor Heterojunctions as Carrier-Selective Contacts for Photovoltaic Applications

    Science.gov (United States)

    Man, Gabriel Jen Shi

    Solar radiation is a vast, distributed, and renewable energy source which Humanity can utilize via the photovoltaic effect. The goal of photovoltaic technology is to minimize the true costs, while maximizing the power conversion efficiency and lifetime of the cell/module. Interface-related approaches to achieving this goal are explored here, for two technologically-important classes of light absorbers: crystalline-silicon (c-Si) and metal halide perovskite (MHP). The simplest solar cell consists of a light absorber, sandwiched between two metals with dissimilar work functions. Carrier-selective contacts (CSC's), which are ubiquitous in modern solar cells, are added to improve the electrical performance. Solar cells require asymmetric carrier transport within the cell, which can be effected via electrostatic and/or effective fields, and CSC's augment the asymmetry by selectively transporting holes to one contact, and electrons to the other contact. The proper design and implementation of a CSC is crucial, as the performance, lifetime, and/or cost reduction of a solar cell can be hampered by a single interface or layer. A framework, consisting of eight core requirements, was developed from first-principles to evaluate the effectiveness of a given CSC. The framework includes some requirements which are well-recognized, such as the need for appropriate band offsets, and some requirements which are not well-recognized at the moment, such as the need for effective valence/conduction band density of states matching between the absorber and CSC. The application of the framework to multiple silicon-based and MHP-based CSC's revealed the difficulties of effectively designing and implementing a CSC. A poly(3-hexylthiophene)/c-Si heterojunction was found to be a near ideal hole-selective contact (HSC). Three metal oxide/c-Si heterojunctions initially expected to yield comparable electron-selective contacts (ESC's), titanium dioxide/c-Si (TiO2/c-Si), zinc oxide/c-Si (Zn

  20. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Villar, F.; Bertomeu, J.; Andreu, J. [CeRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Roca-i-Cabarrocas, P. [LPICM-Ecole Polytechnique, CNRS 91128 Palaiseau (France)

    2008-08-30

    The growing interest in using thinner wafers (< 200 {mu}m) requires the development of low temperature passivation strategies for the back contact of heterojunction solar cells. In this work, we investigate low temperature deposited back contacts based on boron-doped amorphous silicon films obtained by Hot-Wire CVD. The influence of the deposition parameters and the use of an intrinsic buffer layer have been considered. The microstructure of the deposited thin films has been comprehensively studied by Spectroscopic Ellipsometry in the UV-visible range. The effective recombination velocity at the back surface has been measured by the Quasi-Steady-State Photoconductance technique. Complete double-side heterojunction solar cells (1 cm{sup 2}) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  1. Simple fabrication of back contact heterojunction solar cells by plasma ion implantation

    Science.gov (United States)

    Koyama, Koichi; Yamaguchi, Noboru; Hironiwa, Daisuke; Suzuki, Hideo; Ohdaira, Keisuke; Matsumura, Hideki

    2017-08-01

    A back-contact amorphous-silicon (a-Si)/crystalline silicon (c-Si) heterojunction is one of the most promising structures for high-efficiency solar cells. However, the patterning of back-contact electrodes causes the increase in fabrication cost. Thus, to simplify the fabrication of back-contact cells, we attempted to form p-a-Si/i-a-Si/c-Si and n-a-Si/i-a-Si/c-Si regions by the conversion of a patterned area of p-a-Si/i-a-Si/c-Si to n-a-Si/i-a-Si/c-Si by plasma ion implantation. It is revealed that the conversion of the conduction type can be realized by the plasma ion implantation of phosphorus (P) atoms into p-a-Si/i-a-Si/c-Si regions, and also that the quality of passivation can be kept sufficiently high, the same as that before ion implantation, when the samples are annealed at around 250 °C and also when the energy and dose of ion implantation are appropriately chosen for fitting to a-Si layer thickness and bulk c-Si carrier density.

  2. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  3. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji

    2017-06-24

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar cells increase their operating voltages and thus their conversion efficiencies during light exposure. We found that this performance increase is due to improved passivation of the a-Si:H/c-Si interface and is induced by injected charge carriers (either by light soaking or forward-voltage biasing of the device). Here, we discuss this counterintuitive behavior and establish that: (i) the performance increase is observed in solar cells as well as modules; (ii) this phenomenon requires the presence of doped a-Si:H films, but is independent from whether light is incident from the a-Si:H(p) or the a-Si:H(n) side; (iii) UV and blue photons do not play a role in this effect; (iv) the performance increase can be observed under illumination intensities as low as 20Wm (0.02-sun) and appears to be almost identical in strength when under 1-sun (1000Wm); (v) the underlying physical mechanism likely differs from annealing-induced surface passivation.

  4. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  5. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  6. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongxia; Zhang Heming [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: liuhongxia_xidian@126.co [Institute of Information Science and Technology, Northwest University, Xi' an 710069 (China)

    2009-05-01

    A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining nonequilibrium Green's function (NEGF) with density functional theory (DFT), the transport properties of the heterojunction were investigated. Our study reveals that the highest occupied molecular orbital (HOMO) has a higher electron density on the CNT section and the lowest unoccupied molecular orbital (LUMO) mainly concentrates on the interface and the SiCNT section. The positive and negative threshold voltages are +1.8 and -2.2 V, respectively.

  7. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan, E-mail: liudanhu725@126.com [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Hu, Sen [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Gao, Yihua [Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 (China)

    2017-07-12

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%. - Highlights: • Photonic crystal heterojunction with circular and square scatterers is first studied. • One-way transmission efficiency is closely related to the hetero-interface. • Wide-band and efficient one-way transmission is realized.

  8. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation

    Science.gov (United States)

    Opitz, Andreas

    2017-04-01

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  9. Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates

    Science.gov (United States)

    Ahn, Jaehyun; Chou, Harry; Banerjee, Sanjay K.

    2017-04-01

    The quest of obtaining sustainable, clean energy is an ongoing challenge. While silicon-based solar cells have widespread acceptance in practical commercialization, continuous research is important to expand applicability beyond fixed-point generation to other environments while also improving power conversion efficiency (PCE), stability, and cost. In this work, graphene-on-silicon Schottky junction and graphene-insulator-silicon (GIS) solar cells are demonstrated on flexible, thin foils, which utilize the electrical conductivity and optical transparency of graphene as the top transparent contact. Multi-layer graphene was grown by chemical vapor deposition on Cu-Ni foils, followed by p-type doping with Au nanoparticles and encapsulated in poly(methyl methacrylate), which showed high stability with minimal performance degradation over more than one month under ambient conditions. Bendable silicon film substrates were fabricated by a kerf-less exfoliation process based on spalling, where the silicon film thickness could be controlled from 8 to 35 μm based on the process recipe. This method allows for re-exfoliation from the parent Si wafer and incorporates the process for forming the backside metal contact of the solar cell. GIS cells were made with a thin insulating Al2O3 atomic layer deposited film, where the thin Al2O3 film acts as a tunneling barrier for holes, while simultaneously passivating the silicon surface, increasing the minority carrier lifetime from 2 to 27 μs. By controlling the Al2O3 thickness, an optimized cell with 7.4% power conversion efficiency (PCE) on a 35 μm thick silicon absorber was fabricated.

  10. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  11. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  12. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    Directory of Open Access Journals (Sweden)

    Carla Aramo

    2015-03-01

    Full Text Available A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  13. Contact lines on silicone elastomers promote contamination

    Science.gov (United States)

    Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien

    2017-11-01

    Silicone elastomers are used in contact with aqueous liquids in a large range of applications. Due to numerous advantages such as its flexibility, optical transparency, or gas permeability, polydimethylsiloxane is widely spread in rapid prototyping for microfluidics or elastocapillarity experiments. However, silicone elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood. We show that in various setups involving an air-water-silicone elastomer contact line, a capillarity-induced extraction of uncrosslinked oligomers occurs, leading to a contamination of water-air interfaces. We investigate the case of a static air-water-PDMS contact line, before focusing on moving contact lines. A water droplet sliding down on a PDMS inclined plane or an air bubble rising on an immersed PDMS plane exhibits two successive speed regimes: the second regime is reached only when a monolayer of oligomers completely covers the water-air interface. These experiments involve processes occurring at the polymer network scale that have significant macroscopic consequences, and therefore provide a simple test to evaluate the presence of uncrosslinked oligomers in an elastomer sample.

  14. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Blanque, S. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Ibarz, D.; Bertomeu, J. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)

    2009-03-15

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances ({rho}{sub c} {approx} 10 m{omega} cm{sup 2}) have been obtained on 2.8 {omega} cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  15. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  16. Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W. G J H M; Schropp, R. E I; Turkenburg, W. C.; Faaij, A. P C

    2015-01-01

    Silicon heterojunction (SHJ) cells offer high efficiencies and several advantages in the production process compared to conventional crystalline silicon solar cells. We performed a life-cycle assessment to identify the greenhouse gas (GHG) footprint, energy payback time (EPBT) and cumulative energy

  17. A theoretical investigation of quantum confinement effects in heterojunction silicon solar cells

    Science.gov (United States)

    Bashiri, H.; Karami, M. A.; Mohammadnejad, Sh.

    2018-03-01

    The effect of quantum confinement potential on the performance of a silicon-based heterojunction solar cell with an intrinsic thin-layer of a-Si:H is studied using numerical simulations. The presence of defects at c-Si/a-Si:H interface is studied quantitatively and, an analytical solution is investigated to interpret experimental results. Moreover, the impact of defect density at c-Si/a-Si:H interface on the solar cell operation is explained. By the use of a theoretical model, the effect of intrinsic amorphous layer thickness, and interface defect density on quasi-Fermi level are studied and the mechanisms of open circuit voltage ( V oc ) variations, are interpreted successfully. It is shown that the best performance of heterojunction silicon solar cell with a single passivation layer is obtained when the thickness of (i)a-Si:H is 3-9 nm and heterojunction interface defect density is lower than 1010 cm-2 eV-1.

  18. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  20. Interface engineering of Graphene-Silicon heterojunction solar cells

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2016-11-01

    Graphene has attracted great research interests due to its unique mechanical, electrical and optical properties, which opens up a huge number of opportunities for applications. Recently, Graphene-Silicon (Grsbnd Si) solar cell has been recognized as one interesting candidate for the future photovoltaic. Since the first Grsbnd Si solar cell reported in 2010, Grsbnd Si solar cell has been intensively investigated and the power converse efficiency (PCE) of it has been developed to 15.6%. This review presents and discusses current development of Grsbnd Si solar cell. Firstly, the basic concept and mechanism of Grsbnd Si solar cell are introduced. Then, several key technologies are introduced to improve the performance of Grsbnd Si solar cells, such as chemical doping, annealing, Si surface passivation and interlayer insertion. Particular emphasis is placed on strategies for Grsbnd Si interface engineering. Finally, new pathways and opportunities of "MIS-like structure" Grsbnd Si solar cells are described.

  1. Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Suekrue, E-mail: skaratas@ksu.edu.tr [Department of Physics, Faculty of Science, Suetcue Imam University, Karamanmaras (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The copper doped cadmium oxide (CdO) heterojunction diodes were fabricated by sol-gel method. Black-Right-Pointing-Pointer The electrical properties of Cu doped CdO/p-Si heterojunction diode have been investigated. Black-Right-Pointing-Pointer A strong effect of the Cu-doped content on the I-V characteristics of the diodes was found. Black-Right-Pointing-Pointer It is evaluated that the electrical performance of the CdO/p-Si diode can be controlled by Cu doped. - Abstract: The nanostructure Cu-doped CdO thin film was grown on p-type silicon substrate by sol-gel method. An Al/Cu doped CdO/p-Si heterojunction diode was fabricated. The values of ideality factor and barrier height for the Al/n-type CdO/p-Si heterojunction were obtained as 5.99 and 0.69 eV, respectively. A modified Norde function combined with conventional forward I-V method was used to extract the junction parameters including the ideality factor, barrier height and series resistance. Norde function was compared with the Cheung functions and it is seen that there is a good agreement with both method for the series resistance values. Furthermore, the interface state density (N{sub SS}) as a function of energy distribution (E{sub SS} - E{sub V}) was extracted from the forward-bias I-V measurements by taking into account the bias dependence of the effective barrier height and series resistance.

  2. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    Science.gov (United States)

    Lin, Yung-Chen

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ˜28.6 μΩ·cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on Mn

  3. Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts

    KAUST Repository

    Debnath, Ratan

    2010-01-01

    With an aim to reduce the cost of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces costly Au with a low-cost Ni-based Ohmic contact. The resultant devices achieve 3.5% Air Mass 1.5 power conversion efficiency. Only by incorporating a 1.2-nm-thick LiF layer between the PbS quantum dot film and Ni, we were able to prevent undesired reactions and degradation at the metal-semiconductor interface. © 2010 American Institute of Physics.

  4. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application

    International Nuclear Information System (INIS)

    Laranjeira, Jane Maria Goncalves

    2004-08-01

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at ±1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 kΩ ± 5% and ideality factor in a range of 1,9 ± 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10 -2 to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for gamma radiation based on the

  5. Sputter-Grown Sb-DOPED Silicon Nanocrystals Embedded in Silicon-Rich Carbide for si Heterojunction Solar Cells

    Science.gov (United States)

    Chen, Xiaobo; Tang, Yu; Hao, Jiabo

    Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.

  6. Effect of silicon-nanoparticle addition on the nanostructure of polythiophene: fullurene bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Kim, Joonhyeon; Nam, Sungho; Jeong, Jaehoon; Kim, Hwajeong; Kim, Youngkyoo

    2012-01-01

    We investigated the nanostructure change in bulk heterojunction films of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM) before and after adding silicon nanoparticles (SiNP) by employing synchrotron radiation grazing incidence-angle X-ray diffraction (GIXD) techniques. The GIXD results showed a gradual reduction of the P3HT (100) diffraction intensity in the out-of-plane (OOP) direction as the SiNP content was increased. Interestingly, a (100) intensity in the in-plane (IP) direction newly appeared when a small amount of SiNP was added, but it faded at higher SiNP contents. In particular, the addition of 2 wt.% SiNP increased the (100) intensity in both the OOP and the IP directions, leading to improved solar cell performance due to enhanced charge transport in the P3HT domains.

  7. Tunneling, Current Gain, and Transconductance in Silicon-Germanium Heterojunction Bipolar Transistors Operating at Millikelvin Temperatures

    Science.gov (United States)

    Davidović, D.; Ying, H.; Dark, J.; Wier, B. R.; Ge, L.; Lourenco, N. E.; Omprakash, A. P.; Mourigal, M.; Cressler, J. D.

    2017-08-01

    Quantum-transport measurements in advanced silicon-germanium heterojunction bipolar transistors (SiGe HBTs) are presented and analyzed, including tunneling spectroscopy of discrete impurity levels localized within the transistor and the dependence on an applied magnetic field. The collector current at millikelvin temperatures is well accounted for by ideal electron tunneling throughout the entire base. The amplification principle at millikelvin temperatures is fundamentally quantum mechanical in nature: an increase in base voltage, requiring a moderate base current, creates an equal and opposite decrease in the tunneling barrier seen by the electrons in the emitter, thereby increasing the collector current significantly more than the base current, producing current gain. Highly scaled SiGe HBTs operate predictably at millikelvin temperatures, thus opening the possibility of viable SiGe millikelvin circuitry.

  8. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir

    2017-09-22

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell\\'s configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  9. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  10. Study on InSe-GaSe heterojunctions produced by realization of the optical contact

    International Nuclear Information System (INIS)

    Bakumenko, V.L.; Kovalyuk, Z.D.; Kurbatov, L.N.; Tagaev, V.G.; Chishko, V.F.

    1980-01-01

    Investigated were current-farad and current voltage characteristics as well as electroluminescence of InSe-GaSe heterojunctions (HJ) produced by the method of realization of optical contact (ROC). Basing on the results of the investigations suggested is a HJ energy scheme and determined are mechanisms of carriers transfer through unlighted transition on flowing current in different regimes. Efficiency of HJ production method applied is concluded. The ROC method permits to produce abrupt HJs. Producing by such a way HJ is not accompanied by formation of states with high density, localized at interface boundary and changing the barrier height in HJ as compared with a value expected from contact difference in potentials. A tunnel-recombination process with participation of states in a forbidden zone is the mechanism determining the carrier transfer through HJ in a straight direction before barrier removal. Current through HJ after barrier removal flows in the form of injection currents in both directions leading to the decrease of base resistance GaSe and intensive luminescence from the InSe area adjoining to HJ. Currents in case of reverse displacements have the character of currents in case of the Ziener reversible break-down. HJ produced by the ROC method have well reproducible characteristics testifying to the method efficiency

  11. Interface state density effect on the performance of graphene silicon heterojunction solar cell

    Science.gov (United States)

    Kuang, Yawei; Lin, Bencai; Ma, Yulong; Liu, Yushen; Yang, Xifeng; Zhang, Debao; Shao, Zhenguang; Feng, Jinfu

    2016-01-01

    A planar structure consisting of graphene layer as the hole transport material, and n-type silicon as substrate is simulated. The degradation of this cell caused by high interface state density has been carried out. The simulated results match published experimental results indicating the accuracy of the physics-based model. Using this model, the effect of interface state density as zero, 1×1016cm-2, 1×1017cm-2 on the photovoltaic performance has been studied. The obtained IV and EQE characteristic based on realistic parameters shows that the interface state playing a prominent role in graphene silicon schottky contact.

  12. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  13. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  14. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure.

    Science.gov (United States)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-03

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm -1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  15. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    Science.gov (United States)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  16. Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime.

    Science.gov (United States)

    Bednorz, Mateusz; Matt, Gebhard J; Głowacki, Eric D; Fromherz, Thomas; Brabec, Christoph J; Scharber, Markus C; Sitter, Helmut; Sariciftci, N Serdar

    2013-05-01

    The authors report on the fabrication of a silicon/organic heterojunction based IR photodetector. It is demonstrated that an Al/ p -Si/perylene-derivative/Al heterostructure exhibits a photovoltaic effect up to 2.7 μm (0.46 eV), a value significantly lower than the bandgap of either material. Although the devices are not optimized, at room temperature a rise time of 300 ns, a responsivity of ≈0.2 mA/W with a specific detectivity of D ∗  ≈ 7 × 10 7 Jones at 1.55 μm is found. The achieved responsivity is two orders of magnitude higher compared to our previous efforts [1,2]. It will be outlined that the photocurrent originates from an absorption mechanism involving excitation of an electron from the Si valence band into the extended LUMO state in the perylene-derivative, with possible participation of intermediate localized surface state in the organic material. The non-invasive deposition of the organic interlayer onto the Si results in compatibility with the CMOS process, making the presented approach a potential alternative to all inorganic device concepts.

  17. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    Science.gov (United States)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  18. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  19. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  20. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  1. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  2. The mixed-mode reliability stress of silicon-germanium heterojunction bipolar transistors

    Science.gov (United States)

    Zhu, Chendong

    The objective of the dissertation is to combine the recent Mixed-Mode reliability stress studies in silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The thesis starts with a review of SiGe HBT fundamentals, development trends, and the conventional reliability stress paths used in industry, following which the new stress path, Mixed-Mode stress, is introduced. Chapter 2 is devoted to an in-depth discussion of damage mechanisms that includes the impact ionization effect and the self-heating effect. Chapter 3 goes onto the impact ionization effect using two-dimensional calibrated MEDICI simulations. Chapter 4 assesses the reliability of SiGe HBTs in extreme temperature environments by way of comprehensive experiments and MEDICI simulations. A comparison of the device lifetimes for reverse-EB stress and mixed-mode stress indicates different damage mechanisms govern these phenomena. The thesis concludes with a summary of the project and suggestions for future research in chapter 5. This dissertation covers the following topics: (1) Introduces a new mixed-mode stress technique: time cumulative stress (Chapter II, also published in [23] and [24]). (2) Identifies impact ionization effects in the stress damage (Chapter II, also published in [23] and [24]). (3) Investigates for the first time mixed-mode damage using TCAD simulations at both room temperature and cryogenic temperatures (Chapter III and IV, also published in [23][24][62]). (4) Analyzes for the first time impact of self-heating on mixed-mode stress response, and identifies a temperature triggered damage threshold (Chapter II, will be published in [25]). (5) Explains the geometrical scaling issues in mixed-mode stress and explores mixed-mode stress reliability scaling trends (Chapter II, will be published in [25]). (6) Assesses for the first time SiGe HBT reliability at cryogenic temperatures (Chapter VI, also published in [62]).

  3. Electrical Properties of Antimony (Sb) Metal Contacts to Silicon (Si ...

    African Journals Online (AJOL)

    The study investigates the behaviour of the contacts formed by Antimony (Sb) metal to Silicon (Si) thin films for electric field values 10 – 100V/m. Measurements of I-v characteristics were obtained at temperatures 303, 313, 323, 333, 343 and 353K respectively. The results show linear I – V relationship over a specified range ...

  4. The epidemiology of microbial keratitis with silicone hydrogel contact lenses.

    Science.gov (United States)

    Stapleton, Fiona; Keay, Lisa; Edwards, Katie; Holden, Brien

    2013-01-01

    It was widely anticipated that after the introduction of silicone hydrogel lenses, the risk of microbial keratitis would be lower than with hydrogel lenses because of the reduction in hypoxic effects on the corneal epithelium. Large-scale epidemiological studies have confirmed that the absolute and relative risk of microbial keratitis is unchanged with overnight use of silicone hydrogel materials. The key findings include the following: (1) The risk of infection with 30 nights of silicone hydrogel use is equivalent to 6 nights of hydrogel extended wear; (2) Occasional overnight lens use is associated with a greater risk than daily lens use; (3) The rate of vision loss due to corneal infection with silicone hydrogel contact lenses is similar to that seen in hydrogel lenses; (4) The spectrum of causative organisms is similar to that seen in hydrogel lenses, and the material type does not impact the corneal location of presumed microbial keratitis; and (5) Modifiable risk factors for infection include overnight lens use, the degree of exposure, failing to wash hands before lens handling, and storage case hygiene practice. The lack of change in the absolute risk of disease would suggest that exposure to large number of pathogenic organisms can overcome any advantages obtained from eliminating the hypoxic effects of contact lenses. Epidemiological studies remain important in the assessment of new materials and modalities. Consideration of an early adopter effect with studies involving new materials and modalities and further investigation of the impact of second-generation silicone hydrogel materials is warranted.

  5. HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, James [Princeton Univ., NJ (United States)

    2017-12-04

    This project is the first investigation of the use of thin titanium dioxide layers on silicon as a hole-blocking / electron-transparent selective contact to silicon. The work was motivated by the goal of a high-efficiency low-cost silicon-based solar cells that could be processed entirely at low temperature (300 Degree Celsius) or less, without requiring plasma-processing.

  6. Transmissive metallic contact for amorphous silicon solar cells

    Science.gov (United States)

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  7. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  8. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  9. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...

  10. Al-doped and in-doped ZnO thin films in heterojunctions with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chabane, L.; Zebbar, N.; Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32-16111, Algiers (Algeria); Aida, M.S. [LCMet Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32-16111 Algiers (Algeria)

    2016-04-30

    The undoped, Al-doped and In-doped ZnO thin films were deposited by ultrasonic spray pyrolysis technique, onto glass and p-Si substrates and the physical properties of the films were investigated. The X-ray diffraction, optical analysis and electrical characterisations, indicate that the films were polycrystalline with hexagonal würtzite type structure and revealed that the aluminium doping deteriorates the crystalline and optical properties and enhances the electrical conductivity whereas indium doping improves all properties. The transport mechanism controlling the conduction through the heterojunctions was studied. For the heterostructures, the temperature dependent current–voltage characteristics showed rectifying behaviour in the dark, but current transport mechanism is not the same for all heterojunctions. Therefore, the presence of the interface states and volume defects are identified as limiting factors for obtaining a high quality heterojunction interface. - Highlights: • Al-doped and In-doped ZnO thin films have been deposited onto Si. • In-doped ZnO/p-Si heterojunction showed poor rectifying behaviour. • Al-doped ZnO/p-Si heterojunction showed a good rectifying at room temperature. • The carriers transport mechanisms was controlled by interfacial and volume defects.

  11. Back-contacted back-junction silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mangersnes, Krister

    2010-10-15

    Conventional silicon solar cells have a front-side contacted emitter. Back-contacted back-junction (BC-BJ) silicon solar cells, on the other hand, have both the complete metallization and the active diffused regions of both polarities on the backside. World-record efficiencies have already been demonstrated for this type of cell design in production, both on cell and module level. However, the production of these cells is both complex and costly, and a further cost reduction in fabrication is needed to make electricity from BC-BJ silicon solar cells cost-competitive with electricity on the grid ('grid-parity'). During the work with this thesis, we have investigated several important issues regarding BC-BJ silicon solar cells. The aim has been to reduce production cost and complexity while at the same time maintaining, or increasing, the already high conversion efficiencies demonstrated elsewhere. This has been pursued through experimental work as well as through numerical simulations and modeling. Six papers are appended to this thesis, two of which are still under review in scientific journals. In addition, two patents have been filed based on the work presented herein. Experimentally, we have focused on investigating and optimizing single, central processing steps. A laser has been the key processing tool during most of the work. We have used the same laser both to structure the backside of the cell and to make holes in a double-layer of passivating amorphous silicon and silicon oxide, where the holes were opened with the aim of making local contact to the underlying silicon. The processes developed have the possibility of using a relatively cheap and industrially proven laser and obtain results better than most state-of-the-art laser technologies. During the work with the laser, we also developed a thermodynamic model that was able to predict the outcome from laser interaction with amorphous and crystalline silicon. Alongside the experimental work, we

  12. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses.

    Science.gov (United States)

    Read, Michael L; Morgan, Philip B; Maldonado-Codina, Carole

    2009-11-01

    This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2 degrees , whereas intralens COR values (95% confidence intervals) ranged from 4.0 degrees (3.3 degrees , 4.7 degrees ) (lotrafilcon A, captive bubble) to 10.2 degrees (8.4 degrees , 12.1 degrees ) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5 degrees (3.7 degrees , 5.2 degrees ) (lotrafilcon A, captive bubble) to 16.5 degrees (13.6 degrees , 19.4 degrees ) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses.

  13. A multicentre clinical evaluation of Cuticell Contact silicone wound contact layer in daily practice.

    Science.gov (United States)

    Suess-Burghart, Anja; Zomer, Karin; Schwanke, Dorte

    2015-06-01

    To evaluate clinically the performance of Cuticell Contact, a silicone-based primary contact wound dressing. Primary contact dressings that allow removal of exudate while protecting the wound bed during dressing changes are a key tool in wound management. Silicone dressings are of particular interest owing to their excellent conformability, pain-free dressing changes, and low toxicity. Cuticell Contact is a silicone-based wound dressing thought to provide these desirable benefits. In this evaluation, 38 patients with 40 wounds of a variety of aetiologies and anatomical locations managed with Cuticell Contact and secondary dressings were observed in 8 centres across Germany and the Netherlands. The observation period ranged from 2-42 days (mean 21 days, median 18 days). At the end of the observation, Cuticell Contact was evaluated for permeability to exudate, nonadherence to the wound bed, pain at dressing change, and overall performance. The condition of the wound bed, wound surface area, and levels of exudate were recorded at baseline, at each dressing change, and at the end of the evaluation, along with the condition of the wound edge and peri-wound skin. Wounds managed with Cuticell Contact showed improvement in the wound bed as evidenced by an increase in wounds with complete granulation from 12.5% (n=40) to 26.5% (n=34), and wounds with partial or complete epithelialisation from 35% to 82.4%. Cuticell Contact was assessed at the end of the evaluation as nonadherent to the wound in 91.2% of cases (n=34), and 93.3% of dressing changes (n=104) were deemed pain free. Wound surface area decreased by a mean of 19.9%. Cuticell Contact was rated satisfactory for permeability to wound exudate in 82.4% of responses and overall satisfaction with the dressing performance was also 82.4%. Cuticell Contact is a soft silicone dressing that is easy to use, efficacious in supporting wound healing through protecting the wound bed, and facilitates atraumatic dressing changes.

  14. High efficiency heterojunction solar cells on n-type kerfless mono crystalline silicon wafers by epitaxial growth

    Science.gov (United States)

    Kobayashi, Eiji; Watabe, Yoshimi; Hao, Ruiying; Ravi, T. S.

    2015-06-01

    We present a heterojunction (HJ) solar cell on n-type epitaxially grown kerfless crystalline-silicon (c-Si) with a conversion efficiency of 22.5%. The total cell area is 243.4 cm2. The cell has a short-circuit current density of 38.6 mA/cm2, an open-circuit voltage of 735 mV, and a fill factor of 0.791. The key advantages and technological tasks of epitaxial wafers for HJ solar cells are discussed, in comparison with conventional n-type Czockralski c-Si wafers. The combination of HJ and kerfless technology can lead to high conversion efficiency with a potential at low cost.

  15. Investigation of transparent conductive electrodes for application in heterojunction silicon wafer solar cells

    Science.gov (United States)

    Huang, Mei

    This thesis focuses on the fabrication, characterisation and analysis of high-quality transparent conductive electrodes for application in heterojunction silicon wafer solar cells. Indium tin oxide (ITO) is the material of interest, which is investigated by both the pulsed direct current (PDC) and the unbalanced radio frequency (URF) magnetron sputtering methods. The influences of deposition parameters and annealing conditions on the performance of the ITO films are studied and the optimal deposition conditions are established for both systems. The results show that ITO films with low crystallinity have degraded electrical properties after annealing at 200°C. The degradation of ITO film properties is associated with the excess scattering centres formed along with the newly crystallised regions, which significantly deteriorate the electron mobility. The relationships between the deposition conditions and the material properties are investigated by X-ray photoelectron spectroscopy (XPS). It is shown that the major electron donors in amorphous ITO films are oxygen vacancies. With the increase of the film crystallinity, the doping efficiency of Sn atoms improves. The substitutional Sn atoms contribute additional free electrons in ITO films, which improve the film's conductivity. It is also shown that the darkening of ITO films observed in PDC sputtering is due to the existence of second phase Sn3O4, which severely darken the ITO sample when it is excessively present in the surface layer and in the bulk of the film. The hydrogen gas used in the URF sputtering method is shown to effectively lower the concentration of free electrons. Benefiting from the reduced electron scattering by ionized dopant atoms, the ITO films deposited with hydrogen gas maintain a high electron mobility. Besides the ITO material properties, the sputter induced damages are also studied. It is shown that in PDC sputtering the ion bombardment damage is the primary damage contributor, while plasma

  16. Investigation of positive roles of hydrogen plasma treatment for interface passivation based on silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Zhang, Liping; Liu, Wenzhu; Liu, Jinning; Shi, Jianhua; Meng, Fanying; Liu, Zhengxin; Guo, Wanwu; Bao, Jian

    2016-01-01

    The positive roles of H 2 -plasma treatment (HPT) have been investigated by using different treatment procedures in view of the distinctly improved passivation performance of amorphous-crystalline silicon heterojunctions (SHJs). It has been found that a hydrogenated amorphous silicon thin film and crystalline silicon (a-Si:H/c-Si) interface with a high stretching mode (HSM) is detrimental to passivation. A moderate pre-HPT introduces atomic H, which plays an effective tuning role in decreasing the interfacial HSM; unfortunately, an epitaxial layer is formed. Further improvement in passivation can be achieved in terms of increasing the HSM of a-Si:H film treated by appropriate post-HPT based on the a-Si:H thickness. The minority carrier lifetime of crystalline wafers can be improved by treated films containing a certain quantity of crystallites. The microstructure factor R and the maximum intensity of the dielectric function ε 2max have been found to be critical microstructure parameters that describe high-quality a-Si:H passivation layers, which are associated with the amorphous-to-microcrystalline transition phase induced by multi-step HPT. Finally, the open circuit voltage and conversion efficiency of the SHJ solar cell can be improved by implementing an effective HPT process. (paper)

  17. Investigation of Performance Silicon Heterojunction Solar Cells Using a-Si: H or a-SiC: H at Emitter Layer Through AMPS-1D Simulations

    Directory of Open Access Journals (Sweden)

    Asmaa BENSMAIN

    2014-05-01

    Full Text Available We offer a numerical simulation tool, AMPS-1D, which allows to model homo- as well as heterojunction devices. AMPS-1D is the short form of automat for simulation of heterostructures. The program solves the one dimensional semiconductor equations in steady-state. Furthermore, a variety of common characterization techniques have been implemented, current- voltage, external quantum efficiency, conduction and valence band. A user-friendly interface allows to easily perform parameter variations, and to visualize and compare your simulations. In this work, The silicon heterojunction cell performances are investigated by detailed described on external quantum efficiency, and light current-voltage characteristics by recognized simulator AMPS-1D (Analysis of Micro- electronics and Photonic Structures. The objective of this work is to study the correlation between the emitter properties of both heterojunction cells a-Si:H/c-Si and a-SiC:H/c-Si (absorption, defect profiles and energy band offsets and the carrier collection.

  18. Structural, electronic and transport properties of armorphous/crystalline silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tim Ferdinand

    2011-06-15

    The present dissertation is concerned with the physical aspects of the a-Si:H/c-Si heterojunction in the context of PV research. In a first step, the technological development which took place in the framework of the thesis is summarized. Its main constituent was the development and implementation of ultrathin ({<=}10 nm) undoped a-Si:H[(i)a-Si:H] layers to improve the passivation of the c-Si surface with the goal of increasing the open-circuit voltage of the solar cell. It is shown that the effect of (i)a-Si:H interlayers depends on the c-Si substrate doping type, and that challenges exist particularly on the technologically more relevant (n)c-Si substrate. A precise optimization of (i)a-Si:H thickness and the doping level of the following a-Si:H top layers is required to realize an efficiency gain in the solar cell. In this chapter, the key scientific questions to be tackled in the main part of the thesis are brought up by the technological development. In the next chapter, the charge carrier transport through a-Si:H/c-Si heterojunctions is investigated making use of current-voltage (I/V) characteristics taken at different temperatures. The dominant transport mechanisms in a-Si:H/c-Si heterojunctions are identified, and the relevance for solar cell operation is discussed. It is found that in the bias regime relevant for solar cell operation, the theoretical framework for the description of carrier transport in classical c-Si solar cells applies as well, which enables to use I/V curves for a simple characterization of a-Si:H/c-Si structures. The next chapter deals with the microscopic characterization of ultrathin a-Si:H layers. Employing infrared spectroscopy, spectroscopic ellipsometry, photoelectron spectroscopy and secondary ion mass spectroscopy, the structural, electronic and optical properties of (i)a-Si:H are analyzed. It is found that ultrathin a-Si:H essentially behaves like layers of 10..100 times the thickness. This represents the basis for the

  19. Creating New VLS Silicon Nanowire Contact Geometries by Controlling Catalyst Migration

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal; Panciera, Federico; Hansen, Ole

    2015-01-01

    The formation of self-assembled contacts between vapor-liquid-solid grown silicon nanowires and flat silicon surfaces was imaged in situ using electron microscopy. By measuring the structural evolution of the contact formation process, we demonstrate how different contact geometries are created b...

  20. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  1. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  2. Comparison of ohmic contact properties on n-GaN/p-SiC and n-AlGaN/p-SiC heterojunctions

    Science.gov (United States)

    Luo, B.; Kim, J.; Mehandru, R.; Ren, F.; Lee, K. P.; Pearton, S. J.; Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Osinsky, A. V.; Norris, P. E.

    2002-09-01

    GaN/SiC and Al 0.25Ga 0.75 N/SiC heterojunction diodes were fabricated using Al/Ti for p-ohmic contact to the SiC and Ti/Al/Pt/Au for n-ohmic contact to the GaN and AlGaN. Annealing at 850 °C for 20 s (GaN) or 120 s (AlGaN) was required for achieving specific contact resistances in the 10 -6 Ω cm 2 range. The reverse breakdown voltage showed a negative temperature coefficient in both types of sample, with value ˜5.5±2.5×10 -3 V/K. The I- V characteristics of both heterojunctions show evidence of tunneling via defect states.

  3. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  4. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  5. Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode.

    Science.gov (United States)

    Manna, Sujit; Ashok, Vishal D; De, S K

    2010-12-01

    The heterojunction of a Pd-doped p-GaN nanowire and n-Si (100) is fabricated vertically by the vapor-liquid-solid method. The average diameter of the nanowire is 40 nm. The vertical junction reveals a significantly high rectification ratio of 10(3) at 5 V, a moderate ideality factor of ∼2, and a high breakdown voltage of ∼40 V. The charge transport across the p-n junction is dominated by the electron-hole recombination process. The voltage dependence of capacitance indicates a graded-type junction. The resistance of the junction decreases with an increase in the bias voltage confirmed by impedance measurements.

  6. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters.

    Science.gov (United States)

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2016-01-13

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.

  7. Adhesion of Acanthamoeba on Silicone Hydrogel Contact Lenses.

    Science.gov (United States)

    Lee, Ga-Hyun; Lee, Ji-Eun; Park, Mi-Kyung; Yu, Hak-Sun

    2016-05-01

    To evaluate adhesion of Acanthamoeba trophozoites to different silicone hydrogel contact lens (SHCL) generations with and without multipurpose contact lens care solution (MPS) treatment. Acanthamoeba lugdunensis L3a trophozoites were inoculated onto discs trimmed from SHCLs: first generation, Air Optix (Lotrafilcon B) with a plasma surface treatment, second generation, Acuvue Oasys (Senofilcon A), which contains an internal wetting agent (Hydraclear), and third generation, Biofinity (Comfilcon A) with no surface treatment. After 18-hour inoculation, the number of adherent trophozoites on SHCLs was counted as the control under phase contrast microscopy. The effects of the 3 different MPSs, Opti-Free Express, ReNu Fresh, and Biotrue, soaking SHCLs for 6 hours, on Acanthamoeba adhesion were analyzed. Scanning electron microscopic examination was performed for assessment of Acanthamoeba attached on the lens surface. Acanthamoeba trophozoites showed greater adhesion to Air Optix than to Acuvue Oasys and Biofinity (P Acanthamoeba was significantly reduced compared with the control after treatment with Opti-Free Express (P 0.05). Acanthamoeba did not adhere to Biofinity regardless of MPSs treatment. Attachment of the acanthopodia of Acanthamoeba on the curved ridge of the Air Optix lens surface was observed. Acanthamoeba showed greater affinity for the first-generation SHCL and seemed to be more attached on SHCLs with more ridges. MPS with myristamidopropyl dimethylamine reduced the adhesion rate.

  8. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  9. Tunnel field-effect transistors with germanium/strained-silicon hetero-junctions for low power applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo, E-mail: minsoo@mosfet.t.u-tokyo.ac.jp; Kim, Younghyun; Yokoyama, Masafumi; Nakane, Ryosho; Kim, SangHyeon; Takenaka, Mitsuru; Takagi, Shinichi

    2014-04-30

    We have studied a simple structure n-channel tunnel field-effect transistor with a pure-Ge/strained-Si hetero-junction. The device operation was demonstrated for the devices fabricated by combining epitaxially-grown Ge on strained-silicon-on-insulator substrates. Atomic-layer-deposition-Al{sub 2}O{sub 3}-based gate stacks were formed with electron cyclotron resonance plasma post oxidation to ensure the high quality metal–oxide–semiconductor interface between the high-k insulator and Ge. While the gate leakage current and drain current saturation are well controlled, relatively higher minimum subthreshold swing of 125 mV/dec and lower I{sub ON}/I{sub OFF} ratio of 10{sup 3}–10{sup 4} were obtained. It is expected that these device characteristics can be improved by further process optimization. - Highlights: • Layer by layer growth of Ge • Uniform interface between Ge and the insulator • Gate leakage current and drain current saturation seem to be well controlled. • The output characteristics show good saturation.

  10. Tunnel field-effect transistors with germanium/strained-silicon hetero-junctions for low power applications

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Younghyun; Yokoyama, Masafumi; Nakane, Ryosho; Kim, SangHyeon; Takenaka, Mitsuru; Takagi, Shinichi

    2014-01-01

    We have studied a simple structure n-channel tunnel field-effect transistor with a pure-Ge/strained-Si hetero-junction. The device operation was demonstrated for the devices fabricated by combining epitaxially-grown Ge on strained-silicon-on-insulator substrates. Atomic-layer-deposition-Al 2 O 3 -based gate stacks were formed with electron cyclotron resonance plasma post oxidation to ensure the high quality metal–oxide–semiconductor interface between the high-k insulator and Ge. While the gate leakage current and drain current saturation are well controlled, relatively higher minimum subthreshold swing of 125 mV/dec and lower I ON /I OFF ratio of 10 3 –10 4 were obtained. It is expected that these device characteristics can be improved by further process optimization. - Highlights: • Layer by layer growth of Ge • Uniform interface between Ge and the insulator • Gate leakage current and drain current saturation seem to be well controlled. • The output characteristics show good saturation

  11. Investigation of silicon heterojunction solar cells by photoluminescence under DC-bias

    Directory of Open Access Journals (Sweden)

    Courtois Guillaume

    2013-09-01

    Full Text Available Photoluminescence measurements on solar cells are usually carried out under open-circuit conditions. We report here on an innovative approach, in which the samples are simultaneously illuminated and DC-biased, so that the luminescence can be monitored under several operating points, that is to say several injection levels, ranging from short-circuit conditions to the light-emitting regime of the device. The experiments were performed on in-house made c-Si/a-Si:H heterojunction solar cells illuminated by a continuous green laser diode and positively biased. The luminescence spectra obtained this way were compared to those obtained with no light excitation source, which corresponds to usual electroluminescence mode and dark J(V. Firstly, the obtained luminescence spectra have shown the expected exponential dependence on the applied voltage. Furthermore, given that the amplitude of the emitted luminescence is proportional to the radiative recombination rate, this approach enables to indirectly characterise the non-radiative recombination phenomena. In the case of HJ solar cells with intrinsic thin layers processed on high quality FZ-wafers, non-radiative recombination is dominated by the defects at the c-Si/a-Si:H interface. The luminescence measurements presented here therefore give information on the quality of the surface passivation. An estimation of the interface defect density was achieved by comparing our experimental results with modelling.

  12. Fabrication and characterization of Zn O:Zn(n{sup +})/porous-silicon/Si(p) heterojunctions for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M. A. [INAOE, Department of Electronics, 72840 Puebla, Pue. (Mexico); Romero P, G.; Pena S, R. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Ingenieria Electrica, SEES, Av. Intituto Politecnico Nacional No. 2508, Col. San Pedro Zacatenco, 07360 Ciudad de Mexico (Mexico); Andraca A, J. A. [IPN, Centro de Nanociencias y Micro y Nanotecnologias, Av. Luis Enrique Erro s/n, Col. San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-11-01

    The fabrication and characterization of electro luminescent Zn O:Zn(n{sup +})/porous silicon/Si(p) heterojunctions is presented. Highly conductive Zn O films (Zn O:Zn(n{sup +})) were produced by applying a temperature annealing at 400 degrees Celsius by 5 min to the Zn O/Zn/Zn O arrange formed by DC sputtering, and the porous silicon (PS) films were prepared on p-type (100) Si wafers by anodic etching. The Zn O: Zn(n{sup +})/PS/Si(p) heterojunction is accomplished by applying a brief temperature annealing stage to the entire Zn O/Zn/Zn O/PS/Si structure to preserve the PS luminescent characteristics. The Zn O:Zn(n{sup +}) films were characterized by X-ray diffraction and Hall-van der Pauw measurements. The PS and Zn O:Zn(n{sup +}) films were also studied by photoluminescence (Pl) measurements. The current-voltage characteristics of the heterojunctions showed well defined rectifying behavior with a turn-on voltage of 1.5 V and ideality factor of 5.4. The high ideality factor is explained by the presence of electron tunneling transport aided by energy levels related to the defects at the heterojunction interface and into the PS film. The saturation current and the series resistance of the heterostructure were 4 x 10{sup -7} A/cm{sup 2} and 16 Ω-cm{sup 2}, respectively. White color electroluminescence is easily observed at the naked eye when excited with square wave pulses of 8 V and 1 Khz. (Author)

  13. Siloxanes in silicone products intended for food contact

    DEFF Research Database (Denmark)

    Cederberg, Tommy Licht; Jensen, Lisbeth Krüger

    siloxanes D3 to D13 and linear siloxanes L3-L13 the limit is 60 mg/kg food. In 49 samples of silicone products intended for food contact from the Norwegian markets content of siloxanes has been measured. Coated paper for baking constituted 8 of the samples and in none of those samples siloxanes were found...... above the detection limits. In all of the 41 remaining samples siloxanes were found in content above the quantification limits. The siloxanes were predominately cyclic siloxanes. The types of products were baking moulds and mats, muffin cups, kitchen utensils, boxes and teats. Compared to the proposed...... actions limits for the sum of D3 to D8 and for the sum of D3 to D13 plus L3 to L13, 24 of the samples exceeded these limits. However, the contents were determined by extraction of the total amount of the analysed siloxanes. After migration test to evaluate the migration of siloxanes into a food simulant...

  14. Graphene-pyramid textured silicon heterojunction for sensitive near-infrared light photodiode

    Science.gov (United States)

    Wang, Li; Ren, Zhi-Fei; Wang, Kui-Yuan; He, Shu-Juan; Luo, Lin-Bao

    2017-04-01

    In this study, we report on the fabrication of a near-infrared (NIR) light photodiode, which was constructed by transferring monolayer graphene films onto pyramid textured silicon etched by an aqueous solution method. It is found that the photodiode exhibits an obvious rectification characteristic, with a rectification ratio as high as 1.5  ×  104. What is more, the as-fabricated graphene-pyramid textured silicon Schottky photodiode could function as an efficient light photodetector that was highly sensitive to NIR irradiation with a high on/off ratio, and good reproducibility. In addition, such an NIR photodiode is able to monitor a fast-switching optical signal with a frequency as high as 2000 Hz. The rise/fall times were estimated to be 96/160 µs, respectively, which are comparable to or even higher than other Si nanostructure-based devices. The generality of the above results implies that the present graphene-pyramid textured silicon Schottky photodiode would have possible potential for future optoelectronic device applications.

  15. Crystalline Silicon Interconnected Strips (XIS). Introduction to a New, Integrated Device and Module Concept

    Energy Technology Data Exchange (ETDEWEB)

    Van Roosmalen, J.; Bronsveld, P.; Mewe, A.; Janssen, G.; Stodolny, M.; Cobussen-Pool, E.; Bennett, I.; Weeber, A.; Geerligs, B. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG, Petten (Netherlands)

    2012-06-15

    A new device concept for high efficiency, low cost, wafer based silicon solar cells is introduced. To significantly lower the costs of Si photovoltaics, high efficiencies and large reductions of metals and silicon costs are required. To enable this, the device architecture was adapted into low current devices by applying thin silicon strips, to which a special high efficiency back-contact heterojunction cell design was applied. Standard industrial production processes can be used for our fully integrated cell and module design, with a cost reduction potential below 0.5 euro/Wp. First devices have been realized demonstrating the principle of a series connected back contact hybrid silicon heterojunction module concept.

  16. Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Sero, Ivan; Luo, Yan; Garcia-Belmonte, Germa; Bisquert, Juan [Departament de Fisica, Universitat Jaume I, E-12071 Castello (Spain); Munoz, Delfina; Voz, Cristobal; Puigdollers, Joaquim; Alcubilla, Ramon [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)

    2008-04-15

    Impedance spectroscopy (at forward bias and under illumination) of solar cells comprised thin hydrogenated amorphous silicon (a-Si:H) films deposited on crystalline silicon (c-Si) wafers was analyzed in terms of ac equivalent circuits. Shockley-Read-Hall recombination at states on the device interfaces governs the cell dynamic response. Recombination process was modeled by means of simple RC circuits which allow to determine the capture rate of electrons and holes. Carrier lifetime is found to be stated by the electron capture time {tau}{sub SRH}{approx}{tau}{sub n}, and it results in the range of 300 {mu}s. The Al-annealed back contact was regarded as the dominating recombination interface. (author)

  17. High mobility In{sub 2}O{sub 3}:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Scherg-Kurmes, H., E-mail: h.scherg-kurmes@tu-berlin.de [Technische Universität Berlin, Einsteinufer 25, 10587 Berlin (Germany); Körner, S. [Technische Universität Berlin, Einsteinufer 25, 10587 Berlin (Germany); Ring, S. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PVcomB, Schwarzschildstraße 3, 12489 Berlin (Germany); Klaus, M. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Korte, L.; Ruske, F. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Silicon Photovoltaics, Kekuléstr. 5, 12489 Berlin (Germany); Schlatmann, R. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PVcomB, Schwarzschildstraße 3, 12489 Berlin (Germany); Rech, B. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Silicon Photovoltaics, Kekuléstr. 5, 12489 Berlin (Germany); Szyszka, B. [Technische Universität Berlin, Einsteinufer 25, 10587 Berlin (Germany)

    2015-11-02

    The crystallization process of hydrogen doped In{sub 2}O{sub 3}:H (IOH) films is investigated with energy-dispersive X-ray diffraction measurements. At annealing temperatures between 125 and 150 °C crystallization of 220 nm thin films occurs within only 2 min, and the percentage of the crystalline phase does not change anymore when the temperature is raised above the crystallization temperature of 150 °C. Maximum electron mobilities above 100 cm{sup 2}/Vs have been reached after crystallization. The IOH films were integrated as front contact into amorphous/crystalline silicon heterojunction cells and compared to In{sub 2}O{sub 3}:Sn (ITO) front contacts. Cells with ITO/IOH bilayer front contacts show a slightly lower open circuit voltage because of the a-Si:H passivation layer degradation caused by the longer annealing process needed for the crystallization of the bilayers, while all cells reach total area efficiencies around 20%. IOH films were also implemented as silver free back contact for μc-Si:H cells, and show higher short-circuit current densities than ZnO:Al back contacts because of the higher near-infra-red transmission of IOH. - Highlights: • Crystallinity of IOH has been monitored during annealing with energy dispersive XRD. • ITO/IOH bilayers have been integrated into a-Si:H/c-Si solar cells. • Jsc gains due to higher bilayer transparency have been simulated with OPAL. • IOH films have been applied to μc-Si:H cells as silver-free back contact.

  18. Contact angle of ethanol–water solutions on crystalline and mesoporous silicon

    International Nuclear Information System (INIS)

    Spencer, S J; Andrews, G T; Deacon, C G

    2013-01-01

    Measurements of contact angle of ethanol–water solutions were performed on crystalline silicon and on mesoporous silicon films with porosities up to ∼72%. Water contact angles of 44° and 76° were measured for untreated and HF-dipped crystalline silicon, respectively, consistent with previous studies. The contact angle for ethanol–water mixtures was found to decrease with increasing ethanol concentration for both untreated crystalline silicon and also for HF-dipped crystalline silicon up to an ethanol concentration of ∼80%; at higher concentrations the contact angle approached zero. Similar behaviour was observed on mesoporous silicon surfaces for ethanol concentrations ≲ 40%, above which the contact angle dropped abruptly to an immeasurably small value. This behaviour is attributed to a decrease in surface tension with increasing ethanol concentration. For all ethanol–water solutions, a minimum value of contact angle was observed at a porosity of ∼40%, above which it remained approximately constant. The behaviour of contact angle with porosity can be explained by a change in the Wenzel roughness parameter due to changes in the specific surface area of the film. (paper)

  19. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells

    Science.gov (United States)

    Albrecht, Steve; Saliba, Michael; Correa-Baena, Juan-Pablo; Jäger, Klaus; Korte, Lars; Hagfeldt, Anders; Grätzel, Michael; Rech, Bernd

    2016-06-01

    Combining inorganic-organic perovskites and crystalline silicon into a monolithic tandem solar cell has recently attracted increased attention due to the high efficiency potential of this cell architecture. Promising results with published efficiencies above 21% have been reported so far. To further increase the device performance, optical optimizations enabling device related guidelines are highly necessary. Here we experimentally show the optical influence of the ITO thickness in the interconnecting layer and fabricate an efficient monolithic tandem cell with a reduced ITO layer thickness that shows slightly improved absorption within the silicon sub-cell and a stabilized power output of 17%. Furthermore we present detailed optical simulations on experimentally relevant planar tandem stacks to give practical guidelines to reach efficiencies above 25%. By optimizing the thickness of all functional and the perovskite absorber layers, together with the optimization of the perovskite band-gap, we present a tandem stack that can yield ca 17.5 mA cm- 2 current in both sub-cells at a perovskite band-gap of 1.73 eV including losses from reflection and parasitic absorption. Assuming that the higher band-gap of the perovskite absorber directly translates into a higher open circuit voltage, the perovskite sub-cell should be able to reach a value of 1.3 V. With that, realistic efficiencies above 28% are within reach for planar monolithic tandem cells in which the thickness of the perovskite top-cell and the perovskite band-gap are highly optimized. When applying light trapping schemes such as textured surfaces and by reducing the parasitic absorption of the functional layers, for example in spiro-OMeTAD, this monolithic tandem can overcome 30% power conversion efficiency.

  20. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  1. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.

    Science.gov (United States)

    Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren

    2015-02-25

    Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.

  2. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  3. Simulation Research on Micro Contact Based on Force in Silicon Wafer Rotation Grinding

    Science.gov (United States)

    Ren, Qinglei; Wei, Xin; Xie, Xiaozhu; Hu, Wei

    2017-10-01

    Silicon wafer rotation grinding with cup type diamond wheel is a typical ultra precision grinding process. In this paper, a simulation model based on force for micro contact between wheel micro unit and silicon wafer is established from the stable ductile grinding process. Micro contact process in grinding is simulated using the nonlinear explicit finite element analysis software LS-DYNA. The stress-strain results on silicon wafer and wheel micro unit are analyzed by finite element method. The results show that the critical displacement and load corresponding elastic to plastic - plastic to brittle exist on silicon wafer. In silicon plastic zone tangential sliding can produce plastic groove and uplift. Wear of wheel micro unit can be based on the simulation data to judge. The research provides support for wafer grinding and wheel wear mechanism.

  4. Investigation of porous silicon obtained under different conditions by the contact angle method

    Science.gov (United States)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  5. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  6. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  7. Polytetrafluoroethylene-coated pacemaker leads as surgical management of contact allergy to silicone.

    Science.gov (United States)

    Vodiskar, Janez; Schnöring, Heike; Sachweh, Jörg S; Mühler, Eberhard; Vazquez-Jimenez, Jaime F

    2014-01-01

    We have previously reported an 18-year-old girl with a congenital heart defect who developed complete heart block after one of her corrective surgeries and who needed an epicardial pacemaker implantation. She developed contact sensitivity to silicone compounds. The problem was solved by implanting a silicone-free pacemaker system utilizing silicone-free transvenous leads. The patient was readmitted 2 years later due to lead failure. As no silicone-free epicardial leads were available, we decided to use standard silicone epicardial leads and enclose the whole system in Gore-Tex material (W.L. Gore & Associates, Flagstaff, AZ). Based on our experience we would discourage the use of silicone-free transvenous pacing leads for epicardial use. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo

    2018-04-19

    Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.

  9. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  10. A reliable all-silver front contact for silicon solar cells.

    Science.gov (United States)

    Lamneck, J. H., Jr.; Schwartz, L.; Spakowski, A. E.

    1972-01-01

    Methods have been found to apply an adherent and humidity resistant silver-only front contact to n on p silicon solar cells. The critical processing step was the removal of the diffused oxide layer. Humidity resistance is superior to present day commercial titanium-silver contacts and the electrical characteristics of the cells are excellent. Titanium, which is degraded by humidity and which is a source of heavy metal poisoning, has been eliminated from the contact.

  11. Dry Lubrication of High Temperature Silicon Nitride Rolling Contacts.

    Science.gov (United States)

    1980-11-01

    Ray Radiography A 150 mm x 15 mm x 3 mm slab was sliced from each HPSN billet received from Norton for this program. These sections were x-ray...that the micro- fissures did penetrate the silicon nitride, i.e., the microfis- sures were not confined to the thickness of the solid lubricant

  12. A new technology of fabricating ohmic metal-silicon contacts

    International Nuclear Information System (INIS)

    Snitovsky, Yu.P.; Senko, S.F.

    2001-01-01

    Results of performing dry cleaning, doping of silicon in BF 3 +H 2 and BF 3 +H 2 +CF 4 plasma during fabrication of ohmic constants in equipment having the same hardware configuration have been considered based on the concept of a closed manufacturing system

  13. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  14. Bow in screen-printed back-contact industrial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hilali, Mohamed M.; Gee, James M.; Hacke, Peter [Advent Solar, Inc. Research, 5600 University Boulevard S.E., Albuquerque, NM 87106 (United States)

    2007-08-15

    In this paper, we present a model of the bow in thin back-contact silicon solar cells with screen-printed (SP) silver grid metallization. A modification of the bimetallic strip model is used to model the bow for the interdigitated back-contact, emitter-wrap-through (EWT) solar cell. It is proposed that the contact area fraction of the thick regions (>100 nm)of the binder glass at the Ag-Si contact interface responsible for metallization adhesion is an important parameter necessary for modeling the bow for SP back-contact solar cells with better accuracy. Techniques for reducing the bow are also proposed. (author)

  15. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  16. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  17. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  18. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  19. Silicide-to-silicon specific contact resistance characterization

    NARCIS (Netherlands)

    Stavitski, N.

    2009-01-01

    The performance of Si integrated circuits depends on the transistor drive current. The drive current of a MOS transistor is determined by the total device resistance, which consists of the channel resistance and the parasitic resistances associated with dopant diffusion areas and contacts. It is

  20. Silicon nano grains with aluminum contacts studied by the Density Functional method

    International Nuclear Information System (INIS)

    Mazzone, A.M.; Summonte, C.

    2005-01-01

    The purpose of this study is the evaluation of the effects of metallic contacts on nanocrystalline silicon grains and is based on the use of the Density Functional theory. The structures considered are plated crystalline grains and the contacts are constructed by depositing an aluminum layer on the two opposite sides of the nano grain. The calculations indicate that, as for monolayer films deposited on bulk samples, the aluminum coating has a layered structure without clustering and with minimum intermixing with the silicon atoms. The built-in potential across the entire device has a functional dependence on the geometry of the nano grain and of the contacts. Potentially, this property is important for the fabrication of novel Schottky-barrier devices. However the strength of bonding is generally lower in the structures with contacts and this casts doubts on their stability

  1. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  2. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance �?c, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  3. Damage progression in silicon nitride undergoing non-conforming hybrid cyclic contact

    Czech Academy of Sciences Publication Activity Database

    Raga, R.; Khader, I.; Chlup, Zdeněk; Kailer, A.

    2017-01-01

    Roč. 105, DEC (2017), s. 97-110 ISSN 0142-1123 EU Projects: European Commission(XE) 263476 - ROLICER Institutional support: RVO:68081723 Keywords : Silicon nitride * Cyclic contact fatigue * Surface and subsurface damage Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016

  4. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  5. Investigation of Contact Formation during Silicon Solar Cell Production

    Science.gov (United States)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  6. Changes in UV-visible transmittance of silicone-hydrogel contact lenses induced by wear.

    Science.gov (United States)

    Lira, Madalena; Dos Santos Castanheira, Elisabete M; Santos, Lívia; Azeredo, Joana; Yebra-Pimentel, Eva; Real Oliveira, M Elisabete C D

    2009-04-01

    To evaluate the influence of wear of silicone-hydrogel contact lenses on lens ultraviolet and visible spectrum transmittance by studying several contact lenses before and after wear. To investigate the ability of contact lenses to maintain their transmittance characteristics, we measured 104 different contact lenses in the ultraviolet (UV) and visible range from 200 to 700 nm, with a Shimadzu UV3101-PC UV-vis-NIR spectrophotometer equipped with an integrating sphere. The lenses used in this study were Acuvue Advance (Johnson & Johnson Vision Care, Inc.), Air Optix Night & Day (CIBA Vision), Air Optix (CIBA Vision), and PureVision (Bausch & Lomb). A conventional hydrogel contact lens was also tested, Acuvue (Johnson & Johnson Vision Care Inc.). Our study indicates that lenses that do not have UV absorbers incorporated into the polymer transmitted most of the UV radiation (UVR) before and after wear. The results of the statistical analysis show that for the UVC portion of the spectrum significant difference exists within the measurements obtained before and after wear for all the lenses, with the exception of PureVision. Acuvue Advance is the only material in which significant transmittance differences were observed in the visible spectral range. Transmittance is modified after contact lenses wear, probably due to the formation of biofilms on the contact lens surface, being more noticeable in the UVR region of the spectrum (200-400 nm). Silicone-hydrogel and conventional hydrogel contact lens materials that provide UVR protection (UV-blocker) maintain this property even after being worn. The changes observed in the visible spectrum seem not to have any implications in visual performance of silicone-hydrogel contact lenses.

  7. Growth and characterization of n-ZnO/p-GaN nanorods on silicon for the fabrication of heterojunction diodes

    International Nuclear Information System (INIS)

    Guan-Hung Shen; Hong, Franklin Chau-Nan

    2014-01-01

    A heterojunction n-ZnO/p-GaN diode device was fabricated and characterized on Si (111) substrate. Vertically-aligned Mg-doped GaN nanorods (NRs) were grown on Si (111) by plasma assisted chemical vapor deposition. Intrinsic n-type ZnO was subsequently grown on top of p-GaN nanorods by hydrothermal method at low temperature. The effects of precursor concentrations on the morphology and optical properties of ZnO nanostructures were investigated. Various ZnO nanostructures could be synthesized to obtain different heterojunction nanostructures. The high resolution transmission electron microscopy and selected area electron diffraction results further verified that the GaN NRs were single crystals with the growth orientation along [0001], and the epitaxial wurtzite ZnO films were grown on GaN NRs. The n-ZnO film/p-GaN NR heterojunction diodes were thus fabricated. Diode-like rectifying behavior was actually observed with a leakage current of less than 2.0 × 10 −4 A at − 20 V bias, a forward current of 7.2 × 10 −3 A at 20 V bias, and the turn-on voltage at around 5.6 V. - Highlights: • High-quality zinc oxide layer was epitaxially grown on gallium nitride nanorods. • The morphology of zinc oxide can be controlled by varying the growth conditions. • The n-zinc oxide/p-gallium nitride diodes with rectifying behavior were fabricated

  8. Selective deposition contact patterning using atomic layer deposition for the fabrication of crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Cho, Young Joon; Shin, Woong-Chul; Chang, Hyo Sik

    2014-01-01

    Selective deposition contact (SDC) patterning was applied to fabricate the rear side passivation of crystalline silicon (Si) solar cells. By this method, using screen printing for contact patterning and atomic layer deposition for the passivation of Si solar cells with Al 2 O 3 , we produced local contacts without photolithography or any laser-based processes. Passivated emitter and rear-contact solar cells passivated with ozone-based Al 2 O 3 showed, for the SDC process, an up-to-0.7% absolute conversion-efficiency improvement. The results of this experiment indicate that the proposed method is feasible for conversion-efficiency improvement of industrial crystalline Si solar cells. - Highlights: • We propose a local contact formation process. • Local contact forms a screen print and an atomic layer deposited-Al 2 O 3 film. • Ozone-based Al 2 O 3 thin film was selectively deposited onto patterned silicon. • Selective deposition contact patterning method can increase cell-efficiency by 0.7%

  9. Concurrent acanthamoeba and Fusarium keratitis with silicone hydrogel contact lens use.

    Science.gov (United States)

    Lee, Barry; Grossniklaus, Hans E; Edelhauser, Henry F

    2010-02-01

    To report a case of simultaneous Acanthamoeba and Fusarium keratitis associated with no-rub multipurpose contact lens solution and silicone hydrogel contact lens use. Observational case report. A 39-year-old woman was referred for worsening of a presumed bacterial corneal ulcer in the setting of silicone hydrogellens wear with occasional overnight wear, no-rub multipurpose contact lens solution use, and combined topical antibiotic/corticosteroid treatment. Initial corneal scrapings and culture confirmed Acanthamoeba and Fusarium solani, corroborated by in vivo confocal microscopy findings, yet despite topical chlorhexidine 0.02%, propamidine 1%,neomycin/polymyxin B ointment, and natamycin 5% along with oral itraconazole, the ulcer worsened. Four days after amoebic and fungal therapy initiation, it was discovered that the pharmacy accidentally dispensed neomycin/polymyxin B/dexamethasone, and despite immediate discontinuation, therapeutic penetrating keratoplasty from corneal melting was ultimately required. Corneal histopathology confirmed the presence of amoebic cysts and fungal elements. Coexisting infection with Acanthamoeba and Fusarium species can occur in contact lens wear. Atypical infection must be considered in patients with corneal ulcers demonstrating poor therapeutic response in the setting of contact lens wear. Corticosteroids should be used with extreme caution in contact lens–related corneal infections, especially when the diagnosis remains unknown because they can lead to acceleration of active infection and keratolysis.

  10. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-01-01

    Passivated contacts (poly-Si/SiO x /c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF 2 ), the ion implantation dose (5 × 10 14  cm −2 to 1 × 10 16  cm −2 ), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV oc ) of 725 and 720 mV, respectively. For p-type passivated contacts, BF 2 implantations into intrinsic a-Si yield well passivated contacts and allow for iV oc of 690 mV, whereas implanted B gives poor passivation with iV oc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V oc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF 2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V oc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  11. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.

    Science.gov (United States)

    Kuru, Cihan; Yavuz, Serdar; Kargar, Alireza; Choi, Duyoung; Choi, Chulmin; Rustomji, Cyrus; Jin, Sungho; Bandaru, Prabhakar R

    2016-01-01

    We report a doping strategy, where nickel oxide (NiO) nanoparticle film coating is employed for graphene/Si heterojunction solar cells to improve the power conversion efficiency (PCE). NiO doping has been shown to improve the short circuit current (J(SC)) by 12%, open circuit voltage (V(OC)) by 25% and fill factor (FF) by 145% of the cells, in turn increasing the PCE from 1.37% to 4.91%. Furthermore, NiO doped graphene/Si solar cells don't show any significant performance degradation over 10 days revealing that NiO doping can be a promising approach for practical applications of graphene in solar cells.

  12. Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide

    Science.gov (United States)

    Wietler, T. F.; Tetzlaff, D.; Krügener, J.; Rienäcker, M.; Haase, F.; Larionova, Y.; Brendel, R.; Peibst, R.

    2017-06-01

    In the pursuit of ever higher conversion efficiencies for silicon photovoltaic cells, polycrystalline silicon (poly-Si) layers on thin silicon oxide films were shown to form excellent carrier-selective junctions on crystalline silicon substrates. Investigating the pinhole formation that is induced in the thermal processing of the poly-Si on oxide (POLO) junctions is essential for optimizing their electronic performance. We observe the pinholes in the oxide layer by selective etching of the underlying crystalline silicon. The originally nm-sized pinholes are thus readily detected using simple optical and scanning electron microscopy. The resulting pinhole densities are in the range of 6.6 × 106 cm-2 to 1.6 × 108 cm-2 for POLO junctions with selectivities close to S10 = 16, i.e., saturation current density J0c below 10 fA/cm2 and contact resistivity ρc below 10 mΩcm2. The measured pinhole densities agree with values deduced by a pinhole-mediated current transport model. Thus, we conclude pinhole-mediated current transport to be the dominating transport mechanism in the POLO junctions investigated here.

  13. Studying functional properties of hydrogel and silicone-hydrogel contact lenses with PALS, MIR and Raman spectroscopy

    Science.gov (United States)

    Filipecki, J.; Sitarz, M.; Kocela, A.; Kotynia, K.; Jelen, P.; Filipecka, K.; Gaweda, M.

    2014-10-01

    Determination of free volume holes of the hydrogel and silicone-hydrogel polymer contact lenses were investigated. Two types of polymer contact lenses were used as materials: the first is a hydrogel contact lenses Proclear family (Omafilcon A), while the second is a silicone-hydrogel contact lens of the family Biofinity (Comfilcon A). Positron annihilation lifetime spectroscopy PALS was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. There is a clear difference in the free volume sizes and their fractions between silicone-hydrogel and polymer hydrogel contact lenses which in turn are connected with oxygen permeability in these lenses. Apart from that, spectroscopic (middle infrared) MIR and Raman examinations were carried out in order to demonstrate the differences of the water content in the test contact lenses.

  14. Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide

    Science.gov (United States)

    Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy

    2011-01-01

    We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction

  15. Analyzing the application of silicon-silver-2D nanomaterial-Al2O3 heterojunction in plasmonic sensor and its performance evaluation

    Science.gov (United States)

    Sharma, Anuj K.

    2018-03-01

    A semiconductor-metal-dielectric heterojunction system, generally useful in enhancing the efficiency of solar cells, is explored to design a high performance optical sensor based on surface plasmon resonance in near infrared (NIR). Silicon is considered as light coupling material and different 2D nanomaterials such as graphene, MoS2, and MoSe2 are explored to enhance the sensor's performance in terms of its figure of merit (FOM). An Al2O3 interlayer with a few nanometers of thickness is introduced, which acts as a critical component to significantly enhance the sensor's FOM. It is observed that an Al2O3 interlayer of around 9 nm thickness is able to many-fold upturn the sensor's FOM. As another important finding, silver layer thickness of around 60 nm is found to be highly useful to achieve high values of FOM. It is established through results that operating at longer NIR wavelength leads to greater FOM for any choice of 2D nanomaterial and any thickness of Al2O3 interlayer. Proposed sensor provides significantly greater FOM than previous works on SPR sensors.

  16. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  17. Analysis of adhesive elastic contact between a silica glass lens and silicone rubber using the JKR theory

    Science.gov (United States)

    Baek, Dooyoung; Hemthavy, Pasomphone; Takahashi, Kunio

    2014-08-01

    Contact between a silica glass lens and silicone rubber is experimentally investigated by simultaneously measuring displacement, force and contact radius. The relationship between these three parameters is derived using elastic theory. The discrepancy between the theoretical relationship and the experimental results is observed to increase as the deformation of the silicone rubber increases. Under smaller deformation conditions, the elastic theory shows good agreement with the experimental results, although infinite stress on the edge of the contact area is predicted in the theory, and time dependence and adhesion hysteresis are observed in all experiments. It is suggested that time dependence and adhesion hysteresis in contact are not induced by the deformation of the bulk of the silicone rubber, but are induced by surface effects. The result suggests that the applicability limit of the elastic theory must be carefully considered in the JKR analysis of point contact for polymers.

  18. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Science.gov (United States)

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  19. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  20. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses.

    Science.gov (United States)

    Moore, Linda; Ferreira, Jannie T

    2006-07-01

    The ultraviolet (UV) transmittance spectra of daily wear hydrogel and disposable silicone hydrogel contact lenses were measured. Average transmittance percentages were calculated for each lens for the entire UV spectrum and individually for the UVC, UVB and UVA portions of the spectrum. The significance of the differences in transmittance spectra obtained for the lenses was analysed using a one-way ANOVA planned comparisons test (alpha=0.05). The transmittance data were then used to calculate a UV protection factor (PF) for each contact lens brand tested. The PFs for 1-DAY ACUVUE MOIST (6.22), ACUVUE ADVANCE (10.02) and ACUVUE OASYS (11.96) contact lenses show that these contact lenses have superior UV-blocking capabilities. The PFs for Focus DAILIES (1.79), SofLens 1-day disposables (1.72), NIGHT & DAY (1.84), O2 Optix (1.99) and Purevision (2.62) show that these contact lenses posses more modest UV-blocking characteristics. This paper reviews the importance of protection of the anterior ocular surface from UV damage and quantifies the protection afforded by selected commercially available disposable contact lenses.

  1. On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Qiu, Y.; Kunz, O.; Fejfar, Antonín; Ledinský, Martin; Teik Chan, B.; Gordon, I.; Van Gestel, D.; Venkatachalm, S.; Egan, R.

    2014-01-01

    Roč. 122, MAR (2014), s. 31-39 ISSN 0927-0248 R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional support: RVO:68378271 Keywords : silicon * thin films * polycrystalline * hydrogenation * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.337, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927024813006016

  2. Role of metal/silicon semiconductor contact engineering for enhanced output current in micro-sized microbial fuel cells

    KAUST Repository

    Mink, Justine E.

    2013-11-25

    We show that contact engineering plays an important role to extract the maximum performance from energy harvesters like microbial fuel cells (MFCs). We experimented with Schottky and Ohmic methods of fabricating contact areas on silicon in an MFC contact material study. We utilized the industry standard contact material, aluminum, as well as a metal, whose silicide has recently been recognized for its improved performance in smallest scale integration requirements, cobalt. Our study shows that improvements in contact engineering are not only important for device engineering but also for microsystems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements.

    Science.gov (United States)

    Lindfors, Tom; Szücs, Júlia; Sundfors, Fredrik; Gyurcsányi, Róbert E

    2010-11-15

    Silicone rubber (SR)-based solid-contact ion-selective electrodes (ISEs) have been prepared for the first time with an electrically conducting polymer as the solid-contact (SC) layer. The Ca(2+)- and Ag(+)-selective electrodes were based on the ionophores ETH 1001 and o-xylylenebis(N,N-diisobutyl dithiocarbamate), respectively, integrated in room temperature vulcanizing silicone rubber (RTV 3140). The SC consisted of a polyaniline nanoparticle dispersion, which was found to considerably lower the impedance of the SCISEs in comparison to the SR-based coated wire electrodes (CWE). For the CaSCISEs, the bulk membrane resistance decreased from 700 MΩ (CaCWE) to 35 MΩ. Both the Ca(2+)- and Ag(+)-selective SCISEs exhibited nanomolar detection limits with fast Nernstian responses down to 10(-8) M. The potential response of the SCISEs was not influenced by light. The selectivities of the CaSCISEs were similar and for the AgSCISE better than their plasticized PVC-based analogues. Thus, SR seems to be a viable alternative to PVC membranes in ISE applications that require low water uptake, good adhesion, and robust and fast potential responses at submicromolar sample concentrations.

  4. Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells

    Science.gov (United States)

    Tong, Jingnan; Wan, Yimao; Cui, Jie; Lim, Sean; Song, Ning; Lennon, Alison

    2017-11-01

    Sub-stoichiometric molybdenum oxide (MoOx) films are commonly deposited on crystalline silicon (c-Si) solar cells by thermal evaporation, a process that requires high vacuum and provides limited control of oxide stoichiometry and in consequence limited control of hole transport properties. Here, we report on a method of forming MoOx films on crystalline silicon wafer surfaces by spin-coating hydrogen molybdenum bronze solutions. It is shown that a ∼2.8 nm thick interfacial SiOx layer forms under the spin-coated MoOx films and that the as-deposited MoOx is amorphous and sub-stoichiometric (x = 2.73), with the concentration of oxygen vacancies in the MoOx being able to be reduced by annealing in air. The as-deposited MoOx films show comparable contact resistivity and passivation quality on c-Si wafers to thermally-evaporated MoOx, demonstrating their potential to be an effective hole-selective contact layer for c-Si solar cells and an alternative for thermally-evaporated films.

  5. Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

    KAUST Repository

    Essig, Stephanie

    2018-02-21

    Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole-selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 °C, which is needed to cure the screen-printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen-lean passivation layers when using such metal-oxide-based carrier-selective contacts. Pre-MoOX-deposition annealing of the passivating a-Si:H layer is shown to be a straightforward approach to manufacturing MoOX-based devices with high fill factors using screen-printed metallization cured at 190 °C.

  6. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost

    Science.gov (United States)

    Huang, Haibin; Tian, Gangyu; Zhou, Lang; Yuan, Jiren; Fahrner, Wolfgang R.; Zhang, Wenbin; Li, Xingbing; Chen, Wenhao; Liu, Renzhong

    2018-03-01

    A novel structure of Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current (J sc), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover, real cells composed of the novel structure with dimensions of 75 mm ×75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the J sc of 41.7 mA/cm2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm2. We conclude that the configuration of the Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. Project supported by the Jiangxi Provincial Key Research and Development Foundation, China (Grant No. 2016BBH80043), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. NJ20160032), and the National Natural Science Foundation of China (Grant Nos. 61741404, 61464007, and 51561022).

  7. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica

    Science.gov (United States)

    Syakur, Abdul; Hermawan; Sutanto, Heri

    2017-04-01

    Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.

  8. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  9. Impact of Cosmetics on the Surface Properties of Silicone Hydrogel Contact Lenses.

    Science.gov (United States)

    Srinivasan, Sruthi; Otchere, Heinz; Yu, Mili; Yang, Jeffery; Luensmann, Doerte; Jones, Lyndon

    2015-07-01

    This study evaluated the impact of various cosmetics on the surface properties of silicone hydrogel (SiHy) contact lens materials. In this in vitro experiment, 7 SiHy contact lens materials were coated with 1 of 9 cosmetics, including common hand creams (3), eye makeup removers (3), and mascaras (3). Dark-field microscopy images were taken to determine pixel brightness (PB) after cosmetic exposure, which describes the visible surface deposition (n=6 for each lens type), with a higher PB indicating increased deposition. The sessile drop technique was used to determine the advancing contact angle (CA). Measurements were repeated for both methods after a single peroxide-based cleaning cycle. Pixel brightness was significantly higher for mascara-coated lenses compared with the other cosmetic products (P0.05). Hand creams and makeup remover had minimal impact on PB. Changes in CA measurements after cosmetic application were highly lens dependent. Hand creams caused primarily a decrease in CA for 5 of the 7 lens types, whereas 1 of the waterproof mascaras caused a significant increase of 30 to 50° for 3 lens types. Some mascara-lens combinations resulted in increased CA and PB, which could have an impact on in vivo lens performance. Nonwaterproof mascara was mostly removed after a cleaning cycle. Further research is needed to understand the clinical implications for SiHy lens wearers using cosmetics.

  10. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    International Nuclear Information System (INIS)

    Hazra, Purnima; Singh, Satyendra Kumar; Jit, Satyabrata

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance ( 20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar

  11. Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Yuchen [Department of Materials Science and Engineering, University of Florida, Rhines Hall 100, Gainesville, FL 32611 (United States); Ketelson, Howard [Alcon Inc., Research and Development, Vision Care, 6201 South Freeway, Fort Worth, TX 76134 (United States); Perry, Scott S., E-mail: ssp@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, Rhines Hall 100, Gainesville, FL 32611 (United States)

    2013-05-15

    Four major types of silicone hydrogel contact lens material have been investigated following treatments in aqueous solutions containing poly(ethylene oxide) and poly(butylenes oxide) block copolymer (EO–BO). The extent of lens surface modification by EO–BO and the degree of bulk uptake were studied using X-ray photoelectron spectroscopy (XPS) and ultra-performance liquid chromatography (UPLC), respectively. The experimental results suggest that different interaction models exist for the lenses, highlighting the influence of both surface and bulk composition, which greatly differs between the lenses examined. Specifically, lenses with hydrophilic surface treatments, i.e., PureVision{sup ®} (balafilcon A) and O{sub 2}OPTIX (lotrafilcon B), demonstrated strong evidence of preferential surface adsorption within the near-surface region. In comparison, surface adsorption on ACUVUE{sup ®} Oasys{sup ®} (senofilcon A) and Biofinity{sup ®} (comfilcon A) was limited. As for bulk absorption, the amount of EO–BO uptake was the greatest for balafilcon A and comfilcon A, and least for lotrafilcon B. These findings confirm the presence of molecular concentration gradients within the silicone hydrogel lenses following exposure to EO–BO solutions, with the nature of such concentration gradients found to be lens-specific. Together, the results suggest opportunities for compositional modifications of lenses for improved performance via solution treatments containing surface-active agents.

  12. Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials

    Science.gov (United States)

    Huo, Yuchen; Ketelson, Howard; Perry, Scott S.

    2013-05-01

    Four major types of silicone hydrogel contact lens material have been investigated following treatments in aqueous solutions containing poly(ethylene oxide) and poly(butylenes oxide) block copolymer (EO-BO). The extent of lens surface modification by EO-BO and the degree of bulk uptake were studied using X-ray photoelectron spectroscopy (XPS) and ultra-performance liquid chromatography (UPLC), respectively. The experimental results suggest that different interaction models exist for the lenses, highlighting the influence of both surface and bulk composition, which greatly differs between the lenses examined. Specifically, lenses with hydrophilic surface treatments, i.e., PureVision® (balafilcon A) and O2OPTIX (lotrafilcon B), demonstrated strong evidence of preferential surface adsorption within the near-surface region. In comparison, surface adsorption on ACUVUE® Oasys® (senofilcon A) and Biofinity® (comfilcon A) was limited. As for bulk absorption, the amount of EO-BO uptake was the greatest for balafilcon A and comfilcon A, and least for lotrafilcon B. These findings confirm the presence of molecular concentration gradients within the silicone hydrogel lenses following exposure to EO-BO solutions, with the nature of such concentration gradients found to be lens-specific. Together, the results suggest opportunities for compositional modifications of lenses for improved performance via solution treatments containing surface-active agents.

  13. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  14. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    International Nuclear Information System (INIS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-01-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  15. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application; Fabricacao e caracterizacao eletrica de heterojuncoes de polianilina - silicio para aplicacao em dosimetria de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laranjeira, Jane Maria Goncalves

    2004-08-15

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at {+-}1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 k{omega} {+-} 5% and ideality factor in a range of 1,9 {+-} 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10{sup -2} to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for

  16. Composition and doping control for metal-organic chemical vapor deposition of InP-based double heterojunction bipolar transistor with hybrid base structure consisting of GaAsSb contact and InGaAsSb graded layers

    Science.gov (United States)

    Hoshi, Takuya; Kashio, Norihide; Sugiyama, Hiroki; Yokoyama, Haruki; Kurishima, Kenji; Ida, Minoru; Matsuzaki, Hideaki

    2017-07-01

    We report on a method for composition and doping control for metalorganic chemical vapor deposition of a double heterojunction bipolar transistor (DHBT) with a hybrid base structure consisting of a compositionally graded InGaAsSb for boosting an average electron velocity and a heavily doped thin GaAsSb for lowering the base contact resistivity. The GaAsSb contact layer can be formed by simply turning off the supply of In precursor tetramethylindium (TMIn) after the growth of the composition and doping graded InGaAsSb base. Consequently, the solid composition and hole concentration of hybrid base can be properly controlled by just modulating the supply of only TMIn and carbon tetrabromide. Secondary ion mass spectroscopy for the DHBT wafer reveals that the contents of In, Ga, and C inside the base are actually modulated from the collector side to the emitter side as expected. Transmission-line-model measurements were performed for the compositionally graded-InGaAsSb/GaAsSb hybrid base. The contact resistivity is estimated to be 5.3 Ω µm2, which is lower than half the value of a compositionally graded InGaAsSb base without the GaAsSb contact layer. The results indicate that the compositionally-graded-InGaAsSb/GaAsSb-contact hybrid base structure grown by this simple method is very advantageous for obtaining DHBTs with a very high maximum oscillation frequency.

  17. Electrical spin transport in cylindrical silicon nanowires with CoFeB/MgO contacts

    Science.gov (United States)

    Park, Tae-Eon; Min, Byoung-Chul; Park, Hee Gyum; Lee, Jaejun; Jo, Moon-Ho; Jang, Chaun; Koo, Hyun Cheol; Choi, Heon-Jin; Chang, Joonyeon

    2017-08-01

    We examined electrical spin transport in cylindrical silicon nanowires (Si NWs) using the lateral nonlocal spin-valve (NLSV) geometry with CoFeB/MgO contacts. The use of a thin MgO layer as the tunnel barrier in the NLSV devices provided an optimum resistance-area product for spin transport measurements in the Si NWs. A robust NLSV spin signal of over 3.95 kΩ and clear minor loops were observed at 1.8 K in the Si NWs heavily doped with phosphorous. Furthermore, the NLSV magnetoresistance was strongly influenced by the local magnetizations resulting from the ferromagnetic (FM) electrodes being attached to the cylindrically shaped Si NW, with these magnetizations differing from those of bulk ferromagnets. These local micro-magnetic configurations of the FM electrodes led to intriguing NLSV spin signals associated with the Hanle effect. Our study of spin transport in the heavily doped Si NWs provides a sound basis for developing applications of nanoscale semiconductor spintronic devices.

  18. Impact of Cosmetics on the Physical Dimension and Optical Performance of Silicone Hydrogel Contact Lenses.

    Science.gov (United States)

    Luensmann, Doerte; Yu, Mili; Yang, Jeffery; Srinivasan, Sruthi; Jones, Lyndon

    2015-07-01

    To evaluate the impact of cosmetics on silicone hydrogel (SiHy) contact lens shape, lens power, and optical performance. In this in vitro experiment, 7 SiHy materials were coated with 9 marketed brands of cosmetics, including hand creams (HCs) (3), eye makeup removers (MRs) (3), and mascaras (3). Diameter, sagittal depth, and base curve were determined using the Chiltern (Optimec Limited), whereas lens power and optical performance were assessed using the Contest Plus (Rotlex). Six replicates were used for each lens and cosmetic combination. Measurements were repeated after a cleaning cycle using a one-step hydrogen peroxide solution. Makeup removers had the greatest impact on diameter, sagittal depth, and base curve, resulting in changes of up to 0.5, 0.15, and 0.77 mm, respectively. The HCs and mascaras had little impact on these parameters; however, differences were observed between lens types. Optical performance was reduced with all mascaras, and a decrease of greater than 2 units on a 0 to 10 scale (10=uniform power distribution) was seen for 5 lens types exposed to waterproof mascara (Pcosmetics (± 0.25 diopter; P>0.05). Lens cleaning resulted in some recovery of the lens parameters, and efficiency varied between cosmetics. Some eye MRs and waterproof mascaras changed the shape and optical performance of some SiHy lenses. Further research is needed to understand the clinical implications for SiHy lens wearers using cosmetics.

  19. Fabrication and properties of mechanically grooved silicon solar cells with buried contact Cu electrode

    Science.gov (United States)

    Jang, Pyungwoo; Jung, Chi-Sup; Kim, Kwang-Ho; Kyu, Seomoon

    2011-09-01

    Mechanically grooved silicon solar cells with buried contact copper electrode were attempted. In order to groove a simple mechanical grooving system was home-made, in which synchronous motors in hard disc driver (HDD), audio amplifier, signal generator were used. For the anti-reflection films sputtering condition for SiNx films was optimized. With increasing input power, pressure, index of refraction of the films increased so that a very low etching rate of 0.8 nm/min could be achieved with a condition of Ar and N2 flow rate of 5 SCCM, input power of 300 W and sputtering pressure of 1 × 10-2 torr. Annealing condition for the formation of nickel silicie from electroless plated Ni-P layer was optimized as well as plating condition of copper electrode. However, the conversion efficiency of the BCSC in this study is 3.6% which is unexpectedly small. It seems that the reason for the low efficiency is due to short circuit forming in the lancet of the pyramid.

  20. Inter-grain coupling effects on Coulomb oscillations in dual-gated nanocrystalline silicon point-contact transistors

    International Nuclear Information System (INIS)

    Khalafalla, M.A.H.; Durrani, Z.A.K.; Mizuta, H.; Ahmed, H.; Oda, S.

    2005-01-01

    Inter-grain electron-coupling effects are investigated at 4.2 K in dual-gated, point-contact, single-electron transistors fabricated in nanocrystalline silicon. The nanocrystalline silicon film is ∼40 nm thick, with grains ∼10-30 nm in size. The point-contact transistor channel is ∼30 nmx30 nmx40 nm in size, with two side-gates. Only a few grains exist within the channel and different grains contribute in varying degrees to the device conduction. By modifying the inter-grain coupling using selective oxidation of the grain boundaries, both electrostatic and wavefunction-coupling effects can be observed in the Coulomb oscillations vs. the two gate voltages

  1. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  2. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  3. Influence of the contacting scheme in simulations of radial silicon nanorod solar cells

    International Nuclear Information System (INIS)

    Voigt, Felix; Stelzner, Thomas; Christiansen, Silke H.

    2012-01-01

    Silicon nanorod solar cells were simulated using the Silvaco Technical Computer Aided Design (TCAD) software suite. For reasons of speed optimization the simulations were performed in cylinder coordinates taking advantage of the model's symmetry. Symmetric doping was assumed with a dopant density of 10 18 cm −3 in the p-type core and in the n-type shell, and the location of the pn-junction was chosen such that the space charge region was located adjacent to the shell surface. Two contact configurations were explored. In configuration A the cathode contact was wrapped around the semiconductor nanorod, while in configuration B the cathode was assumed just on top of the nanorod. In both cases the anode was located at the bottom of the rod. Cell efficiency was optimized with regard to rod radius and rod length. Optimization was performed in a three-step procedure consisting in radius optimization, length optimization and again radius optimization. A maximum in efficiency with respect to rod length L was visible in configuration A, leading to an optimum value of L = 48 μm. This maximum is explained by the combination of an increase of short-circuit current density J sc and a decrease of open-circuit voltage U oc with L. In configuration B, J sc also increases with L, but U oc stays rather constant and the maximum in efficiency only appears at very large values of L ≈ 12 mm. We restricted the rod length to L ≤ 100 μm for further optimization, in order to stay in an experimentally feasible range. During the optimization of rod radius R in configuration A the open circuit voltage increased continuously, while short circuit current density stayed rather constant. This leads to an increase in efficiency with R, which only stops at very large radii, where R starts to be comparable with L. In configuration B efficiency is almost independent of R, provided that the radius is large enough to comprise a well-formed space charge region, here only a shallow maximum can be

  4. Influence of the contacting scheme in simulations of radial silicon nanorod solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Felix, E-mail: felix.voigt@uni-oldenburg.de [Institute of Photonic Technology, Jena (Germany); Institute of Physics, University of Oldenburg (Germany); Stelzner, Thomas [Institute of Photonic Technology, Jena (Germany); Christiansen, Silke H. [Institute of Photonic Technology, Jena (Germany); Max Planck Institute for the Science of Light, Erlangen (Germany)

    2012-10-01

    Silicon nanorod solar cells were simulated using the Silvaco Technical Computer Aided Design (TCAD) software suite. For reasons of speed optimization the simulations were performed in cylinder coordinates taking advantage of the model's symmetry. Symmetric doping was assumed with a dopant density of 10{sup 18} cm{sup -3} in the p-type core and in the n-type shell, and the location of the pn-junction was chosen such that the space charge region was located adjacent to the shell surface. Two contact configurations were explored. In configuration A the cathode contact was wrapped around the semiconductor nanorod, while in configuration B the cathode was assumed just on top of the nanorod. In both cases the anode was located at the bottom of the rod. Cell efficiency was optimized with regard to rod radius and rod length. Optimization was performed in a three-step procedure consisting in radius optimization, length optimization and again radius optimization. A maximum in efficiency with respect to rod length L was visible in configuration A, leading to an optimum value of L = 48 {mu}m. This maximum is explained by the combination of an increase of short-circuit current density J{sub sc} and a decrease of open-circuit voltage U{sub oc} with L. In configuration B, J{sub sc} also increases with L, but U{sub oc} stays rather constant and the maximum in efficiency only appears at very large values of L Almost-Equal-To 12 mm. We restricted the rod length to L {<=} 100 {mu}m for further optimization, in order to stay in an experimentally feasible range. During the optimization of rod radius R in configuration A the open circuit voltage increased continuously, while short circuit current density stayed rather constant. This leads to an increase in efficiency with R, which only stops at very large radii, where R starts to be comparable with L. In configuration B efficiency is almost independent of R, provided that the radius is large enough to comprise a well-formed space

  5. A simulation study on the electrical structure of interdigitated back-contact silicon solar cells

    Science.gov (United States)

    Kang, Min Gu; Song, Hee-eun; Kim, Soo Min; Kim, Donghwan

    2015-05-01

    In this paper, a simulation for interdigitated back-contact (IBC) silicon solar cells was performed by using Silvaco TCAD ATLAS to investigate the cell's electrical properties. The impacts of various parameters, including the depth of the front surface field(FSF), the FSF peak doping concentration, the depths of the emitter and the back surface field(BSF), the peak doping concentrations of the emitter and BSF, the base doping, and the bulk lifetime on the output characteristics like the light current-voltage curves and the internal quantum efficiency of the IBC solar cell, were investigated. The light absorption was determined by adjusting the antireflection coating and the Al thickness. The FSF must be thin and have a low doping concentration for high-efficiency IBC cells. If the conversion efficiency is to be improved, a thick emitter and a high doping concentration are needed. Because of the low resistivity of the Si substrate, the series resistance was reduced, but recombination was increased. With a high-resistivity Si substrate, the opposite trends were observed. By counter-balancing the series resistance and the recombination, we determined by simulation that the optimized resistivity for the IBC cells was 1 Ω·cm. Because all metal electrodes in the IBC cells are located on the back side, a higher minority carrier lifetime showed a higher efficiency. After the various parameters had been optimized, texturing and surface recombination were added into the simulation. The simulated IBC cells showed a short-circuit current density of 42.89 mA/cm2, an open-circuit voltage of 714.8 mV, a fill factor of 84.04%, and a conversion efficiency of 25.77%.

  6. Risk factors for corneal infiltrative events during continuous wear of silicone hydrogel contact lenses.

    Science.gov (United States)

    Szczotka-Flynn, Loretta; Lass, Jonathan H; Sethi, Ajay; Debanne, Sara; Benetz, Beth Ann; Albright, Matthew; Gillespie, Beth; Kuo, Jana; Jacobs, Michael R; Rimm, Alfred

    2010-11-01

    This study determined which microbiologic, clinical, demographic, and behavioral factors are associated with corneal infiltrative events (CIEs) during continuous wear of silicone hydrogel (SH) contact lenses. Subjects (n = 205) were fitted with lotrafilcon A lenses for continuous wear and observed for 1 year. The main exposures of interest were corneal staining and bacterial lens contamination. Kaplan-Meier (KM) plots were used to estimate the cumulative unadjusted probability of remaining CIE free, and Cox proportional hazards regression was used to model the hazard of having a CIE, as a function of key predictor variables. The KM-unadjusted cumulative probability of remaining CIE free was 73.3%. Approximately 53% of subjects had repeated episodes of corneal staining (mild or greater), and 11.3% had repeated episodes of moderate or greater corneal staining. Corneal staining was not associated with the development of a CIE. The frequency of substantial bacterial bioburden on worn lenses at the time of a CIE was 64.7%, compared with only 12.2% during uncomplicated wear. The presence of substantial lens bacterial bioburden was associated with the development of a CIE (adjusted hazards ratio [HR], 8.66; 95% confidence interval [CI], 2.88-26.01). Smoking was also associated with a CIE (adjusted HR, 4.13; 95% CI, 1.27-13.45). Corneal staining is common during continuous wear of SH lenses, but it is not associated with the development of a CIE. Smoking and substantial lens bacterial bioburden pose prominent risks of a CIE. In this study, more than 70% of the total risk of CIE in those with substantial lens bioburden is attributable to this exposure. (ClinicalTrials.gov number, NCT00727402).

  7. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali

    2017-02-15

    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  8. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  9. Using TLM principles to determine MOSFET contact and parasitic resistance

    Science.gov (United States)

    Reeves, Geoffrey K.; Harrison, H. Barry

    1997-08-01

    Transmission Line Model (TLM) networks are commonly used to model planar metal-semiconductor ohmic contacts. Multiple layer contacts such as non-alloyed {n +}/{n}, heterojunction and metal-silicide-silicon contacts can also be analyzed using a Tri-Layer TLM (TLTLM) network. In this article, two and three layer contact structures are combined using the appropriate TLM models in order to electrically model the gate-drain/source extension and drain/source contact region of a MOSFET. Important device properties such as contact and parasitic resistance can thus be derived for various device structures in terms of the geometrical and material parameters used in the TLM model. The developed model is used to give an example calculation of the parasitic resistance in the gate-drain extension and the resistance of the ohmic contact.

  10. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

    2016-07-21

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.

  11. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Paetzold, Ulrich W.; Meier, Matthias; Moulin, Etienne; Smirnov, Vladimir; Pieters, Bart E.; Rau, Uwe; Carius, Reinhard

    2013-01-01

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells

  12. Contribution to the study of rectification at the metal-semiconductor contact: analysis of aging in silicon Schottky diodes

    International Nuclear Information System (INIS)

    Ponpon, J.-P.

    1979-01-01

    The formation of the barrier height and the aging of metal-semiconductor contacts during exposure to air have been studied. The evolution of the electrical characteristics, especially the barrier height, of silicon Schottky diodes results from the diffusion of oxygen through the electrode and its accumulation at the interface. The diffusion coefficient of oxygen has been deduced for each metal used. In a first step the oxygen neutralize a fixed positive charge which remains at the semiconductor surface after etching; then, as silicon is oxidized, a MIS device is formed. Similar results have been obtained in the case of germanium, while no aging appears with cadmium telluride. In this case the barrier height seems to be determined by chemical reactions at the interface [fr

  13. The effect of surface treatment of silicone hydrogel contact lenses on the attachment of Acanthamoeba castellanii trophozoites.

    Science.gov (United States)

    Beattie, Tara K; Tomlinson, Alan

    2009-11-01

    To determine if plasma surface treatment of Focus Night & Day silicone hydrogel contact lenses affects the attachment of Acanthamoeba. Unworn lotrafilcon A contact lenses with (Focus Night & Day) and without surface treatment and Acuvue, conventional hydrogel lenses, were quartered before 90-min incubation with Acanthamoeba castellanii trophozoites. After incubation and rinsing, the trophozoites attached to one surface of each quarter were counted by direct light microscopy. Sixteen replicates were observed for each lens type. Logarithmic transformation of data allowed the use of parametric analysis of variance. No significant difference in attachment was established between the untreated lotrafilcon A and the conventional hydrogel lenses (Ptreatment of the native Focus Night & Day material produced a significant increase in attachment (Ptreatment to reduce lens hydrophobicity; however, this procedure results in an enhanced acanthamoebal attachment. It is possible that the silicone hydrogel lens could be at a greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this material. Eye care professionals should be aware of the enhanced affinity that Acanthamoeba show for this lens and accordingly emphasise to patients the significance of appropriate lens hygiene. This is particularly important where lenses are worn in a regime that could increase the chance of exposure to the organism, i.e., 6 nights/7 days extended wear or daily wear, where lenses will be stored in a lens case, or where lenses are worn when in contact with potentially contaminated water sources, i.e., swimming or showering.

  14. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  15. Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells

    DEFF Research Database (Denmark)

    Jensen, Jens Arne Dahl; Møller, Per; Bruton, Tim

    2003-01-01

    This article reports on a newly developed method for electrochemical deposition of buried Cu contacts in Si-based photovoltaic ~PV! cells. Contact grooves, 20 mm wide by 40 mm deep, were laser-cut into Si PV cells, hereafter applied with a thin electroless NiP base and subsequently filled with Cu......, with a grain-size decreasing from the center to the edges of the buried Cu contacts and a pronounced lateral growth outside the laser-cut grooves. The measured specific contact resistances of the buried contacts was better than the production standard. Overall performance of the new PV cells was equal...

  16. Study of free volumes of polymer hydrogel and -silicone-hydrogel contact lenses by means of the positron annihilation lifetime spectroscopy method.

    Science.gov (United States)

    Filipecki, Jacek; Kocela, Agnieszka; Korzekwa, Witold

    2014-01-01

    Polymer materials based on hydrogel and silicone-hydrogel materials are commonly used in ophthalmology. It is important to research the structure of these materials, mainly the prevalence of free volumes. The study has been conducted in order to determine the presence of free volume gaps in the structure of polymer hydrogel and silicone-hydrogel contact lenses. In addition, to demonstrate differences in the occurrence of free volumes between types of represented contact lenses. Three different hydrogel and three different silicone-hydrogel polymer contact lenses were used as research material. The study was done by means of positron annihilation lifetime spectroscopy (PALS). As a result of the performed measurements, a graphical curve resulted which describes the relationship between the number of the annihilation acts in the time function. The study revealed the existence of three τ1, τ2 and τ3 components. Significant changes were observed in the ortho-positronium long life component τ3 and their intensities between the examined polymer contact lenses. The conducted study using the Tao-Eldrup model indicates the presence of free volume holes in all research materials. The results lead to the following connection: contact lenses of higher oxygen permeability coefficient (silicone-hydrogel contact lenses) have more and larger free volumes than contact lenses of less oxygen permeability coefficient (hydrogel contact lenses).

  17. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

    Science.gov (United States)

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-11-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to 20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  18. Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity

    Directory of Open Access Journals (Sweden)

    Yuguo Tao

    2016-01-01

    Full Text Available Carrier-selective contact with low minority carrier recombination and efficient majority carrier transport is mandatory to eliminate metal-induced recombination for higher energy conversion efficiency for silicon (Si solar cells. In the present study, the carrier-selective contact consists of an ultra-thin tunnel oxide and a phosphorus-doped polycrystalline Si (poly-Si thin film formed by plasma enhanced chemical vapor deposition (PECVD and subsequent thermal crystallization. It is shown that the poly-Si film properties (doping level, crystallization and dopant activation anneal temperature are crucial for achieving excellent contact passivation quality. It is also demonstrated quantitatively that the tunnel oxide plays a critical role in this tunnel oxide passivated contact (TOPCON scheme to realize desired carrier selectivity. Presence of tunnel oxide increases the implied Voc (iVoc by ~ 125 mV. The iVoc value as high as 728 mV is achieved on symmetric structure with TOPCON on both sides. Large area (239 cm2 n-type Czochralski (Cz Si solar cells are fabricated with homogeneous implanted boron emitter and screen-printed contact on the front and TOPCON on the back, achieving 21.2% cell efficiency. Detailed analysis shows that the performance of these cells is mainly limited by boron emitter recombination on the front side.

  19. Fabrication of contacts for silicon solar cells including printing burn through layers

    Science.gov (United States)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  20. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  1. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    Science.gov (United States)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  2. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

    Science.gov (United States)

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  3. Controlled Release of Antibiotics From Vitamin E-Loaded Silicone-Hydrogel Contact Lenses.

    Science.gov (United States)

    Paradiso, Patrizia; Serro, Ana Paula; Saramago, Benilde; Colaço, Rogério; Chauhan, Anuj

    2016-03-01

    Symptoms of bacterial and fungal keratitis are typically treated through the frequent application of antibiotic and antifungal eye drops. The high frequency of half hourly or hourly eye drop administration required to treat these indications is tedious and could reduce compliance. Here, we combine in vitro experiments with a mathematical model to develop therapeutic soft contact lenses to cure keratitis by extended release of suitable drugs. We specifically focus on increasing the release duration of levofloxacin and chlorhexidine from 1-DAY ACUVUE(®) TrueEye™ and ACUVUE OASYS(®) contact lenses by incorporating vitamin E diffusion barriers. Results show that 20% of vitamin E loading in the contact lens increases the release duration of levofloxacin to 100 h and 50 h from 1-DAY ACUVUE(®) TrueEye™ and ACUVUE OASYS(®), respectively, which is a 3- and 6-fold increase, respectively, for the 2 lenses. For chlorhexidine, the increase is 2.5- and 10-fold, for the TrueEye™ and OASYS(®), respectively, to 130 h and 170 h. The mass of drug loaded in the lenses can be controlled to achieve a daily release comparable to the commonly prescribed eye drop therapy. The vitamin E-loaded lenses retain all critical properties for in vivo use. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Effect of controlled adverse chamber environment exposure on tear functions in silicon hydrogel and hydrogel soft contact lens wearers.

    Science.gov (United States)

    Kojima, Takashi; Matsumoto, Yukihiro; Ibrahim, Osama M A; Wakamatsu, Tais Hitomi; Uchino, Miki; Fukagawa, Kazumi; Ogawa, Junko; Dogru, Murat; Negishi, Kazuno; Tsubota, Kazuo

    2011-11-11

    To prospectively evaluate the effect of controlled adverse chamber environment (CACE) exposure on tear function, including tear osmolarity, in subjects wearing narafilcon A versus those wearing etafilcon A soft contact lens (SCL). Thirty-one healthy subjects with no history of contact lens wear (13 women, 18 men; average age, 30.5 ± 6.5 years) were randomly divided into age- and sex-matched groups (15 subjects wearing narafilcon A SCL; 16 subjects wearing etafilcon A SCL) and entered a CACE for 20 minutes. All subjects underwent tear osmolarity, tear evaporation rate, strip meniscometry, tear film breakup time, fluorescein vital staining, and functional visual acuity measurement before and after exposure to the controlled adverse chamber. The mean blink rate increased with significant deteriorations in the mean symptom VAS scores, mean tear osmolarity, tear evaporation rate, strip meniscometry score, and tear stability with CACE exposure along with a decrease in visual maintenance ratio in functional visual acuity testing in etafilcon A wearers. The mean symptom VAS scores, mean tear evaporation rate, tear stability, blink rates, and visual maintenance ratios did not change significantly in narafilcon A wearers after CACE exposure. This study suggested marked tear instability, higher tear osmolarity, and increased tear evaporation with marked dry eye and visual symptomatology in nonadapted hydrogel SCL wearers, suggesting that silicone hydrogel SCLs may be suitable for persons who live and work in cool, low-humidity, and windy environments, as tested in this study.

  5. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    Science.gov (United States)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  6. Study of the Effectiveness of Multipurpose Solutions on the Bacterial Disinfection of Silicone Hydrogel Contact Lenses In Vitro.

    Science.gov (United States)

    Correa, Priscila C; Lui, Aline C F; Silva, Cely B; Gracitelli, Carolina P B; Mimica, Lycia M; Sasagawa, Suzethe M; Netto, Adamo L

    2017-10-12

    To assess the antimicrobial effectiveness of multipurpose solutions in regard to the disinfection of silicone hydrogel contact lenses (CL) using a study of clinical bacterial isolates from ocular material. Three multipurpose solutions (solution A: polyhexamethylene biguanide 0.00025 g/100 mL; solution B: polyquaternary-1 0.001% and myristamidopropyl dimethylamine 0.0006%; and solution C: polyaminopropyl biguanide 0.00013% and polyquaternary 0.0001%) were used as a 3-phase disinfection on silicone hydrogel CL contaminated with bacteria from clinical isolates that were divided into five groups (group 1: Pseudomonas aeruginosa; group 2: Staphylococcus aureus; group 3: Staphylococcus epidermidis; group 4: Streptococcus spp; and group 5: enterobacteria). No differences were observed between the 24- and 48-hr measurements in any of the samples, and the positivity of microorganisms in T0 was 100% for all solutions; it was 0% in T3. Therefore, only steps T1 (rubbing followed by rinsing) and T2 (rubbing followed by rinsing and immersion of CL into solution) were considered for analysis at the 24-hr measurement time. Throughout the phases, a decrease in the number of bacteria was observed, culminating in the elimination (no recovery) of all microorganisms in the three solutions. At the end of the proposed process, the tested solutions were effective.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  7. Development of Screen-Printed Texture-Barrier Paste for Single-Side Texturization of Interdigitated Back-Contact Silicon Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Chen

    2013-10-01

    Full Text Available Continuous cost reduction of silicon-based solar cells is needed to lower the process time and increase efficiency. To achieve lower costs, screen-printed texture-barrier (SPTB paste was first developed for single-side texturization (ST of the interdigitated back-contact (IBC for silicon-based solar cell applications. The SPTB paste was screen-printed on silicon substrates. The SPTB paste was synthesized from intermixed silicate glass (75 wt %, a resin binder (ethyl cellulose ethoce: 20 wt %, and a dispersing agent (fatty acid: 5 wt %. The silicate glass is a necessity for contact formation during firing. A resin binder and a dispersing agent determine the rheology of the SPTB paste. In this work, by modulating various parameters, including post SPTB firing, alkali texturing, and removal of the SPTB, the ST of IBC silicon solar cells was achieved. Since the advantages of the SPTB paste include low toxicity and prompt formation of the texture-barrier, SPTB is potentially suited for simple fabrication at low-cost for solar cell applications. The cost of the SPTB is around $100/kg which is lower than the SiH4/NH3 gas ambient used in plasma-enhanced chemical vapor deposition (PECVD. Thus, the expensive Si3N4 film deposited by PECVD using SiH4 and NH3 gas ambient for silicon solar cells can be replaced by this SPTB.

  8. Development of Screen-Printed Texture-Barrier Paste for Single-Side Texturization of Interdigitated Back-Contact Silicon Solar Cell Applications.

    Science.gov (United States)

    Chiu, Yu-Shun; Cheng, Chin-Lung; Whang, Thou-Jen; Chen, Chi-Cheng

    2013-10-17

    Continuous cost reduction of silicon-based solar cells is needed to lower the process time and increase efficiency. To achieve lower costs, screen-printed texture-barrier (SPTB) paste was first developed for single-side texturization (ST) of the interdigitated back-contact (IBC) for silicon-based solar cell applications. The SPTB paste was screen-printed on silicon substrates. The SPTB paste was synthesized from intermixed silicate glass (75 wt %), a resin binder (ethyl cellulose ethoce: 20 wt %), and a dispersing agent (fatty acid: 5 wt %). The silicate glass is a necessity for contact formation during firing. A resin binder and a dispersing agent determine the rheology of the SPTB paste. In this work, by modulating various parameters, including post SPTB firing, alkali texturing, and removal of the SPTB, the ST of IBC silicon solar cells was achieved. Since the advantages of the SPTB paste include low toxicity and prompt formation of the texture-barrier, SPTB is potentially suited for simple fabrication at low-cost for solar cell applications. The cost of the SPTB is around $100/kg which is lower than the SiH₄/NH₃ gas ambient used in plasma-enhanced chemical vapor deposition (PECVD). Thus, the expensive Si₃N₄ film deposited by PECVD using SiH₄ and NH₃ gas ambient for silicon solar cells can be replaced by this SPTB.

  9. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11% Alloy and Steel Dies SKD 61

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2010-10-01

    Full Text Available Die soldering (die sticking is a defect of metal casting in which molten metal “welds” to the metallic die mold surface during casting process. Die soldering is the result of an interface reaction between the molten aluminum and the die material. Aluminum alloy with 7 and 11% silicon and SKD 61 die steel are the most common melt and die material used in aluminum die casting. This research is done to study the morphology and the characteristics of the formed AlxFeySiz intermetallic layer during interface reaction at dipping test. The samples of as-anneal SKD 61 tool steel was dipped into the molten of Al-7%Si held at temperature 680oC and into molten Al-11%Si held at temperature 710oC with the different contact time of 10 minutes; 30 minutes; and 50 minutes. The research results showed that the interface reaction can form a compact intermetallic layer with AlxFey phase and a broken intermetallic layer with AlxFeySiz phase on the surface of SKD 61 tool steel. The increasing of the contact time by the immersion of material SKD 61 tool steel in both of molten Al-7%Si and Al-11%Si will increase the thickness of the AlxFeySiz intermetallic layer until an optimum point and then decreasing. The micro hardness of the AlxFeySiz intermetallic layer depends on the content of the iron. Increasing of the iron content in intermetallic layer will increase the micro hardness of the AlxFeySiz. This condition happened because the increasing of Fe content will cause forming of intermetallic AlxFeySiz phase becomes quicker.

  11. Structural and Optical Investigations of GaN-Si Interface for a Heterojunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Joshua J.; Jeffries, April M.; Bertoni, Mariana I.; Williamson, Todd L.; Bowden, Stuart G.; Honsberg, Christiana B.

    2014-06-08

    In recent years the development of heterojunction silicon based solar cells has gained much attention, lea largely by the efforts of Panasonic’s HIT cell. The success of the HIT cell prompts the scientific exploration of other thin film layers, besides the industrially accepted amorphous silicon. In this paper we report upon the use of gallium nitride, grown by MBE at “low temperatures” (~200°C), on silicon wafers as one possible candidate for making a heterojunction solar cell; the first approximation of band alignments between GaN and Si; and the material quality as determined by X-ray diffraction.

  12. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  13. Effects of Silicone Hydrogel Contact Lens Application on Corneal High-order Aberration and Visual Guality in Patients with Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Sevda Aydın Kurna

    2012-03-01

    Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102

  14. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    Science.gov (United States)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin

  15. Experimental investigation of a polymer coating in sliding contact with skin-equivalent silicone rubber in an aqueous environment

    NARCIS (Netherlands)

    Heide, E. van der; Lossie, C.M.; Bommel, K.J.C. van; Reinders, S.A.F.; Lenting, H.B.M.

    2010-01-01

    A study on the effect of a brush coating of polyacrylic 20 acid (PAA) grafted with poly(ethylene glycol) (PEG) (PAAQ1 g-PEG) on friction was done for a sliding system that involves silicone skin L7350: a silicone rubber used by the Fédération Internationale de Football Association (FIFA) for the

  16. Experimental investigation of a polymer coating in sliding contact with skin-equivalent silicone rubber in an aqueous environment

    NARCIS (Netherlands)

    van der Heide, E.; Lossie, C.M.; Vanbommel, K. J C; Reinders, S.A.F.; Lenting, H. B M

    2010-01-01

    A study on the effect of a brush coating of polyacrylic acid (PAA) grafted with poly(ethylene glycol) (PEG) (PAAg- PEG) on friction was done for a sliding system that involves silicone skin L7350: a silicone rubber used by the Fédération Internationale de Football Association (FIFA) for the

  17. Molecular bulk heterojunctions: an emerging approach to organic solar cells.

    Science.gov (United States)

    Roncali, Jean

    2009-11-17

    The predicted exhaustion of fossil energy resources and the pressure of environmental constraints are stimulating an intensification of research on renewable energy sources, in particular, on the photovoltaic conversion of solar energy. In this context, organic solar cells are attracting increasing interest that is motivated by the possibility of fabricating large-area, lightweight, and flexible devices using simple techniques with low environmental impact. Organic solar cells are based on a heterojunction resulting from the contact of a donor (D) and an acceptor (A) material. Absorption of solar photons creates excitons, Coulombically bound electron-hole pairs, which diffuse to the D/A interface, where they are dissociated into free holes and electrons by the electric field. D/A heterojunctions can be created with two types of architectures, namely, bilayer heterojunction and bulk heterojunction (BHJ) solar cells. BHJ cells combine the advantages of easier fabrication and higher conversion efficiency due to the considerably extended D/A interface. Until now, the development of BHJ solar cells has been essentially based on the use of soluble pi-conjugated polymers as donor material. Intensive interdisciplinary research carried out in the past 10 years has led to an increase in the conversion efficiency of BHJ cells from 0.10 to more than 5.0%. These investigations have progressively established regioregular poly(3-hexylthiophene) (P3HT) as the standard donor material for BHJ solar cells, owing to a useful combination of optical and charge-transport properties. However, besides the limit imposed to the maximum conversion efficiency by its intrinsic electronic properties, P3HT and more generally polymers pose several problems related to the control of their structure, molecular weight, polydispersity, and purification. In this context, recent years have seen the emergence of an alternative approach based on the replacement of polydisperse polymers by soluble

  18. Comparison of the number of visits and diagnostic lenses required to fit RGP, conventional hydrogel and silicone hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Raul Martín

    2010-07-01

    Conclusions: RGP fitting requires slightly more visits and DL than fitting of traditional or silicone hydrogel CL. No difference in the number of visits and DL required between traditional and silicone hydrogel CL were found. An estimated three to four visits could be necessary to fit daily wear CL in non-pathological eyes. This clinical evidence (grade IV could be used to improve the clinical guidelines for fitting and care of patients with CL.

  19. Photoelectric properties of n-SiC/n-Si heterojunctions

    Directory of Open Access Journals (Sweden)

    Semenov A. V.

    2012-10-01

    Full Text Available Photovoltaic effect in isotype heterotructure formed by nanocrystalline silicon carbide films on single crystal n-Si substrates (n-SiC/n-Si heterojunction was studied. The films were produced by direct ionic deposition method. The model that takes into account the quantum wells and potential barriers caused by band offsets was proposed to explain the current-voltage characteristics and photovoltaic properties of the heterostructure n-SiC/n-Si.

  20. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  1. The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction

    OpenAIRE

    Chang, Yung-Huang; Liu, Chien-Min; Chen, Chih; Cheng, Hsyi-En

    2012-01-01

    The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction (Schottky contact). In the short circuit (approximately 0 V) condition, the TiO2-Si heterojunction dominates the photocarrier transportation direction due to its larger space-charge region and potential gradient. The detailed transition process of the photocar...

  2. Graphene-based heterojunction photocatalysts

    Science.gov (United States)

    Li, Xin; Shen, Rongchen; Ma, Song; Chen, Xiaobo; Xie, Jun

    2018-02-01

    Due to their unique physicochemical, optical and electrical properties, 2D semimetallic or semiconducting graphene has been extensively utilized to construct highly efficient heterojunction photocatalysts for driving a variety of redox reactions under proper light irradiation. In this review, we carefully addressed the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene in photocatalysis, and classification and comparison of graphene-based heterojunction photocatalysts. Subsequently, we thoroughly highlighted and discussed various graphene-based heterojunction photocatalysts, including Schottky junctions, Type-II heterojunctions, Z-scheme heterojunctions, Van der Waals heterostructures, in plane heterojunctions and multicomponent heterojunctions. Several important photocatalytic applications, such as photocatalytic water splitting (H2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction and bacteria disinfection, are also summarized. Through reviewing the important advances on this topic, it may inspire some new ideas for exploiting highly effective graphene-based heterojunction photocatalysts for a number of applications in photocatlysis and other fields, such as photovoltaic, (photo)electrocatalysis, lithium battery, fuel cell, supercapacitor and adsorption separation.

  3. Evaluation of carrier collection probability in bifacial interdigitated-back-contact crystalline silicon solar cells by the internal quantum efficiency mapping method

    Science.gov (United States)

    Tachibana, Tomihisa; Tanahashi, Katsuto; Mochizuki, Toshimitsu; Shirasawa, Katsuhiko; Takato, Hidetaka

    2018-04-01

    Bifacial interdigitated-back-contact (IBC) silicon solar cells with a high bifaciality of 0.91 were fabricated. Screen printing and firing technology were used to reduce the production cost. For the first time, the relationship between the rear side structure and carrier collection probability was evaluated using internal quantum efficiency (IQE) mapping. The measurement results showed that the screen-printed electrode and back surface field (BSF) area led to low IQE. The low carrier collection probability by BSF area can be explained by electrical shading effects. Thus, it is clear that the IQE mapping system is useful to evaluate the IBC cell.

  4. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  5. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  6. Interferential oscillation of longitudinal photoconductivity in InSe-GaSe heterojunctions

    International Nuclear Information System (INIS)

    Kyazymzade, A.G.; Salmanov, V.M.; Dadashova, V.V.; Agayeva, A.A.

    2005-01-01

    It is investigated the interferential oscillation of longitudinal photoconductivity along a layers of InSe in InSe-GaSe heterojunctions, manufactured by the method of planting to optical contact. It is established that the presice oscillation of photocurrent depending on the light wavelength are observed in spectrum of longitudinal photoconductivity, which are correlated with oscillation of absorption of thin wide bandgap top layers of GaSe, through which illuminates the heterojunction. Thus there is an additional strengthening of photosensitivity of InSe layers, owing to transition of nonequilibrium photoholes from InSe to GaSe under influence of a field of heterojunction

  7. Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure

    Science.gov (United States)

    Das, Kalyan; Hall, Harvey

    1999-01-01

    Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.

  8. Contact pin-printing of albumin-fungicide conjugate for silicon nitride-based sensors biofunctionalization: Multi-technique surface analysis for optimum immunoassay performance

    Energy Technology Data Exchange (ETDEWEB)

    Gajos, Katarzyna, E-mail: katarzyna.gajos@doctoral.uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Budkowski, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Tsialla, Zoi; Petrou, Panagiota [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece); Awsiuk, Kamil; Dąbczyński, Paweł [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Rysz, Jakub [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Misiakos, Konstantinos; Raptis, Ioannis [Department of Microelectronics, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece); Kakabakos, Sotirios [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece)

    2017-07-15

    Highlights: • Contact pin-printing of overlapping probe spots and spotting by hand are compared. • Contact pin-printing favors probe immobilization with two-fold higher surface density. • Incomplete monolayer develops to bilayer as printing solution concentration increases. • Blocking molecules complete probe monolayer but reduce probe bilayer. • Surface immunoreaction increases with probe concentration in printing solution. - Abstract: Mass fabrication of integrated biosensors on silicon chips is facilitated by contact pin-printing, applied for biofunctionalization of individual Si{sub 3}N{sub 4}-based transducers at wafer-scale. To optimize the biofunctionalization for immunochemical (competitive) detection of fungicide thiabendazole (TBZ), Si{sub 3}N{sub 4} surfaces are modified with (3-aminopropyl)triethoxysilane and examined after: immobilization of BSA-TBZ conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin (BSA), and immunoreaction with a mouse monoclonal antibody against TBZ. Nanostructure, surface density, probe composition and coverage uniformity of protein layers are evaluated with Atomic Force Microscopy, Spectroscopic Ellipsometry, Time-of-Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Contact pin-printing of overlapping probe spots is compared with hand spotted areas. Contact pin-printing resulted in two-fold increase of immobilized probe surface density as compared to hand spotting. Regarding BSA-TBZ immobilization, an incomplete monolayer develops into a bilayer as the concentration of BSA-TBZ molecules in the printing solution increases from 25 to 100 μg/mL. Upon blocking, however, a complete protein monolayer is formed for all the BSA-TBZ concentrations used. Free surface sites are filled with BSA for low surface coverage with BSA-TBZ, whereas loosely bound BSA-TBZ molecules are removed from the BSA-TBZ bilayer. As a consequence immunoreaction efficiency

  9. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    Science.gov (United States)

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

  10. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  11. Application of CTLM method combining interfacial structure characterization to investigate contact formation of silver paste metallization on crystalline silicon solar cells

    Science.gov (United States)

    Xiong, Shenghu; Yuan, Xiao; Tong, Hua; Yang, Yunxia; Liu, Cui; Ye, Xiaojun; Li, Yongsheng; Wang, Xianhao; Luo, Lan

    2018-04-01

    Circular transmission line model (CTLM) measurements were applied to study the contact formation mechanism of the silver paste metallization on n-type emitter of crystalline silicon solar cells. The electrical performance parameters ρc,Rsk , and Lt , which are related to the physical and chemical states of the multiphase materials at the interface, were extracted from the CTLM measurements, and were found to be sensitive to sintering temperature. As the temperature increased from 585 °C to 780 °C, initially the ρc value decreased rapidly, then flattened out and increased slightly. The order of resistivity magnitude was restricted by the SiNx passivation layer in the early sintering stages, and relied on the carrier tunneling probability affected by the precipitated silver crystallites or colloids, emitter doping concentration and molten glass layer. Based on the calculations that the sheet resistance underneath the electrode was reduced form 110 Ω / □ to 0.186 Ω / □ , it could be inferred that there was formation of a highly conductive layer of silver crystallites and colloids contained glass on the emitter. The transfer length Lt exhibited a U-shaped variation along with the temperature, reflecting the variation of the interfacial electrical properties. Overall, this article shows that the CTLM method can become a new powerful tool for researchers to meet the challenges of silver paste metallization innovation for manufacturing high-efficiency silicon solar cells.

  12. Comparison of Lotrafilcon B and Balafilcon A silicone hydrogel bandage contact lenses in reducing pain and discomfort after photorefractive keratectomy: A contralateral eye study.

    Science.gov (United States)

    Mohammadpour, Mehrdad; Amouzegar, Afsaneh; Hashemi, Hassan; Jabbarvand, Mahmoud; Kordbacheh, Hamed; Rahimi, Firoozeh; Hashemian, Mohammad Naser

    2015-06-01

    To assess the effect of two silicone hydrogel contact lenses with high oxygen permeability in patients having photorefractive keratectomy (PRK). Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran. Sixty patients (120 eyes) who had bilateral PRK were enrolled in this double blind clinical trial. Each patient was fitted with a Lotrafilcon B (Air Optix(®)AQUA, Ciba Vision, Duluth, GA, USA) lens in one eye and a Balafilcon A (PureVision™ Bausch & Lomb, Rochester, NY, USA) lens in the fellow eye. Patients' responses to a subjective questionnaire in terms of pain, foreign body sensation, photophobia, blurred vision and epiphora were evaluated on the first and third postoperative days. Mean pain score for Lotrafilcon B and Balafilcon A contact lenses was 4.43±3.18 vs. 5.45±3.37 on the first postoperative day and 3.43±3.23 vs. 3.88±3.01 on the third postoperative day. However, the difference was only significant in the first 24h after surgery (P=0.032). Foreign body sensation was clinically higher with Balafilcon A contact lens (5.0±3.47 vs. 4.08±3.34 on day 1 and 4.98±3.52 vs. 3.55±3.20 on day 3) and the difference was statistically significant on the first and the third postoperative days (P=0.042 and 0.002, respectively). There was no statistically significant difference between two contact lenses in terms of photophobia, epiphora and blurred vision (P>0.05). The Lotrafilcon B lens resulted in significantly less postoperative pain and discomfort after PRK, especially in the first 24h after PRK. Copyright © 2015. Published by Elsevier Ltd.

  13. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  14. Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer.

    Science.gov (United States)

    Sonntag, Paul; Preissler, Natalie; Bokalič, Matevž; Trahms, Martina; Haschke, Jan; Schlatmann, Rutger; Topič, Marko; Rech, Bernd; Amkreutz, Daniel

    2017-04-13

    Liquid phase crystallized silicon on glass with a thickness of (10-40) μm has the potential to reduce material costs and the environmental impact of crystalline silicon solar cells. Recently, wafer quality open circuit voltages of over 650 mV and remarkable photocurrent densities of over 30 mA/cm 2 have been demonstrated on this material, however, a low fill factor was limiting the performance. In this work we present our latest cell progress on 13 μm thin poly-crystalline silicon fabricated by the liquid phase crystallization directly on glass. The contact system uses passivated back-side silicon hetero-junctions, back-side KOH texture for light-trapping and interdigitated ITO/Ag contacts. The fill factors are up to 74% and efficiencies are 13.2% under AM1.5 g for two different doping densities of 1 · 10 17 /cm 3 and 2 · 10 16 /cm 3 . The former is limited by bulk and interface recombination, leading to a reduced saturation current density, the latter by series resistance causing a lower fill factor. Both are additionally limited by electrical shading and losses at grain boundaries and dislocations. A small 1 × 0.1 cm 2 test structure circumvents limitations of the contact design reaching an efficiency of 15.9% clearly showing the potential of the technology.

  15. Silicone hydrogel mini-scleral contact lenses in early stage after corneal collagen cross-linking for keratoconus: a retrospective case series.

    Science.gov (United States)

    Severinsky, Boris; Wajnsztajn, Denise; Frucht-Pery, Joseph

    2013-11-01

     The aim was to the evaluate performance of a novel silicone hydrogel mini-scleral contact lens (SHmS) for optical correction of keratoconus in the early stages after the corneal collagen cross-linking procedure (CXL).  We retrospectively analysed the visual acuity improvement and corneal adaptation in the first 10 eyes of nine patients fitted with SHmS lenses one to 3.5 months after corneal collagen cross-linking. The lenses were designed to rest over the patients' sclera and peri-limbal cornea and vault the central cornea with minimal support over it. Visual acuities with manifest refraction and contact lenses, refractive and topographical values (Kmin and Kmax) were evaluated on lens dispensing and after six month of lens wearing. Ocular physiological responses were evaluated using the Institute of Eye Research (IER) grading scales.  SHmS fitting was performed 2.1 ± 0.97 (SD) months after collagen cross-linking. Mean follow up was 10.9 ± 4.41 months (range six to 18 months). Mean decimal visual acuity with SHmS was 0.66 ± 0.22 (approximately 6/9 Snellen fraction, range 0.3 to 0.1) or 0.75 ± 0.14 (approximately 6/8.1, range 0.5 to 1.0), when omitting two amblyopic eyes. Nine (90 per cent) eyes were successfully fitted, that is, able to wear the lenses for 10 hours per day or longer. Mean wearing time was 11.7 hours (range six to 14) per day. No corneal neovascularisation or papillary reaction was found in all fitted eyes.  SHmS contact lenses provide successful visual rehabilitation shortly after corneal collagen cross-linking. This new soft contact lens design with scleral fixation and minimal apical touch was demonstrated to be safe shortly after collagen cross-linking, as the avoidance of contact with the treated zone minimises contact lens influence on corneal recovery. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  16. Surface passivation and carrier selectivity of the thermal-atomic-layer-deposited TiO2 on crystalline silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Schüler, Nadine; Shkondin, Evgeniy

    2017-01-01

    Here, we demonstrate the use of an ultrathin TiO2 film as a passivating carrier-selective contact for silicon photovoltaics. The effective lifetime, surface recombination velocity, and diode quality dependence on TiO2 deposition temperature with and without a thin tunneling oxide interlayer (SiO2...... heterojunction with optimized photovoltage, interface quality, and electron extraction to maximize the photovoltage of TiO2–Si heterojunction photovoltaic cells are formulated. Diode behaviour was analysed with the help of experimental, analytical, and simulation methods. It is predicted that TiO2 with a high...... carrier concentration is a preferable candidate for high-performance solar cells. The possible reasons for performance degradation in those devices with and without interlayers are also discussed....

  17. Daily Wear Contact Lenses Manufactured in Etafilcon A Are Noninferior to Two Silicone Hydrogel Lens Types With Respect to Hypoxic Stress.

    Science.gov (United States)

    Szczotka-Flynn, Loretta B; Debanne, Sara; Benetz, Beth Ann; Wilson, Tawnya; Brennan, Noel

    2016-10-20

    This study hypothesized that a traditional high-water contact lens of moderate oxygen transmissibility (Dk/t) is noninferior to common silicone hydrogel (SH) lenses worn for daily wear with respect to measures of hypoxic stress. Thirty-six habitual contact lens wearers completed wear of three lens types worn in a randomized order: etafilcon A (ACUVUE 2, control), lotrafilcon B (Air Optix Aqua), and comfilcon A (Biofinity). Central corneal thickness (CT) and limbal hyperemia were measured >2 hr after waking and after 6 to 8 hr of wear on days 1 and 7. Endothelial bleb formation was measured on day 1 of each lens type. Noninferiority of etafilcon A, with respect to the other two lens types, was assumed if the following difference margins of equivalence were met: types. Limbal hyperemia and endothelial bleb formation with all lenses were negligible, and noninferiority assumptions were met between the lens types for all outcomes. Equivalence of etafilcon A with respect to the two SH lenses for three measures of hypoxic stress was demonstrated.

  18. High temperature annealing of sprayed SnO{sub 2}: F layers in a silicon solar cell process with screen-printed contacts

    Energy Technology Data Exchange (ETDEWEB)

    Tala-Ighil, R.; Boumaour, M.; Maallemi, A.; Melhani, K. [Laboratoire des Cellules Photovoltaiques, Unite de Developpement de la Technologie du Silicium ? UDTS, 2 Bd, F. Fanon, BP 399 Alger-Gare, Alger (Algerie); Belkaid, M.S. [Laboratoire de Microelectronique Appliquee, Universite Mouloud Mammeri, BP 453 Tizi-Ouzou (Algerie); Iratni, A. [Laboratoire des mineraux et materiaux composites, LMMC, Universite Mhamed Bougerra, Avenue de l' independance, 35000 Boumerdes (Algerie)

    2006-07-24

    In order to improve the solar cell conversion efficiency, a thin film of doped tin oxide (SnO{sub 2}: F) has been deposited by the spray-pyrolysis technique on a monocrystalline diffused silicon wafer. Subsequently, the layer must undergo the firing step of screen-printed contacts with temperatures up to 830{sup o}C. After annealing, one notices with the naked eye the appearance of speckles disturbing the uniformity of the as-deposited blue-coloured SnO{sub 2}:F. Characterizations such as XPS, FTIR, RBS, XRD, SEM, Hall Effect, four point probe...etc, are all consistent to reveal a net increase of the SnO{sub 2}:F layer resistivity which leads to efficiency degradation. Annealing the thin films under CO and 90% N{sub 2}-10% H{sub 2} atmospheres was investigated to seek possibilities to preserve the expected improvements. Unlike forming gas, CO reducing ambient was found to be very effective for the high temperature contact firing with no thin film conductivity deterioration. (author)

  19. Fabrication and Characteristics of an nc-Si/c-Si Heterojunction MOSFETs Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2012-05-01

    Full Text Available A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor.

  20. Fabrication and characteristics of an nc-Si/c-Si heterojunction MOSFETs pressure sensor.

    Science.gov (United States)

    Zhao, Xiaofeng; Wen, Dianzhong; Li, Gang

    2012-01-01

    A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W) ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor.

  1. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  2. Hydrogen in hydrogenated amorphous silicon thick film and its relation to the photoresponse of the film in contact with molybdenum

    International Nuclear Information System (INIS)

    Sridhar, N.; Chung, D.D.L.

    1992-01-01

    This paper reports that hydrogenated amorphous silicon films of thickness 0.5-7 μm on molybdenum substrates were deposited from silane by dc glow discharge and studied by mass spectrometric observation of the evolution of hydrogen upon heating and correlating this information with the photoresponse. The films were found to contain two types of hydrogen, namely weak bonded hydrogen, which evolved at 365 degrees C and was the minority, and strongly bonded hydrogen, which evolved at 460-670 degrees C and was the majority. The proportion of strongly bonded hydrogen increased with increasing film thickness and with increasing substrate temperature during deposition. The total amount of hydrogen increased when the substrate temperature was decreased from 350 to 275 degrees C. The strongly bonded hydrogen resided throughout the thickness of the film, whereas the weakly bonded hydrogen resided near the film surface. The evolution of the strongly bonded hydrogen was diffusion controlled, with an activation energy of 1.6 eV. The strongly bonded hydrogen enhanced the photoresponse, whereas the weakly bonded hydrogen degraded the photoresponse

  3. Amorphous silicon solar cells. Comparison of p-i-n and n-i-p structures with zinc-oxide front contact

    International Nuclear Information System (INIS)

    Wieder, S.

    1999-12-01

    This work compares amorphous silicon solar cells in the p-i-n and n-i-p structure. In both cell structures, sputtered zinc-oxide (ZnO) films were established as front contact. We developed smooth TCO films with high conductivity and high transparency. The required surface texture is achieved by a post deposition wet chemical etching step in diluted HCl. In both cell structures, a contact barrier emerges at the amorphous-p/ZnO interface. In both cases, the negative effects of the barrier on the electrical properties of the solar cell are avoided by the application of highly conductive, microcrystalline p-layers (μc-p), which were developed with the RF as well as the VHF deposition technique. We were able to clearly show that the optimum p-layer structure for a-Si:H solar cells with ZnO front contact is an amorphous/microcrystalline double-layer: The thin μc-p-layer provides a low-ohmic ZnO/p-contact, while an amorphous phase is essential in order to build up a high open-circuit voltage (V OC ). The optical optimization led to high quantum efficiencies in both cell types and showed an advantage of the n-i-p structure in the laboratory caused by the possible antireflection design of the front contact in this structure. We confirmed literature reports asserting a drop in the V oc of p-i-n cells when using elevated substrate temperatures during deposition of the i-layer material, while the decrease in V oc for the n-i-p cells simply correlates with the decrease of the band gap of the absorber material. The implementation of the developed materials led to a highly efficient a-Si:H/a-Si:H tandem cell in the p-i-n structure on sputtered ZnO with 9.2% stable efficiency after 900 h of light soaking. The transfer of the achieved results to module production is performed in an joint venture between research and industry. (orig.)

  4. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  5. Roughness effect on heterojunction photovoltaics

    NARCIS (Netherlands)

    Palasantzas, G.; Koumanakos, E.

    1996-01-01

    In this work, we present an investigation of the junction interface roughness effect on the open circuit voltage, Voc for thin film heterojunction photovoltaics. The roughness effect is studied for self-affine rough interfaces, which are described in Fourier space by the correlation model

  6. Silicon-Germanium Front-End Electronics for Space-Based Radar Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past two decades, Silicon-Germanium (SiGe) heterojunction bipolar transistor (HBT) technology has emerged as a strong platform for high-frequency...

  7. Differences in Dry Eye Questionnaire Symptoms in Two Different Modalities of Contact Lens Wear: Silicone-Hydrogel in Daily Wear Basis and Overnight Orthokeratology

    Directory of Open Access Journals (Sweden)

    Nery García-Porta

    2016-01-01

    Full Text Available Purpose. To compare the ocular surface symptoms and signs in an adult population of silicone-hydrogel (Si-Hy contact lens (CL wearers with another modality of CL wear, overnight orthokeratology (OK. Materials and Methods. This was a prospective and comparative study in which 31 myopic subjects were fitted with the same Si-Hy CL and 23 underwent OK treatment for 3 months. Dry eye questionnaire (DEQ was filled in at the beginning of the study and then after 15 days, 1 month, and 3 months using each CL modality. The tear quality was evaluated with noninvasive tear break-up time. Tear production was measured with Schirmer test. Tear samples were collected with Schirmer strips being frozen to analyze the dinucleotide diadenosine tetraphosphate (Ap4A concentration with High-Performance Liquid Chromatography (HPLC. Results. After refitting with ortho-k, a reduction in discomfort and dryness symptoms at the end of the day (p<0.05, χ2 was observed. No significant changes were observed in Ap4A concentration in any group. Bulbar redness, limbal redness, and conjunctival staining increased significantly in the Si-Hy group (p<0.05, Kruskal–Wallis test. Conclusion. Discomfort and dryness symptoms at the end of the day are lower in the OK CL group than in the Si-Hy CL group.

  8. Electrical investigation of the Al/porous Si/p{sup +}-Si heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, A. [Universite de Sousse, Laboratoire Energie-Materiaux, Ecole Superieure des Sciences et de la Technologie, Rue Lamine Abessi 4011, Hammam Sousse (Tunisia); Jomni, S. [Laboratoire Materiaux, Organisation et Proprietes, Faculte des Sciences de Tunis (Tunisia); Hannachi, R. [Universite de Sousse, Laboratoire Energie-Materiaux, Ecole Superieure des Sciences et de la Technologie, Rue Lamine Abessi 4011, Hammam Sousse (Tunisia); Laboratoire Materiaux, Organisation et Proprietes, Faculte des Sciences de Tunis (Tunisia); Universite de Sousse, Equipe de recherche caracterisations optoelectronique et spectroscopique des materiaux et nanomateriaux pour les telecommunications et capteurs, ISITCOM 4011, Hammam Sousse (Tunisia); and others

    2013-01-15

    Porous silicon based Al/porous Si/p{sup +}-Si heterojunction with porous silicon layer was fabricated on low-resistivity crystalline silicon substrate by electrochemical anodisation. Measurements of the current-voltage I(V) characteristics and capacitance-voltage C(V) at various frequencies were used for the investigation of the electrical properties of this heterojunction. The forward bias I(V) dependencies exhibited a high value of the quality factor close to 7. This was attributed to the existence of interfacial layer and interface states which cause the forward I(V) characteristic not to obey the ideal Schottky diode characteristic. Therefore, it was demonstrated that the current has a square root dependence on the forward bias and it was governed by the Richardson-Schottky conduction mechanism. Furthermore, an ideality factor near the unity has been obtained in the reverse current and the I(V) characteristics were governed by the porous Si/Si heterojunction. The C(V) measurement was performed at different frequencies and revealed that the capacitance behavior was typical of material with interface states. The density of interface states was found to vary from 2 Multiplication-Sign 10{sup 10} eV{sup -1}cm{sup -2} to 1.1 Multiplication-Sign 10{sup 11} eV{sup -1}cm{sup -2} as a function of the interface states energy level position in the band gap of the porous silicon.

  9. Tribological Properties of Silicone Rubber-Based Ceramizable Composites Destined for Wire Covers. Part II. Studies of Ball-on-Plate, Plate-on-Plate and Ring-on-Plate Friction Contact

    Directory of Open Access Journals (Sweden)

    R. Anyszka

    2016-09-01

    Full Text Available Tribological properties of commercially available silicone-based ceramizable composites were studied. Friction forces of three different types of ceramizable composites were measured against three different-shape steel samples. Each friction pair contact was loaded with 15, 30, 45 or 60 N. Conducted studies reveal that tribological behavior of the composites vary considerably depending on the composite type and friction contact. However, friction force was increasing with an increase of the load, which mean that the composites behave accordingly to the classic friction theory.

  10. Transparent electronics: Schottky barrier and heterojunction considerations

    International Nuclear Information System (INIS)

    Wager, J.F.

    2008-01-01

    Transparent electronics employs wide band gap semi-conductors which are transparent in the visible portion of the electromagnetic spectrum for the fabrication of electronic devices and circuits. Current and future transparent electronics applications require the use of wide band gap oxide semi-conductor interfaces as contacts and rectifiers, as well as for passivation and barrier-shaping layers. Modern Schottky barrier and heterojunction theory can be applied to the assessment of such interfaces, and is reviewed for this purpose from a charge transfer, energy band diagram perspective. Ideal interface formation theory is envisaged as originating from Fermi level mediated charge transfer giving rise to a macroscopic interfacial dipole, while non-ideal theory involves charge neutrality level mediated charge transfer giving rise to a microscopic interfacial dipole. This interface formation theory is applied to the problem of indium tin oxide (ITO) - zinc oxide and ITO - tin oxide interfaces, confirming their utility as injecting source-drain contacts in transparent thin-film transistors

  11. Fabrication of n-ZnO-NPs/p Si Heterojunction and Its Electro-optical Characterization

    International Nuclear Information System (INIS)

    Muhmmad Kashif; Syed Mohd Usman Ali; Uda Hashim

    2011-01-01

    In the present study, n-ZnO-NPs nano structure was fabricated on p-type silicon substrate using aqueous chemical growth (ACG) method. We have demonstrated the electro-optical performances of ZnO nano porous based hetero-junction diode using p-silicon. The current to voltage measurements (I-V) of ZnO-NPS/ p-Si hetero-junction were investigated in the temperature range 323 to 423 K. the ideality factor of the diode decrease from 10 to 3 as the temperature increasing from 323 to 423 K. Barrier height values of the structure vary between 0.5 and 0.7 eV as the temperature increases. The structural and optical properties of the ZnO-NPS nano structure was carried out using scanning electron microscope (SEM), photoluminescence (PL) spectra and Raman spectra. (author)

  12. Fabrication of n-ZnO-NPs/p Si Heterojunction and Its Electro-optical Characterization

    International Nuclear Information System (INIS)

    Kashif, M.; Syed Mohd Usman Ali; Uda Hashim; Wilander, M.

    2011-01-01

    In the present study, n-ZnO-NPs nano structure was fabricated on p-type silicon substrate using aqueous chemical growth (Actg) method. We have demonstrated the electro-optical performances of ZnO nano porous based hetero-junction diode using p-silicon. The current to voltage measurements (I-V) of ZnO-NPS/p-Si hetero-junction were investigated in the temperature range 323 to 423 K. the ideality factor of the diode decrease from 10 to 3 as the temperature increasing from 323 to 423 K. Barrier height values of the structure vary between 0.5 and 0.7 eV as the temperature increases. The structural and optical properties of the ZnO-NPS nano structure was carried out using scanning electron microscope (SEM), photoluminescence (PL) spectra and Raman Spectra. (author)

  13. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  14. The Use of Solar Cells with a Bifacial Contact Grid under the Conditions of Kazakhstan

    Science.gov (United States)

    Tokmoldin, N. S.; Chuchvaga, N. A.; Verbitskii, V. N.; Titov, A. S.; Zholdybayev, K. S.; Terukov, E. I.; Tokmoldin, S. Zh.

    2017-12-01

    The paper reports on the results of simulations of output characteristics of silicon solar cells based on the amorphous silicon-crystalline silicon heterojunction. In addition, the prospect of utilizing high-efficiency bifacial silicon solar modules for various orientational configurations is evaluated. The evaluations are based on the geographical location of the city of Astana (Kazakhstan) located at 51.2° N and 71.4° E at an altitude of 354 m above the sea level

  15. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  16. 2D device-level simulation study of strained-Si pnp heterojunction bipolar transistors on virtual substrates

    Science.gov (United States)

    Jankovic, N. D.; O'Neill, A.

    2004-02-01

    A novel strained-Si pnp heterojunction bipolar transistor (HBT) design, suitable for virtual substrate technology, is proposed that is inherently free from the detrimental valence band barrier effects usually encountered in conventional SiGe pnp HBTs on silicon. It takes advantage of the heterojunction formed between a strained-Si layer and a relaxed SiGe buffer (virtual substrate), whose associated valence band offset appears favorable for minority hole transport at the base/collector junction. From two-dimensional (2D) numerical simulation, it is found that the newly proposed strained-Si pnp HBT substantially outperforms the equivalent BJT on a silicon substrate in terms of DC and high-frequency characteristics. A threefold increase in maximum current gain β, a fourfold improvement in peak ft and a 2.5 times increase in peak fmax are predicted for strained-Si pnp HBTs on a 50% Ge virtual substrate in comparison with identical conventional silicon pnp BJTs.

  17. Tribological Properties of Silicone Rubber-Based Ceramizable Composites Destined for Wire Covers. Part I. Studies of Block-On-Ring Friction Contact

    OpenAIRE

    R. Anyszka; D.M. Bieliński; D. Strzelecki

    2015-01-01

    Ceramizable composites of silicone rubber matrix become more and more popular materials destined for wire covers, what can enhance fire safety of building increasing operation time of important equipment or devices (eg fire sprinklers, elevators, alarms etc). Aim of the research was to examine tribological properties and wear of commercially available silicone rubber-based ceramizable composites against steel, in configuration – steel block on composite ring, under various load (5, 10, 15, 20...

  18. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  19. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  20. Vertical nanowire heterojunction devices based on a clean Si/Ge interface.

    Science.gov (United States)

    Chen, Lin; Fung, Wayne Y; Lu, Wei

    2013-01-01

    Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.

  1. Large area CNT-Si heterojunction for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Aramo, C., E-mail: aramo@na.infn.it [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Ambrosio, M.; Bonavolontà, C. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Boscardin, M.; Crivellari, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Via Sommarive 18, Povo di Trento, 38123 Trento (Italy); Lisio, C. de [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Grossi, V. [INFN, Sezione di L' Aquila and Dip. Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Maddalena, P. [INFN, Sezione di Napoli, Via Cintia 2, 80126 Napoli (Italy); Dip. Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Via Cintia 2, 80126 Napoli (Italy); Passacantando, M. [INFN, Sezione di L' Aquila and Dip. Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Valentino, M. [CNR-SPIN UOS di Napoli, Via Cintia 2, 80126 Napoli (Italy)

    2017-02-11

    Multiwall carbon nanotubes (MWCNTs) consist of multiple layers of graphite sheets arranged in concentric cylinders, from two to many tens. These systems are closely related to graphite layers but in some features, MWCNTs behave quite differently from graphite. In particular, their ability to generate a photocurrent in a wide wavelength range has been demonstrated either without or with the application of a draining voltage. In addition, the photocurrent signal has been found to reproduce the optical absorbance of MWCNTs, showing a maximum in the near UV region. In this paper main characteristics of a novel large area photodetector featuring low noise, high linearity and efficiency are reported. This detector has been obtained by coupling the optoelectronic characteristics of MWCNTs with the well-known properties of silicon. MWCNTs are growth on n-doped silicon layer by chemical vapour deposition creating a p–n heterojunction with high sensitivity to the radiation from UV to IR. An additional MIS junction is obtained with a metallic conductive layer deposited on the back of silicon substrate. Moreover, first results on the signals generated by pulsed laser are also reported.

  2. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells

    Czech Academy of Sciences Publication Activity Database

    Löper, P.; Moon, S.J.; de Nicolas, S.M.; Niesen, B.; Ledinský, Martin; Nicolay, S.; Bailat, J.; Yum, J. H.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 17, č. 3 (2015), s. 1619-1629 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : perovskites * solar cells * silicon solar cells * silicon heterojunction solar cells * photovoltaics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.449, year: 2015

  3. p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors.

    Science.gov (United States)

    Latorre-Sánchez, Marcos; Primo, Ana; Atienzar, Pedro; Forneli, Amparo; García, Hermenegildo

    2015-02-25

    Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 °C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B)G-(N)G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B)G-(N)G films. Upon irradiation with a xenon lamp of aqueous solutions of H(2) PtCl(6) and MnCl(2) in contact with the heterojunction, preferential electron migration from (B)G to (N)G with preferential location of positive holes on (B)G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N)G and MnO(2) NP on (B)G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B)G-(N)G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B)G (15% enhancement) and (N)G (55% enhancement) components. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Merfort, C., E-mail: merfort@imt.e-technik.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Eliasz, J., E-mail: jacek.eliasz@student.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Schäfer-Eberwein, H., E-mail: heiko.schaefer@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Haring-Bolivar, P., E-mail: peter.haring@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Boehm, M., E-mail: markus.boehm@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany)

    2014-05-02

    In this paper, the design, fabrication and characterization of an amorphous silicon germanium carbide (a-SiGeC:H) photo sensitive bipolar junction transistor (PS-BJT) with three terminals are presented. Whereas the current gain of similar transistor devices presented in the past (Wu et al., 1984; Hwang et al., 1993; Nascetti and Caputo, 2002; Chang et al., 1985a,b; Wu et al, 1985; Hong et al., 1990) can only be controlled with photo induced charge generation, the n–i–δp–i–n structure developed features a contacted base to provide the opportunity to adjust the current gain optically and electrically, too. Electron microscope-, current-/voltage- and spectral measurements were performed to study the PS-BJT behavior and calculate the electrical and optical current gain. The spectral response maximum of the base–collector diode has a value of 170 mA/W applying a base–collector voltage of − 1 V and is located at 620 nm. The base–emitter diode reaches a sensitivity of 25.7 mA/W at 530 nm with a base-emitter voltage of − 3 V. The good a-Si:H transport properties are validated in a μτ-product of 4.6 × 10{sup −6} cm{sup 2} V s, which is sufficient to reach a continuous base- and photo-tunable current gain of up to − 126 at a base current of I{sub B} = + 10 nA and a collector–emitter voltage of V{sub CE} = − 3 V. The transistor obtains a maximum collector current of − 65.5 μA (V{sub CE} = − 3 V) and + 56.2 μA (V{sub CE} = + 3 V) at 10,000 lx 5300 K white-light illumination. At 3300 lx, the electrical current gain reaches a value of + 100 (V{sub CE} = + 2 V) at I{sub B} = 10 nA. With a negative base current of I{sub B} = − 10 nA the electrical gain can be adjusted between 87 (V{sub CE} = + 2 V) and − 106 (V{sub CE} = -3 V), respectively. When no base charge is applied, the transistor is “off” for V{sub CE} > − 3 V. Reducing the base current increases the electrical current gain. Operating with a voltage V{sub CE} of just ± 2 V

  5. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  6. Experimental evaluation of the stability and mechanical behavior of contacts in silicon carbide for the design of the basic angle monitoring system of GAIA

    NARCIS (Netherlands)

    Veggel, A.A. van; Berkhout, W.J.; Schalkx, M.K.; Wielders, A.A.; Rosielle, P.C.J.N.; Nijmeijer, H.

    2005-01-01

    The satellite GAIA will be launched in ca. 2010 to make a 3-D map of our Galaxy. The payload module of the satellite will carry two astrometric telescopes amongst other instrumentation. The optical bench and astrometric telescopes will be constructed for a large part in Silicon Carbide (SiC). A

  7. Zinc telluride-cadmium chalkogenides heterojunctions

    International Nuclear Information System (INIS)

    Fedotov, Ya.A.; Konnikov, S.G.; Supalov, V.A.; Kondaurov, N.M.; Kovalev, A.N.; Vanyukov, A.V.

    1975-01-01

    Heterojunctions ZnTe-CdSe, ZnTe-CdS, ZnTe-CdSsub(x)Sesub(1-x) have been prepared and studied by means of an electron sonde and electroluminescence. Epitaxial layers of CdSe on oriented plates of ZnTe are grown by the method of a chemical transport reaction in the open system where purified hydrogen is used as a carrier and reagent. The substance to be evaporated is CdSe. The study of cathodoluminescence of cleaved surfaces of heterojunctions ZnTe-CdSe and ZnTe-CdS by a thin electron sonde shows that there exists the region of solid solutions in heterojunctions of such a type. Epitaxial heterojunctions ZnTe-CdX are structures of the type p + -p-n-n + . The study of spectra of electroluminescence of heterojunctions which are characterized by the region of negative resistance in the volt-ampere curve and photoluminescence of epitaxial films at 77 deg K allows the presence of radiation maxima to be established both for ZnTe and CdX. Heterojunctions ZnTe-CdSe on the basis of non-alloyed materials change the colour of luminescence from green to red on switching. A possibility is shown of preparation of luminescent diodes with preferential injection into ZnTe (green sources) and into CdSe (red sources)

  8. Tribological Properties of Silicone Rubber-Based Ceramizable Composites Destined for Wire Covers. Part I. Studies of Block-On-Ring Friction Contact

    Directory of Open Access Journals (Sweden)

    R. Anyszka

    2015-06-01

    Full Text Available Ceramizable composites of silicone rubber matrix become more and more popular materials destined for wire covers, what can enhance fire safety of building increasing operation time of important equipment or devices (eg fire sprinklers, elevators, alarms etc. Aim of the research was to examine tribological properties and wear of commercially available silicone rubber-based ceramizable composites against steel, in configuration – steel block on composite ring, under various load (5, 10, 15, 20, 25 and 30 N. Changes to friction force in time were monitored by a tribotester, whereas wear of the composite surfaces were determined using an optical microscope. Performed studies demonstrate, that tribological characteristics and wear of the composites depend significantly on the origin of material.

  9. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  10. Characterization of ASEC BSR 2 ohm-cm silicon solar cells with dielectric wraparound contacts as a function of temperature and intensity

    Science.gov (United States)

    Whitaker, A. F.; Little, S. A.

    1981-01-01

    Twenty high performance BSR 2 ohm-cm silicon solar cells manufactured by ASEC were evaluated at 1 AU conditions and at low temperature and low intensities representative of deep space. These cells showed evidence of series resistance of 1 AU conditions and approximately 50% had reduced power outputs under deep space conditions. Average efficiency of these cells was 12.4% of 1 AU conditions of 1 SC/+25 C.

  11. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  12. Silicon Germanium Heterojunction Bipolar Transistor for Digital Application

    Directory of Open Access Journals (Sweden)

    Engelin Shintadewi Julian

    2012-09-01

    Full Text Available Bipolar transistor performances can be characterized by figures of merit such as cutoff frequency, maximum frequency of oscillation and ECL gate delay. We studied the required figures of merit for digital application and the effects of lateral and vertical scaling to the figures of merit of SiGe HBT. With lateral scaling, the width of emitter finger is scaled down from 0.25 to 0.12 ?m while with the vertical scaling, the base width is scaled down to reduce the base delay. We also observed the effects of Ge profile and Ge fraction to the devices performances. Bipole3 5.3.1G is used to help us in the study. We found that high frequency cutoff and maximum frequency of oscillation as well as low ECL gate delay are all important for digital applications. Scaling down the emitter finger width enhanced the maximum frequency of oscillation and reduced ECL gate delay significantly while scaling down the base width increased the cutoff frequency and current gain.

  13. Surface passivation and optical design of silicon heterojunction solar cells

    NARCIS (Netherlands)

    Zhang, D.

    2015-01-01

    It has been predicted that due to the population growth the energy demand is increasing faster and faster. It has been well recognized that depleting fossil-fuel resources will not fulfill the energy need of the future world. Not to mention the problem of global warming caused by its combustion, and

  14. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  15. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  16. Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland

    1988-01-01

    Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.

  17. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  18. Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode

    Directory of Open Access Journals (Sweden)

    Carlos Alvarado Chavarin

    2018-02-01

    Full Text Available Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n-a-Si:H layers deposited by very high frequency (140 MHz plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.

  19. Improved p–n heterojunction device performance induced by irradiation in amorphous boron carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, George [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Su, Qing [Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Wang, Yongqiang [Materials Science and Technology Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Dowben, Peter A. [Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0298 (United States); Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States); Nastasi, Michael, E-mail: mnastasi2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE 68583-0857 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0298 (United States)

    2015-12-15

    Highlights: • Amorphous boron carbide films were grown on n-type silicon creating a heterojunction. • We irradiated the devices with 200 keV alpha particles to varying levels of damage. • We measured the current versus voltage at each level of damage for the device. • The electrical properties improved with moderate amounts of irradiation. • Device failure is due to the fragility of the Si, not the boron carbide film. - Abstract: Amorphous hydrogenated boron carbide films (a-B{sub 10}C{sub 2+x}:H{sub y}) on Si p–n heterojunctions were fabricated utilizing plasma enhanced chemical vapor deposition (PECVD). These devices were found to be robust when irradiated with 200 keV He{sup +} ions. For low doses of irradiation, contrary to most other electrical devices, the electrical performance improved. On the heterojunction I(V) curve, reverse bias leakage current decreased by 3 orders of magnitude, series resistance across the device decreased by 64%, and saturation current due to generation of electron–hole pairs in the depletion region also decreased by an order of magnitude. It is believed that the improvements in the electrical properties of the devices are due to an initial passivation of defects in the a-B{sub 10}C{sub 2+x}:H{sub y} film resulting from electronic energy deposition, breaking bonds and allowing them to reform in a lower energy state, or resolving distorted icosahedron anion states.

  20. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  1. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong , S Chien; Ramkissoon , Yashin D; Lopez , Mauricio; Page , Kristopher; Parkin , Ivan P; Sullivan , Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  2. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  3. Impact of crystal orientation on ohmic contact resistance of enhancement-mode p-GaN gate high electron mobility transistors on 200 mm silicon substrates

    Science.gov (United States)

    Van Hove, Marleen; Posthuma, Niels; Geens, Karen; Wellekens, Dirk; Li, Xiangdong; Decoutere, Stefaan

    2018-04-01

    p-GaN gate enhancement mode power transistors were processed in a Si CMOS processing line on 200 mm Si(111) substrates using Au-free metallization schemes. Si/Ti/Al/Ti/TiN ohmic contacts were formed after full recessing of the AlGaN barrier, followed by a HCl-based wet cleaning step. The electrical performance of devices aligned to the [11\\bar{2}0] and the perpendicular [1\\bar{1}00] directions was compared. The ohmic contact resistance was decreased from 1 Ω·mm for the [11\\bar{2}0] direction to 0.35 Ω·mm for the [1\\bar{1}00] direction, resulting in an increase of the drain saturation current from 0.5 to 0.6 A/mm, and a reduction of the on-resistance from 6.4 to 5.1 Ω·mm. Moreover, wafer mapping of the device characteristics over the 200 mm wafer showed a tighter statistical distribution for the [1\\bar{1}00] direction. However, by using an optimized sulfuric/ammonia peroxide (SPM/APM) cleaning step, the ohmic contact resistance could be lowered to 0.3 Ω·mm for both perpendicular directions.

  4. Shelf life and outdoor degradation studies of organic bulk heterojunction solar cells

    Science.gov (United States)

    Gergova, R.; Sendova-Vassileva, M.; Popkirov, G.; Gancheva, V.; Grancharov, G.

    2018-03-01

    We studied the degradation of different types of bulk heterojunction devices, in which the materials comprising the active layer and/or the materials used for the back electrode are varied. The devices are deposited on ITO covered glass and have the structure PEDOT:PSS/BHJ/Me, where PEDOT:PSS is the hole transport layer, BHJ (bulk heterojunction) is the active layer comprising a polymer donor (e.g. PTB7, PCDTBT) and a fullerene derivative acceptor (e.g. PC60BM, PC70BM) deposited by spin coating, Me is the metal back contact, which is either Ag or Al deposited by magnetron sputtering or thermal evaporation. The device performance was monitored after storage in the dark at ambient conditions by following the evolution of the J-V curve over time. Results of real conditions outdoor degradation studies are also presented. The stability of the different solar cell structures studied is compared.

  5. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    Science.gov (United States)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  6. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  7. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    KAUST Repository

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  8. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  9. Ultrasmall silicon quantum dots

    NARCIS (Netherlands)

    Zwanenburg, F.A.; Van Loon, A.A.; Steele, G.A.; Rijmenam, C.E.W.M.; Balder, T.; Fang, Y.; Lieber, C.M.; Kouwenhoven, L.P.

    2009-01-01

    We report the realization of extremely small single quantum dots in p-type silicon nanowires, defined by Schottky tunnel barriers with Ni and NiSi contacts. Despite their ultrasmall size the NiSi–Si–NiSi nanowire quantum dots readily allow spectroscopy of at least ten consecutive holes, and

  10. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  11. Surface passivation and carrier selectivity of the thermal-atomic-layer-deposited TiO2 on crystalline silicon

    Science.gov (United States)

    Plakhotnyuk, Maksym M.; Schüler, Nadine; Shkodin, Evgeniy; Ammapet Vijayan, Ramachandran; Masilamani, Sangaravadivel; Varadharajaperumal, Muthubalan; Crovetto, Andrea; Hansen, Ole

    2017-08-01

    Here, we demonstrate the use of an ultrathin TiO2 film as a passivating carrier-selective contact for silicon photovoltaics. The effective lifetime, surface recombination velocity, and diode quality dependence on TiO2 deposition temperature with and without a thin tunneling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si) are reported. 5-, 10-, and 20-nm-thick TiO2 films were deposited by thermal atomic layer deposition (ALD) in the temperature range of 80-300 °C using titanium tetrachloride (TiCl4) and water. TiO2 thin-film passivation layers alone result in a lower effective carrier lifetime compared with that with an interlayer. However, SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si surfaces. Further annealing at 200 °C in N2 gas enhances the surface passivation quality of TiO2 tremendously. From these findings, design principles for TiO2-Si heterojunction with optimized photovoltage, interface quality, and electron extraction to maximize the photovoltage of TiO2-Si heterojunction photovoltaic cells are formulated. Diode behaviour was analysed with the help of experimental, analytical, and simulation methods. It is predicted that TiO2 with a high carrier concentration is a preferable candidate for high-performance solar cells. The possible reasons for performance degradation in those devices with and without interlayers are also discussed.

  12. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  13. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    Sariciftci N S, Indigo and Tyrian Purple – From Ancient Natural Dyes to Modern Organic Semiconductors, Israel Journal of Chemistry, 52, pp. 540-551...2211 Photodetector, graded barrier, GaAs/AlGaAs, Infrared, Band Gap Narrowing, Dye Sensitized, J aggregate, Solar cells, Noise REPORT DOCUMENTATION...2)The photovoltaic properties of heterojunctions with J-/ H- aggregated dye films sandwiched between n– and p- type semiconductors were

  16. Electronic structure of the amorphous-crystalline Silicon heterostructure contact; Die elektronische Struktur des amorph-kristallinen Silizium-Heterostruktur-Kontakts

    Energy Technology Data Exchange (ETDEWEB)

    Korte, L.

    2006-07-01

    In the present work, the electronic density of states of hydrogenated amorphous silicon (a-Si:H) layers in the thickness range from 300 down to {proportional_to}2 nm was examined by Near-UV-photoelectron spectroscopy (NUV-PES). The measurements yield a mean density (averaged over all directions in k space) of the extended states in the valence band close to the band edge E{sub v}, down to approximately E{sub v}-1 eV, as well as the density of states in the band-gap between E{sub v} and the Fermi level E{sub f}. An analytic model for the density of states was fitted to the measured yield data. The model describes the extended states close to the band edge as well as the localized states in the band gap. The defect parameters obtained from the fits to the 300 nm sample are elevated with respect to literature data. In contrast to PES the photocurrent measurement yield the defect parameters averaged over the entire layer thickness. Finally, the photocurrent measurements can be evaluated in the Tauc plot to yield the optical band-gap, E{sub g}{sup opt}=1.76(5) eV. The methodology developed in the first part of the thesis (PES measurement and fit of the model density of states) was then applied to various series of approximately 10 nm thin a-Si:H layers on c-Si substrates, where the deposition temperature of the layers and the concentration of their doping both by phosphorus and boron were varied. The experimental results can be summarized as follows: Ultrathin a-Si:H layers show an optimum of the deposition-temperature around 230 C. The optimum is characterized by an Urbach energy of 66(1) meV and a defect-density of 2,9(3).10{sup 18} cm{sup -3}. For undoped layers, the Fermi level lies E{sub F}-E{sub V}{sup {mu}}=1.04(6) eV, the films are therefore slightly n-type. Conductivity measurements at identically prepared thick layers on glass allow to determine the distance of the Fermi level to the conduction band mobility edge, E{sub C}{sup {mu}}-E{sub F}. Both for the

  17. -MoS2 Lateral Heterojunctions

    KAUST Repository

    Li, Ming-yang

    2018-02-28

    2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic p–n junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two-step and location-selective chemical vapor deposition, is reported to synthesize self-aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light-emitting devices. The proposed fabrication process enables the growth of high-quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type-I alignment at the interface rather than commonly believed type-II alignment. This self-aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.

  18. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity.

    Science.gov (United States)

    Xing, Chaosheng; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-11-01

    Graphitic carbon nitride (g-C3N4) was hybridized by In2S3 to form a novel In2S3/g-C3N4 heterojunction photocatalyst via a hydrothermal method. TEM and HRTEM results reveal that In2S3 nanoparticles and g-C3N4 closely contact with each other to form an intimate interface. The as-obtained In2S3/g-C3N4 heterojunctions exhibit higher photocatalytic activity than those of pure g-C3N4 and In2S3 for the photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic performance of In2S3/g-C3N4 heterojunctions could be attributed to its wide absorption in the visible region and efficient electron-hole separation. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in RhB degradation over In2S3/g-C3N4 heterojunctions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Ultrahigh-vacuum CVD Epitaxy of silicon and GexSi1-x

    Science.gov (United States)

    Racanelli, Marco; Greve, David W.

    1991-10-01

    The growth of epitaxial layers of germanium-silicon alloys is important for advanced semiconductor devices such as heterojunction bipolar transistors. This article explains the principles behind ultrahigh-vacuum chemical vapor deposition (UHV/CVD). This growth technique is capable of growing device-quality layers at low temperatures and, in addition, has a potential for high productivity in manufacturing.

  20. Characterization of a-FeSi2/c-Si heterojunctions for photovoltaic applications

    International Nuclear Information System (INIS)

    Antwis, L; Gwilliam, R; Smith, A; Jeynes, C; Homewood, K

    2012-01-01

    Amorphous iron disilicide (a-FeSi 2 ) shows potential as a photovoltaic material due to its bandgap of ∼0.9 eV and high absorption coefficient. We present a detailed characterization of a-FeSi 2 , with particular emphasis on the electrical properties of a-FeSi 2 /c-Si heterostructures, under both dark and illuminated conditions. The samples were prepared on quartz and silicon substrates using RF co-sputtering of an iron/silicon target. Optical transmission spectroscopy was used to confirm the bandgap of the samples. Van der Pauw measurements and current–voltage analysis techniques were used to determine the carrier type and conduction mechanisms of the samples. The results show that a-FeSi 2 forms a rectifying p–n heterojunction on p-type crystalline silicon. The silicide is characterized by very high carrier concentrations, resulting in the depletion region being almost entirely formed within the silicon substrate. Initial J–V results suggest carrier recombination within the silicide to be the dominant contribution to the conduction across the junction, with photovoltaic effects having been observed under AM1.5 conditions. (paper)

  1. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  2. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    Science.gov (United States)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  3. Prolonging contact lens wear and making contact lens wear safer.

    Science.gov (United States)

    Foulks, Gary N

    2006-02-01

    To summarize the present status of safety and efficacy of contact lens wear. Literature review. Ovid Medline searches were performed on records from 1966 through 2005 using keywords: keratitis, contact lens complications, extended-wear contact lenses, and silicone-hydrogel contact lenses. Patients desire comfort, clarity of vision, and prolonged contact lens wear when contact lenses are used to correct refractive error. Practitioners desire patient satisfaction but also require maintenance of the integrity of the eye and no complications that jeopardize vision or health of the eye. Improvements in the oxygen permeability of the contact lens materials, design of the contact lens and its surface, and solutions for the maintenance of the lens have reduced but not eliminated the risks of infection, inflammation, and conjunctival papillary reaction associated with contact lens wear. The lessons of past and recent history suggest that patient education and practitioner participation in the management of contact lens wear continue to be critical factors for patient satisfaction and safety in the extended wear of contact lenses. The availability of highly oxygen permeable contact lenses has increased the tolerance and safety of extended contact lens wear, but patient instruction and education in proper use and care of lenses is required and caution is advised.

  4. Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone

    Science.gov (United States)

    Avasthi, Sushobhan; Qi, Yabing; Vertelov, Grigory K.; Schwartz, Jeffrey; Kahn, Antoine; Sturm, James C.

    2010-05-01

    Merged organic-silicon heterojunction devices require the passivation of dangling bonds at the silicon surface, preferably with a low-temperature process. In this paper, we demonstrate the high-quality passivation of the silicon (100) surface using an organic molecule (9,10-phenanthrenequinone, PQ). PQ reacts with the dangling bonds, thus providing a bridge between organic semiconductors and silicon. We measure low recombination velocities (˜150 cm/s) at the PQ-silicon interface. Metal/organic-insulator/silicon capacitors and transistors prove that at PQ-silicon interface, the Fermi level can be modulated. The formation of an inversion layer with electron mobility of 600 cm2/V•s further demonstrates the passivation quality of PQ.

  5. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet

    2018-02-14

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present on the illuminated side of the cell. This motivates the search for wider bandgap contacting materials, such as metal oxides. In this paper, we elucidate the precise impact of the material parameters of MoO$_{x}$ on device characteristics, based on numerical simulations. The simulation results allow us to propose design principles for hole-collecting induced junctions. We find that if MoO$_{x}$ has a sufficiently high electron affinity ($\\\\ge\\\\! \\\\text{{5.7 eV}}$), direct band-to-band tunneling is the dominant transport mechanism; whereas if it has a lower electron affinity ($ <\\\\! \\\\text{{5.7 eV}}$), trap-assisted tunneling dominates, which might introduce additional series resistance. At even lower electron affinity, S-shaped J–V curves may appear for these solar cells, which are found to be due to an insufficient trap state density in the MoO$_{x}$ film in contrast to the expectation of better performance at low trap density. These traps may assist carrier transport when present near the conduction band edge of the MoO$_{x}$ film. Our simulations predict that performance optimization for the MoO$_{x}$ film has to target either 1) a high electron affinity and a moderate doping density film or, 2) if the electron affinity is lower than the optimum value, a high defect density not exceeding the doping density inside the film.

  6. Room temperature giant positive junction magnetoresistance of NiFe2O4/n-Si heterojunction for spintronics application

    International Nuclear Information System (INIS)

    Panda, J.; Saha, S.N.; Nath, T.K.

    2014-01-01

    Electronic- and magnetic-transport properties of NiFe 2 O 4 (NFO)–SiO 2 –Si heterojunction fabricated by depositing NFO thin films on silicon substrates with the intermediate native oxide (SiO 2 ) layer have been investigated in details. The current–voltage (I–V) characteristics across the junction have been recorded in the temperature range of 10–300 K. All I–V curves show non-linear behavior throughout the temperature range. The dominating current transport mechanism is found to be temperature dependent tunneling assisted by Frenkel–Poole type emission. In this paper, we report the junction magnetoresistance (JMR) properties of this heterojunction in the temperature range of 10–300 K. With increasing temperature, the JMR of the heterojunction increases accordingly. The high positive JMR (∼54%) has been observed at room temperature (RT). The origin of high positive JMR at RT is attributed to efficient spin-polarized carrier transport across the junction

  7. Characterization of Inverted Polymer Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Carney, Tyler; Tzolov, Marian

    Inverted solar cells were proven to be an improvement over polymer solar cells in terms of durability and reliability. We have fabricated the solar cells using P3HT and PCPDTBT as the active polymer with PC60BM as the electron acceptor. The materials we deposited from solution by spin coating on glass substrates with ITO film. Molybdenum oxide was thermally evaporated overtop the spin coated polymer solar cell to realize the inverted design. The devices were finalized by thermally evaporated aluminum contacts which were then mechanically reinforced with silver paste. Current voltage characteristics were performed both in dark and under illumination to characterize the inverted solar cells and to verify the inverted solar cell design. Impedance spectroscopy in dark and under illumination were used to gain more information about the photoelectric processes in the devices and to build a realistic equivalent circuit model of the inverted solar cells. The inverted solar cells were then compared against standard polymer bulk heterojunction solar cells produced with the same active materials.

  8. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Sou Ryuzaki

    2013-07-01

    Full Text Available Hetero-junction organic photovoltaic (OPV cells consisting of donor (D and acceptor (A layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (VOC, of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the VOC for zinc octaethylporphyrin [Zn(OEP]/C60 hetero-junction OPV cells [ITO/Zn(OEP/C60/Al]. It was found that crystallization of Zn(OEP films increases the number of inter-molecular charge transfer (IMCT excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A interface was found to play a key role in determining the VOC for the OPV cells.

  9. Characterization of photovoltaics with In2S3 nanoflakes/p-Si heterojunction.

    Science.gov (United States)

    Hsiao, Yu-Jen; Lu, Chung-Hsin; Ji, Liang-Wen; Meen, Teen-Hang; Chen, Yan-Lung; Chi, Hsiao-Ping

    2014-01-15

    We demonstrate that heterojunction photovoltaics based on hydrothermal-grown In2S3 on p-Si were fabricated and characterized in the paper. An n-type In2S3 nanoflake-based film with unique 'cross-linked network' structure was grown on the prepared p-type silicon substrate. It was found that the bandgap energy of such In2S3 film is 2.5 eV by optical absorption spectra. This unique nanostructure significantly enhances the surface area of the In2S3 films, leading to obtain lower reflectance spectra as the thickness of In2S3 film was increased. Additionally, such a nanostructure resulted in a closer spacing between the cross-linked In2S3 nanostructures and formed more direct conduction paths for electron transportation. Thus, the short-circuit current density (Jsc) was effectively improved by using a suitable thickness of In2S3. The power conversion efficiency (PCE, η) of the AZO/In2S3/textured p-Si heterojunction solar cell with 100-nm-thick In2S3 film was 2.39%.

  10. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    Science.gov (United States)

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  11. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    Science.gov (United States)

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  12. Structural characterization of the interface structure of amorphous silicon thin films after post-deposition argon or hydrogen plasma treatment

    Science.gov (United States)

    Neumüller, Alex; Sergeev, Oleg; Vehse, Martin; Agert, Carsten

    2017-05-01

    The interfaces in silicon thin film solar cells and silicon heterojunction solar cells are considered to be very important for the solar cell conversion efficiency. This work studies the interface properties of hydrogenated amorphous silicon thin films deposited on crystalline silicon wafers after post-deposition hydrogen plasma treatment (HPT) or argon plasma treatment (APT). The investigation extends our previous study by examining the structural changes resulting from the post-deposition plasma treatment on silicon thin film solar cells. We analyzed the ellipsometry and infrared spectra of our samples to gain a deeper understanding of the fundamental plasma treatment effects. By using post-deposition APT and HPT, we were able to reduce the material stress and improve the structure of these layers. Our results show that APT yields a more compact material with fewer voids and less distinct localized tail states. We discuss the effect of APT and HPT on the most crucial interface in silicon heterojunction solar cells, the i-a-Si:H/c-Si interface. We propose to introduce APT as a post-deposition process step in the fabrication of silicon heterojunction solar cells.

  13. Opto-electronic properties of a TiO{sub 2}/PS/mc-Si heterojunction based solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Janene, N.; Ghrairi, N. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif (Tunisia); Allagui, A. [Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates); Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates); Alawadhi, H. [Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates); Khakani, M. A. El [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC, Canada J3X-1S2 (Canada); Bessais, B. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif (Tunisia); Gaidi, M., E-mail: mkaidi@sharjah.ac.ae [Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates)

    2016-04-15

    Graphical abstract: - Highlights: • In this work solar cells based on Au/PS/mc-Si/Al and Au/TiO{sub 2}/PS/mc-Si/Al structures have prepared. • A novel double treatment passivation based on TiO2/Porous Si has been used. • An enhancement of the electrical properties of TiO{sub 2}/PS/mc-Si heterojunction was observed after TiO{sub 2} coating. • The solar cells efficiencies past from 1.4% for uncoated PS/mc-Si structure to 5% for TiO{sub 2} coated one. - Abstract: In this work, we show the results of our investigation on the photoelectric properties of heterojunction solar cells based on Au/PS/mc-Si/Al and Au/TiO{sub 2}/PS/mc-Si/Al structures. Porous silicon (PS) were prepared by an electrochemical etching process with different values of current density. The surface porosity was found to increase with the increase of current density. Pulsed laser deposition was used to deposit 80 nm TiO{sub 2} thin films. Surface morphology and structural properties of TiO{sub 2}/PS were characterized by using scanning electron microscopy (SEM) and atomic force microscopy (AFM). An enhancement of the electrical properties of the TiO{sub 2}/PS/mc-Si heterojunction was observed after coating with TiO{sub 2}. As a consequence, the solar cell efficiencies increased from 1.4% for the uncoated PS/mc-Si structure to 5% for the TiO{sub 2} coated one. Impedance spectroscopy confirmed the passivation effect of TiO{sub 2} through the improvement of the elaborated cells’ electron lifetime and the formation of a TiO{sub 2}/PS/Au heterojunction with the appearance of a second semi-circle in the Nyquist plot.

  14. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  15. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  16. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  17. Influnce of exposure with Xe radiation on heterojunction solar cell a-SiC/c-Si studied by impedance spectroscopy

    Science.gov (United States)

    Perný, M.; Šály, V.; Packa, J.; Mikolášek, M.; Váry, M.; Huran, J.; Hrubčín, L.; Skuratov, V. A.; Arbet, J.

    2017-04-01

    The photovoltaic efficiency of heterostructures a-SiC/c-Si may be the same or even better in comparison with conventional silicon structures when suitable adjustment of technological parameters is realized. The main advantage of heterojunction formed amorphous SiC thin film and crystalline silicon compared to standard crystalline solar cell lies in high build-in voltage and thus a high open-circuit voltage. Solar cells can be exposed to various influences of hard environment. A deterioration of properties of heterostructures (a-SiC/c-Si) due to irradiation is examined in our paper using impedance spectroscopy method. Xe ions induced damage is reflected in changes of proposed AC equivalent circuit elements. AC equivalent circuit was proposed and verified using numerical simulations. Impedance spectra were also measured at different DC bias voltages due to a more detailed understanding correlation between Xe ions induced damage and transport phenomenon in the heterostructure.

  18. Efficiency of bulk-heterojunction organic solar cells

    Science.gov (United States)

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  19. Charge Recombination Suppressed by Destructive Quantum Interference in Heterojunction Materials

    NARCIS (Netherlands)

    Tempelaar, Roel; Koster, L. Jan Anton; Havenith, Remco W. A.; Knoester, Jasper; Jansen, Thomas L. C.

    2016-01-01

    We show that charge recombination in ordered heterojunctions depends sensitively on the degree of coherent delocalization of charges at the donor acceptor interface. Depending on the relative sign of the electron and hole transfer integrals, such delocalization can dramatically suppress

  20. Metal-Semiconductor Contacts

    Science.gov (United States)

    Pugh, D. I.

    Metal-semiconductor contacts display a range of electrical characteristics from strongly rectifying to ohmic, each having its own applications. The rectifying properties of metal points on metallic sulphides were used extensively as detectors in early radio experiments, while during the second world war the rectifying point contact diode became important as a frequency detector and low level microwave radar detector [1]. Since 1945 the development of metal semiconductor contacts has been stimulated by the intense activity in the field of semiconductor physics and has remained vital in the ohmic connection of semiconductor devices with the outside world. The developments in surface science and the increased use of Schottky barriers in microelectronics has lead to much research with the aim of obtaining a full understanding of the physics of barrier formation and of current transport across the metal-semiconductor interface. Large gain spin electronic devices are possible with appropriate designs by incorporating ferromagnetic layers with semiconductors such as silicon [2]. This inevitably leads to metal-semiconductor contacts, and the impact of such junctions on the device must be considered. In this section we aim to look simply at the physical models that can be used to understand the electrical properties that can arise from these contacts, and then briefly discuss how deviations of these models can occur in practical junctions.

  1. Electronic structure and band alignment of 9,10-phenanthrenequinone passivated silicon surfaces

    Science.gov (United States)

    Avasthi, Sushobhan; Qi, Yabing; Vertelov, Grigory K.; Schwartz, Jeffrey; Kahn, Antoine; Sturm, James C.

    2011-07-01

    In this work we demonstrate that the room-temperature deposition of the organic molecule 9,10-phenanthrenequinone (PQ) reduces the surface defect density of the silicon (100) surface by chemically bonding to the surface dangling bonds. Using various spectroscopic measurements we have investigated the electronic structure and band alignment properties of the PQ/Si interface. The band-bending at the PQ-passivated silicon surface is negligible for both n- and p-type substrates, demonstrating a low density of surface defects. Finally we show that PQ forms a semiconducting wide-bandgap type-I heterojunction with silicon.

  2. Electrical conduction by interface states in semiconductor heterojunctions

    OpenAIRE

    El Yacoubi, Mohamed; Evrard, Roger; Nguyen, Ngoc Duy; Schmeits, Marcel

    2000-01-01

    Electrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this def...

  3. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  4. Piezoresistive effect in top-down fabricated silicon nanowires

    DEFF Research Database (Denmark)

    Reck, Kasper; Richter, Jacob; Hansen, Ole

    2008-01-01

    resistor, each with integrated contacts for electrical 4-point measurements. We show an increase in the piezoresistive effect of 633% compared to bulk silicon. Preliminary temperature measurements indicate a larger temperature dependence of silicon nanowires, compared to bulk silicon. An increase of up...

  5. Squaraine Planar-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Bin Fan

    2009-01-01

    derivatives with extraordinarily high extinction coefficients are used as electron donors in bilayer heterojunctions with fullerene C60 as electron acceptor. Due to the very strong squaraine absorption band in the red spectral domain, antibatic behavior due to light filtering is observed in the photocurrent spectrum for film thicknesses of 35 nm to 40 nm. At reduced film thicknesses of 20 nm, this filtering effect at maximum absorption can be alleviated and power conversion efficiencies under simulated AM 1.5 full sun irradiation of 0.59% and 1.01% are obtained for the two squaraine derivatives, respectively. The photovoltaic properties of these cells are investigated with respect to electrode materials and chemical doping.

  6. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  7. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  8. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    KAUST Repository

    Etgar, Lioz

    2012-10-24

    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  9. A Visible-Light-Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Adhikari, Shiba P; Hood, Zachary D; More, Karren L; Chen, Vincent W; Lachgar, Abdou

    2016-07-21

    A visible-light-active carbon nitride (CN)/strontium pyroniobate (SNO) heterojunction photocatalyst was fabricated by deposition of CN over hydrothermally synthesized SNO nanoplates by a simple thermal decomposition process. The microscopic study revealed that nanosheets of CN were anchored to the surface of SNO resulting in an intimate contact between the two semiconductors. Diffuse reflectance UV/Vis spectra show that the resulting CN/SNO heterojunction possesses intense absorption in the visible region. The structural and spectral properties endowed the CN/SNO heterojunction with remarkably enhanced photocatalytic activity. Specifically, the photocatalytic hydrogen evolution rate per mole of CN was found to be 11 times higher for the CN/SNO composite compared to pristine CN. The results clearly show that the composite photocatalyst not only extends the light absorption range of SNO but also restricts photogenerated charge-carrier recombination, resulting in significant enhancement in photocatalytic activity compared to pristine CN. The relative band positions of the composite allow the photogenerated electrons in the conduction band of CN to migrate to that of SNO. This kind of charge migration and separation leads to the reduction in the overall recombination rate of photogenerated charge carriers, which is regarded as one of the key factors for the enhanced activity. A plausible mechanism for the enhanced photocatalytic activity of the heterostructured composite is proposed based on observed activity, photoluminescence, time-resolved fluorescence emission decay, electrochemical impedance spectroscopy, and band position calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Allergy to pacemaker silicone compounds: recognition and surgical management.

    Science.gov (United States)

    Oprea, Mihaela L; Schnöring, Heike; Sachweh, Jörg S; Ott, Hagen; Biertz, Julia; Vazquez-Jimenez, Jaime F

    2009-04-01

    Silicone is a widely used biomaterial. Contact allergy, particularly to silicone components of pacemaker coatings, is uncommon. We present a 12-year-old girl with a history of complex congenital heart disease and acquired complete heart block excluding transvenous lead placement. Contact allergy to silicone led to multiple surgical interventions until the etiology for recurrent pacemaker wound complications was discovered. The key to diagnosis was a specific manufacturer's patch test. Complete removal of the former pacing system and placement of custom-made silicone free pacemaker components and epicardial use of silicone free transvenous leads were essential for successful therapy.

  11. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.

    Science.gov (United States)

    Löper, Philipp; Moon, Soo-Jin; de Nicolas, Sílvia Martín; Niesen, Bjoern; Ledinsky, Martin; Nicolay, Sylvain; Bailat, Julien; Yum, Jun-Ho; De Wolf, Stefaan; Ballif, Christophe

    2015-01-21

    Tandem solar cells constructed from a crystalline silicon (c-Si) bottom cell and a low-cost top cell offer a promising way to ensure long-term price reductions of photovoltaic modules. We present a four-terminal tandem solar cell consisting of a methyl ammonium lead triiodide (CH3NH3PbI3) top cell and a c-Si heterojunction bottom cell. The CH3NH3PbI3 top cell exhibits broad-band transparency owing to its design free of metallic components and yields a transmittance of >55% in the near-infrared spectral region. This allows the generation of a short-circuit current density of 13.7 mA cm(-2) in the bottom cell. The four-terminal tandem solar cell yields an efficiency of 13.4% (top cell: 6.2%, bottom cell: 7.2%), which is a gain of 1.8%abs with respect to the reference single-junction CH3NH3PbI3 solar cell with metal back contact. We employ the four-terminal tandem solar cell for a detailed investigation of the optical losses and to derive guidelines for further efficiency improvements. Based on a power loss analysis, we estimate that tandem efficiencies of ∼28% are attainable using an optically optimized system based on current technology, whereas a fully optimized, ultimate device with matched current could yield up to 31.6%.

  12. Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Ruth Hoskins Editor University of KwaZulu-Natal, Information Studies Programme Email: hoskinsr@ukzn.ac.za. Support Contact. Gita Ramdass Email: ramdass@ukzn.ac.za. ISSN: 1025-8892. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  13. Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungchul [School of Mechanical Engineering; Georgia Institute of Technology; Atlanta, USA; Ou, Kai-Lin [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Wu, Xin [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Ndione, Paul F. [National Renewable Energy Laboratory (NREL); Golden, USA; Berry, Joseph [National Renewable Energy Laboratory (NREL); Golden, USA; Lambert, Yannick [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN); Le Centre National de la Recherche Scientifique (CNRS); Villeneuve d' Ascq, France; Mélin, Thierry [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN); Le Centre National de la Recherche Scientifique (CNRS); Villeneuve d' Ascq, France; Armstrong, Neal R. [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Graham, Samuel [School of Mechanical Engineering; Georgia Institute of Technology; Atlanta, USA; School of Materials Science and Engineering; Center for Organic Photonics and Electronics

    2015-01-01

    Ultra-thin (0.5–10 nm) plasma-enhanced atomic layer deposited titanium oxide (TiOx) films deposited on indium-tin-oxide contacts, are investigated as hole-blocking interlayers using conventional electrochemistry, Si-diodes, and heterojunction (P3HT:PCBM) organic photovoltaics (OPVs).

  14. A Generalized Theory Explains the Anomalous Suns–Voc Response of Si Heterojunction Solar Cells

    KAUST Repository

    Chavali, Raghu Vamsi Krishna

    2016-11-30

    Suns–Voc measurements exclude parasitic series resistance effects and are, therefore, frequently used to study the intrinsic potential of a given photovoltaic technology. However, when applied to a-Si/c-Si heterojunction (SHJ) solar cells, the Suns–Voc curves often feature a peculiar turnaround at high illumination intensities. Generally, this turn-around is attributed to extrinsic Schottky contacts that should disappear with process improvement. In this paper, we demonstrate that this voltage turnaround may be an intrinsic feature of SHJ solar cells, arising from the heterojunction (HJ), as well as its associated carrier-transport barriers, inherent to SHJ devices. We use numerical simulations to explore the full current–voltage (J–V) characteristics under different illumination and ambient temperature conditions. Using these characteristics, we establish the voltage and illumination-intensity bias, as well as temperature conditions necessary to observe the voltage turnaround in these cells. We validate our turnaround hypothesis using an extensive set of experiments on a high-efficiency SHJ solar cell and a molybdenum oxide (MoOx) based hole collector HJ solar cell. Our work consolidates Suns–Voc as a powerful characterization tool for extracting the cell parameters that limit efficiency in HJ devices.

  15. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  16. Admittance spectroscopy investigations of the a-Si:H/c-Si heterojunction with a view to applications in photovoltaic energy conversion; Admittanzspektroskopische Untersuchungen des a-Si:H/c-Si-Heteroueberganges im Hinblick auf photovoltaische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Gall, S.

    1997-12-31

    a-Si:H/c-Si heterojunctions in solar cells were investigated by admittance spectroscopy, which is able to observe defects at the a-Si:H/c-Si interface. The reasons for the investigation are stated in chapter 2. Chapter 3 describes the main characteristics of the materials involved, while chapter 4 discusses the heterojunction between the materials. Chapter 5 describes Schottky contacts on a-Si:H that were used in this investigation for investigating the heterojunction. Chapter 6 describes the preparation of specimens and chapter 7 their characterisation. Chapter 8 describes the investigations by admittance spectroscopy. Apart from the results of the measurements and simulations, also the method of measurement, the measuring set-up and the fundamentals are presented. Photovoltaic characteristics of the junctions are presented in chapter 9. The report ends with a summary. (orig.)

  17. Heterojunction phototransistor for highly sensitive infrared detection

    Science.gov (United States)

    Rezaei, Mohsen; Park, Min-Su; Tan, Chee Leong; Rabinowitz, Cobi; Wheaton, Skyler; Mohseni, Hooman

    2017-02-01

    In this work, we have proposed a model for the ultimate physical limit on the sensitivity of the heterojunction bipolar phototransistors (HPTs). Based on our modeling we have extracted the design criteria for the HPT for high sensitivity application. HPT with the submicron emitter and base area has the potential to be used for the low number photon resolving in near-infrared (NIR) wavelength. However, in practice, the quality of materials, processing, and the passivation plays an important role in the realization of the highly sensitive HPT. For short wave infrared (SWIR) HPTs based on lattice matched InGaAs to InP is studied. For these devices, conditions to reach to the highest possible sensitivity is examined. We have made an HPT based on InGaAs collector and base on the InP substrate. After developing proper processing combination of wet and dry etching and the surface passivation for the device we made an imager with 320x256 pixels based with a 30m pixel pitch. The imager shows the sensitivity less the 30 photons for each pixel with the frame rate more than 1K frames per second.

  18. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  19. Mapping Energy Levels for Organic Heterojunctions.

    Science.gov (United States)

    Li, Yiying; Li, Peicheng; Lu, Zheng-Hong

    2017-06-01

    An organic semiconductor thin film is a solid-state matter comprising one or more molecules. For applications in electronics and photonics, several distinct functional organic thin films are stacked together to create a variety of devices such as organic light-emitting diodes and organic solar cells. The energy levels at these thin-film junctions dictate various electronic processes such as the charge transport across these junctions, the exciton dissociation rates at donor-acceptor molecular interfaces, and the charge trapping during exciton formation in a host-dopant system. These electronic processes are vital to a device's performance and functionality. To uncover a general scientific principle in governing the interface energy levels, highest occupied molecular orbitals, and vacuum level dipoles, herein a comprehensive experimental research is conducted on several dozens of organic-organic heterojunctions representative of various device applications. It is found that the experimental data map on interface energy levels, after correcting variables such as molecular orientation-dependent ionization energies, consists of three distinct regions depending on interface fundamental physical parameters such as Fermi energy, work function, highest occupied molecular orbitals, and lowest unoccupied molecular orbitals. This general energy map provides a master guide in selection of new materials for fabricating future generations of organic semiconductor devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  1. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  2. Interface magnetization effect in heterojunctions based on semimagnetic compounds

    International Nuclear Information System (INIS)

    Malkova, N.

    1998-07-01

    The electronic states of stressed heterojunctions formed from narrow-gap semimagnetic semiconductors showing antiferromagnetic ordering are studies. The model Hamiltonian is constructed in the framework of the two-band envelope function approximation including far-band corrections. Heterojunctions both with normal and inverted band arrangements in the initial semiconductors are investigated. The interface Tamm-like states have been shown recently toe appear in these heterojunctions and they are spin-split with the magnetic axis perpendicular to the interface plane. The effect of far-band corrections is shown to be conditioned by the mutual movement of the constituent bands, resulting in changes and in some cases in full disappearance of the energy interval in which the interface state exists. The interface magnetization effect is expected when the Fermi level lies in one of the spin-polarized interface bands. Using the appropriate parameters, the value of the relative interface magnetization is calculated. (author)

  3. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    Science.gov (United States)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  4. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  5. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  6. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    Science.gov (United States)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and

  7. Controlled ion-beam transformation of silicon bipolar microwave power transistor's characteristics

    International Nuclear Information System (INIS)

    Solodukha, V.A.; Snitovskij, Yu.P.

    2015-01-01

    In this article, a method for changing the silicon bipolar microwave power transistor's characteristics in a direct and deliberate manner by modifying the chemical composition at the molybdenum - silicon boundary, the electro-physical properties of molybdenum - silicon contacts, and the electrophysical characteristics of transistor structure areas by the phosphorus ions irradiation of generated ohmic molybdenum - silicon contacts to the transistor emitters is proposed for the first time. The possibilities of this method are investigated and confirmed experimentally. (authors)

  8. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

    Science.gov (United States)

    Kumar, Ashish; Schuerings, Christian; Kumar, Suneel; Kumar, Ajay

    2018-01-01

    A novel graphitic carbon nitride (g-C3N4)–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all of which greatly facilitate the transfer of photogenerated charges across the heterojunction and inhibit their fast recombination. In addition, the two-dimensional (2D) morphology of g-C3N4nanosheets and CT nanoflakes provides enough reaction sites due to their larger surface area and enhances the overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2 −•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic degradation of pollutants has been proposed and discussed. PMID:29527441

  9. Perovskite-structured CaTiO3coupled with g-C3N4as a heterojunction photocatalyst for organic pollutant degradation.

    Science.gov (United States)

    Kumar, Ashish; Schuerings, Christian; Kumar, Suneel; Kumar, Ajay; Krishnan, Venkata

    2018-01-01

    A novel graphitic carbon nitride (g-C 3 N 4 )-CaTiO 3 (CTCN) organic-inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO 3 (CT) nanoflakes onto the surface of g-C 3 N 4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C 3 N 4 /CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all of which greatly facilitate the transfer of photogenerated charges across the heterojunction and inhibit their fast recombination. In addition, the two-dimensional (2D) morphology of g-C 3 N 4 nanosheets and CT nanoflakes provides enough reaction sites due to their larger surface area and enhances the overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O 2 -• ) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic degradation of pollutants has been proposed and discussed.

  10. Tunneling-assisted transport of carriers through heterojunctions.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  11. Fabricating 40 µm-thin silicon solar cells with different orientations by using SLiM-cut method

    Science.gov (United States)

    Wang, Teng-Yu; Chen, Chien-Hsun; Shiao, Jui-Chung; Chen, Sung-Yu; Du, Chen-Hsun

    2017-10-01

    Thin silicon foils with different crystal orientations were fabricated using the stress induced lift-off (SLiM-cut) method. The thickness of the silicon foils was approximately 40 µm. The ≤ft foil had a smoother surface than the ≤ft foil. With surface passivation, the minority carrier lifetimes of the ≤ft and ≤ft silicon foil were 1.0 µs and 1.6 µs, respectively. In this study, 4 cm2-thin silicon solar cells with heterojunction structures were fabricated. The energy conversion efficiencies were determined to be 10.74% and 14.74% for the ≤ft and ≤ft solar cells, respectively. The surface quality of the silicon foils was determined to affect the solar cell character. This study demonstrated that fabricating the solar cell by using silicon foil obtained from the SLiM-cut method is feasible.

  12. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  13. Room temperature giant positive junction magnetoresistance of NiFe{sub 2}O{sub 4}/n-Si heterojunction for spintronics application

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Saha, S.N.; Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in

    2014-09-01

    Electronic- and magnetic-transport properties of NiFe{sub 2}O{sub 4} (NFO)–SiO{sub 2}–Si heterojunction fabricated by depositing NFO thin films on silicon substrates with the intermediate native oxide (SiO{sub 2}) layer have been investigated in details. The current–voltage (I–V) characteristics across the junction have been recorded in the temperature range of 10–300 K. All I–V curves show non-linear behavior throughout the temperature range. The dominating current transport mechanism is found to be temperature dependent tunneling assisted by Frenkel–Poole type emission. In this paper, we report the junction magnetoresistance (JMR) properties of this heterojunction in the temperature range of 10–300 K. With increasing temperature, the JMR of the heterojunction increases accordingly. The high positive JMR (∼54%) has been observed at room temperature (RT). The origin of high positive JMR at RT is attributed to efficient spin-polarized carrier transport across the junction.

  14. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    International Nuclear Information System (INIS)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; Biris, Alexandru R.; Salamo, Gregory J.; Viswanathan, Tito; Biris, Alexandru S.

    2011-01-01

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B 2 O 3 . The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques

  15. Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies: A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures

    Directory of Open Access Journals (Sweden)

    A. Benmouna

    2013-01-01

    Full Text Available Research efforts to improve our understanding of electronic polymers are developing fast because of their promising advantages over silicon in photovoltaic solar cells. A major challenge in the development of polymer photovoltaic devices is the viable fabrication strategies of stable bulk heterojunction architecture that will retain functionality during the expected lifetime of the device. Block copolymer self-assembly strategies have attracted particular attention as a scalable means toward thermodynamically stable microstructures that combine the ideal geometrical characteristics of a bulk heterojunction with the fortuitous combination of properties of the constituent blocks. Two primary routes that have been proposed in the literature involve the coassembly of block copolymers in which one domain is a hole conductor with the electron-conducting filler (such as fullerene derivatives or the self-assembly of block copolymers in which the respective blocks function as hole and electron conductor. Either way has proven difficult because of the combination of synthetic challenges as well as the missing understanding of the complex governing parameters that control structure formation in semiconducting block copolymer blends. This paper summarizes important findings relating to structure formation of block copolymer and block copolymer/nanoparticle blend assembly that should provide a foundation for the future design of block copolymer-based photovoltaic systems.

  16. Wettability of silicone rubber maxillofacial prosthetic materials.

    Science.gov (United States)

    Waters, M G; Jagger, R G; Polyzois, G L

    1999-04-01

    Maxillofacial prosthetic materials that contact skin or mucosa should have good wettability. A material that is easily wetted will form a superior lubricating layer between the supporting tissues and, thus, reduce friction and patient discomfort. The surface energy of a maxillofacial prosthetic material will give an indication of the amount of energy available for adhesion and of the susceptibility of the material to bacterial adhesion. This study evaluated the wettability and surface energies of a range of commercially available silicone rubber maxillofacial prosthetic materials. Contact angles and surface energies were measured by using a dynamic contact angle measuring technique. Four commonly used silicone maxillofacial materials were tested and their properties compared with those of an acrylic resin denture base material and a widely used denture soft lining material. There were no significant differences in the wettability of the silicone rubber materials. All materials were significantly less wetted than the denture acrylic resin material. There were no significant differences in the surface energies of the silicone rubber materials, but all were significantly lower than denture acrylic resin material. The Cahn dynamic contact angle analyzer was a quick and reproducible method for determining the contact angles and surface energies of maxillofacial materials. Further work is needed to improve the wettability of silicone rubber materials used for maxillofacial prostheses, thus, reducing their potential to produce friction with tissues.

  17. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

    Science.gov (United States)

    Chiang, Yi-Fang; Jeng, Jun-Yuan; Lee, Mu-Huan; Peng, Shin-Rung; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin; Hsu, Yao-Jane; Hsu, Ching-Ming

    2014-04-07

    A low temperature (solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight.

  18. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops.

    Science.gov (United States)

    Liu, Yuqiang; Sun, Na; Liu, Jiawei; Wen, Zhen; Sun, Xuhui; Lee, Shuit-Tong; Sun, Baoquan

    2018-03-27

    Solar cells, as promising devices for converting light into electricity, have a dramatically reduced performance on rainy days. Here, an energy harvesting structure that integrates a solar cell and a triboelectric nanogenerator (TENG) device is built to realize power generation from both sunlight and raindrops. A heterojunction silicon (Si) solar cell is integrated with a TENG by a mutual electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film. Regarding the solar cell, imprinted PEDOT:PSS is used to reduce light reflection, which leads to an enhanced short-circuit current density. A single-electrode-mode water-drop TENG on the solar cell is built by combining imprinted polydimethylsiloxane (PDMS) as a triboelectric material combined with a PEDOT:PSS layer as an electrode. The increasing contact area between the imprinted PDMS and water drops greatly improves the output of the TENG with a peak short-circuit current of ∼33.0 nA and a peak open-circuit voltage of ∼2.14 V, respectively. The hybrid energy harvesting system integrated electrode configuration can combine the advantages of high current level of a solar cell and high voltage of a TENG device, promising an efficient approach to collect energy from the environment in different weather conditions.

  19. A transistor based on 2D material and silicon junction

    Science.gov (United States)

    Kim, Sanghoek; Lee, Seunghyun

    2017-07-01

    A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.

  20. Contact hysteroscopy.

    Science.gov (United States)

    Baggish, M S; Barbot, J

    1983-06-01

    In 1907 innovations in optics and illumination made by Maximilian Nitze were applied to hysteroscopy by Charles David, who wrote a treatise of hysteroscopy. David improved illumination by placing an electric incandescent bulb at the intrauterine end of his endoscope and also sealed the distal end of the tube with a piece of glass. The history of the contact endoscope that the authors personally used is connected to the invention by Vulmiere (1952) of a revolutionary illumination process in endoscopy--the "cold light" process. The components of cold light consist of a powerful external light source that is transmitted via a special optical guide into the endometrial cavity. The 1st application of his principle (1963) was an optical trochar contained in a metallic sheath. This simple endoscope was perfected, and in 1973 Barbot and Parent, in France, began to use it to examine the uterine cavity. Discussion focuses on methods, instrumentation, method for examination (grasping the instrument, setup, light source, anesthesia, dilatation, technique, and normal endometrium); cervical neoplasia; nonneoplastic lesions of the endometrium (endometrial polyp, submucous myoma, endometrial hyperplasia); intrauterine device localization; neoplastic lesions of the endometrium; precursors (adenocarcinoma); hysteroscopy in pregnancy (embryoscopy, hydatidiform mole, postpartum hemorrhage, incomplete abortion, spontaneous abortion, induced abortions, and amnioscopy); and examinations of children and infants. The contact endoscope must make light contact with the structure to be viewed. The principles of contact endoscopy depend on an interpretation of color, contour, vascular pattern, and a sense of touch. These are computed together and a diagnosis is made on the basis of previously learned clinical pathologic correlations. The contact endoscope is composed of 3 parts: an optical guide; a cylindric chamber that collects and traps ambient light; and a magnifying eyepiece. The phase of

  1. Clinical Study of Focus NIGHT &DAY® contact lenses | Aldebasi ...

    African Journals Online (AJOL)

    wear contact lenses for up to 3 weeks without ocular complications. Visual acuity, tear functions or corneal structure are not altered. Keywords: optometry, silicone hydrogel materials, resolution, ocular. Sudan Journal of Medical Sciences Vol.

  2. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  3. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  4. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Mihailetchi, VD; Blom, PWM

    2006-01-01

    We present model calculations to explore the potential of polymer/fullerene bulk heterojunction solar cells. As a starting point, devices based on poly(3-hexylthiophene) and 6,6-phenyl C-61-butyric acid methyl ester (PCBM), reaching 3.5% efficiency, are modeled. Lowering the polymeric band gap will

  5. Discontinuous pn-heterojunction for organic thin film transistors

    NARCIS (Netherlands)

    Cho, B.; Yu, S.H.; Kim, M.; Lee, M.H.; Huh, W.; Lee, J.; Kim, J.; Cho, J.H.; Lee, J.Y.; Song, Y.J.; Kang, M.S.

    2014-01-01

    Utilization of discontinuous pn-oragnic heterojunction is introduced as a versatile method to improve charge transport in organic thin film transistors (OTFTs). The method is demonstrated by depositing n-type dioctyl perylene tetracarboxylic diimide (PTCDI-C8) discontinuously onto base p-type

  6. Recent results on heterojunctions and superlattices: transport and optics

    International Nuclear Information System (INIS)

    Voos, M.

    1983-01-01

    Recent experimental results obtained on two-dimensional semiconductor structures, namely heterojunctions and superlattices are presented. This review, which includes both optical and transport experiments, is not exhaustive, but describes briefly some investigations which are thought to be important from the point of view of fundamental physics. (Author) [pt

  7. Efficient Crystalline Si/Poly(ethylene dioxythiophene):Poly(styrene sulfonate):Graphene Oxide Composite Heterojunction Solar Cells

    Science.gov (United States)

    Ono, Masahiro; Tang, Zeguo; Ishikawa, Ryo; Gotou, Takuya; Ueno, Keiji; Shirai, Hajime

    2012-03-01

    Efficient crystalline silicon (c-Si) heterojunction solar cells with conductive poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and graphene oxide (GO) composite are demonstrated using a structure of Ag/PEDOT:PSS/PEDOT:PSS:GO composite/c-Si (100)(ρ: 3-5 Ω.cm)/Al. The power-conversion efficiency η increased to 10.7% under illumination of AM1.5 100 mW/cm2 simulated solar light by adjusting the PEDOT:PSS and GO mixing concentration ratio. The GO addition to conductive PEDOT:PSS suppressed electron recombination and/or promoted the hole current at the anode. The soluble PEDOT:PSS:GO composite is promising as a hole-transporting transparent conducting layer for c-Si photovoltaic applications.

  8. Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Djiokap, S.R. Tankio, E-mail: stive.tankiodjiokap@nmmu.ac.za; Urgessa, Z.N.; Mbulanga, C.M.; Venter, A.; Botha, J.R.

    2016-01-01

    Zinc oxide (ZnO) nanorods have been synthesized by a two-step chemical bath deposition process on silicon substrates having different dopant densities and orientations. Scanning electron microscopy and X-ray diffraction analysis reveal that the orientation of the Si substrate does not affect the orientation, distribution or crystallinity of the nanostructures. The electrical properties of the ZnO/Si heterojunction are also investigated by current–voltage (I–V) measurements. The ideality factor is found to be 2.6 at 295 K, indicating that complex current transport mechanisms are at play. Temperature dependent I–V characteristics have been used to determine the dominant transport mechanism. The experimental results suggest that in the low bias region the current is dominated by a trap assisted multi-step tunneling process.

  9. Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current-voltage measurements

    Science.gov (United States)

    Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Venter, A.; Botha, J. R.

    2016-01-01

    Zinc oxide (ZnO) nanorods have been synthesized by a two-step chemical bath deposition process on silicon substrates having different dopant densities and orientations. Scanning electron microscopy and X-ray diffraction analysis reveal that the orientation of the Si substrate does not affect the orientation, distribution or crystallinity of the nanostructures. The electrical properties of the ZnO/Si heterojunction are also investigated by current-voltage (I-V) measurements. The ideality factor is found to be 2.6 at 295 K, indicating that complex current transport mechanisms are at play. Temperature dependent I-V characteristics have been used to determine the dominant transport mechanism. The experimental results suggest that in the low bias region the current is dominated by a trap assisted multi-step tunneling process.

  10. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  11. 24% efficient PERL structure silicon solar cells

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, A.; Green, M.A.

    1990-01-01

    This paper reports that the performance of silicon solar cells have been significantly improved using an improved PERL (passivated emitter, rear locally-diffused) cell structure. This structure overcomes deficiencies in an earlier PERC (passivated emitter and rear cell) cell structure by locally diffusing boron into contact areas at the rear of the cells. Terrestrial energy conversion efficiencies up to 24% are reported for silicon cells for the first time. Air Mass O efficiencies approach 21%. The first batches of concentrator cells using the new structure have demonstrated significant improvement with 29% efficient concentrator silicon cells expected in the near future

  12. Study of the interface in n{sup +}{mu}c-Si/p-type c-Si heterojunctions: role of the fluorine chemistry in the interface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Grimaldi, A.; Sacchetti, A.; Capezzuto, P.; Ambrico, M.; Bruno, G.; Roca, Francesco

    2003-03-03

    Investigation of n-p heterojunction solar cells obtained by depositing a n-type thin silicon films either amorphous or microcrystalline on p-type c-Si is carried out. The study is focused on the improvement of the c-Si surface and emitter layer/c-Si substrate interface. The peculiarity is the use of SiF{sub 4}-based plasmas for the in situ dry cleaning and passivation of the c-Si surface and for the PECVD deposition of the emitter layer that can be either amorphous (a-Si:H,F) or microcrystalline ({mu}c-Si). The use of SiF{sub 4} instead of the conventional SiH{sub 4} results in a lower hydrogen content in the film and in a reduction of the interaction of the c-Si surface with hydrogen atoms. Furthermore, the dependence of the heterojunction solar cell photovoltaic parameters on the insertion of an intrinsic buffer layer between the n-type thin silicon layer and the p-type c-Si substrate is discussed.

  13. Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

    Directory of Open Access Journals (Sweden)

    Hua Bing Tao

    2014-06-01

    Full Text Available A biomolecule-assisted pyrolysis method has been developed to synthesize sulfur-doped graphitic carbon nitride (CNS nanosheets. During the synthesis, sulfur could be introduced as a dopant into the lattice of carbon nitride (CN. Sulfur doping changed the texture as well as relative band positions of CN. By growing CN on preformed sulfur-doped CN nanosheets, composite CN/CNS heterojunction nanosheets were constructed, which significantly enhanced the photoelectrochemical performance as compared with various control counterparts including CN, CNS and physically mixed CN and CNS (CN+CNS. The enhanced photoelectrochemical performance of CN/CNS heterojunction nanosheets could be ascribed to the efficient separation of photoexcited charge carriers across the heterojunction interface. The strategy of designing and preparing CN/CNS heterojunction photocatalysts in this work can open up new directions for the construction of all CN-based heterojunction photocatalysts.

  14. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices

    Science.gov (United States)

    Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.

    2018-02-01

    In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10‑3 cm2. The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001–1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26–1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.

  15. Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Soylu, Murat, E-mail: soylum74@yahoo.com [Department of Physics, Faculty of Arts and Sciences, Bingol University, Bingol (Turkey); Girtan, Mihaela [Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers (France); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Arts and Sciences, Firat University, Elazig (Turkey)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer We have fabricated PEDOT:PEG/ZnO/p-Si heterojunction diode by sputter and spin coating, respectively. Black-Right-Pointing-Pointer The current-voltage (I-V) characteristics of PEDOT:PEG/ZnO show diode-like behavior. Black-Right-Pointing-Pointer AFM images indicate that the ZnO and PEDOT:PEG films are formed from the nanoparticles. Black-Right-Pointing-Pointer PEDOT:PEG is a semiconductor material with wide optical band energy gap of 3.81 eV. - Abstract: The zinc oxide (ZnO) and poly(3,4-ethylenedioxythiophene) bis-poly(ethyleneglycol) (PEDOT:PEG) films were deposited on p-Si substrate by sputter and spin coating methods, respectively. An organic/inorganic heterojunction diode having PEDOT:PEG/ZnO on p-Si substrate was fabricated. The barrier height (BH) and the ideality factor values for the device were found to be 0.82 {+-} 0.01 eV and 1.9 {+-} 0.01, respectively. It has been seen that the value of BH is significantly larger than those of conventional Au/p-Si metal-semiconductor contacts. The PEDOT:PEG/ZnO/p-Si heterostructure exhibits a non-ideal I-V behavior with the ideality factor greater than unity that could be ascribed to the interfacial layer, interface states and series resistance. The modified Norde's function combined with conventional forward I-V method was used to extract the parameters including the barrier height and series resistance. At the same time, the physical properties of ZnO and PEDOT:PEG films deposited by sputter and spin coating technique, respectively, were investigated at room temperature. The obtained results indicate that the electrical parameters of the diode are affected by structural properties of ZnO film and PEDOT:PEG organic film.

  16. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongxia; Zhang Heming; Song Jiuxu [Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: liuhongxia_xidian@126.co [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-01-15

    The electronic structure of the heterojunction is the foundation of the study on its working mechanism. Models of the heterojunctions formed by an (8, 0) boron nitride nanotube and an (8, 0) carbon nanotube with C-B or C-N interface have been established. The structures of the above heterojunctions were optimized with first-principle calculations based on density functional theory. The rearrangements of the heterojunctions concentrate mainly on their interfaces. The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the heterojunctions distribute in the carbon nanotube section. As the band offsets of the above heterojunctions are achieved with the average bond energy method, the band structure is plotted. (semiconductor materials)

  17. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  18. Silicon crystal growth using a liquid-feeding Czochralski method

    Science.gov (United States)

    Shiraishi, Yutaka; Kurosaka, Shoei; Imai, Masato

    1996-09-01

    Silicon single crystals with uniformity along the growth direction were grown using a new continuous Czochralski (CCZ) method. Polycrystalline silicon rods used as charge materials are melted by carbon heaters over a crucible without contact between the raw material and other substances. Using this method, silicon crystals with diameters as large as 6 or 8 inch and good uniformity along the growth direction were grown.

  19. Capacitance Voltage of P3HT:Graphene Nanocomposites Based Bulk-Heterojunction Organic Solar Cells

    International Nuclear Information System (INIS)

    Mohd Shariff, Nur Shakina; Mohamad Saad, Puteri Sarah; Mahmood, Mohamad Rusop

    2015-01-01

    After the discovery of conjugated polymer and bulk-heterojunction concept, organic solar cell has gain many interest in the photovoltaic world. The main problem for organic solar cells is that the power conversion efficiency (PCE) is still considered low even though it is much more low cost compared to inorganic solar cell such as Silicon (Si). Therefore, the objective of this research is to investigate the effect of Poly(3-hexylthiophene) (P3HT) thickness and concentration towards the capacitance voltage of the P3HT:Graphene solar cells. A simulation software called SCAPS is used in this research to simulate the effect on the solar cells. SCAPS is specialized for photovoltaic simulation studies. The solar cell's structure will be drawn inside the simulation and the parameters for each layers is inserted. The voltage range will be fixed and the capacitance voltage will be calculated by the software and all the results will be put into one graph. For thickness results, P3HT's layer at a thickness of 100nm has the lowest value of capacitance and clearly shows a peak at 0.86V. Where for the concentration, 1×10 16 cm -3 is the only value that clearly shows there is the built-in voltage (V bi ) in the solar cells. Therefore, P3HT's thickness of 100 nm and concentration of 1×10 16 cm −3 has the best overall results. (paper)

  20. Capacitance Voltage of P3HT:Graphene Nanocomposites Based Bulk-Heterojunction Organic Solar Cells

    Science.gov (United States)

    Shakina Mohd Shariff, Nur; Mohamad Saad, Puteri Sarah; Rusop Mahmood, Mohamad

    2015-11-01

    After the discovery of conjugated polymer and bulk-heterojunction concept, organic solar cell has gain many interest in the photovoltaic world. The main problem for organic solar cells is that the power conversion efficiency (PCE) is still considered low even though it is much more low cost compared to inorganic solar cell such as Silicon (Si). Therefore, the objective of this research is to investigate the effect of Poly(3-hexylthiophene) (P3HT) thickness and concentration towards the capacitance voltage of the P3HT:Graphene solar cells. A simulation software called SCAPS is used in this research to simulate the effect on the solar cells. SCAPS is specialized for photovoltaic simulation studies. The solar cell's structure will be drawn inside the simulation and the parameters for each layers is inserted. The voltage range will be fixed and the capacitance voltage will be calculated by the software and all the results will be put into one graph. For thickness results, P3HT's layer at a thickness of 100nm has the lowest value of capacitance and clearly shows a peak at 0.86V. Where for the concentration, 1×1016 cm-3 is the only value that clearly shows there is the built-in voltage (Vbi) in the solar cells. Therefore, P3HT's thickness of 100 nm and concentration of 1×1016 cm-3 has the best overall results.

  1. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-01-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  2. Temperature analysis of Ge/Si heterojunction SOI-Tunnel FET

    Science.gov (United States)

    Chander, Sweta; Sinha, Sanjeet Kumar; Kumar, Sanjay; Singh, Prince Kumar; Baral, Kamalaksha; Singh, Kunal; Jit, Satyabrat

    2017-10-01

    Temperature is a thermal parameter which affects the device performance. This paper presents the impact of the temperature variation on the electrical characteristics such as tunneling width, subthreshold swing, threshold voltage, and ION /IOFF ratio of Ge/Si heterojunction Silicon on Insulator (SOI) Tunnel Field Effect Transistor (TFET) for different drain voltages. The device exhibits better performance in comparison with homojunction of the same device for different temperatures. This study reveals that OFF current of the device is independent of drain voltage variation irrespective of temperature variation. A small change in the subthreshold swing (SS) with temperature variation shows the weaker dependence of SS on temperature. The analog performance parameters such as transconductance, output transconductance, gate capacitance, and transconductance-to-drain-current ratio of the device are also examined. A small variation in analog parameters with temperature variation shows that the device could be used for the high-temperature analog circuit applications. A broad range of temperature from 200 K to 400 K has been used to analyze the performance of the device using Synopsys Technology Computer Aided Design (TCAD) simulation tool.

  3. Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates

    Science.gov (United States)

    Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.

    2017-08-01

    In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.

  4. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  5. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  6. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Stability of the contact was studied for a time period of around 30 days and no significant ageing effect could be observed. Keywords. Porous silicon; passivation ... It has a wide range of applications in photonics and optoelectronics, quantum electronics, silicon-on insulator technology and recently in sensors (Dimitrov 1995; ...

  7. Design, fabrication, testing and packaging of a silicon ...

    Indian Academy of Sciences (India)

    In this paper, we describe the fabrication, wafer level test- ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. The device is a SPST direct contact series switch. The silicon on glass fabrication process has been suc- cessfully adapted by a number of groups to fabricate MEMS devices such ...

  8. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    Silicon nanoparticles attract a great deal of attention as they are used in logic gates, memory devices, light- emitting devices, sensors, bio-imaging, energy storage and photonic applications.1 Titanium nitride (TiN) is extensively used as an anti-wear coating,2 bio replace- ments,3 contact/barrier layer to silicon and as a gate.

  9. Photovoltaic effects of Si-CdSe n-n heterojunctions

    International Nuclear Information System (INIS)

    Chung, C.C.; Kim, W.T.

    1979-01-01

    Si-CdSe n-n heterojunction have been prepared by growing CdSe thin film on Si(111) surface with vacuum deposition method. The sign of photovoltage of this heterojunction was reversed at 1.67eV. The energy band profile of this heterojunction was deduced from its electrical and optical properties. This lattice mismatching abrupt heterojunction had a discontinuous energy band profile with the discontinuity of 0.87eV at the conduction band, of 0.27eV at the valance band. (author)

  10. Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Li, Xiao-Fei, E-mail: xf.li@uestc.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Chen, Tong; Li, Quan [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

    2015-09-04

    Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are attractive in spintronics. Here, we propose GNR/CNT/GNR heterojunctions constructed by attaching zigzag-GNRs at the side-wall of CNT for spintronic devices. The thermal stability and electronic transport properties were explored using ab initio molecular dynamics simulations and nonequilibrium Green's function methods, respectively. Results demonstrate that the sp{sup 3}-hybridized contacts formed at the interface assure a good thermal stability of the system and make the CNT to be regarded as resonator. Only the electron of one spin-orientation and resonant energy is allowed to transport, resulting in the remarkable spin-selective transport behavior at the ferromagnetic state. - Highlights: • The new mechanism for spin-selective transport in molecular junction is proposed. • The two sp{sup 3} contacts formed between CNT and GNR can be regarded as electronic isolators. • The two isolators make the CNT act as a resonator. • Only the electron of one spin-orientation and resonant energy can form standing wave and transport through the whole junction.

  11. Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Wang, Ling-Ling; Li, Xiao-Fei; Chen, Tong; Li, Quan

    2015-01-01

    Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are attractive in spintronics. Here, we propose GNR/CNT/GNR heterojunctions constructed by attaching zigzag-GNRs at the side-wall of CNT for spintronic devices. The thermal stability and electronic transport properties were explored using ab initio molecular dynamics simulations and nonequilibrium Green's function methods, respectively. Results demonstrate that the sp 3 -hybridized contacts formed at the interface assure a good thermal stability of the system and make the CNT to be regarded as resonator. Only the electron of one spin-orientation and resonant energy is allowed to transport, resulting in the remarkable spin-selective transport behavior at the ferromagnetic state. - Highlights: • The new mechanism for spin-selective transport in molecular junction is proposed. • The two sp 3 contacts formed between CNT and GNR can be regarded as electronic isolators. • The two isolators make the CNT act as a resonator. • Only the electron of one spin-orientation and resonant energy can form standing wave and transport through the whole junction

  12. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    Science.gov (United States)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  13. Determination of Contact Angle from Contact Area of Liquid Droplet Spreading on Solid Substrate

    Directory of Open Access Journals (Sweden)

    Rhoda H. GUMUS

    2007-01-01

    Full Text Available Both complete and incomplete wetting were considered for the spreading of liquid drops on solid substrate. The liquid droplets were silicone oil, glycerine and hexadecane and the solid substrates are glass, polystyrene and polymethyl methacrylate (PMMA. Wetting was characterized by measuring the contact angle formed between the liquid drop and solid surface. Small droplets of constant volume were used for the measurements in order to minimize gravitational effects. The contact radius was obtained as a function of time by an image analysis system and used for the calculation of the contact area. The contact area was then used to determine the contact angle. The contact angles calculated from contact area are in good agreement with the experimental values.

  14. heterojunction interface investigated by X-ray photoemission spectroscopy

    Science.gov (United States)

    Lin, Lingyan; Yu, Jinling; Cheng, Shuying; Lu, Peimin; Lai, Yunfeng; Lin, Sile; Zhao, Pengyi

    2014-09-01

    The band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface is investigated by X-ray photoemission spectroscopy. In2S3 is thermally evaporated onto the contamination-free polycrystalline Cu2ZnSnS4 surface prepared by magnetron sputtering. The valence band offset is measured to be 0.46 ± 0.1 eV, which matches well with the valance band offset value 0.49 eV calculated using "transitivity" method. The conduction band offset is determined to be 0.82 ± 0.1 eV, indicating a `type I' band alignment at the heterojunction interface.

  15. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  16. Si/ZnO NANO STRUCTURED HETEROJUNCTIONS BY APCVD METHOD

    Directory of Open Access Journals (Sweden)

    M. Maleki

    2015-12-01

    Full Text Available In this paper, polycrystalline pure zinc oxide nano structured thin films were deposited on two kinds of single crystal and polycrystalline of p and n type Si in three different substrate temperatures of 300, 400 and 500◦C by low cost APCVD method. Structural, electrical and optical properties of these thin films were characterized by X ray diffraction, two point probe method and UV visible spectrophotometer respectively. IV measurements of these heterojunctions showed that turn on voltage and series resistance will increase with increasing substrate temperature in polycrystalline Si, while in single crystal Si, turn on voltage will decrease. Although they are acceptable diodes, their efficiency as a heterojunction solar cell are so low

  17. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  18. Electrical Transport Properties of Carbon Nanotube Metal-Semiconductor Heterojunction

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2016-10-01

    Carbon nanotubes (CNTs) have been proved to have promising applicability in various fields of science and technology. Their fascinating mechanical, electrical, thermal, optical properties have caught the attention of today’s world. We have discussed here the great possibility of using CNTs in electronic devices. CNTs can be both metallic and semiconducting depending on their chirality. When two CNTs of different chirality are joined together via topological defects, they may acquire rectifying diode property. We have joined two tubes of different chiralities through circumferential Stone-Wales defects and calculated their density of states by nearest neighbor tight binding approximation. Transmission function is also calculated to analyze whether the junctions can be used as electronic devices. Different heterojunctions are modeled and analyzed in this study. Internal stresses in the heterojunctions are also calculated by molecular dynamics simulation.

  19. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  20. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity.

    Science.gov (United States)

    Ma, Xinguo; Wei, Yang; Wei, Zhen; He, Hua; Huang, Chuyun; Zhu, Yongfa

    2017-12-15

    The photoelectrochemical properties of g-C 3 N 4 sheet are modified by the π-π stacking interaction with graphene, and the corresponding role of graphene on the surface chemical reactions is investigated by density functional theory. The calculated cohesive energies and the lattice mismatch energies indicate that g-C 3 N 4 and graphene are in parallel contact and can form a stable heterojunction. According to our calculated energy band structures and work functions of g-C 3 N 4 /graphene heterojunctions, the band edge modulations by graphene are discussed and corresponding photoinduced charge transfer processes are analyzed in detail. It is found that the incorporating of graphene into g-C 3 N 4 facilitates the separation of photoinduced e - /h + pairs and the oxidation capacity enhancement of the photoinduced holes with the downshifting of the valence band edge of g-C 3 N 4 layer. It is identified that the inhomogeneous onsite energies between interlayer and the band edge modulations are induced by the inhomogeneous charge redistribution between interlayer caused by graphene. Further, the initial dynamic reaction processes of oxygen atoms in g-C 3 N 4 /graphene heterojunctions also confirm the significant role of graphene on the surface chemical reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    Science.gov (United States)

    Long, Yun-Ze; Yin, Zhi-Hua; Hui, Wen; Chen, Zhao-Jia; Wan, Mei-Xiang

    2008-07-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory.

  2. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc-silicon dioxide matrix coatings. 175.390... COATINGS Substances for Use as Components of Coatings § 175.390 Zinc-silicon dioxide matrix coatings. Zinc-silicon dioxide matrix coatings may be safely used as the food-contact surface of articles intended for...

  3. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  4. Heterojunction bipolar transistor technology for data acquisition and communication

    Science.gov (United States)

    Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.

    1992-01-01

    Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.

  5. Interface states in a class of heterojunctions between diatomic semiconductors

    International Nuclear Information System (INIS)

    Kandilarov, B.D.; Detcheva, V.

    1979-09-01

    The theory of interface state in heterojunctions between diatomic semiconductors is developed in the framework of the S-matrix approach and on the basis of a one-dimensional model. The condition for the existence of interface states is explicitly derived for undeformed and deformed herterojunctions. Numerical analysis is performed and several particular cases are discussed in order to clarify the general features of the problem. (author)

  6. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions

    Science.gov (United States)

    Huang, Ya-Shih; Westenhoff, Sebastian; Avilov, Igor; Sreearunothai, Paiboon; Hodgkiss, Justin M.; Deleener, Caroline; Friend, Richard H.; Beljonne, David

    2008-06-01

    Heterojunctions between organic semiconductors are central to the operation of light-emitting and photovoltaic diodes, providing respectively for electron-hole capture and separation. However, relatively little is known about the character of electronic excitations stable at the heterojunction. We have developed molecular models to study such interfacial excited electronic excitations that form at the heterojunction between model polymer donor and polymer acceptor systems: poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with F8BT. We find that for stable ground-state geometries the excited state has a strong charge-transfer character. Furthermore, when partly covalent, modelled radiative lifetimes (~10-7s) and off-chain axis polarization (30∘) match observed `exciplex' emission. Additionally for the PFB:F8BT blend, geometries with fully ionic character are also found, thus accounting for the low electroluminescence efficiency of this system.

  7. Electrical conduction by interface states in semiconductor heterojunctions

    Science.gov (United States)

    El Yacoubi, M.; Evrard, R.; Nguyen, N. D.; Schmeits, M.

    2000-04-01

    Electrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this defect band then allows the transit of electrons from the conduction band of one semiconductor to the valence band of the second component. The analysis is initiated by electrical measurements on n-CdS/p-CdTe heterojunctions obtained by chemical vapour deposition of CdS on (111) oriented CdTe single crystals, for which current-voltage and capacitance-frequency results are shown. The theoretical analysis is based on the numerical resolution of Poisson's equation and the continuity equations of electrons, holes and defect states, where a current component corresponding to the defect band conduction is explicitly included. Comparison with the experimental curves shows that this formalism yields an efficient tool to model the conduction process through the interface region. It also allows us to determine critical values of the physical parameters when a particular step in the conduction mechanism becomes dominant.

  8. Investigation of the two-gap superconductivity in a few-layer NbSe2-graphene heterojunction

    Science.gov (United States)

    Han, Tianyi; Shen, Junying; Yuan, Noah F. Q.; Lin, Jiangxiazi; Wu, Zefei; Wu, Yingying; Xu, Shuigang; An, Liheng; Long, Gen; Wang, Yuanwei; Lortz, Rolf; Wang, Ning

    2018-02-01

    We investigated the superconductivity in a few-layer NbSe2-graphene heterojunction by differential conductance spectroscopy. Because of the gate-tunable Fermi level of the few-layer graphene, used here as a tunneling electrode in a nano-point-contact spectroscopy setup, the differential conductance of the heterojunction showed highly sensitive dependence on the gate voltage, which allowed us to probe the nature of the superconducting gap functions with unprecedented detail by continuously tuning the transparency of the junction between the spectroscopic tunneling and the Andreev reflection limits. Characteristic features associated with a two-gap superconductivity in NbSe2 were reproducibly observed in both limits and between, e.g., in the form of a central conductance dip with two sets of coherence peaks when the Fermi level was close to the charge neutrality point of graphene. From fits with the Blonder-Tinkham-Klapwijk model, two gaps with their temperature dependence were extracted. The two gaps associated with the two-band superconductivity in NbSe2 followed the expected temperature behavior in the limit of weak interband scattering, with a gap to Tc ratio suggesting a weak to moderately strong coupling in few-layer systems.

  9. Wettability of naturally aged silicone and EPDM composite insulators

    Energy Technology Data Exchange (ETDEWEB)

    Gubanski, S.M. (Royal Inst. of Tech., Stockholm (Sweden)); Vlastos, A.E. (Chalmers Univ. of Tech., Goeteborg (Sweden))

    1990-07-01

    This paper reports the wettability of aged surfaces and of the bulk of naturally aged silicone and EPDM insulator housings and of silicone elastomer insulator coatings studied. The samples were taken either directly from the insulators or treated by exposing them to corona discharges and/or to saline pollution. The results show that the contact angles of the silicone rubber insulator surfaces are larger than the contact angles of the RTV silicone rubber coating and of the EPDM rubber insulator surfaces, especially when the surfaces are aged. When the insulators were exposed to corona discharges, the contact angles of the silicone rubber insulators are reduced but after the exposure they recover with time. The contact angles of the EPDM rubber insulators, however, after the exposure, continue to reduce. When exposed to artificial saline pollution, the silicone rubber insulators show a limited recovery of their contact angles with time, while, when exposed to corona discharge, they show a recovery of the contact angle after the exposure. The time for recovery is dependent on the exposure time to the corona discharges.

  10. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino, E-mail: flo@ipicyt.edu.mx

    2016-04-15

    Graphical abstract: Single-layer honeycomb heterojunction structures based on alternated and coupled ribbons of BAs and AlN are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different ribbon widths joined along the zigzag and armchair edges. Optimized heterojunction geometries results revealed that BAs narrow ribbons exhibit a corrugation effect at the interface due to a lattice mismatch. From formation energy calculations, it was found that zigzag heterojunctions are more stable than the armchair heterojunctions. - Highlights: • We design new 2D-semiconductor heterojunction nanostructures. • Monolayers formed by alternated strips (heterojunctions) of aluminum-nitride and boron-arsenide, with graphene-like structure are explored by DFT method. • Due to the lattice mismatch, an effect of corrugation was observed in heterojunctions AlN and BAs. • Electronic band gaps are strongly dependent on width and chirality (zigzag or armchair) of the strips. • Formation energy calculations revealed that zigzag heterojunctions are more stable than the armchair heterojunctions. - Abstract: BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation

  11. Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates

    Science.gov (United States)

    Chang, C. S.; Chattopadhyay, S.; Chen, L. C.; Chen, K. H.; Chen, C. W.; Chen, Y. F.; Collazo, R.; Sitar, Z.

    2003-09-01

    Field emission of electrons from narrow-band-gap and wide-band-gap one-dimensional nanostructures were studied. N-type silicon substrates enhanced the emission from the low-band-gap silicon nanowires and carbon nanotubes, whereas p-type substrates were a better choice for field emission from wide-band-gap silicon carbon nitride nanocrystalline thin films and nanorods. The role of the substrate-nanostructure interface was modeled based on different junction mechanisms to explain, qualitatively, the fundamentally different emission behavior of these nanostructures when n- and p-type silicon substrates were used. The results could be explained on the basis of simple carrier transport across the silicon-silicon nanowire interface and subsequent tunneling of electrons for the silicon nanowires. Schottky barrier theory can explain the better field emission of electrons from the n-type silicon supported carbon nanotubes. The decreased barrier height at the interface of the silicon-silicon carbon nitride heterojunction, when p-type silicon substrate was used, could explain the superior field emission in comparison to when n-type silicon substrates were used.

  12. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  13. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device

    Science.gov (United States)

    Pudasaini, P. R.; Ayon, A. A.

    2013-12-01

    Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.

  14. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  15. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  16. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  17. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  18. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  19. Black silicon with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by mask-less reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Black bus-bars were realized by oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies may result in aesthetic, all-black panels based on conventional, front-contacted solar cells...

  20. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    of Computer Science and Electrical Engineering, Morgantown, West Virginia 26506, United States Abstract. CdSe-based nanocrystal quantum wells (QWs...Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal - Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal -Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title

  1. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  2. Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material's dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

  3. Negative differential resistance in heterojunction polymeric films

    Science.gov (United States)

    Rathi, Sonika; Gupta, Saral K.; Negi, Chandra Mohan Singh; Singh, Amarjeet

    2018-02-01

    For the first time, Negative Differential Resistance (NDR) is reported in purely polymeric systems. A tri-layer thin film system of PEDOT:PSS, P3HT and PCBM was prepared using spin coating method on ITO substrates and Al contact was deposited on other side using thermal vacuum evaporation. Current -Voltage (I-V) measurements were carried out at room temperature where NDR behaviour was observed which was repeatable only qualitatively for as-prepared device. On annealing at 40 °C for 2 h, the NDR became stable however at the cost of peak broadening and was even repeatable quantitatively within reasonable percentage of errors. On further annealing at higher temperatures (60° & 80° C), the NDR disappeared most likely due to isolated networks and disconnected domains of P3HT/PCBM. Simple construction, robust NDR and large current shown by these devices make them potential candidate for the development of organic memory elements.

  4. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  5. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Morales-Masis, M.; de Nicolas, S.M.; Holovský, Jakub; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 5, č. 5 (2015), s. 1340-1347 ISSN 2156-3381 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : solar cells * amorphous * ITO * TCO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2015

  6. Attenuated total reflectance Fourier-transform infrared spectroscopic investigation of silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; De Wolf, S.; Jiříček, Petr; Ballif, C.

    2015-01-01

    Roč. 86, č. 7 (2015), , "073108-1"-"073108-6" ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk 7E12029; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : FTIR * ATR * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.336, year: 2015

  7. High performance nanostructured Silicon heterojunction for water splitting on large scales

    KAUST Repository

    Bonifazi, Marcella

    2017-11-02

    In past years the global demand for energy has been increasing steeply, as well as the awareness that new sources of clean energy are essential. Photo-electrochemical devices (PEC) for water splitting applications have stirred great interest, and different approach has been explored to improve the efficiency of these devices and to avoid optical losses at the interfaces with water. These include engineering materials and nanostructuring the device\\'s surfaces [1]-[2]. Despite the promising initial results, there are still many drawbacks that needs to be overcome to reach large scale production with optimized performances [3]. We present a new device that relies on the optimization of the nanostructuring process that exploits suitably disordered surfaces. Additionally, this device could harvest light on both sides to efficiently gain and store the energy to keep the photocatalytic reaction active.

  8. Assessment of the energy performance, economics and environmental footprint of silicon heterojunction photovoltaic technology

    NARCIS (Netherlands)

    Louwen, A.

    2017-01-01

    To make the transition towards a more sustainable energy supply, it is necessary that we drastically increase the share of renewable electricity generation. Solar photovoltaic energy is regarded as one of the prime options to reduce the greenhouse gas intensity of our electricity supply, and many

  9. Gadolinium Oxide / Silicon Thin Film Heterojunction Solid-State Neutron Detector

    Science.gov (United States)

    2010-03-01

    60 FIG. 37 THE CURRENT MODE EXPERIMENT REQUIRED A SPLITTER BOX IN ORDER TO CONTINUE THE USE OF COAXIAL CABLES AND BNC...samples from the targets. Gold and aluminum targets were placed into the magnetron “ gun ” positions inside the 23 chamber and a collimator was...evacuation of the chamber required 12 hours to reach high vacuum. Power was applied to the targets and argon gas was introduced. A plasma was ignited

  10. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    Directory of Open Access Journals (Sweden)

    Md Rezaul Hasan

    2015-10-01

    Full Text Available A self-powered ultraviolet (UV photodetector (PD based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO coated plastic polyethylene terephthalate (PET substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either frontside or backside. Morphology, structural, chemical, and optical properties of sputtered NiO and ZnO films were also investigated.

  11. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  12. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-04-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements.

  13. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Directory of Open Access Journals (Sweden)

    Xiaoyun Li

    2018-03-01

    Full Text Available PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene (PFH on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  14. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    Science.gov (United States)

    Li, Xiaoyun; Liu, Wei; Li, Peigang; Song, Jia; An, Yuehua; Shen, Jingqin; Wang, Shunli; Guo, Daoyou

    2018-03-01

    PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene) (PFH) on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO) transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  15. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  16. Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium

    Science.gov (United States)

    Von Ross, O.

    1980-01-01

    A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.

  17. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector

    Directory of Open Access Journals (Sweden)

    Cristina de Dios

    2013-09-01

    Full Text Available A visible light communication (VLC system using an organic bulk heterojunction photodetector (OPD is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene (P3HT and phenyl C61-butyric acid methyl ester (PCBM. The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at −6 V.

  18. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visible light communication system using an organic bulk heterojunction photodetector.

    Science.gov (United States)

    Arredondo, Belén; Romero, Beatriz; Pena, José Manuel Sánchez; Fernández-Pacheco, Agustín; Alonso, Eduardo; Vergaz, Ricardo; de Dios, Cristina

    2013-09-12

    A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at -6 V.

  20. Electric field engineering using quantum-size-effect-tuned heterojunctions

    KAUST Repository

    Adinolfi, V.

    2013-07-03

    A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.

  1. Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Sandro Lattante

    2014-03-01

    Full Text Available Bulk heterojunction polymer solar cells (BHJ PSCs are very promising organic-based devices for low-cost solar energy conversion, compatible with roll-to-roll or general printing methods for mass production. Nevertheless, to date, many issues should still be addressed, one of these being the poor stability in ambient conditions. One elegant way to overcome such an issue is the so-called “inverted” BHJ PSC, a device geometry in which the charge collection is reverted in comparison with the standard geometry device, i.e., the electrons are collected by the bottom electrode and the holes by the top electrode (in contact with air. This reverted geometry allows one to use a high work function top metal electrode, like silver or gold (thus avoiding its fast oxidation and degradation, and eliminates the need of a polymeric hole transport layer, typically of an acidic nature, on top of the transparent metal oxide bottom electrode. Moreover, this geometry is fully compatible with standard roll-to-roll manufacturing in air and is less demanding for a good post-production encapsulation process. To date, the external power conversion efficiencies of the inverted devices are generally comparable to their standard analogues, once both the electron transport layer and the hole transport layer are fully optimized for the particular device. Here, the most recent results on this particular optimization process will be reviewed, and a general outlook regarding the inverted BHJ PSC will be depicted.

  2. Photovoltaic activity of a PolyProDOT derivative in a bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Luis M. [Department of Chemistry and Biochemistry and Exotic Materials Institute, University of California, Los Angeles, CA 90095-1569 (United States); Mozer, Attila J.; Guenes, Serap; Winder, Christoph; Neugebauer, Helmut; Sariciftci, N. Serdar [Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Thompson, Barry C.; Reeves, Benjamin D.; Grenier, Christophe R.G.; Reynolds, John R. [The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States)

    2006-12-15

    We report the photophysical behavior and photovoltaic performance of a poly(3,4-propylenedioxythiophene) (PProDOT) derivative, namely poly-[3,3-dihexyl-3,4-dihydro-2H-thieno(3,4-b)(1,4)dioxepine] (PProDOT(Hx){sub 2}), as an electron donor in bulk heterojunction solar cells blended with the acceptor 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM). Devices composed of a 1:4 (w:w) ratio of PProDOT(Hx){sub 2}/PCBM and spin coated from chlorobenzene were characterized by measuring current-voltage characteristics under simulated Air Mass 1.5 (AM1.5) conditions as well as the spectrally resolved photocurrent (IPCE). The influence of different preparation parameters like various blend ratios, spin coating from different solvents, and changing the metal contacts was studied. It was found that the photoluminescence of the polymer is quenched by a factor greater than 100 using blends consisting of PProDOT(Hx){sub 2} and PCBM (3:2, w:w). Additionally, the photoactive blends were characterized by photoinduced absorption spectroscopy and the results suggest that charge transfer is occurring from PProDOT(Hx){sub 2} to PCBM. Results from atomic force microscopy reveal that a bicontinuous network, with domain sizes on the order of 100-200nm, results when a 1:4 blend of PProDOT(Hx){sub 2}/PCBM is spin coated from chlorobenzene. (author)

  3. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  4. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy.

    Science.gov (United States)

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; Yang, Tiannan; Hsieh, Ying-Hui; Chiou, Yu-You; Liu, Heng-Jui; Do, Thi Hien; Su, Dong; Chen, Yi-Chun; Jen, Shien-Uang; Chen, Long-Qing; Kim, Kee Hoon; Juang, Jenh-Yih; Chu, Ying-Hao

    2017-06-27

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric-ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this study, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)-CoFe 2 O 4 (CFO) bulk heterojunction epitaxially grown on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO-CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.

  5. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra Kumar, E-mail: satyndra.singh.eee09@itbhu.ac.in [Department of Electronics and Communication Engineering, Model Institute of Engineering and Technology, Jammu, 181122 (India); Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004 (India); Hazra, Purnima, E-mail: purnima.hazra@smvdu.ac.in [Department of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 (India)

    2017-04-01

    Highlights: • Synthesize ZnO nanoparticle thin film on p-Si substrate using RF sputtering method. • I–V and C–V characteristics of Si/ZnO heterojunction diode are studied. • High temperature performance is analyzed accounting barrier height inhomogeneities. • Gaussian distribution of BH inhomogeneities is considered to modify Richardson plot. • Modified R constant is 33.06 Acm{sup −2}K{sup −2}, i.e. nearer to theoretical value 32 Acm{sup −2}K{sup −2}. - Abstract: In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300–433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300–800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier

  6. [The occlusal contact mode during lateral excursion].

    Science.gov (United States)

    Sugawara, N

    2000-09-01

    The purpose of this study is to clarify the occlusal contact mode between the upper and lower molars on the working side of group function occlusion during lateral excursion. After the intercuspal position (IP) and two lateral positions (L1, the middle point between IP and L2; L2, the edge-to-edge occlusal position of the molars) on the Gothic arch were defined, occlusal contact relations in these three occlusal positions were recorded, using black silicone. Digital data of real occlusal contacts and visualized data of close (less than 30 microns) occlusal areas, by computer image processing, were analyzed. The conclusions are as follows: 1. Although the numbers of real occlusal contacts and the visualized occlusal area tend to decrease toward L2 during lateral excursion, the former, in some cases, goes up and down. 2. Functional cusps play an important part in occlusal contact at the intercuspal position. 3. Occlusal contact points are on the functional cusps of the upper and lower molars, which can be clinically regarded as certain points, and these points slide on the inclining non-functional cusps of antagonistic teeth during lateral excursion. 4. Each upper and lower molar has 2 to 6 occlusal contact points near the top functional cusps at the intercuspal position, and some of them contact continuously during lateral excursion.

  7. SiNTO EWT silicon solar cells

    OpenAIRE

    Fallisch, A.; Keding, R.; Kästner, G.; Bartsch, J.; Werner, S.; Stüwe, D.; Specht, J.; Preu, R.; Biro, D.

    2010-01-01

    In this work we combine the SiNTO cell process with the EWT cell concept. All masking steps are performed by inkjet printing technology. The via-holes and laser-fired contacts are created by high-speed laser drilling. A new polishing process, which is suitable for inkjet masking, to pattern the interdigitated grid on the rear side is developed. For passivation purposes a thermal silicon oxide is used for the rear surface and a silicon nitride antireflection coating for the front surface. An e...

  8. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non-Prescription Contact Lens Laura: Vision ... Robyn: Blurry Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  12. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  13. X-Ray Nanoscopy of a Bulk Heterojunction.

    Directory of Open Access Journals (Sweden)

    Nilesh Patil

    Full Text Available Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  14. Fabrication of CdTe/Si heterojunction solar cell

    Science.gov (United States)

    Bera, Swades Ranjan; Saha, Satyajit

    2016-10-01

    A simple cost effective method is preferred to grow nanoparticles of CdTe. Nanoparticles of CdTe are grown by simple chemical reduction route using EDA as capping agent and Sodium Borohydride as reducing agent. The grown nanoparticles are characterized using transmission electron microscopy (TEM), X-ray diffraction, optical absorption, and photoluminescence study. From optical absorption study, the band-gap was found to be 2.46 eV. From TEM study, the average particle size was found to be within 8-12 nm which confirms the formation of CdTe nanoparticles. Pl spectra indicate the luminescence from surface states at 2.01 eV, which is less compared to the increased band-gap of 2.46 eV. The grown nanoparticles are used to fabricate a heterojunction of CdTe on P-Si by a spin coating technique for solar cell fabrication in a cost effective way. I-V characteristics of the grown heterojunction in dark as well as under light are measured. Efficiency and fill-factor of the device are estimated.

  15. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  17. Electrical transport mechanisms in p{sup +} a-SiC:H/n c-Si heterojunctions: Dark J-V-T characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cleef, M.W.M. van; Philippens, M.W.H.; Rubinelli, F.A.; Schropp, R.E.I. [Utrecht Univ. (Netherlands); Kolter, M. [Forschungzentrum Juelich (Germany)

    1996-12-31

    In the present paper the authors show results of dark current-voltage measurements performed on p{sup +} a-SiC:H/n c-Si heterojunction diodes at various temperatures (100--400K). They investigated the voltage derivative of these J-V curves in order to distinguish possible current transport mechanisms. It was found that for low temperatures (<300K), the current is determined by recombination of carriers in the crystalline silicon, whereas at high temperature (>300K), by a tunneling mechanism. At room temperature, both mechanisms contribute to the current. By using an equivalent circuit model and detailed numerical simulations the authors have interpreted their experimental characteristics. The simulations done at room temperature, show that at low forward bias voltage the current is controlled by recombination in the crystalline silicon and that at high forward bias voltage by a combination of multi-step tunneling and a-SiC:H series resistance. For interface state densities equal to or higher than 10{sup 12} cm{sup {minus}2}, the recombination was found to be dominated by the states at the amorphous-crystalline silicon interface.

  18. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  19. Crystalline Silicon/Graphene Oxide Hybrid Junction Solar Cells

    Science.gov (United States)

    Liu, Qiming; Wanatabe, Fumiya; Hoshino, Aya; Ishikawa, Ryo; Gotou, Takuya; Ueno, Keiji; Shirai, Hajime

    2012-10-01

    Soluble graphene oxide (GO) and plasma-reduced (pr-) GO were investigated using crystalline silicon (c-Si) (100)/GO/pr-GO hybrid junction solar cells. Their photovoltaic performances were compared with those of c-Si/GO/pristine conductive poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) heterojunction and c-Si/PEDOT:PSS:GO composite devices. The c-Si/GO/pr-GO and conductive PEDOT:PSS/Al heterojunction solar cells showed power conversion efficiencies of 6.5 and 8.2%, respectively, under illumination with AM 1.5 G 100 mW/cm2 simulated solar light. A higher performance of 10.7% was achieved using the PEDOT:PSS:GO (12.5 wt %) composite device. These findings imply that soluble GO, pr-GO, and the PEDOT:PSS:GO composite are promising materials as hole transport and transparent conductive layers for c-Si/organic hybrid junction solar cells.

  20. Single crystalline silicon solar cells with rib structure

    Directory of Open Access Journals (Sweden)

    Shuhei Yoshiba

    2017-02-01

    Full Text Available To improve the conversion efficiency of Si solar cells, we have developed a thin Si wafer-based solar cell that uses a rib structure. The open-circuit voltage of a solar cell is known to increase with deceasing wafer thickness if the cell is adequately passivated. However, it is not easy to handle very thin wafers because they are brittle and are subject to warpage. We fabricated a lattice-shaped rib structure on the rear side of a thin Si wafer to improve the wafer’s strength. A silicon nitride film was deposited on the Si wafer surface and patterned to form a mask to fabricate the lattice-shaped rib, and the wafer was then etched using KOH to reduce the thickness of the active area, except for the rib region. Using this structure in a Si heterojunction cell, we demonstrated that a high open-circuit voltage (VOC could be obtained by thinning the wafer without sacrificing its strength. A wafer with thickness of 30 μm was prepared easily using this structure. We then fabricated Si heterojunction solar cells using these rib wafers, and measured their implied VOC as a function of wafer thickness. The measured values were compared with device simulation results, and we found that the measured VOC agrees well with the simulated results. To optimize the rib and cell design, we also performed device simulations using various wafer thicknesses and rib dimensions.

  1. Triple Layer Antireflection Design Concept for the Front Side of c-Si Heterojunction Solar Cell Based on the Antireflective Effect of nc-3C-SiC:H Emitter Layer

    Directory of Open Access Journals (Sweden)

    Erick Omondi Ateto

    2016-01-01

    Full Text Available We investigated the antireflective (AR effect of hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H emitter and its application in the triple layer AR design for the front side of silicon heterojunction (SHJ solar cell. We found that the nc-3C-SiC:H emitter can serve both as an emitter and antireflective coating for SHJ solar cell, which enables us to realize the triple AR design by adding one additional dielectric layer to normally used SHJ structure with a transparent conductive oxide (TCO and an emitter layer. The optimized SHJ structure with the triple layer AR coating (LiF/ITO/nc-3C-SiC:H exhibit a short circuit current density (Jsc of 38.65 mA/cm2 and lower reflectivity of about 3.42% at wavelength range of 300 nm–1000 nm.

  2. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  3. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  4. Method for silicon carbide production by reacting silica with hydrocarbon gas

    Science.gov (United States)

    Glatzmaier, Gregory C.

    1994-01-01

    A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400.degree. C. to 1000.degree. C. where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100.degree. C. to 1600.degree. C. to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  5. Fabrication and characterization of amorphous Si/crystalline Si heterojunction devices for photovoltaic applications

    Science.gov (United States)

    Baroughi, M. Farrokh; Jeyakumar, R.; Vygranenko, Y.; Khalvati, F.; Sivoththaman, S.

    2004-05-01

    Heterojunction diode and heterojunction photovoltaic cell structures are fabricated with (n+)a-Si/(i)a-Si and rf-sputtered indium-tin-oxide/Al films deposited on p-type crystalline Si using a plasma-enhanced chemical vapor deposition cluster tool system. Dark current-voltage characteristics of the heterojunction diodes are used to determine the carrier transport mechanisms. Experimental results showed the current is recombination-dominated at low forward bias (VAextract band diagram parameters of the heterojunction diodes. Measured parameters, built-in potential, and conduction and valence band offsets, have been verified by Analysis of Microelectronic and Photonic Structures numerical device simulator. External quantum efficiency has been measured on photovoltaic cells and used for calculation of short-circuit current under AM1.5 illumination. .

  6. Heterojunction Bipolar Transistor Power Amplifiers for Long-Range X-band Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I project, Vega Wave Systems, Inc. will develop and demonstrate a novel InGaP-GaAs heterojunction bipolar transistor power amplifier for...

  7. A probe station for testing silicon sensors

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    A probe station for testing silicon sensors. The probe station is located inside a dark box that can keep away light during the measurement. The set-up is located in the DSF (Department Silicon Facility). The golden plate is the "chuck" where the sensor is usually placed on. With the help of "manipulators", thin needles can be precisely positioned that can contact the sensor surface. Using these needles and the golden chuck, a high voltage can be applied to the sensor to test its behaviour under high voltage. We will use the silicon sensors that we test here for building prototypes of a highly granular sandwich calorimeter, the CMS HGC (Highly granular Calorimeter) upgrade for High-Luminosity LHC.

  8. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  9. 2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 μm

    Science.gov (United States)

    Masini, Gianlorenzo; Colace, Lorenzo; Assanto, Gaetano

    2003-04-01

    We report on a fast polycrystalline germanium-on-silicon heterojunction photodetector for the near-infrared. The device exhibits a pulse response faster than 200 ps, allowing operation at 2.5 Gbit/s as testified by open eye diagrams. This polycrystalline device, with responsivities of 16 and 5 mA/W at 1.3 and 1.55 μm, respectively, and dark currents of 1 mA/cm2, is entirely integrable on standard silicon electronics and is an appealing low-cost candidate for fiber-to-the-home communication networks.

  10. Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices

    Science.gov (United States)

    2010-01-01

    dimensional (2-D) single atomic carbon sheets of graphene show remarkable elec- tronic, thermal , and mechanical properties attractive for a variety of...Kim, K.; Liu, J.; Carroll, D. L. Thermal Diffusion Processes in Bulk Heterojunction Formation for Poly-3-hexylthiophene/ C60 Single Heterojunction...semiconducting materials of dif- ferent ionization potentials or electron af- finities. Soluble conjugated polymers and fullerene have been widely

  11. Simulation of the tunnelling transport in ferromagnetic GaAs/ZnO heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; Garcia-Loureiro, A J [Department de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Spain (Spain); Gehring, G A, E-mail: enrique.comesana@usc.e [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2010-07-01

    In this work we have implemented a numerical simulator and analytical model to study the dependence of the tunnelling current on the polarization ratio of the carrier spin for a degenerate and ferromagnetic heterojunction. We have applied these models to study the behaviour of a magnetically doped GaAs/ZnO PN junction and the current transport in a PN heterojunction where the polarization of the spin of the charge carriers is also a control variable.

  12. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.

    2012-03-30

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Correct contact lens hygiene].

    Science.gov (United States)

    Blümle, S; Kaercher, T; Khaireddin, R

    2013-06-01

    Although contact lenses have long been established in ophthalmology, practical aspects of handling contact lenses is becoming increasingly less important in the clinical training as specialist for ophthalmology. Simultaneously, for many reasons injuries due to wearing contact lenses are increasing. In order to correct this discrepancy, information on contact lenses and practical experience with them must be substantially increased from a medical perspective. This review article deals with the most important aspects for prevention of complications, i.e. contact lens hygiene.

  14. Selective Interlayers and Contacts in Organic Photovoltaic Cells.

    Science.gov (United States)

    Ratcliff, Erin L; Zacher, Brian; Armstrong, Neal R

    2011-06-02

    Organic photovoltaic cells (OPVs) are promising solar electric energy conversion systems with impressive recent optimization of active layers. OPV optimization must now be accompanied by the development of new charge-selective contacts and interlayers. This Perspective considers the role of interface science in energy harvesting using OPVs, looking back at early photoelectrochemical (photogalvanic) energy conversion platforms, which suffered from a lack of charge carrier selectivity. We then examine recent platforms and the fundamental aspects of selective harvesting of holes and electrons at opposite contacts. For blended heterojunction OPVs, contact/interlayer design is especially critical because charge harvesting competes with recombination at these same contacts. New interlayer materials can modify contacts to both control work function and introduce selectivity and chemical compatibility with nonpolar active layers and add thermodynamic and kinetic selectivity to charge harvesting. We briefly discuss the surface and interface science required for the development of new interlayer materials and take a look ahead at the challenges yet to be faced in their optimization.

  15. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    Science.gov (United States)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  16. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  17. Different Device Architectures for Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Getachew Adam

    2016-08-01

    Full Text Available We report different solar cell designs which allow a simple electrical connection of subsequent devices deposited on the same substrate. By arranging so-called standard and inverted solar-cell architectures next to each other, a serial connection of the two devices can easily be realized by a single compound electrode. In this work, we tested different interfacial layer materials like polyethylenimine (PEI and PEDOT:PSS, and silver as a non-transparent electrode material. We also built organic light emitting diodes applying the same device designs demonstrating the versatility of applied layer stacks. The proposed design should allow the preparation of organic bulk-heterojunction modules with minimized photovoltaically inactive regions at the interconnection of individual devices.

  18. InN-based heterojunction photodetector with extended infrared response

    KAUST Repository

    Hsu, Lung-Hsing

    2015-11-21

    © 2015 Optical Society of America. The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two nonradiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

  19. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    Science.gov (United States)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  20. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    Science.gov (United States)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  1. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  2. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-03-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N+ pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  3. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route

    Science.gov (United States)

    Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho

    2017-11-01

    Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.

  4. Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

    KAUST Repository

    Cui, Li-Feng

    2011-01-01

    Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li+ storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. © 2011 The Electrochemical Society.

  5. Metallization of large silicon wafers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R A

    1979-01-01

    A metallization scheme has been developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300/sup 0/C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed. Palladium is deposited with an immersion palladium solution and an electroless palladium solution, and nickel is deposited with an electroless nickel solution. Solder is applied with a molten solder dip. Extensive development work has been performed to achieve an effective immersion palladium solution formulation, leading to reproducible formation of the palladium silicide contact layer. This metallization system has been repeatedly demonstrated to be extremely effective. Current-voltage characteristic curve fill factors of 78% are easily achieved. This has been done while maintaining metal contact adhesion at such a strength as to fail by fracturing silicon upon perpendicular pull testing rather than be delaminating the metal system. Process specifications and procedures have been prepared.

  6. Rolling Contact Fatigue of Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Wang, W. [Bournemouth University, Bournemouth, United Kingdom; Wang, Y. [Bournemouth University, Bournemouth, United Kingdom; Hadfield, M. [Bournemouth University, Bournemouth, United Kingdom; Kanematsu, W. [National Institute of Advanced Industrial Science and Technology, Japan; Kirkland, Timothy Philip [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville

    2006-09-01

    High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

  7. Switchable static friction of piezoelectric composite-silicon wafer contacts

    NARCIS (Netherlands)

    Ende, D.A. van den; Fischer, H.R.; Groen, W.A.; Zwaag, S. van der

    2013-01-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and

  8. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  9. Silicon diffusion in aluminum for rear passivated solar cells

    International Nuclear Information System (INIS)

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-01-01

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50±0.06) μm/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  10. Low-temperature processed ultrathin TiO_2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO_2 (u-TiO_2) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO_2was realized. • u-TiO_2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO_2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO_2 (c-TiO_2) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO_2 (u-TiO_2) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl_4 solution at 70 °C, u-TiO_2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH_3NH_3PbI_3 film. The perovskite solar cell using u-TiO_2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO_2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO_2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  11. Receding contact lines: from sliding drops to immersion lithography

    NARCIS (Netherlands)

    Winkels, K.G.; Peters, I.R.; Evangelista, F.; Riepen, M.; Daerr, A.; Limat, L.; Snoeijer, Jacobus Hendrikus

    2011-01-01

    Instabilities of receding contact lines often occur through the formation of a corner with a very sharp tip. These dewetting structures also appear in the technology of Immersion Lithography, where water is put between the lens and the silicon wafer to increase the optical resolution. In this paper

  12. Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide

    Science.gov (United States)

    Kallaher, Raymond L.

    This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to

  13. A 1024 pad silicon detector to solve tracking ambiguities in high multiplicity events

    International Nuclear Information System (INIS)

    Simone, S.; Catanesi, M.G.; Di Bari, D.; Didonna, V.; Elia, D.; Ghidini, B.; Lenti, V.; Manzari, V.; Nappi, E.

    1996-01-01

    Silicon detectors with two-dimensional pad readout have been designed and constructed for the WA97 experiment at CERN, in order to solve ambiguities for track reconstruction in a silicon microstrip telescope. A high density fanouts has been developed on a glass support to allow the electrical contacts between the detector and the front end electronics. Silicon pad detectors have been successfully operated both during the proton-Pb and Pb-Pb runs of the WA97 experiment. (orig.)

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in a pair of colored contact lenses, Laura Butler of Parkersburg, W.Va., had "extreme pain in ... to wear any kind of contact lens. In Butler's case, the lenses caused an infection and left ...

  18. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  19. Multiple Josephson contact interferometer

    International Nuclear Information System (INIS)

    Zappe, H.H.

    1978-01-01

    The interferometer (quantum interference between two parallel contacts) displays a mid connector and contacts of the same size, or contacts at which the middle one is twice the size as the other two, or a double connector and three contacts by which the middle contact carries twice the current as the other two. Also there can be provided interferometers with three and four contacts as well as with symmetrical double current connectors and the same largest Josephson current through all contacts. Because all contacts display the same phase state in the voltage free switching state, the amplification property can be increased and current dissipation can be decreased in a way that logic circuits with high integration degree and high switching velocities can be designed. (DG) [de

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... popping touch. But colored contact lenses are popular year-round, not just at Halloween. But few know the ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over- ... without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over-the-Counter Costume Contact Lenses Can ... was in severe pain and on medication for four weeks, and couldn't see well enough to ...

  4. Corporate Consumer Contact API

    Data.gov (United States)

    General Services Administration — The data in the Corporate Consumer Contact API is based on the content you can find in the Corporate Consumer Contact listing in the Consumer Action Handbook (PDF)....

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lens because they can be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, ... Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes ...

  7. Contact Us about Asbestos

    Science.gov (United States)

    How to contact EPA for more information on asbestos, including state and regional contacts, EPA’s Asbestos Abatement/Management Ombudsman and the Toxic Substances Control Act (TSCA) Assistance Information Service (TSCA Hotline).

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... an ophthalmologist — an eye medical doctor — who will measure each eye and talk to you about proper ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  12. Recent progress in thin-film-silicon photovoltaic devices at CIEMAT; Recientes progresos en la tecnologia de dispositivos fotovoltaicos de silicio en lamina delgada en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.

    2011-07-01

    Solar photovoltaic energy has evolved in the last 50 years on the basis of the co-existence of two fundamental technological paths: that of wafer-based silicon, dominating the market, and that of thin films, representing an important part of the options for the future of this energy-conversion field. More recently new concepts have gained significance, such as concentration photovoltaic (CPV), dye-sensitised solar cells (DSSC), organic cells, silicon-heterojunction (SHJ) cells and thin-crystalline silicon devices among others. over 90% of all these PV technologies are based on the use of either of the forms of the most abundant element of the earth crust: silicon. CIEMAT, being aware of the relevant role renewable energies and post-vocalic in particular must play in dinging solutions to the energy and environmental problem, has several action lines within this discipline. Among them is the one developed at the laboratory for Deposited-silicon Devices (DSD), entirely devoted to acquiring by own means the technology required for the fabrication of thin-film-silicon-based PV devices in order to be in conditions to give a maximum support to the Spanish industry in this field. Within the context of the historic evolution of PV technology in the world, this paper describes the progress of the DSD lab in the last years, according to a plan aimed at developing technology of the maximum strategic value. such a working scheme, supported by valuable collaborations, has led the group to a reference position in the areas of thin-film-silicon p-i-n devices on glass, silicon-heterojunction cells and p-i-n devices on flexible substrates. (Author) 5 refs.

  13. g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2into Renewable Fuels.

    Science.gov (United States)

    Tonda, Surendar; Kumar, Santosh; Bhardwaj, Monika; Yadav, Poonam; Ogale, Satishchandra

    2018-01-24

    2D/2D interface heterostructures of g-C 3 N 4 and NiAl-LDH are synthesized utilizing strong electrostatic interactions between positively charged 2D NiAl-LDH sheets and negatively charged 2D g-C 3 N 4 nanosheets. This new 2D/2D interface heterojunction showed remarkable performance for photocatalytic CO 2 reduction to produce renewable fuels such as CO and H 2 under visible-light irradiation, far superior to that of either single phase g-C 3 N 4 or NiAl-LDH nanosheets. The enhancement of photocatalytic activity could be attributed mainly to the excellent interfacial contact at the heterojunction of g-C 3 N 4 /NiAl-LDH, which subsequently results in suppressed recombination, and improved transfer and separation of photogenerated charge carriers. In addition, the optimal g-C 3 N 4 /NiAl-LDH nanocomposite possessed high photostability after successive experimental runs with no obvious change in the production of CO from CO 2 reduction. Our findings regarding the design, fabrication and photophysical properties of 2D/2D heterostructure systems may find use in other photocatalytic applications including H 2 production and water purification.

  14. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes.

    Science.gov (United States)

    Rong, Yaoguang; Ku, Zhiliang; Mei, Anyi; Liu, Tongfa; Xu, Mi; Ko, Songguk; Li, Xiong; Han, Hongwei

    2014-06-19

    A hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell was developed with TiO2 nanosheets containing high levels of exposed (001) facets. The solar cell embodiment employed a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated by perovskite as a light harvester. No hole conductor or Au reflector was employed. Instead, the back contact was simply a printable carbon layer. The perovskite was infiltrated from solution through the porous carbon layer. The high reactivity of (001) facets in TiO2 nanosheets improved the interfacial properties between the perovskite and the electron collector. As a result, photoelectric conversion efficiency of up to 10.64% was obtained with the hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell. The advantages of fully printable technology and the use of low-cost carbon-materials-based counter electrode and hole-conductor-free structure provide this design a promising prospect to approach low-cost photovoltaic devices.

  15. TiO2 coated CuO nanowire array: Ultrathin p-n heterojunction to modulate cationic/anionic dye photo-degradation in water

    Science.gov (United States)

    Scuderi, Viviana; Amiard, Guillaume; Sanz, Ruy; Boninelli, Simona; Impellizzeri, Giuliana; Privitera, Vittorio

    2017-09-01

    We report the photocatalytic efficiency of CuO nanowires covered with a thin TiO2 film, studied by dyes degradation in water. The CuO nanowires were synthesized on Cu foils by thermal oxidation. A subsequent TiO2 deposition (7, 15, 30, 50 nm thick) was performed by atomic layer deposition, developing an ultrathin p-n heterojunction. A structural characterization was obtained by X-ray diffraction analysis, scanning and transmission electron microscopies equipped with energy dispersive x-ray analysis. The photocatalytic activity of the investigated materials was tested by the degradation of a cationic (methylene blue) or anionic (methyl orange). The relevance of the reported results was discussed in relation with the effects of the ultrathin p-n TiO2/CuO heterojunction. The two semiconductors are in intimate connection increasing the exposed surface and only TiO2 is directly in contact with water. This allowed to study systematically the effect of the electric filed generated by the p-n junction on the interface TiO2/liquid and therefore to modulate cationic/anionic dyes photo-degradation in water.

  16. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  17. Breast Implants: Saline vs. Silicone

    Science.gov (United States)

    ... differ in material and consistency, however. Saline breast implants Saline implants are filled with sterile salt water. ... of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with silicone gel — ...

  18. Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Erin L.; Garcia, Andres; Paniagua, Sergio A.; Cowan, Sarah R.; Giordano, Anthony J.; Ginley, David S.; Marder, Seth R.; Berry, Joseph J.; Olson, Dana C.

    2013-02-06

    The role of work function and thermodynamic selectivity of hole collecting contacts on the origin of open circuit voltage (VOC) in bulk heterojunction organic photovoltaics is examined for poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT) and [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) solar cells. In the absence of a charge selective, electron blocking contact, systematic variation of the work function of the contact directly dictates the VOC, as defined by the energetic separation between the relative Fermi levels for holes and electrons, with little change in the observed dark saturation current, J0. Improving the charge selectivity of the contact through an increased barrier to electron injection from the fullerene in the blend into the hole contact results in a decreased reverse saturation current (decreased J0 and increased shunt resistance, RSH) and improved VOC. Based on these observations, we provide a set of contact design criteria for tuning the VOC in bulk heterojunction organic photovoltaics.

  19. Contact lens in keratoconus

    OpenAIRE

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ...