WorldWideScience

Sample records for contact interfaces application

  1. Contact Resistance of Ceramic Interfaces Between Materials Used for Solid Oxide Fuel Cell Applications

    DEFF Research Database (Denmark)

    Koch, Søren

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may....... The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constric-tion at high temperatures. The measured contact resistance was comparable to the resis-tance calculated on basis of the contact...... areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential...

  2. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  3. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  4. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2016-01-01

    Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.

  5. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  6. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A

    1990-01-01

    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  7. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation

    Science.gov (United States)

    Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman

    2017-10-01

    In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.

  8. Nanoscale roughness contact in a slider-disk interface.

    Science.gov (United States)

    Hua, Wei; Liu, Bo; Yu, Shengkai; Zhou, Weidong

    2009-07-15

    The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.

  9. Nanoscale roughness contact in a slider-disk interface

    International Nuclear Information System (INIS)

    Hua Wei; Liu Bo; Yu Shengkai; Zhou Weidong

    2009-01-01

    The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.

  10. Discrimination between biological interfaces and crystal-packing contacts

    Directory of Open Access Journals (Sweden)

    Yuko Tsuchiya

    2008-11-01

    Full Text Available Yuko Tsuchiya1, Haruki Nakamura2, Kengo Kinoshita1,31Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, 108-8639, Japan; 2Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; 3Bioinformatics Research and Development, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, JapanAbstract: A discrimination method between biologically relevant interfaces and artificial crystal-packing contacts in crystal structures was constructed. The method evaluates protein-protein interfaces in terms of complementarities for hydrophobicity, electrostatic potential and shape on the protein surfaces, and chooses the most probable biological interfaces among all possible contacts in the crystal. The method uses a discriminator named as “COMP”, which is a linear combination of the complementarities for the above three surface features and does not correlate with the contact area. The discrimination of homo-dimer interfaces from symmetry-related crystal-packing contacts based on the COMP value achieved the modest success rate. Subsequent detailed review of the discrimination results raised the success rate to about 88.8%. In addition, our discrimination method yielded some clues for understanding the interaction patterns in several examples in the PDB. Thus, the COMP discriminator can also be used as an indicator of the “biological-ness” of protein-protein interfaces.Keywords: protein-protein interaction, complementarity analysis, homo-dimer interface, crystal-packing contact, biological interfaces

  11. Applications of contact predictions to structural biology

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2017-05-01

    Full Text Available Evolutionary pressure on residue interactions, intramolecular or intermolecular, that are important for protein structure or function can lead to covariance between the two positions. Recent methodological advances allow much more accurate contact predictions to be derived from this evolutionary covariance signal. The practical application of contact predictions has largely been confined to structural bioinformatics, yet, as this work seeks to demonstrate, the data can be of enormous value to the structural biologist working in X-ray crystallography, cryo-EM or NMR. Integrative structural bioinformatics packages such as Rosetta can already exploit contact predictions in a variety of ways. The contribution of contact predictions begins at construct design, where structural domains may need to be expressed separately and contact predictions can help to predict domain limits. Structure solution by molecular replacement (MR benefits from contact predictions in diverse ways: in difficult cases, more accurate search models can be constructed using ab initio modelling when predictions are available, while intermolecular contact predictions can allow the construction of larger, oligomeric search models. Furthermore, MR using supersecondary motifs or large-scale screens against the PDB can exploit information, such as the parallel or antiparallel nature of any β-strand pairing in the target, that can be inferred from contact predictions. Contact information will be particularly valuable in the determination of lower resolution structures by helping to assign sequence register. In large complexes, contact information may allow the identity of a protein responsible for a certain region of density to be determined and then assist in the orientation of an available model within that density. In NMR, predicted contacts can provide long-range information to extend the upper size limit of the technique in a manner analogous but complementary to experimental

  12. Contact angle distribution of particles at fluid interfaces.

    Science.gov (United States)

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  13. Atomistic simulations of contact area and conductance at nanoscale interfaces.

    Science.gov (United States)

    Hu, Xiaoli; Martini, Ashlie

    2017-11-09

    Atomistic simulations were used to study conductance across the interface between a nanoscale gold probe and a graphite surface with a step edge. Conductance on the graphite terrace was observed to increase with load and be approximately proportional to contact area calculated from the positions of atoms in the interface. The relationship between area and conductance was further explored by varying the position of the contact relative to the location of the graphite step edge. These simulations reproduced a previously-reported current dip at step edges measured experimentally and the trend was explained by changes in both contact area and the distribution of distances between atoms in the interface. The novel approach reported here provides a foundation for future studies of the fundamental relationships between conductance, load and surface topography at the atomic scale.

  14. Dynamic Model of Contact Interface between Stator and Rotor

    Directory of Open Access Journals (Sweden)

    ZengHui Zhao

    2013-01-01

    Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.

  15. On the Modeling of Contact Interfaces with Frictional Slips

    Directory of Open Access Journals (Sweden)

    Ligia Munteanu

    2013-09-01

    Full Text Available The paper analyses the contact interfaces between the scatterers and the matrix into the sonic composites, in the presence of the frictional slips. The sonic composite is a sonic liner designed in order to provide suppression of unwanted noise for jet engines, with emphases on the nacelle of turbofan engines for commercial aircraft.

  16. Prediction of bead area contact load at the tire-wheel interface using NASTRAN

    Science.gov (United States)

    Chen, C. H. S.

    1982-01-01

    The theoretical prediction of the bead area contact load at the tire wheel interface using NASTRAN is reported. The application of the linear code to a basically nonlinear problem results in excessive deformation of the structure and the tire-wheel contact conditions become impossible to achieve. A psuedo-nonlinear approach was adopted in which the moduli of the cord reinforced composite are increased so that the computed key deformations matched that of the experiment. Numerical results presented are discussed.

  17. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  18. ConKit: a python interface to contact predictions.

    Science.gov (United States)

    Simkovic, Felix; Thomas, Jens M H; Rigden, Daniel J

    2017-07-15

    Recent advances in protein residue contact prediction algorithms have led to the emergence of many new methods and a variety of file formats. We present ConKit , an open source, modular and extensible Python interface which allows facile conversion between formats and provides an interface to analyses of sequence alignments and sets of contact predictions. ConKit is available via the Python Package Index. The documentation can be found at http://www.conkit.org . ConKit is licensed under the BSD 3-Clause. hlfsimko@liverpool.ac.uk or drigden@liverpool.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  19. Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.

    Science.gov (United States)

    Anjali, Thriveni G; Basavaraj, Madivala G

    2016-09-15

    The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2012-03-01

    Full Text Available High quality bismuth (Bi nanowire and its ohmic contact free of interface damage are quite desired for its research and application. In this paper, we propose one new way to prepare high-quality single crystal Bi nanowires at a low deposition rate, by magnetron sputtering method without the assistance of template or catalyst. The slow deposition growth mechanism of Bi nanowire is successfully explained by an anisotropic corner crossing effect, which is very different from existing explanations. A novel approach free of interface damage to ohmic contact of Bi nanowire is proposed and its good electrical conductivity is confirmed by I-V characteristic measurement. Our method provides a quick and convenient way to produce high-quality Bi nanowires and construct ohmic contact for desirable devices.

  1. Applications for Packetized Memory Interfaces

    OpenAIRE

    Watson, Myles Glen

    2015-01-01

    The performance of the memory subsystem has a large impact on the performance of modern computer systems. Many important applications are memory bound and others are expected to become memory bound in the future. The importance of memory performance makes it imperative to understand and optimize the interactions between applications and the system architecture. Prototyping and exploring various configurations of memory systems can give important insights, but current memory interfaces are lim...

  2. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  3. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  4. Energy level alignment and molecular conformation at rubrene/Ag interfaces: Impact of contact contaminations on the interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sumona, E-mail: sumona.net.09@gmail.com [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Wang, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Mukherjee, M. [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2017-07-01

    Highlights: • Impact of contact contaminations on the energy level alignment and molecular conformation at rubrene/Ag interfaces. • Adventitious contamination layer was acted as a spacer layer between Ag substrate surface and rubrene molecular layer. • Hole injection barrier height and interface dipole at rubrene/Ag interfaces depend on the cleanliness of Ag substrate. • Molecular conformation as well as orientation controlled by the cleanliness of Ag surface. • Resulted different surface morphology of rubrene thin films on unclean and clean Ag substrate. - Abstract: This paper addresses the impact of electrode contaminations on the interfacial energy level alignment, the molecular conformation, orientation and surface morphology deposited organic film at organic semiconductor/noble metal interfaces by varying of film thickness from sub-monolayer to multilayer, which currently draws significant attention with regard to its application in organic electronics. The UHV clean Ag and unclean Ag were employed as substrate whereas rubrene was used as an organic semiconducting material. The photoelectron spectroscopy (XPS and UPS) was engaged to investigate the evolution of interfacial energetics; polarization dependent near edge x-ray absorption fine structure spectroscopy (NEXAFS) was employed to understand the molecular conformation as well as orientation whereas atomic force microscopy (AFM) was used to investigate the surface morphologies of the films. The adventitious contamination layer was acted as a spacer layer between clean Ag substrate surface and rubrene molecular layer. As a consequence, hole injection barrier height, interface dipole as well as molecular-conformation, molecular-orientation and surface morphology of rubrene thin films were found to depend on the cleanliness of Ag substrate. The results have important inferences about the understanding of the impact of substrate contamination on the energy level alignment, the molecular conformation

  5. Carbon nanotube thermal interfaces and related applications

    Science.gov (United States)

    Hodson, Stephen L.

    compressive load. The thermal performance was further improved by infiltrating the CNT TIM with paraffin wax, which serves as an alternate pathway for heat conduction across the interface that ultimately reduces the bulk thermal resistance of the CNT TIM. For CNT TIMs synthesized at the Birck Nanotechnology Center at Purdue University, the thermal resistance was shown to scale linearly with their aggregate, as-grown height. Thus, the bulk thermal resistance can alternatively be tuned by adjusting the as-grown height. The linear relationship between thermal resistance and CNT TIM height provides a simple and efficient methodology to estimate the contact resistance and effective thermal conductivity of CNT TIMs. In this work, the contact resistance and effective thermal conductivity were estimated using two measurement techniques: (i) one-dimensional, steady-state reference bar and (ii) photoacoustic technique. A discrepancy in the estimated contact resistance exists between the two measurement techniques, which is due to the difficulty in measuring the true contact area. In contrast, the effective thermal conductivities estimated from both measurement techniques moderately agreed and were estimated to be on the order of O(1 W/mK). The final chapter is in collaboration with Sandia National Laboratories and focuses on the development of an apparatus to measure the thermal conductivity of insulation materials critical for the operation of molten salt batteries. Molten salt batteries are particularly useful power sources for radar and guidance systems in military applications such as guided missiles, ordinance, and other weapons. Molten salt batteries are activated by raising the temperature of the electrolyte above its melting temperature using pyrotechnic heat pellets. The battery will remain active as long as the electrolyte is molten. As a result, the thermal processes within the components and interactions between them are critical to the overall performance of molten salt

  6. Adaptive contact elements for three-dimensional fluid-structure interfaces

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem

  7. Adaptive contact elements for three-dimensional fluid-structure interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem.

  8. Carbon nanotube thermal interfaces and related applications

    OpenAIRE

    Hodson, Stephen L

    2016-01-01

    The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical cond...

  9. Modelling of the Contact Condition at the Tool/Matrix Interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2003-01-01

    a known contact condition at the contact interface, e.g. either as pure sliding or sticking. The present model uses Coulomb’s law of friction for the sliding condition and the material yield shear stress for the sticking condition to model the contact forces. The model includes heat generation...

  10. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    Science.gov (United States)

    Vakis, Antonis I.; Polycarpou, Andreas A.

    2010-06-01

    In the effort to achieve Tbit/inch2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  11. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    International Nuclear Information System (INIS)

    Vakis, Antonis I; Polycarpou, Andreas A

    2010-01-01

    In the effort to achieve Tbit/inch 2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  12. GRAPHIC INTERFACES FOR ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ion PANA,

    2012-05-01

    Full Text Available Using effective the method of calculating Fitness for Service requires the achievement of graphical interfaces. This paper presents an example of such interfaces, made with Visual Basic program and used in the evaluation of pipelines in a research contract [4

  13. Affective Interface Adaptations in the Musickiosk Interactive Entertainment Application

    Science.gov (United States)

    Malatesta, L.; Raouzaiou, A.; Pearce, L.; Karpouzis, K.

    The current work presents the affective interface adaptations in the Musickiosk application. Adaptive interaction poses several open questions since there is no unique way of mapping affective factors of user behaviour to the output of the system. Musickiosk uses a non-contact interface and implicit interaction through emotional affect rather than explicit interaction where a gesture, sound or other input directly maps to an output behaviour - as in traditional entertainment applications. PAD model is used for characterizing the different affective states and emotions.

  14. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  15. A singular perturbation limit of diffused interface energy with a fixed contact angle condition

    OpenAIRE

    Kagaya, Takashi; Tonegawa, Yoshihiro

    2016-01-01

    We study a general asymptotic behavior of critical points of a diffused interface energy with a fixed contact angle condition defined on a domain $\\Omega \\subset \\mathbb{R}^n$. We show that the limit varifold derived from the diffused energy satisfies a generalized contact angle condition on the boundary under a set of assumptions.

  16. Non-Amontons-Coulomb local friction law of randomly rough contact interfaces with rubber

    OpenAIRE

    Nguyen, D. T.; Wandersman, E.; Prevost, A.; Chenadec, Y. Le; Fretigny, C.; Chateauminois, A.

    2017-01-01

    We report on measurements of the local friction law at a multi-contact interface formed between a smooth rubber and statistically rough glass lenses, under steady state friction. Using contact imaging, surface displacements are measured, and inverted to extract both distributions of frictional shear stress and contact pressure with a spatial resolution of about 10~$\\mu$m. For a glass surface whose topography is self-affine with a Gaussian height asperity distribution, the local frictional she...

  17. Contact resistance at ceramic interfaces and its dependence on mechanical load

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.

    2004-01-01

    Low contact resistance between individual components is important for solid oxide fuel cell stacks if high performance is to be achieved. Several mechanisms may result in high contact resistance, e.g., current constriction due to low area of contact and formation of resistive phases between...... the components. In this study, the importance of current constriction due to limited area of contact at an interface is investigated by comparing the characteristics of contacts between LSM pellets with different surface finish. The load behaviour of the contact resistance has been investigated and a power law...... of the contact resistance was calculated using a simple model describing the variation of the contact area with load based on the measured surface roughness. Good agreement between the calculations and the experimentally observed resistances was found. (C) 2004 Elsevier B.V. All rights reserved....

  18. Influence of hole transport material/metal contact interface on perovskite solar cells

    Science.gov (United States)

    Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming

    2018-06-01

    Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.

  19. Specific interface area in a thin layer system of two immiscible liquids with vapour generation at the contact interface

    Science.gov (United States)

    Pimenova, Anastasiya V.; Gazdaliev, Ilias M.; Goldobin, Denis S.

    2017-06-01

    For well-stirred multiphase fluid systems the mean interface area per unit volume, or “specific interface area” SV, is a significant characteristic of the system state. In particular, it is important for the dynamics of systems of immiscible liquids experiencing interfacial boiling. We estimate the value of parameter SV as a function of the heat influx {\\dot{Q}}V to the system or the average system overheat above the interfacial boiling point. The derived results can be reformulated for the case of an endothermic chemical reaction between two liquid reagents with the gaseous form of one of the reaction products. The final results are restricted to the case of thin layers, where the potential gravitational energy of bubbles leaving the contact interface is small compared to their surface tension energy.

  20. Programmable Applications: Interpreter Meets Interface

    Science.gov (United States)

    1991-10-01

    ics program written for professional architects and designers, and including a huge library of files written in AutoLisp , a "design-enriched" Lisp... AutoLisp procedures). The choice of Lisp as a base language is a happy one for AutoCAD; the application has clearly benefitted from the contribution

  1. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    Science.gov (United States)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  2. Modelling Safe Interface Interactions in Web Applications

    Science.gov (United States)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  3. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  4. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Department of Physics and Institute of Solid-state electronics physical, Ningbo University, Ningbo 315211 (China); Sheng, Jiang, E-mail: shengjiang@nimte.ac.cn; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun, E-mail: jichun.ye@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-07-25

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (J{sub sc}). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (V{sub oc}). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  5. Exploring Dynamic User–Interface in Achieving Software Application ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... rudiments of user interface in application development may be a diffults task and time consuming, but there ... screen. Such interface is described as menu- driven. (3) Graphical user interface (GUI): user .... using green colour.

  6. Optical patient interface in femtosecond laser-assisted cataract surgery: contact corneal applanation versus liquid immersion.

    Science.gov (United States)

    Talamo, Jonathan H; Gooding, Philip; Angeley, David; Culbertson, William W; Schuele, Georg; Andersen, Daniel; Marcellino, George; Essock-Burns, Emma; Batlle, Juan; Feliz, Rafael; Friedman, Neil J; Palanker, Daniel

    2013-04-01

    To compare 2 optical patient interface designs used for femtosecond laser-assisted cataract surgery. Optimedica Corp., Santa Clara, California, USA, and Centro Laser, Santo Domingo, Dominican Republic. Experimental and clinical studies. Laser capsulotomy was performed during cataract surgery with a curved contact lens interface (CCL) or a liquid optical immersion interface (LOI). The presence of corneal folds, incomplete capsulotomy, subconjunctival hemorrhage, and eye movement during laser treatment were analyzed using video and optical coherence tomography. The induced rise of intraocular pressure (IOP) was measured in porcine and cadaver eyes. Corneal folds were identified in 70% of the CCL cohort; 63% of these had areas of incomplete capsulotomies beneath the corneal folds. No corneal folds or incomplete capsulotomies were identified in the LOI cohort. The mean eye movement during capsulotomy creation (1.5 sec) was 50 μm with a CCL and 20 μm with an LOI. The LOI cohort had 36% less subconjunctival hemorrhage than the CCL cohort. During suction, the mean IOP rise was 32.4 mm Hg ± 3.4 (SD) in the CCL group and 17.7 ± 2.1 mm Hg in the LOI group. Curved contact interfaces create corneal folds that can lead to incomplete capsulotomy during laser cataract surgery. A liquid interface eliminated corneal folds, improved globe stability, reduced subconjunctival hemorrhage, and lowered IOP rise. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Study of Direct-Contact HfO2/Si Interfaces

    Directory of Open Access Journals (Sweden)

    Noriyuki Miyata

    2012-03-01

    Full Text Available Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs.

  8. Applicability of contact angle techniques used in the analysis of contact lenses, part 1: comparative methodologies.

    Science.gov (United States)

    Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John

    2013-05-01

    Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.

  9. Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket.

    Science.gov (United States)

    Zhang, Linlin; Zhu, Ming; Shen, Ling; Zheng, Feng

    2013-01-01

    Transfemoral amputees need prosthetic devices after amputation surgery, and the interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. The purpose of this study was to build a nonlinear finite element model to investigate the interface pressure between the above-knee residual limb and its prosthetic socket. The model was three-dimensional (3D) with consideration of nonlinear boundary conditions. Contact analysis was used to simulate the friction conditions between skin and the socket. The normal stresses up to 80.57 kPa at the distal end of the soft tissue. The longitudinal and circumferential shear stress distributions at the limb-socket interface were also simulated. This study explores the influences of load transfer between trans-femoral residual limb and its prosthetic socket.

  10. Improvement of the electrical contact resistance at rough interfaces using two dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianchen; Pan, Chengbin; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Li, Heng [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Shen, Panpan; Sun, Hui; Duan, Huiling [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, CAPT, College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-07

    Reducing the electronic contact resistance at the interfaces of nanostructured materials is a major goal for many kinds of planar and three dimensional devices. In this work, we develop a method to enhance the electronic transport at rough interfaces by inserting a two dimensional flexible and conductive graphene sheet. We observe that an ultra-thin graphene layer with a thickness of 0.35 nm can remarkably reduce the roughness of a sample in a factor of 40%, avoiding the use of thick coatings, leading to a more homogeneous current flow, and extraordinarily increasing the total current compared to the graphene-free counterpart. Due to its simplicity and performance enhancement, this methodology can be of interest to many interface and device designers.

  11. Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.

    Science.gov (United States)

    Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E

    2015-01-01

    Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.

  12. Prototyping of user interfaces for mobile applications

    CERN Document Server

    Bähr, Benjamin

    2017-01-01

    This book investigates processes for the prototyping of user interfaces for mobile apps, and describes the development of new concepts and tools that can improve the prototype driven app development in the early stages. It presents the development and evaluation of a new requirements catalogue for prototyping mobile app tools that identifies the most important criteria such tools should meet at different prototype-development stages. This catalogue is not just a good point of orientation for designing new prototyping approaches, but also provides a set of metrics for a comparing the performance of alternative prototyping tools. In addition, the book discusses the development of Blended Prototyping, a new approach for prototyping user interfaces for mobile applications in the early and middle development stages, and presents the results of an evaluation of its performance, showing that it provides a tool for teamwork-oriented, creative prototyping of mobile apps in the early design stages.

  13. Proposal of Non-Contact Type Interface of Command Input Using Lip Motion Features

    Science.gov (United States)

    Sato, Yoshiyuki; Kageyama, Yoichi; Nishida, Makoto

    Lip motion features are of practical use in identifying individuals. It is therefore important to develop non-contact type interface. For the interface using lip motion features, individual differences such as accents and dialects in commands should be accepted. In this paper, we propose a method to identify commands by analyzing three kinds of lip motion features. They are lip width, lip length, and ratio of width and length. The analysis is made on the basis of these features' relative values obtained from the primary and object frame. The proposed method has three steps. First, we extracted the lip motion features on the basis of both positions and shapes of lip in each frame of facial images. Second, standard patterns were created from features of six utterances per command. The standard pattern is able to reduce the relative difference in the lip motion features. Third, similarities among commands were computed by Dynamic-Programming (DP) matching. And then, the command with the largest similarity was selected as the target one. Our experimental results suggest that proposed method is useful to construct the non-contact type interface of command input using lip motion features.

  14. Effect of pool turbulence on direct contact condensation at a steam/water interface

    International Nuclear Information System (INIS)

    Jackson, J.D.; Zhao, C.L.; Doerffer, S.; Byrne, J.E.; Falaki, H.

    2000-01-01

    Measurements of direct contact condensation beat transfer have been made for the case where the process takes place at the horizontal interface between saturated steam and a pool of water in a vertical cylindrical test section. A submerged vertical jet of subcooled water was injected upwards on the axis to promote the condensation and water was withdrawn at the same rate from the bottom of the pool. In conjunction with the above study, measurements of the turbulent velocity fluctuations just below a free surface produced by the injection of a vertical submerged jet have been measured using hot film anemometry on an isothermal air-water test facility of similar geometry for similar flow conditions at ambient temperature. A correlation is proposed in terms of a Stanton number based on turbulent velocity fluctuation near the interface on the liquid-side. Our results are in good agreement with those of others for similar configurations when compared in terms of condensation Stanton number. (author)

  15. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.; Iyore, O. D.; Xiong, K.; White, J. B.; Cho, Kyeongjae; Alshareef, Husam N.; Gnade, B. E.

    2009-01-01

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  16. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.

    2009-08-13

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  17. Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives

    Directory of Open Access Journals (Sweden)

    Hristov Jordan

    2012-01-01

    Full Text Available Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.

  18. Design and fabrication stable LNF contact for future IC application

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Bhuiyan, M; Rashid, M M; Ahmed, Sayem; Kajihara, M

    2013-01-01

    Enable the design of a small contact spring for applications requiring high density, high speed and high durability. A low normal force (LNF) contact spring with high performance is fabricated using a unique combined MEMS photo resist lithography and electro fine forming (EFF) technology. Reducing a total contact material cost of a connector, a high-Hertz stress with LNF contact will be a key technology in the future. Only radius R 5μm tip with 0.1N force contact provides an excellent electrical performance which is much sharper than conventional contact. 0.30million cycle's durability test was passed at 300μm displacement and the contact resistance was ≤50mΩ

  19. Visibility Aspects Importance of User Interface Reception in Cloud Computing Applications with Increased Automation

    OpenAIRE

    Haxhixhemajli, Denis

    2012-01-01

    Visibility aspects of User Interfaces are important; they deal with the crucial phase of human-computer interaction. They allow users to perform and at the same time hide the complexity of the system. Acceptance of new systems depends on how visibility aspects of the User Interfaces are presented. Human eyes make the first contact with the appearance of any system by so it generates the very beginning of the human – application interaction. In this study it is enforced that visibility aspects...

  20. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility

  1. Interfacing of DNA with carbon nanotubes for nanodevice applications

    International Nuclear Information System (INIS)

    Rastogi, Richa; Dhindsa, Navneet; Suri, C. Raman; Pant, B.D.; Tripathi, S.K.; Kaur, Inderpreet; Bharadwaj, Lalit M.

    2012-01-01

    In nanotechnology, carbon nanotubes are evolving as ‘hot spot’ due to their applications as most sensitive biosensors. Thus, study of effect of biomolecular interaction is prerequisite for their electrical application in biosensors and bioelectronics. Here, we have explored this effect on electrical properties of carbon nanotubes with DNA as a model biomolecule. A stable conjugate of carbon nanotubes with DNA is formed via covalent methodology employing quantum dot as fluoropore and characterized with various spectroscopic, fluoroscopic and microscopic techniques. CNT–DNA adduct showed decreased transconductance (from 614.46 μS to 1.34 μS) and shift of threshold voltage (from −0.85 V to 2.5 V) due to change in Schottky barriers at metal–nanotube contact. In addition, decrease in hole mobility (from 4.46 × 10 6 to 9.72 × 10 3 cm 2 V −1 s −1 ) and increase in ON-linear resistance (from 74 kΩ to 0.44 MΩ) conclude large change in device parameters. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. -- Graphical abstract: Carbon nanotubes are interfaced with DNA via covalent interactions and characterized with spectroscopic, fluoroscopic and microscopic techniques. Electrical characterization of this stable SWNT–DNA conjugate shows decreased transconductance and shift of threshold voltage towards positive gate voltages. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. Highlights: ► Effect of biomolecular (DNA) interaction on electrical

  2. Interfacing of DNA with carbon nanotubes for nanodevice applications

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Richa, E-mail: richa.bend@gmail.com [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India); Centre of Advanced Studies in Physics, Punjab University, Sector-14, Chandigarh 160014 (India); Dhindsa, Navneet [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India); Suri, C. Raman [Biosensor Division, Institute of Microbial Technology (IMTECH), Sector-39, Chandigarh 160039 (India); Pant, B.D. [Central Electronics Engineering Research Institute, Pilani, Rajasthan (India); Tripathi, S.K. [Centre of Advanced Studies in Physics, Punjab University, Sector-14, Chandigarh 160014 (India); Kaur, Inderpreet; Bharadwaj, Lalit M. [Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organisation (CSIO), Sector-30C, Chandigarh 160030 (India)

    2012-08-15

    In nanotechnology, carbon nanotubes are evolving as 'hot spot' due to their applications as most sensitive biosensors. Thus, study of effect of biomolecular interaction is prerequisite for their electrical application in biosensors and bioelectronics. Here, we have explored this effect on electrical properties of carbon nanotubes with DNA as a model biomolecule. A stable conjugate of carbon nanotubes with DNA is formed via covalent methodology employing quantum dot as fluoropore and characterized with various spectroscopic, fluoroscopic and microscopic techniques. CNT-DNA adduct showed decreased transconductance (from 614.46 {mu}S to 1.34 {mu}S) and shift of threshold voltage (from -0.85 V to 2.5 V) due to change in Schottky barriers at metal-nanotube contact. In addition, decrease in hole mobility (from 4.46 Multiplication-Sign 10{sup 6} to 9.72 Multiplication-Sign 10{sup 3} cm{sup 2} V{sup -1} s{sup -1}) and increase in ON-linear resistance (from 74 k Ohm-Sign to 0.44 M Ohm-Sign ) conclude large change in device parameters. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential. -- Graphical abstract: Carbon nanotubes are interfaced with DNA via covalent interactions and characterized with spectroscopic, fluoroscopic and microscopic techniques. Electrical characterization of this stable SWNT-DNA conjugate shows decreased transconductance and shift of threshold voltage towards positive gate voltages. On the one hand, this substantial change in device parameters after interfacing with biomolecules supports application of carbon nanotubes in the field of biosensors while on the other hand, the same can limit their use in future power electronic devices where stability in device parameters is essential

  3. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  4. Effect of interfaces on electron transport properties of MoS2-Au Contacts

    Science.gov (United States)

    Aminpour, Maral; Hapala, Prokop; Le, Duy; Jelinek, Pavel; Rahman, Talat S.; Rahman's Group Collaboration; Nanosurf Lab Collaboration

    2014-03-01

    Single layer MoS2 is a promising material for future electronic devices such as transistors since it has good transport characteristics with mobility greater than 200 cm-1V-1s-1 and on-off current ratios up to 108. However, before MoS2 can become a mainstream electronic material for the semiconductor industry, the design of low resistive metal-semiconductor junctions as contacts of the electronic devices needs to be addressed and studied systematically. We have examined the effect of Au contacts on the electronic transport properties of single layer MoS2 using density functional theory in combination with the non-equilibrium Green's function method. The Schottky barrier between Au contact and MoS2, transmission spectra, and I-V curves will be reported and discussed as a function of MoS2 and Au interfaces of varying geometry. This work is supported in part by the US Department of Energy under grant DE-FG02-07ER15842.

  5. Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors

    KAUST Repository

    Wondmagegn, Wudyalew T.; Satyala, Nikhil T.; Pieper, Ron J.; Quevedo-Ló pez, Manuel Angel Quevedo; Gowrisanker, Srinivas; Alshareef, Husam N.; Stiegler, Harvey J.; Gnade, Bruce E.

    2010-01-01

    The contact resistance of field effect transistors based on pentacene and parylene has been investigated by experimental and numerical analysis. The device simulation was performed using finite element two-dimensional drift-diffusion simulation taking into account field-dependent mobility, interface/bulk trap states and fixed charge density at the organic/insulator interface. The width-normalized contact resistance extracted from simulation which included an interface dipole layer between the gold source/drain electrodes and pentacene was 91 kΩcm. However, contact resistance extracted from the simulation, without consideration of interface dipole was 52.4 kΩcm, which is about half of the experimentally extracted 108 kΩcm. This indicates that interface dipoles are critical effects which degrade performances of organic field effect transistors by increasing the contact resistance. Using numerical calculations and circuit simulations, we have predicted a 1 MHz switching frequency for a 1 μm channel length transistor without dipole interface between gold and pentacene. The transistor with dipole interface is predicted, via the same methods, to exhibit an operating frequency of less than 0.5 MHz. © 2010 Springer Science+Business Media LLC.

  6. Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors

    KAUST Repository

    Wondmagegn, Wudyalew T.

    2010-09-24

    The contact resistance of field effect transistors based on pentacene and parylene has been investigated by experimental and numerical analysis. The device simulation was performed using finite element two-dimensional drift-diffusion simulation taking into account field-dependent mobility, interface/bulk trap states and fixed charge density at the organic/insulator interface. The width-normalized contact resistance extracted from simulation which included an interface dipole layer between the gold source/drain electrodes and pentacene was 91 kΩcm. However, contact resistance extracted from the simulation, without consideration of interface dipole was 52.4 kΩcm, which is about half of the experimentally extracted 108 kΩcm. This indicates that interface dipoles are critical effects which degrade performances of organic field effect transistors by increasing the contact resistance. Using numerical calculations and circuit simulations, we have predicted a 1 MHz switching frequency for a 1 μm channel length transistor without dipole interface between gold and pentacene. The transistor with dipole interface is predicted, via the same methods, to exhibit an operating frequency of less than 0.5 MHz. © 2010 Springer Science+Business Media LLC.

  7. The contact heat conductance at diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    International Nuclear Information System (INIS)

    Assoufid, L.; Khounsary, A.M.

    1996-01-01

    Results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray diamond monochromators under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. Measured average interface heat conductances are 44.7 ±8 W/cm 2 -K for nonplated copper and 23.0 ±3 W/cm 2 -K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10 degree C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes

  8. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    Science.gov (United States)

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  9. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  10. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  11. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  12. Interface Effects Enabling New Applications of Two-Dimensional Materials

    KAUST Repository

    Sattar, Shahid

    2018-05-01

    Interface effects in two-dimensional (2D) materials play a critical role for the electronic properties and device characteristics. Here we use first-principles calculations to investigate interface effects in 2D materials enabling new applications. We first show that graphene in contact with monolayer and bilayer PtSe2 experiences weak van der Waals interaction. Analysis of the work functions and band bending at the interface reveals that graphene forms an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2, whereas a small biaxial tensile strain makes the contact Ohmic in the latter case as required for transistor operation. For silicene, which is a 2D Dirac relative of graphene, structural buckling complicates the experimental synthesis and strong interaction with the substrate perturbs the characteristic linear dispersion. To remove this obstacle, we propose solid argon as a possible substrate for realizing quasi-freestanding silicene and argue that a weak van der Waals interaction and small binding energy indicate the possibility to separate silicene from the substrate. For the silicene-PtSe2 interface, we demonstrate much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. Due to the inversion symmetry breaking and proximity to PtSe2, a band gap opening and spin splittings in the valence and conduction bands of silicene are observed. It is also shown that the strong interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and PtSe2, and a small NH3 discussion barrier makes intercalation a viable experimental approach. Silicene/germanene are categorized as key materials for the field of valleytronics due to stronger spin-orbit coupling as compared to graphene. However, no viable route exists so far to experimental realization. We propose F-doped WS2 as substrate that avoids detrimental effects and at the same time induces the

  13. SWMM5 Application Programming Interface and PySWMM: A Python Interfacing Wrapper

    Science.gov (United States)

    In support of the OpenWaterAnalytics open source initiative, the PySWMM project encompasses the development of a Python interfacing wrapper to SWMM5 with parallel ongoing development of the USEPA Stormwater Management Model (SWMM5) application programming interface (API). ...

  14. Controllable Electrical Contact Resistance between Cu and Oriented-Bi2Te3 Film via Interface Tuning.

    Science.gov (United States)

    Kong, Xixia; Zhu, Wei; Cao, Lili; Peng, Yuncheng; Shen, Shengfei; Deng, Yuan

    2017-08-02

    The contact resistance between metals and semiconductors has become critical for the design of thin-film thermoelectric devices with their continuous miniaturization. Herein, we report a novel interface tuning method to regulate the contact resistance at the Bi 2 Te 3 -Cu interface, and three Bi 2 Te 3 films with different oriented microstructures are obtained. The lowest contact resistivity (∼10 -7 Ω cm 2 ) is observed between highly (00l) oriented Bi 2 Te 3 and Cu film, nearly an order of magnitude lower than other orientations. This significant decrease of contact resistivity is attributed to the denser film connections, lower lattice misfit, larger effective conducting contact area, and smaller width of the surface depletion region. Meanwhile, our results show that the reduction of contact resistance has little dependence on the interfacial diffusion based on the little change in contact resistivity after the introduction of an effective Ti barrier layer. Our work provides a new idea for the mitigation of contact resistivity in thin-film thermoelectric devices and also gives certain guidance for the size design of the next-level miniaturized devices.

  15. Engineering applications using CAD based application programming interface

    Directory of Open Access Journals (Sweden)

    Tzotzis Anastasios

    2017-01-01

    Full Text Available Automating the design process of a product or a system can provide engineers and designers with many benefits. As such, repeatable tasks that are time consuming can be handled automatically and with minimal human attention. This is achieved by using the API (Application Programmable Interface of CAD systems in order to create macros or even develop software applications. The present paper deals with an application that has been developed with the API of a general purposes CAD system. This application automates the design process of a standard pneumatic double acting cylinder based on the appropriate inserted parameters (ISO 15552.The design process begins with the creation of a series of components developed as solids, and extends to the extraction of basic attributes and properties from the complete mechanical assembly. Finally, the assembled models and the extracted data can be used to further study the design of the pneumatic double acting cylinder. It is expected in the future to expand the features of the presented application in order to automate the design process of other related mechanical systems.

  16. ITO-free inverted polymer/fullerene solar cells: Interface effects and comparison of different semi-transparent front contacts

    NARCIS (Netherlands)

    Wilken, Sebastian; Hoffmann, Thomas; von Hauff, Elizabeth; Borchert, Holger; Parisi, Juergen

    Polymer/fullerene solar cells with an inverted layer sequence and free from indium tin oxide (ITO) are presented in this study. We concentrate on critical interface effects in inverted devices and compare different semi-transparent front contacts, such as ultra-thin Au films and Au grid structures.

  17. Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models

    NARCIS (Netherlands)

    Herrmann, KP; Loboda, VV

    An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x(2), the expression for the

  18. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air-water interface.

    Science.gov (United States)

    Feng, Dong-Xia; Nguyen, Anh V

    2017-10-01

    The floatability of solid particles on the water surface governs many natural phenomena and industrial processes including film flotation and froth flotation separation of coal and valuable minerals. For many years, the contact angle (CA) has been postulated as the key factor in determining the particle floatability. Indeed, the maximum force (tenacity) supporting the flotation of fine spheres was conjectured to occur when the apical angle of the contact circle is equal to the contact angle. In this paper, the model predictions are reviewed and compared with experimental results. It is shown that CA can be affected by many physical and chemical factors such as surface roughness and chemical heterogeneity and can have a range of values known as the CA hysteresis. This multiple-valued CA invalidates the available theories on the floatability of spheres. Even the intuitive replacement of CA by the advancing (maximum) CA in the classical theories can be wrong. A few new examples are also reviewed and analyzed to demonstrate the significance of CA variation in controlling the particle floatability. They include the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, and the nearby interaction among floating particles, known as lateral inter-particle interaction. It is concluded that our quantitative understanding of the floatability of real particles being irregular and heterogeneous both morphologically and chemically is still far from being satisfactory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cross-Bridge Kelvin resistor structures for reliable measurement of low contact resistances and contact interface characterization

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2009-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?�c) have been extensively discussed during last few decades and the minimum of the �?�c value, which could be accurately extracted, was

  20. Enhanced superconductivity at the interface of W/Sr2RuO4 point contact

    Science.gov (United States)

    Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.

    Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.

  1. SIGMA WEB INTERFACE FOR REACTOR DATA APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko,B.; Sonzogni, A.A.

    2010-05-09

    We present Sigma Web interface which provides user-friendly access for online analysis and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The interface includes advanced browsing and search capabilities, interactive plots of cross sections, angular distributions and spectra, nubars, comparisons between evaluated and experimental data, computations for cross section data sets, pre-calculated integral quantities, neutron cross section uncertainties plots and visualization of covariance matrices. Sigma is publicly available at the National Nuclear Data Center website at http://www.nndc.bnl.gov/sigma.

  2. Sigma Web Interface For Reactor Data Applications

    International Nuclear Information System (INIS)

    Pritychenko, B.; Sonzogni, A.A.

    2010-01-01

    We present Sigma Web interface which provides user-friendly access for online analysis and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The interface includes advanced browsing and search capabilities, interactive plots of cross sections, angular distributions and spectra, nubars, comparisons between evaluated and experimental data, computations for cross section data sets, pre-calculated integral quantities, neutron cross section uncertainties plots and visualization of covariance matrices. Sigma is publicly available at the National Nuclear Data Center website at http://www.nndc.bnl.gov/sigma.

  3. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  4. End User Development Toolkit for Developing Physical User Interface Applications

    OpenAIRE

    Abrahamsen, Daniel T; Palfi, Anders; Svendsen, Haakon Sønsteby

    2014-01-01

    BACKGROUND: Tangible user interfaces and end user development are two increasingresearch areas in software technology. Physical representation promoteopportunities to ease the use of technology and reinforce personality traits ascreativeness, collaboration and intuitive actions. However, designing tangibleuser interfaces are both cumbersome and require several layers of architecture.End user development allows users with no programming experience to createor customize their own applications. ...

  5. Connected Lighting System Interoperability Study Part 1: Application Programming Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gaidon, Clement [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-10-31

    First in a series of studies that focuses on interoperability as realized by the use of Application Programming Interfaces (APIs), explores the diversity of such interfaces in several connected lighting systems; characterizes the extent of interoperability that they provide; and illustrates challenges, limitations, and tradeoffs that were encountered during this exploration.

  6. Using Vim as User Interface for Your Applications

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Vim editor offers one of the cleverest user interfaces. It's why many developers write programs with vi keyboard bindings. Now, imagine how powerful it gets to build applications literally on top of Vim itself.

  7. A Unique Method to Describe the Bonding Strength in a Bonded Solid–Solid Interface by Contact Acoustic Nonlinearity

    International Nuclear Information System (INIS)

    Jian-Jun, Chen; De, Zhang; Yi-Wei, Mao; Jian-Chun, Cheng

    2009-01-01

    We present a unique method to describe the bonding strength at a bonded solid–solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid–solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour

  8. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Science.gov (United States)

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-05-06

    Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  10. Brain-Computer Interfaces : Beyond Medical Applications

    NARCIS (Netherlands)

    Erp, J.B.F. van; Lotte, F.; Tangermann, M.

    2012-01-01

    Brain-computer interaction has already moved from assistive care to applications such as gaming. Improvements in usability, hardware, signal processing, and system integration should yield applications in other nonmedical areas.

  11. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    Science.gov (United States)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  12. Accelerator-TEM interface facility and application

    International Nuclear Information System (INIS)

    Liu Chuansheng; Li Ming; He Jun; Yang Zheng; Zhou Lin; Wang Zesong; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee J C

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University in 2008. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag was observed in situ. The in situ observation showed that the critical implantation dose for amorphization of Si is 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar + was also studied, and dislocation loops sized at 3-12 nm were clearly observed after implantation to doses of over 1 x 10 15 cm -2 . The density of the loops increased with the dose. Evolution to polycrystalline and amorphous structures were observed at 5 x l0 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber was installed on the transport line of the accelerator-TEM interface system. This enables in situ measurement of composition and location of the implanted species in lattice of the samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in helium-implanted materials. (authors)

  13. Accelerator-tem interface facility and application

    International Nuclear Information System (INIS)

    Li Ming; He Jun; Yang Zheng; Zhou Lin; Liu Chuansheng; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee, J.C.

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandetron accelerator. Measures were taken to isolate the TEM from mechanical vibration transmitted from the ion beam lines and good resolution was maintained with the TEM machine when operated under high zoom modes during the ion implantation. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag were observed in situ. The TEM sample could be tilted by 52 degree and for low energy ion irradiation, real time observation was realized. The in situ observation showed that the critical implant dose for amorphization of Si is 2 x 10 14 cm -2 and it became fully amorphized at 3 x 10 15 cm -2 . Amorphization of GaAs started at 1 x 10 14 cm -2 , whereas for nanocrystal Ag, the starting dose was 6 x 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar+ was also studied and dislocation loops with sizes of 3-12 nm were clearly observed after implantation to doses higher than 1 x 10 15 cm -2 . The density of the loops increased with the increase in the implant dose and evolution to polycrystalline and amorphous structures were observed at 5 x 10 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber has been installed on the transport line of the accelerator-TEM interface system. This makes it possible to in situ measure composition and location of impurities in the lattice of the implanted samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in materials by helium implantation. (authors)

  14. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  15. Implementation of graphical user interfaces in nuclear applications

    International Nuclear Information System (INIS)

    Barmsnes, K.A.; Johnsen, T.; Sundling, C.-V.

    1997-01-01

    During recent years a demand has formed for systems that support design and implementation of graphical user interfaces (GUIs) in the control rooms of nuclear power plants. Picasso-3 is a user interface management system supporting object oriented definition of GUIs in a distributed computing environment. The system is currently being used in a number of different application areas within the nuclear industry, such as retrofitting of display systems in simulators and control rooms, education and training applications, etc. Some examples are given of nuclear applications where the Picasso-3 system has been used

  16. Distributed user interfaces for clinical ubiquitous computing applications.

    Science.gov (United States)

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  17. Contact mechanics and friction physical principles and applications

    CERN Document Server

    Popov, Valentin L

    2017-01-01

    This application-oriented book introduces readers to the associations and relationships between contact mechanics and friction, providing them with a deeper understanding of tribology. It addresses the related phenomena of contacts, adhesion, capillary forces, friction, lubrication, and wear from a consistent point of view. The author presents (1) methods for rough estimates of tribological quantities, (2) simple and general methods for analytical calculations, and (3) the crossover into numerical simulation methods, the goal being to convey a consistent view of tribological processes at various scales of magnitude (from nanotribology to earthquake research). The book also explores the system dynamic aspects of tribological systems, such as squeal and its suppression, as well as other types of instabilities and spatial patterns. It includes problems and worked-out solutions for the respective chapters, giving readers ample opportunity to apply the theory to practical situations and to deepen their understandi...

  18. Viscoelastic reciprocating contacts in presence of finite rough interfaces: A numerical investigation

    Science.gov (United States)

    Putignano, Carmine; Carbone, Giuseppe

    2018-05-01

    Viscoelastic reciprocating contacts are crucial in a number of systems, ranging from sealing components to viscoelastic dampers. Roughness plays in these conditions a central role, but no exhaustive assessment in terms of influence on area, separation and friction has been drawn so far. This is due to the huge number of time and space scales involved in the problem. By means of an innovative Boundary Element methodology, which treats the time as a parameter and then requires only to discretize the space domain, we investigate the viscoelastic reciprocating contact mechanics between rough solids. In particular, we consider the alternate contact of a rigid finite-size rough punch over a viscoelastic layer: the importance of the domain finiteness in the determination of the contact area and the contact solution anisotropy is enlightened. Implications on real system may be drawn on this basis. Finally, we focus on the hysteretic cycle related to the viscoelastic tangential forces.

  19. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  20. User Interface Design in Medical Distributed Web Applications.

    Science.gov (United States)

    Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara

    2016-01-01

    User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.

  1. Application of Contact Mode AFM to Manufacturing Processes

    Science.gov (United States)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  2. Graphical User Interfaces for Volume Rendering Applications in Medical Imaging

    OpenAIRE

    Lindfors, Lisa; Lindmark, Hanna

    2002-01-01

    Volume rendering applications are used in medical imaging in order to facilitate the analysis of three-dimensional image data. This study focuses on how to improve the usability of graphical user interfaces of these systems, by gathering user requirements. This is achieved by evaluations of existing systems, together with interviews and observations at clinics in Sweden that use volume rendering to some extent. The usability of the applications of today is not sufficient, according to the use...

  3. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    Science.gov (United States)

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stress-in-motion (SIM) - tyre/road interface contact stresses

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-06-01

    Full Text Available Tyre or road interface stresses are those induced by vehicular traffic running on roads, and are the primary cause of surfacing problems. The cost of asphalt layers is often the most significant in road construction and maintenance work...

  5. Close contacts at the interface: Experimental-computational synergies for solving complexity problems

    Science.gov (United States)

    Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem

    2018-02-01

    The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.

  6. Energy level alignment and electron transport through metal/organic contacts. From interfaces to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Abad, Enrique

    2013-07-01

    A new calculational approach to describing metal/organic interfaces. A valuable step towards a better understanding of molecular electronics. Nominated as an outstanding contribution by the Autonomous University of Madrid. In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.

  7. Effect of contact area on electron transport through graphene-metal interface.

    Science.gov (United States)

    Liu, Hongmei; Kondo, Hisashi; Ohno, Takahisa

    2013-08-21

    We perform first-principles investigations of electron transport in armchair graphene nanoribbons adsorbed on Cu(111) and Ni(111) surfaces with various contact areas. We find that the contact area between metals and graphene has different influences on the conductance. The Cu-graphene system shows an increase in differential conductance for more contact area at a low bias voltage, primarily originating from the shift of transmission peaks relative to the Fermi energy. As the bias increases, there is an irregular change of conductance, including a weak negative differential conductance for more contact area. In contrast, the conductance of the Ni-graphene junction is monotonically enhanced with increasing overlap area. The minority spin which shows a broad transmission is responsible for the conductance increase of Ni-graphene. These behaviors can be attributed to different mechanisms of the interfacial electron transport: Charge transfer between graphene and Cu largely dominates the transmission enhancement of Cu-graphene, whereas hybridization between graphene and Ni states plays a more important role in the transmission enhancement of Ni-graphene. The different behaviors of transmission increase correlate with not only the strength of the graphene-metal interaction but also the location of metal d states.

  8. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    Directory of Open Access Journals (Sweden)

    Yu-Wen Cheng

    2015-10-01

    Full Text Available A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol (PVP. In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl (P3HT as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  9. Dynamic Head-Disk Interface Instabilities With Friction for Light Contact (Surfing) Recording

    NARCIS (Netherlands)

    Vakis, Antonis I.; Lee, Sung-Chang; Polycarpou, Andreas A.

    2009-01-01

    Recent advances in hard-disk drive technology involve the use of a thermal fly-height control (TFC) pole tip protrusion to bring the read/write recording elements of the slider closer to the disk surface and thus achieve Terabit per square inch recording densities. A dynamic, contact mechanics-based

  10. Physics through the 1990s: scientific interfaces and technological applications

    International Nuclear Information System (INIS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics--biophysics, the brain, and theoretical biology; the physics-chemistry interface--instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics--tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics--complex systems and applications in basic research; mathematics--field theory and chaos; microelectronics--integrated circuits, miniaturization, future trends; optical information technologies--fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security--devices, weapons, and arms control; medical physics--radiology, ultrasonics, NMR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs

  11. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  12. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  13. Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11% Alloy and Steel Dies SKD 61

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2010-10-01

    Full Text Available Die soldering (die sticking is a defect of metal casting in which molten metal “welds” to the metallic die mold surface during casting process. Die soldering is the result of an interface reaction between the molten aluminum and the die material. Aluminum alloy with 7 and 11% silicon and SKD 61 die steel are the most common melt and die material used in aluminum die casting. This research is done to study the morphology and the characteristics of the formed AlxFeySiz intermetallic layer during interface reaction at dipping test. The samples of as-anneal SKD 61 tool steel was dipped into the molten of Al-7%Si held at temperature 680oC and into molten Al-11%Si held at temperature 710oC with the different contact time of 10 minutes; 30 minutes; and 50 minutes. The research results showed that the interface reaction can form a compact intermetallic layer with AlxFey phase and a broken intermetallic layer with AlxFeySiz phase on the surface of SKD 61 tool steel. The increasing of the contact time by the immersion of material SKD 61 tool steel in both of molten Al-7%Si and Al-11%Si will increase the thickness of the AlxFeySiz intermetallic layer until an optimum point and then decreasing. The micro hardness of the AlxFeySiz intermetallic layer depends on the content of the iron. Increasing of the iron content in intermetallic layer will increase the micro hardness of the AlxFeySiz. This condition happened because the increasing of Fe content will cause forming of intermetallic AlxFeySiz phase becomes quicker.

  14. Ultraviolet photoelectron spectroscopy investigation of interface formation in an indium-tin oxide/fluorocarbon/organic semiconductor contact

    International Nuclear Information System (INIS)

    Tong, S.W.; Lau, K.M.; Sun, H.Y.; Fung, M.K.; Lee, C.S.; Lifshitz, Y.; Lee, S.T.

    2006-01-01

    It has been demonstrated that hole-injection in organic light-emitting devices (OLEDs) can be enhanced by inserting a UV-illuminated fluorocarbon (CF x ) layer between indium-tin oxide (ITO) and organic hole-transporting layer (HTL). In this work, the process of interface formation and electronic properties of the ITO/CF x /HTL interface were investigated with ultraviolet photoelectron spectroscopy. It was found that UV-illuminated fluorocarbon layer decreases the hole-injection barrier from ITO to α-napthylphenylbiphenyl diamine (NPB). Energy level diagrams deduced from the ultraviolet photoelectron spectroscopy (UPS) spectra show that the hole-injection barrier in ITO/UV-treated CF x /NPB is the smallest (0.46 eV), compared to that in the ITO/untreated CF x /NPB (0.60 eV) and the standard ITO/NPB interface (0.68 eV). The improved current density-voltage (I-V) characteristics in the UV-treated CF x -coated ITO contact are consistent with its smallest barrier height

  15. Tailoring the contact thermal resistance at metal-carbon nanotube interface

    Energy Technology Data Exchange (ETDEWEB)

    Firkowska, Izabela; Boden, Andre; Vogt, Anna-Maria; Reich, Stephanie [Department of Physics, Freie Universitaet, Arnimallee 14, 14195 Berlin (Germany)

    2011-11-15

    Copper-decorated carbon nanotubes (CNTs) were synthesized and used as conductive filler to improve the heat transport capabilities of copper matrix. Thermal properties, i.e., thermal diffusivity and thermal conductivity, of copper composite were measured and compared with those containing pristine and functionalized CNTs. Experimental results revealed that composites enriched with nanohybrids where Cu nanoparticles were covalently bonded to CNTs had thermal conductivity four times higher than those containing the same content of pristine CNTs. Evaluation of thermal interface resistance in copper-CNTs composites by means of the flash method. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Electroplated contacts and porous silicon for silicon based solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kholostov, Konstantin, E-mail: kholostov@diet.uniroma1.it [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Serenelli, Luca; Izzi, Massimo; Tucci, Mario [Enea Casaccia Research Centre Rome, via Anguillarese 301, 00123 Rome (Italy); Balucani, Marco [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Rise Technology S.r.l., Lungomare Paolo Toscanelli 170, 00121 Rome (Italy)

    2015-04-15

    Highlights: • Uniformity of the Ni–Si interface is crucial for performance of Cu–Ni contacts on Si. • Uniformly filled PS is the key to obtain the best performance of Cu–Ni contacts on Si. • Optimization of anodization and electroplating allows complete filling of PS layer. • Highly adhesive and low contact resistance Cu–Ni contacts are obtained on Si. - Abstract: In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ω/sq solar cell emitter formed on p-type silicon substrate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 μΩ cm{sup 2} on 80 Ω/sq emitter are achieved.

  17. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  18. A RESTful interface to pseudonymization services in modern web applications.

    Science.gov (United States)

    Lablans, Martin; Borg, Andreas; Ückert, Frank

    2015-02-07

    Medical research networks rely on record linkage and pseudonymization to determine which records from different sources relate to the same patient. To establish informational separation of powers, the required identifying data are redirected to a trusted third party that has, in turn, no access to medical data. This pseudonymization service receives identifying data, compares them with a list of already reported patient records and replies with a (new or existing) pseudonym. We found existing solutions to be technically outdated, complex to implement or not suitable for internet-based research infrastructures. In this article, we propose a new RESTful pseudonymization interface tailored for use in web applications accessed by modern web browsers. The interface is modelled as a resource-oriented architecture, which is based on the representational state transfer (REST) architectural style. We translated typical use-cases into resources to be manipulated with well-known HTTP verbs. Patients can be re-identified in real-time by authorized users' web browsers using temporary identifiers. We encourage the use of PID strings for pseudonyms and the EpiLink algorithm for record linkage. As a proof of concept, we developed a Java Servlet as reference implementation. The following resources have been identified: Sessions allow data associated with a client to be stored beyond a single request while still maintaining statelessness. Tokens authorize for a specified action and thus allow the delegation of authentication. Patients are identified by one or more pseudonyms and carry identifying fields. Relying on HTTP calls alone, the interface is firewall-friendly. The reference implementation has proven to be production stable. The RESTful pseudonymization interface fits the requirements of web-based scenarios and allows building applications that make pseudonymization transparent to the user using ordinary web technology. The open-source reference implementation implements the

  19. Physics through the 1990s: Scientific interfaces and technological applications

    International Nuclear Information System (INIS)

    1986-01-01

    Physics traditionally serves mankind through its fundamental discoveries, which enrich our understanding of nature and the cosmos. While the basic driving force for physics research is intellectual curiosity and the search for understanding, the nation's support for physics is also motivated by strategic national goals, by the pride of world scientific leadership, by societal impact through symbiosis with other natural sciences, and through the stimulus of advanced technology provided by applications of physics. This Physics Survey volume looks outward from physics to report its profound impact on society and the economy through interactions at the interfaces with other natural sciences and through applications of physics to technology, medicine, and national defense

  20. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Nezha Ahmad Agha

    Full Text Available Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  1. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Science.gov (United States)

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  2. Electroless Ni-B plating for electrical contact applications

    Directory of Open Access Journals (Sweden)

    Dervos, C. T.

    2005-12-01

    Full Text Available Electroless Ni-B plating has been tried on steel substrate in an effort to employ low-cost starting materials for electrical contacts or connectors. By selected conditions of heat treatment in a high vacuum environment the plating can acquire Cr-equivalent hardness without the effluents of the hard chromium plating process. The surfaces were characterized under scanning electron microscope and by XRD. The fabricated materials were tested under corrosion conditions by polarization measurements. Semispherical nickel plated steel joints were tested in a computer controlled contact make-break apparatus, under simultaneous application of a mechanical and a low-voltage electrical load for 20,000 cycles. After heat treatment the plating acquires a crystalline structure with very good adhesion to the substrate material. Corrosion decreases and increased hardness is obtained. The surface is also characterized by good electrical properties during aging accelerated tests.

    Se ha investigado la deposición de Ni-B por vía química sobre un substrato de acero, con el fin de poder emplear materiales de bajo coste para los contactos o conectores eléctricos. Mediante condiciones específicas de tratamiento térmico en un ambiente de alto vacío, la deposición puede alcanzar durezas equivalentes al cromo (Cr sin los efluentes del proceso de cromado duro. Las superficies se caracterizaron en el microscopio electrónico de barrido y mediante DRX. Los materiales fabricados se ensayaron bajo condiciones de corrosión utilizando mediciones de polarización. Se ensayaron las juntas semiesféricas de acero niquelado en un equipo de contactos controlado por ordenador bajo la aplicación simultánea de una carga mecánica y de una carga eléctrica de bajo voltaje durante 20.000 ciclos. Después del tratamiento térmico, el recubrimiento adquiere una estructura cristalina con muy buena adherencia al material del substrato. Se consigue una menor corrosión y mayor

  3. Contact angle hysteresis: a review of fundamentals and applications

    NARCIS (Netherlands)

    Eral, Burak; 't Mannetje, Dieter; Oh, J.M.

    2013-01-01

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To

  4. Pulsed Laser Deposition of Carbide Coatings for Rolling and Sliding Contact Applications

    National Research Council Canada - National Science Library

    Krzanowski, James

    2003-01-01

    In this research program several new concepts were investigated for improving the mechanical and tribological properties of coatings intended for applications subject to repeated rolling and sliding contacts...

  5. The CERN PS/SL Controls Java Application Programming Interface

    International Nuclear Information System (INIS)

    I. Deloose; J. Cuperus; P. Charrue; F. DiMaio; K. Kostro; M. Vanden Eynden; W. Watson

    1999-01-01

    The PS/SL Convergence Project was launched in March 1998. Its objective is to deliver a common control as infrastructure for the CERN accelerators by year 2001. In the framework of this convergence activity, a project was launched to develop a Java Application Programming Interface (API) between programs written in the Java language and the PS and SL accelerator equipment. This Java API was specified and developed in collaboration with TJNAF. It is based on the Java CDEV [1] package that has been extended in order to end up with a CERN/TJNAF common product. It implements a detailed model composed of devices organized in named classes that provide a property-based interface. It supports data subscription and introspection facilities. The device model is presented and the capabilities of the API are described with syntax examples. The software architecture is also described

  6. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Science.gov (United States)

    2010-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  7. A contact-free respiration monitor for smart bed and ambulatory monitoring applications.

    Science.gov (United States)

    Hart, Adam; Tallevi, Kevin; Wickland, David; Kearney, Robert E; Cafazzo, Joseph A

    2010-01-01

    The development of a contact-free respiration monitor has a broad range of clinical applications in the home and hospital setting. Current approaches suffer from a variety of problems including unreliability, low sensitivity, and high cost. This work describes a novel approach to contact-free respiration monitoring that addresses these shortcomings by employing a highly sensitive capacitance sensor to detect variations in capacitive coupling caused by breathing. A prototype system consisting of a synthetic-metallic pad, sensor electronics, and iPhone interface was built and its performance compared experimentally to the gold standard technique (Respiratory Inductance Plethysmography) on both a healthy volunteer and SimMan robotic mannequin. The prototype sensor effectively captured respiratory movements over breathing rates of 5-55 bpm; achieving an average spectral correlation of 0.88 (CI: 0.86-0.90) and 0.95 (CI: 0.95-0.96) to the gold standard using the SimMan and healthy volunteer respectively.

  8. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  9. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids.

    Science.gov (United States)

    Arnau, Antonio

    2008-01-21

    From the first applications of AT-cut quartz crystals as sensors in solutionsmore than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor isbecoming into a good alternative analytical method in a great deal of applications such asbiosensors, analysis of biomolecular interactions, study of bacterial adhesion at specificinterfaces, pathogen and microorganism detection, study of polymer film-biomolecule orcell-substrate interactions, immunosensors and an extensive use in fluids and polymercharacterization and electrochemical applications among others. The appropriateevaluation of this analytical method requires recognizing the different steps involved andto be conscious of their importance and limitations. The first step involved in a QCMsystem is the accurate and appropriate characterization of the sensor in relation to thespecific application. The use of the piezoelectric sensor in contact with solutions stronglyaffects its behavior and appropriate electronic interfaces must be used for an adequatesensor characterization. Systems based on different principles and techniques have beenimplemented during the last 25 years. The interface selection for the specific application isimportant and its limitations must be known to be conscious of its suitability, and foravoiding the possible error propagation in the interpretation of results. This article presentsa comprehensive overview of the different techniques used for AT-cut quartz crystalmicrobalance in in-solution applications, which are based on the following principles:network or impedance analyzers, decay methods, oscillators and lock-in techniques. Theelectronic interfaces based on oscillators and phase-locked techniques are treated in detail,with the description of different configurations, since these techniques are the most used inapplications for detection of analytes in solutions, and in those where a fast sensorresponse is necessary.

  10. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Antonio Arnau

    2008-01-01

    Full Text Available From the first applications of AT-cut quartz crystals as sensors in solutionsmore than 20 years ago, the so-called quartz crystal microbalance (QCM sensor isbecoming into a good alternative analytical method in a great deal of applications such asbiosensors, analysis of biomolecular interactions, study of bacterial adhesion at specificinterfaces, pathogen and microorganism detection, study of polymer film-biomolecule orcell-substrate interactions, immunosensors and an extensive use in fluids and polymercharacterization and electrochemical applications among others. The appropriateevaluation of this analytical method requires recognizing the different steps involved andto be conscious of their importance and limitations. The first step involved in a QCMsystem is the accurate and appropriate characterization of the sensor in relation to thespecific application. The use of the piezoelectric sensor in contact with solutions stronglyaffects its behavior and appropriate electronic interfaces must be used for an adequatesensor characterization. Systems based on different principles and techniques have beenimplemented during the last 25 years. The interface selection for the specific application isimportant and its limitations must be known to be conscious of its suitability, and foravoiding the possible error propagation in the interpretation of results. This article presentsa comprehensive overview of the different techniques used for AT-cut quartz crystalmicrobalance in in-solution applications, which are based on the following principles:network or impedance analyzers, decay methods, oscillators and lock-in techniques. Theelectronic interfaces based on oscillators and phase-locked techniques are treated in detail,with the description of different configurations, since these techniques are the most used inapplications for detection of analytes in solutions, and in those where a fast sensorresponse is necessary.

  11. Moving interface problems and applications in fluid dynamics

    CERN Document Server

    Khoo, Boo Cheong; Lin, Ping

    2008-01-01

    This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.

  12. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.

    Science.gov (United States)

    Tian, Huanhuan; Zhang, Li; Wang, Moran

    2015-08-15

    Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Suppression of material transfer at contacting surfaces: the effect of adsorbates on Al/TiN and Cu/diamond interfaces from first-principles calculations

    Science.gov (United States)

    Feldbauer, Gregor; Wolloch, Michael; Bedolla, Pedro O.; Redinger, Josef; Vernes, András; Mohn, Peter

    2018-03-01

    The effect of monolayers of oxygen (O) and hydrogen (H) on the possibility of material transfer at aluminium/titanium nitride (Al/TiN) and copper/diamond (Cu/Cdia) interfaces, respectively, were investigated within the framework of density functional theory (DFT). To this end the approach, contact, and subsequent separation of two atomically flat surfaces consisting of the aforementioned pairs of materials were simulated. These calculations were performed for the clean as well as oxygenated and hydrogenated Al and Cdia surfaces, respectively. Various contact configurations were considered by studying several lateral arrangements of the involved surfaces at the interface. Material transfer is typically possible at interfaces between the investigated clean surfaces; however, the addition of O to the Al and H to the Cdia surfaces was found to hinder material transfer. This passivation occurs because of a significant reduction of the adhesion energy at the examined interfaces, which can be explained by the distinct bonding situations.

  14. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  15. Evaluating a Tablet Application and Differential Reinforcement to Increase Eye Contact in Children with Autism

    Science.gov (United States)

    Jeffries, Tricia; Crosland, Kimberly; Miltenberger, Raymond

    2016-01-01

    We tested the effectiveness of a tablet application and differential reinforcement to increase eye contact in 3 children with autism. The application required the child to look at a picture of a person's face and identify the number displayed in the person's eyes. Eye contact was assessed immediately after training, 1 hr after training, and in a…

  16. Comparative Study on Interface Elements, Thin-Layer Elements, and Contact Analysis Methods in the Analysis of High Concrete-Faced Rockfill Dams

    Directory of Open Access Journals (Sweden)

    Xiao-xiang Qian

    2013-01-01

    Full Text Available This paper presents a study on the numerical performance of three contact simulation methods, namely, the interface element, thin-layer element, and contact analysis methods, through the analysis of the contact behavior between the concrete face slab and the dam body of a high concrete-faced rockfill dam named Tianshengqiao-I in China. To investigate the accuracy and limitations of each method, the simulation results are compared in terms of the dam deformation, contact stress along the interface, stresses in the concrete face slab, and separation of the concrete face slab from the cushion layer. In particular, the predicted dam deformation and slab separation are compared with the in-situ observation data to classify these methods according to their agreement with the in-situ observations. It is revealed that the interface element and thin-layer element methods have their limitations in predicting contact stress, slab separation, and stresses in the concrete face slab if a large slip occurs. The contact analysis method seems to be the best choice whether the separation is finite or not.

  17. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  18. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    Science.gov (United States)

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  19. Development of in-situ observation system of dynamic contact interface between dies and materials during microforming operation

    Directory of Open Access Journals (Sweden)

    Shimizu Tetsuhide

    2015-01-01

    Full Text Available Application of diamond like carbon (DLC films are reported in several microforming processes, in view of its great tribological performance owe to the low friction and the high chemical stability. However, due to its high internal residual stress, the film properties with the low adhesion strength and the high wear rate under severe tribological conditions are still remain as technical issues. However, since the dynamic variation of the contact state cannot be observed during the forming operation, it is difficult to recognize the origin and the influential tribological factors of tool life for DLC coated microforming die. Therefore, the appropriate DLC film properties for the contact state in microforming operation have not been clarified. To observe the dynamic variation of the contact state during the microforming operation, present study developed a novel microforming die assembly installed the in-situ observation system with silica glass die and high speed recording camera. By using this system, the dynamic delamination behaviour of DLC films during the progressive micro-bending process was successfully demonstrated. The influential factors for the durability of DLC coated microdies were discussed.

  20. Single-row versus double-row capsulolabral repair: a comparative evaluation of contact pressure and surface area in the capsulolabral complex-glenoid bone interface.

    Science.gov (United States)

    Kim, Doo-Sup; Yoon, Yeo-Seung; Chung, Hoi-Jeong

    2011-07-01

    Despite the attention that has been paid to restoration of the capsulolabral complex anatomic insertion onto the glenoid, studies comparing the pressurized contact area and mean interface pressure at the anatomic insertion site between a single-row repair and a double-row labral repair have been uncommon. The purpose of our study was to compare the mean interface pressure and pressurized contact area at the anatomic insertion site of the capsulolabral complex between a single-row repair and a double-row repair technique. Controlled laboratory study. Thirty fresh-frozen cadaveric shoulders (mean age, 61 ± 8 years; range, 48-71 years) were used for this study. Two types of repair were performed on each specimen: (1) a single-row repair and (2) a double-row repair. Using pressure-sensitive films, we examined the interface contact area and contact pressure. The mean interface pressure was greater for the double-row repair technique (0.29 ± 0.04 MPa) when compared with the single-row repair technique (0.21 ± 0.03 MPa) (P = .003). The mean pressurized contact area was also significantly greater for the double-row repair technique (211.8 ± 18.6 mm(2), 78.4% footprint) compared with the single-row repair technique (106.4 ± 16.8 mm(2), 39.4% footprint) (P = .001). The double-row repair has significantly greater mean interface pressure and pressurized contact area at the insertion site of the capsulolabral complex than the single-row repair. The double-row repair may be advantageous compared with the single-row repair in restoring the native footprint area of the capsulolabral complex.

  1. The generalized nuclear contact and its application to the photoabsorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Ronen; Barnea, Nir [The Hebrew University, The Racah Institute of Physics, Jerusalem (Israel); Bazak, Betzalel [The Hebrew University, The Racah Institute of Physics, Jerusalem (Israel); Universite Paris-Sud, Institut de Physique Nucleaire, CNRS/IN2P3, Orsay (France)

    2016-04-15

    Using the zero-range model, it was demonstrated recently that Levinger's quasi-deuteron model can be utilized to extract the nuclear neutron-proton contact. Going beyond the zero-range approximation and considering the full nuclear contact formalism, we rederive here the quasi-deuteron model for the nuclear photoabsorption cross-section and utilize it to establish relations and constraints for the general contact matrix. We also define and demonstrate the importance of the diagonalized nuclear contacts, which can be also relevant to further applications of the nuclear contacts. (orig.)

  2. Implementation and applications of a finite-element model for the contact between rough surfaces

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Klit, Peder

    2013-01-01

    Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more ...... in the examples. Among the presented results one can find the distribution of the contact pressure at the interface and diagrams of the real area of contact as a function of the nominal contact pressure. © 2013 Elsevier B.V.......Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more...... straightforward to understand and easier to extend to more complex cases like contacting bodies that demonstrate elasto-plastic behavior. This paper presents a finite-element model for studying the frictionless contact between nominally flat rough surfaces. Apart from a description of the model implementation...

  3. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces...

  4. Application of photogrammetry for analysis of occlusal contacts.

    Science.gov (United States)

    Shigeta, Yuko; Hirabayashi, Rio; Ikawa, Tomoko; Kihara, Takuya; Ando, Eriko; Hirai, Shinya; Fukushima, Shunji; Ogawa, Takumi

    2013-04-01

    The conventional 2D-analysis methods for occlusal contacts provided limited information on tooth morphology. This present study aims to detect 3D positional information of occlusal contacts from 2D-photos via photogrammetry. We propose an image processing solution for analysis of occlusal contacts and facets via the black silicone method and a photogrammetric technique. The occlusal facets were reconstructed from a 2D-photograph data-set of inter-occlusal records into a 3D image via photogrammetry. The configuration of the occlusal surface was reproduced with polygons. In addition, the textures of the occlusal contacts were mapped to each polygon. DIFFERENCE FROM CONVENTIONAL METHODS: Constructing occlusal facets with 3D polygons from 2D-photos with photogrammetry was a defining characteristic of this image processing technique. It allowed us to better observe findings of the black silicone method. Compared with conventional 3D analysis using a 3D scanner, our 3D models did not reproduce the detail of the anatomical configuration. However, by merging the findings of the inter-occlusal record, the deformation of mandible and the displacement of periodontal ligaments under occlusal force were reflected in our model. EFFECT OR PERFORMANCE: Through the use of polygons in the conversion of 2D images to 3D images, we were able to define the relation between the location and direction of the occlusal contacts and facets, which was difficult to detect via conventional methods. Through our method of making a 3D polygon model, the findings of inter-occlusal records which reflected the jaw/teeth behavior under occlusal force could be observed 3-dimensionally. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. An Object-Oriented Architecture for User Interface Management in Distributed Applications

    OpenAIRE

    Denzer, Ralf

    2017-01-01

    User interfaces for large distributed applications have to handle specific problems: the complexity of the application itself and the integration of online-data into the user interface. A main task of the user interface architecture is to provide powerful tools to design and augment the end-user system easily, hence giving the designer more time to focus on user requirements. Our experiences developing a user interface system for a process control room showed that a lot of time during the dev...

  6. Preparation and investigation of burried metal/molecule contact interfaces with surface sensitive methods; Praeparation und Untersuchung verborgener Metall/Molekuel-Kontaktgrenzflaechen mit oberflaechensensitiven Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Vrdoljak, Pavo

    2011-05-13

    The present thesis establishes an optimised concept of a delamination technique suitable for ultra high vacuum (UHV) with which model systems of buried interfaces were made accessible for surface sensitive methods which were applied to investigate their electronic and topographical properties. A primary focus of this work is on the question how buried interfaces could be accessed successfully for surface sensitive methods using buried metal/NTCDA and metal/PTCDA interfaces as model systems. Contacts of approximately 10 x 15 mm{sup 2} in size were accessed. The second focus of the thesis is on the investigation of the electronical and topographical properties of the buried interfaces, for which some similarities between delaminated metal (Au,Ag)/ PTCDA- and Ag/NTCDA interfaces were found: After the delamination of top-contacts there were inhomogeneous layers of molecules on the metal contacts. Whereas PTCDA covered metal contacts had thicker molecular layers (4-5 ML PTCDA on Ag), NTCDA covered contacts showed only one monolayer coverage over large areas of at least 2 mm in diameter. Regions with multilayer coverage showed smooth surfaces whereas metal surfaces showed a fissured, meander-like and rough surface. Both contact systems also had in common that the adhesive made PES investigations of valence states very difficult. Furthermore, it was possible to thin out the molecular layers thermally but afterwards no valence states could be measured. Investigating in-situ delaminated buried interfaces, the focus was on metal (Au,Ag)/PTCDA interfaces first. The molecular layers could be successfully desorbed thermally at 260 C to 1-3 monolayers so that valence states were investigated. The spectra of the in-situ delaminated and thermally desorbed Ag/PTCDA contact were noticeably broadened so that the positions of HOMO and FLUMO could only be estimated at 1.9 eV and 0.7 eV, respectively. Additionally, interfaces of Ag/NTCDA contacts were investigated. With UPS it was found

  7. Development of an Application Programming Interface for Depletion Analysis (APIDA)

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • APIDA an Application Programming Interface tool for Depletion Analysis. • APIDA employs a matrix exponential method and a linear chain method. • A burnup solver to couple to neutron transport solvers in lattice depletion or reactor core analysis codes. - Abstract: A new utility has been developed with extensive capabilities in identifying nuclide decay and transmutation characteristics, allowing for accurate and efficient tracking of the change in isotopic concentrations in nuclear reactor fuel over time when coupled with a transport solution method. This tool, named the Application Programming Interface for Depletion Analysis (APIDA), employs both a matrix exponential method and a linear chain method to solve for the end-of-time-step nuclide concentrations for all isotopes relevant to nuclear reactors. The Chebyshev Rational Approximation Method (CRAM) was utilized to deal with the ill-conditioned matrices generated during lattice depletion calculations, and a complex linear chain solver was developed to handle isotopes reduced from the burnup matrix due to either radioactive stability or a sufficiently low neutron-induced reaction cross section. The entire tool is housed in a robust but simple application programming interface (API). The development of this API allows other codes, particularly numerical neutron transport solvers, to incorporate APIDA as the burnup solver in a lattice depletion code or reactor core analysis code in memory, without the need to write or read from the hard disk. The APIDA code was benchmarked using several decay and transmutation chains. Burnup solutions produced by APIDA were shown to provide material concentrations comparable to the analytically solved Bateman equations – well below 0.01% relative error for even the most extreme cases using isotopes with vastly different decay constants. As a first order demonstration of the API, APIDA was coupled with the transport solver in the SERPENT code for a fuel pin

  8. Nature of the Ag-Si interface in screen-printed contacts. A detailed transmission electron microscopy study of cross-sectional structures

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, C. [Fraunhofer ISE, Laboratory and Service Center Gelsenkirchen (Germany); Huljic, D.M.; Willeke, G. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Hessler-Wyser, A. [Swiss Federal Inst. of Technology, CIME, Lausanne (Switzerland)

    2002-07-01

    As screen printed contacts are the predominant metallisation technique in industrial production of Si solar cells, a better understanding of their properties is necessary. In this work, we show that high-quality cross-sectional samples can be prepared, whose study by transmission electron microscopy (TEM) reveals precisely the structure of the contact between the silver fingers and the Si. On diffused [100] Si wafers, direct firing of an Ag paste results in interfaces which are mainly composed of shaped Ag crystallites penetrating the emitter up to 120 nm. These crystallites are in epitaxial relation with the Sl substrate. When firing the contacts through a SiN{sub x} layer, larger Ag crystallites are present at the interface with Si and the orientation relation is lost. In both cases, high resolution TEM imaging and EDX analyses reveal a crystalline Ag/Si interface, where neither oxide nor glass frit can be detected. The presence of a significant glass frit layer between the Ag crystallites contacting the Si and the large Ag grains forming the bulk of the fingers can partly explain why lowly doped emitters are difficult to contact by screen-printing. (orig.)

  9. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  10. Interfacing system LOCA risk assessment: Methodology and application

    International Nuclear Information System (INIS)

    Galyean, W.J.; Schroeher, J.A.; Hanson, D.J.

    1991-01-01

    The United States Nuclear Regulatory Commission (NRC) is sponsoring a research program to develop an improved understanding of the human factors hardware, and accident consequence issues that dominate the risk from an Interfacing Systems Loss-of-Coolant Accident (ISLOCA) at a nuclear power plant. To accomplish this program, a methodology has been developed for estimating the core damage frequency and risk associated with an ISLOCA. The steps of the methodology are described with emphasis on one step which is unique, estimation of the probability of rupture of the low pressure systems. A trial application of the methodology was made for a Pressurized Water Reactor (PWR). The results are believed to be plant specific and indicate that human errors during startup and shutdown could be significant contributors to ISLOCA risk at the plant evaluated. 10 refs

  11. Leveraging OpenStudio's Application Programming Interfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Ball, B.; Goldwasser, D.; Parker, A.; Elling, J.; Davis, O.; Kruchten, D.

    2013-11-01

    OpenStudio development efforts have been focused on providing Application Programming Interfaces (APIs) where users are able to extend OpenStudio without the need to compile the open source libraries. This paper will discuss the basic purposes and functionalities of the core libraries that have been wrapped with APIs including the Building Model, Results Processing, Advanced Analysis, UncertaintyQuantification, and Data Interoperability through Translators. Several building energy modeling applications have been produced using OpenStudio's API and Software Development Kits (SDK) including the United States Department of Energy's Asset ScoreCalculator, a mobile-based audit tool, an energy design assistance reporting protocol, and a portfolio scale incentive optimization analysismethodology. Each of these software applications will be discussed briefly and will describe how the APIs were leveraged for various uses including high-level modeling, data transformations from detailed building audits, error checking/quality assurance of models, and use of high-performance computing for mass simulations.

  12. Grid-interfacing converter systems with enhanced voltage quality for microgrid application : concept and implementation

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2011-01-01

    Grid-interfacing converter systems with enhanced voltage quality are proposed for microgrid application in this paper. By adapting the conventional series-parallel structure, a group of grid-interfacing system topologies are proposed for the purpose of interfacing local generation/microgrid to the

  13. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Science.gov (United States)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  14. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.

    Science.gov (United States)

    Persson, B N J

    2016-12-21

    I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.

  15. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    Science.gov (United States)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  16. Footprint Contact Area and Interface Pressure Comparison Between the Knotless and Knot-Tying Transosseous-Equivalent Technique for Rotator Cuff Repair.

    Science.gov (United States)

    Kim, Sung-Jae; Kim, Sung-Hwan; Moon, Hyun-Soo; Chun, Yong-Min

    2016-01-01

    To quantify and compare the footprint contact area and interface pressure on the greater tuberosity between knotless and knot-tying transosseous-equivalent (TOE) repair using pressure-sensitive film. We used 11 pairs of fresh-frozen cadaveric shoulders (22 specimens), in which rotator cuff tears were created before repair. Each pair was randomized to either conventional medial knot-tying TOE repair (group A) or medial knotless TOE repair using the modified Mason-Allen technique (group B). Pressure-sensitive film was used to quantify the pressurized contact area and interface pressure between the greater tuberosity and supraspinatus tendon. The mean pressurized contact area was 33.2 ± 2.5 mm(2) for group A and 28.4 ± 2.4 mm(2) for group B. There was a significant difference between groups (P = .005). Although the overall contact configuration of both groups was similar and showed an M shape, group A showed a greater pressurized configuration around the medial row. The mean interface pressure was 0.20 ± 0.02 MPa for group A and 0.17 ± 0.02 MPa for group B. There was a significant difference between groups (P = .001). Contrary to our hypothesis, in this time-zero study, medial knotless TOE repair using a modified Mason-Allen suture produced a significantly inferior footprint contact area and interface pressure compared with conventional medial knot-tying TOE repair. Even though we found a statistically significant difference between the 2 repair methods, it is still unknown if this statistical difference seen in our study has any clinical and radiologic significance. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Application of MCU to intelligent interface of high precision magnet power supply

    International Nuclear Information System (INIS)

    Xu Ruinian; Li Deming

    2004-01-01

    Application of the high-capability MCU in the intelligent interface is introduced in this paper. A prototype of intelligent interface for high precision huge magnet power supply was developed successfully. This intelligent interface was composed of two parts: operation panel and main board, both of which adopt a MCU of PIC16F877 respectively. The interface has many advantages, such as small size, low cost and good interference immunity. (authors)

  18. Development and applications of the contact electric resistance technique

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T.

    1995-12-31

    At the moment both the scientific understanding of corrosion processes and the engineering practices of corrosion control in power plants can benefit considerably from the development of in situ on-line instruments for characterisation of the surface films on construction materials. In this work a new in situ Contact Electric Resistance (CER) technique has been developed for measurement of electric resistance of surface films on metals. The CER technique was applied in this work in several different research areas. These include e.g. localized corrosion of stainless steel in paper mill wet end environment, investigation of the effect of inhibitors in steam generator crevice environments, passivation of GaAs single crystals by sulphate treatment and monitoring of the kinetics of oxide growth on zirconium metals in high temperature water. The CER technique has a measurement capacity ranging from 10-9 {omega} to 105 {omega}. The lowest range of resistance is typical for metallic layers deposited on the surface in electrodeposition processes. The highest range of resistance is found for insulator type of films e.g. on zirconium metals. (author)

  19. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Science.gov (United States)

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  20. A minicomputer interface for realtime operations: an application to operant conditioning.

    Science.gov (United States)

    Mayor, S J; Wilson, J

    1975-09-01

    A PDP-12 interface was designed, constructed, and tested for realtime imput and output of binary information. Within limits this interface can be used with any peripheral device which operates in the binary mode. In addition to its generality of application the interface features include ease of expansion and low cost. A description of its design and operation is give here is terms of a typical application: the control of behavioral equipment (i.e. "Skinner Boxes") for operant conditioning.

  1. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chieduko, Victor [UQM Technologies, Inc.; Lall, Rajiv [UQM Technologies, Inc.; Gilbert, Alan [UQM Technologies, Inc.

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. The results were compared to currently available models for contact resistance, and one model was adapted for prediction of TCR in future motor designs.

  2. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  3. Experimental evaluation of multimodal human computer interface for tactical audio applications

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.; Jovanov, E.; Oy, S.

    2002-01-01

    Mission critical and information overwhelming applications require careful design of the human computer interface. Typical applications include night vision or low visibility mission navigation, guidance through a hostile territory, and flight navigation and orientation. Additional channels of

  4. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  5. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    Science.gov (United States)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  6. Adaptation of the Camera Link Interface for Flight-Instrument Applications

    Science.gov (United States)

    Randall, David P.; Mahoney, John C.

    2010-01-01

    COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.

  7. Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC

    Science.gov (United States)

    Vivona, M.; Greco, G.; Bongiorno, C.; Lo Nigro, R.; Scalese, S.; Roccaforte, F.

    2017-10-01

    In this work, the electrical and structural properties of Ti/Al/Ni Ohmic contacts to p-type implanted silicon carbide (4H-SiC) were studied employing different techniques. With increasing the annealing temperature, an improvement of the electrical properties of the contacts is highlighted, until an Ohmic behavior is obtained at 950 °C, with a specific contact resistance ρc = 2.3 × 10-4 Ω cm2. A considerable intermixing of the metal layers occurred upon annealing, as a consequence of the formation of different phases, both in the uppermost part of the stack (mainly Al3Ni2) and at the interface with SiC, where the formation of preferentially aligned TiC is observed. The formation of an Ohmic contact was associated with the occurrence of the reaction and the disorder at the interface, where the current transport is dominated by the thermionic field emission mechanism with a barrier height of 0.56 eV.

  8. Current transport across the pentacene/CVD-grown graphene interface for diode applications

    International Nuclear Information System (INIS)

    Berke, K; Tongay, S; McCarthy, M A; Rinzler, A G; Appleton, B R; Hebard, A F

    2012-01-01

    We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole-Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole-Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole-Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface. (paper)

  9. Current transport across the pentacene/CVD-grown graphene interface for diode applications.

    Science.gov (United States)

    Berke, K; Tongay, S; McCarthy, M A; Rinzler, A G; Appleton, B R; Hebard, A F

    2012-06-27

    We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole–Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole–Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface.

  10. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    OpenAIRE

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Cont...

  11. The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete

    International Nuclear Information System (INIS)

    Keddam, M.; Novoa, X.R.; Vivier, V.

    2009-01-01

    The concept of floating electrode is introduced for defining the common electrochemical behaviour of any non-connected, electronically conducting, body immersed in an electrolytic medium. The emphasis is put on both its own polarisation features and its influence on the d.c. and a.c. current and potential across the cell, hence the feasibility, among others, of contact-less electrochemical measurements on floating electrodes. Application to reinforcing steel bars in concrete is investigated by numerical computation of the a.c. current and potential fields in a broad range of concrete resistivity, interfacial resistance and capacitance. Impedance defined in a 4-electrode configuration, when rationalised against the concrete resistivity, is shown to provide, within a realistic range of parameters, a practical mean to access the properties of the bar-concrete interface.

  12. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  13. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  14. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    Science.gov (United States)

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

  15. Application and development of non contact angle-wide viewing system in vitreous retinal surgery

    Directory of Open Access Journals (Sweden)

    Rong-Hua He

    2016-07-01

    Full Text Available Wide-angle viewing system as an important auxiliary device can clearly observe the whole fundus field of vision in vitreous surgery, which enable vitreoretinal surgery more efficient, safer and more effective. So it has very high application value in ophthalmologic operation. In this paper, we studied the development and application of wide-angle viewing system in vitreoretinal surgery in recent years, from which we summed up the advantage of non-contact wide-angle viewing system in clinical field, and pointed out the shortcomings. The ultimate goal is to make the non-contact wide-angle viewing system better applied in vitreous surgery.

  16. Application and analysis of palladium vapor deposited on stainless steel for high temperature electrical contacts

    International Nuclear Information System (INIS)

    Jodeh, S.

    2008-01-01

    Using electron beam evaporation. Pd thin films of 300 nm thickness have been deposited on 301 stainless steel for high temperature electrical contact studies. The structure and compost ion of the helms were studied in detail x-ray diffraction (XRD), scanning electron microscopy (Sem), electron probe microanalysis (EPMA), and x-ray photoelectron spectroscopy (XP S) with sputter depth profiling. The contact properties such as contact resistance, fretting wear resistance, and thermal stability have been measured.The contact resistance rem ins low after heat-aging in air for 168 h at 150 and 200 deg., but increases significantly after heat-aging at 340 deg.. This increase in contact resistance is caused by the formation of about a 27 nm (1 μin.) thick Pdo. In contrast, the thickness of the Pdo is too thin to cause measurable contact resistance increases after heat-aging at 150 and 200 deg.. The fretting wear resistance of Pd coated 301 stainless steel is better than that of electroplated Sn of ser veal thousand nm thickness. Thus, vapor deposited Pd coating on 301 stainless steel may replace electroplated Sn for electrical contact application at elevated temperatures.

  17. Application Program Interface for the Orion Aerodynamics Database

    Science.gov (United States)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The

  18. The CAD-score web server: contact area-based comparison of structures and interfaces of proteins, nucleic acids and their complexes.

    Science.gov (United States)

    Olechnovič, Kliment; Venclovas, Ceslovas

    2014-07-01

    The Contact Area Difference score (CAD-score) web server provides a universal framework to compute and analyze discrepancies between different 3D structures of the same biological macromolecule or complex. The server accepts both single-subunit and multi-subunit structures and can handle all the major types of macromolecules (proteins, RNA, DNA and their complexes). It can perform numerical comparison of both structures and interfaces. In addition to entire structures and interfaces, the server can assess user-defined subsets. The CAD-score server performs both global and local numerical evaluations of structural differences between structures or interfaces. The results can be explored interactively using sortable tables of global scores, profiles of local errors, superimposed contact maps and 3D structure visualization. The web server could be used for tasks such as comparison of models with the native (reference) structure, comparison of X-ray structures of the same macromolecule obtained in different states (e.g. with and without a bound ligand), analysis of nuclear magnetic resonance (NMR) structural ensemble or structures obtained in the course of molecular dynamics simulation. The web server is freely accessible at: http://www.ibt.lt/bioinformatics/cad-score. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. A Visual Galaxy Classification Interface and its Classroom Application

    Science.gov (United States)

    Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H

    2014-06-01

    Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.

  20. Advances in clinical application of optical coherence tomography in vitreomacular interface disease

    Directory of Open Access Journals (Sweden)

    Xiao-Li Xing

    2013-08-01

    Full Text Available Vitreous macular interface disease mainly includes vitreomacular traction syndrome, idiopathic macular epiretinal membrane and idiopathic macular hole. Optical coherence tomography(OCTas a new tool that provides high resolution biopsy cross section image non traumatic imaging inspection, has a unique high resolution, no damage characteristics, and hence clinical widely used, vitreous macular interface for clinical disease diagnosis, differential diagnosis and condition monitoring and quantitative evaluation, treatment options, etc provides important information and reference value. Vitreous macular interface disease in OCT image of anatomical morphology characteristics, improve the clinical on disease occurrence and development of knowledge. We reviewed the advances in the application of OCT in vitreomacular interface disease.

  1. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    Science.gov (United States)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  2. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1993-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.

  3. Brain Machine Interfaces for Robotic Control in Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  4. CALIBRATION, OPTIMIZATION, AND SENSITIVITY AND UNCERTAINTY ALGORITHMS APPLICATION PROGRAMMING INTERFACE (COSU-API)

    Science.gov (United States)

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...

  5. Improving Teacher-Student Contact in a Campus through a Location-Based Mobile Application

    Science.gov (United States)

    Ferreira, Vítor Manuel; Ramos, Fernando

    2014-01-01

    This paper presents a new mobile micro-broadcast (or near-me) Location-Based Service designed to promote face-to-face communication among users located within a given geographical area such as a University campus. Because the communication services provided are time dependent, the application decides whom to contact based on the geographic…

  6. Static friction in rubber-metal contacts with application to rubber pad forming processes

    NARCIS (Netherlands)

    Deladi, E.L.

    2006-01-01

    A static friction model suitable for rubber-metal contact is presented in this dissertation. In introduction, the motivation and the aims of the research are introduced together with the background regarding the related industrial application, which is the rubber pad forming process.

  7. Nickel contact sensitivity in the guinea pig. An efficient open application test method

    DEFF Research Database (Denmark)

    Nielsen, G D; Rohold, A E; Andersen, Klaus Ejner

    1992-01-01

    Nickel contact sensitivity was successfully induced in guinea pigs using an open epicutaneous application method. Immediately after pretreatment with 1% aqueous sodium lauryl sulfate, upper back skin was treated daily for 4 weeks with 0.3%-3% nickel sulfate in either a 1% lanolin cream (Vaseline, p...

  8. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    Science.gov (United States)

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  10. Techniques and applications for binaural sound manipulation in human-machine interfaces

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  11. Robotic and user interface solutions for hazardous and remote applications

    International Nuclear Information System (INIS)

    Schempf, H.

    1997-01-01

    Carnegie Mellon University (CMU) is developing novel robotic and user interface systems to assist in the cleanup activities undertaken by the U.S. Department of Energy (DOE). Under DOE's EM-50 funding and administered by the Federal Energy Technology Center (FETC), CMU has developed a novel asbestos pipe-insulation abatement robot system, called BOA, and a novel generic user interface control and training console, dubbed RoboCon. The use of BOA will allow the speedier abatement of the vast DOE piping networks clad with hazardous and contaminated asbestos insulation by which overall job costs can be reduced by as much as 50%. RoboCon will allow the DOE to evaluate different remote and robotic system technologies from the overall man-machine performance standpoint, as well as provide a standardized training platform for training site operators in the operation of remote and robotic equipment

  12. Applications of Computed Tomography to Evaluate Cellular Solid Interfaces

    Science.gov (United States)

    Maisano, Josephine; Marse, Daryl J.; Schilling, Paul J.

    2008-01-01

    The major morphological features - foam cells, voids, knit lines, and the bondline interface were evaluated. The features identified by micro-CT correlate well to those observed by SEM. 3D reconstructions yielded volumetric dimensions for large voids (max 30 mm). Internal voids and groupings of smaller cells at the bondline are concluded to be the cause of the indications noted during the NDE prescreening process.

  13. Python GUI Scripting Interface for Running Atomic Physics Applications

    OpenAIRE

    Tahat, Amani; Tahat, Mofleh

    2011-01-01

    We create a Python GUI scripting interface working under Windows in addition to (UNIX/Linux). The GUI has been built around the Python open-source programming language. We use the Python's GUI library that so called Python Mega Widgets (PMW) and based on Tkinter Python module (http://www.freenetpages.co.uk/hp/alan.gauld/tutgui.htm). The new GUI was motivated primarily by the desire of more updated operations, more flexibility incorporating future and current improvements in producing atomic d...

  14. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  15. An SML Driven Graphical User Interface and Application Management Toolkit

    International Nuclear Information System (INIS)

    White, Greg R

    2002-01-01

    In the past, the features of a user interface were limited by those available in the existing graphical widgets it used. Now, improvements in processor speed have fostered the emergence of interpreted languages, in which the appropriate method to render a given data object can be loaded at runtime. XML can be used to precisely describe the association of data types with their graphical handling (beans), and Java provides an especially rich environment for programming the graphics. We present a graphical user interface builder based on Java Beans and XML, in which the graphical screens are described textually (in files or a database) in terms of their screen components. Each component may be a simple text read back, or a complex plot. The programming model provides for dynamic data pertaining to a component to be forwarded synchronously or asynchronously, to the appropriate handler, which may be a built-in method, or a complex applet. This work was initially motivated by the need to move the legacy VMS display interface of the SLAC Control Program to another platform while preserving all of its existing functionality. However the model allows us a powerful and generic system for adding new kinds of graphics, such as Matlab, data sources, such as EPICS, middleware, such as AIDA[1], and transport, such as XML and SOAP. The system will also include a management console, which will be able to report on the present usage of the system, for instance who is running it where and connected to which channels

  16. Participation in the ABWR Man-Machine interface design. Applicability to the Spanish Electrical Sector

    International Nuclear Information System (INIS)

    Rodriguez, C.; Manrique Martin, A.; Nunez, J.

    1997-01-01

    Project coordinated by DTN within the advanced reactor programme. Participation in the design activities for the Advanced Boiling Water Reactor (ABWR) man-machine interface was divided into two phases: Phase I: Preparation of drawings for designing, developing and assessing the advanced control room Phase II: Application of these drawings in design activities Participation in this programme has led to the following possible future applications to the electrical sector: 1. Design and implementation of man-machine interfaces 2. Human factor criteria 3. Assessment of man-machine interfaces 4. Functional specification, computerised operating procedures 5. Computerised alarm prototypes. (Author)

  17. Experimental investigation of the contact resistance of Graphene/MoS2 interface treated with O2 plasma

    Science.gov (United States)

    Lu, Qin; Liu, Yan; Han, Genquan; Fang, Cizhe; Shao, Yao; Zhang, Jincheng; Hao, Yue

    2018-02-01

    High contact resistance has been a major bottleneck for MoS2 to achieve high performances among two-dimensional material based optoelectronic and electronic devices. In this study, we investigate the contact resistances of different layered graphene film with MoS2 film with Ti/Au electrodes under different O2 plasma treatment time using the circular transmission line model (CTLM). Annealing process followed O2 plasma process to reduce the oxygen element introduced. Raman and X-ray photoelectric spectroscopy were used to analyze the quality of the materials. Finally, the current and voltage curve indicates good linear characteristics. Under the optimized condition of the O2 plasma treatment, a relatively low contact resistance (∼35.7 Ohm mm) without back gate voltage in single-layer graphene/MoS2 structure at room temperature was achieved compared with the existing reports. This method of introducing graphene as electrodes for MoS2 film demonstrates a remarkable ability to improve the contact resistance, without additional channel doping for two-dimensional materials based devices, which paves the way for MoS2 to be a more promising channel material in optoelectronic and electronic integration.

  18. A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts

    NARCIS (Netherlands)

    Grobosch, M.; Schmidt, C.; Naber, W.J.M.; van der Wiel, Wilfred Gerard; Knupfer, M.

    We have studied the energy-level alignment of ex situ, acetone cleaned Co and Al2O3/Co contacts to the organic semiconductors pentacene and rubrene by combined X-ray and ultraviolet photoemission spectroscopy. Our results demonstrate that the work function under these conditions is smaller than in

  19. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    Science.gov (United States)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  20. Clinical Utilization of Repeated Open Application Test Among American Contact Dermatitis Society Members.

    Science.gov (United States)

    Brown, Gabrielle E; Botto, Nina; Butler, Daniel C; Murase, Jenny E

    2015-01-01

    The repeated open application test (ROAT) provides useful information regarding allergens in suspected cases of allergic contact dermatitis; however, standardized methodology has not been established. The aim of this study was to assess how ROAT is used in clinical and research settings. We distributed a survey regarding ROAT practice to the American Contact Dermatitis Society and conducted a literature review of ROAT utilization in research. A total of 67 American Contact Dermatitis Society members participated in the survey. Respondents most frequently recommend application of leave-on products twice daily (46.0%) and rinse-off products once daily (43.5%). The most commonly used anatomical sites include the forearm (38.7%) and antecubital fossa (32.3%). Most respondents continue ROAT for 1 (49.2%) or 2 weeks (31.7%). Literature review of 32 studies (26 leave-on, 6 rinse-off) revealed that application frequency is most common at twice daily for both leave-on (96.2%) and rinse-off (50.0%) products. The most common anatomical site is the forearm (62.5%), with an overall study duration of 3 to 4 weeks (65.6%). When comparing ROAT clinical and research practice, the majority trend was consistent for leave-on product application frequency and anatomical site, but not for rinse-off product application frequency, or overall duration. Further research is needed to determine best practice recommendations.

  1. Fabrication and interface electrical properties of Fe3O4/MgO/GaAs(100) spin contacts

    NARCIS (Netherlands)

    Wong, P.K.J.; Zhang, W.; Zhang, W.; Xu, Y.B.

    2010-01-01

    Moderately doped n-GaAs(100) substrates (n= 5 x 10 17cm3 ) with In Ohmic back contacts were annealed in the growth chamber with a base pressure of 1 x 10-8 mbar for 60 min at 830 K prior to the film stack growth. MgO layer was then grown by e-beam evaporation at a rate of 2 Amin-1 while the

  2. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  3. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire

  4. Cu(In,Ga)Se{sub 2} absorber thinning and the homo-interface model: Influence of Mo back contact and 3-stage process on device characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, E.; Arzel, L.; Tomassini, M.; Barreau, N., E-mail: nicolas.barreau@univ-nantes.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Zabierowski, P. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00-662 Warsaw (Poland); Fuertes Marrón, D. [Instituto de Energía Solar–ETSIT, Technical University of Madrid, Ciudad Universitaria s.n., 28040 Madrid (Spain)

    2014-08-21

    Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se{sub 2} (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.

  5. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    Full Text Available BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Contact irritancy (escape behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. RESULTS: Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. CONCLUSIONS/SIGNIFICANCE: Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is

  6. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    Science.gov (United States)

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G; Grieco, John P; Achee, Nicole L

    2013-01-01

    Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.

  7. Friendly-Sharing: Improving the Performance of City Sensoring through Contact-Based Messaging Applications

    Directory of Open Access Journals (Sweden)

    Jorge Herrera-Tapia

    2016-09-01

    Full Text Available Regular citizens equipped with smart devices are being increasingly used as “sensors” by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile devices, and on storing the messages in these devices for subsequent delivery to cloud-based services. An effective way to increase the number of messages that can be shared is to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where, during a contact, the users are aware of the time needed to interchange the messages stored in their buffers, and they can thus decide to wait more time in order to increase the message sharing probability. The performance of this approach is anyway closely related to the size of the buffer in the device. We therefore compare various policies either for the message selection at forwarding times and for message dropping when the buffer is full. We evaluate our proposal with a modified version of the Opportunistic Networking Environment (ONE simulator and using real human mobility traces.

  8. Friendly-Sharing: Improving the Performance of City Sensoring through Contact-Based Messaging Applications.

    Science.gov (United States)

    Herrera-Tapia, Jorge; Hernández-Orallo, Enrique; Tomás, Andrés; Manzoni, Pietro; Tavares Calafate, Carlos; Cano, Juan-Carlos

    2016-09-18

    Regular citizens equipped with smart devices are being increasingly used as "sensors" by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile devices, and on storing the messages in these devices for subsequent delivery to cloud-based services. An effective way to increase the number of messages that can be shared is to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where, during a contact, the users are aware of the time needed to interchange the messages stored in their buffers, and they can thus decide to wait more time in order to increase the message sharing probability. The performance of this approach is anyway closely related to the size of the buffer in the device. We therefore compare various policies either for the message selection at forwarding times and for message dropping when the buffer is full. We evaluate our proposal with a modified version of the Opportunistic Networking Environment (ONE) simulator and using real human mobility traces.

  9. Development of interface tracking method. Two-phase flows applications; Developpement d'une methode de suivi d'interface. Applications aux ecoulements diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, S.

    2004-11-15

    Spray formation mechanisms study from a liquid-gas flow is a fundamental research subject, which industrial applications are large, especially in combustion and propulsion field. Numerical simulation of such flows appear as an essential complement to experimental and theoretical studies, for comprehension and accurate prediction of such physical processes. In this study we developed an numerical interface tracking technique with a Navier-Stokes solver to study accurately the liquid-gas interface dynamics. We describe Level Set method which has been used to track interface motion, and numerical methods for solving Navier-Stokes equations. Different numerical schemes have been tested to improve the computation accuracy. Ghost Fluid Method enables a robust and accurate treatment of discontinuities across the liquid-gas interface. The codes developed (2D, 3D, parallelization MPI) are then used to study droplets collisions. Comparisons with experimental results show that simulations are realistic and predictive. Next, feasibility studies are done on more complex configurations. Droplets spray formation from primary atomization of a liquid jet seems to be especially a promising investigation field for such simulations. Finally, reactive interfaces propagation, as liquid vaporization and premixed combustion have also been studied using Ghost Fluid Method to impose specific jump conditions. (author)

  10. Sliding contact on the interface of elastic body and rigid surface using a single block Burridge-Knopoff model

    Science.gov (United States)

    Amireghbali, A.; Coker, D.

    2018-01-01

    Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.

  11. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    Science.gov (United States)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  12. Investigation of ITO layers for application as transparent contacts in flexible photovoltaic cell structures

    Science.gov (United States)

    Znajdek, Katarzyna; Sibiński, Maciej

    2013-07-01

    In this paper authors present the mechanical, optical and electrical parameters of Indium Tin Oxide (ITO) Transparent Conductive Layers (TCL) deposited on flexible substrate. Layers' properties are analyzed and verified. Investigated Transparent Conductive Oxide (TCO) was deposited, using magnetron sputtering method. Flexible polymer PET (polyethylene terephthalate) foil was used as a substrate, in order to photovoltaic (PV) cell's emitter contact application of investigated material. ITO-coated PET foils have been dynamically bent on numerous cylinders of various diameters according to the standard requirements. Resistance changes for each measured sample were measured and recorded during bending cycle. Thermal durability, as well as temperature influence on resistance and optical transmission are verified. Presented results were conducted to verify practical suitability and to evaluate possible applications of Indium Tin Oxide as a front contact in flexible photovoltaic cell structures.

  13. ClusterControl: a web interface for distributing and monitoring bioinformatics applications on a Linux cluster.

    Science.gov (United States)

    Stocker, Gernot; Rieder, Dietmar; Trajanoski, Zlatko

    2004-03-22

    ClusterControl is a web interface to simplify distributing and monitoring bioinformatics applications on Linux cluster systems. We have developed a modular concept that enables integration of command line oriented program into the application framework of ClusterControl. The systems facilitate integration of different applications accessed through one interface and executed on a distributed cluster system. The package is based on freely available technologies like Apache as web server, PHP as server-side scripting language and OpenPBS as queuing system and is available free of charge for academic and non-profit institutions. http://genome.tugraz.at/Software/ClusterControl

  14. Server Interface Descriptions for Automated Testing of JavaScript Web Applications

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning; Møller, Anders; Su, Zhendong

    2013-01-01

    Automated testing of JavaScript web applications is complicated by the communication with servers. Specifically, it is difficult to test the JavaScript code in isolation from the server code and database contents. We present a practical solution to this problem. First, we demonstrate that formal...... server interface descriptions are useful in automated testing of JavaScript web applications for separating the concerns of the client and the server. Second, to support the construction of server interface descriptions for existing applications, we introduce an effective inference technique that learns...... communication patterns from sample data. By incorporating interface descriptions into the testing tool Artemis, our experimental results show that we increase the level of automation for high-coverage testing on a collection of JavaScript web applications that exchange JSON data between the clients and servers...

  15. High Performance Computing - Power Application Programming Interface Specification Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  16. Information Practices and User Interfaces: Student Use of an iOS Application in Special Education

    Science.gov (United States)

    Demmans Epp, Carrie; McEwen, Rhonda; Campigotto, Rachelle; Moffatt, Karyn

    2016-01-01

    A framework connecting concepts from user interface design with those from information studies is applied in a study that integrated a location-aware mobile application into two special education classes at different schools; this application had two support modes (one general and one location specific). The five-month study revealed several…

  17. Migrating Multi-page Web Applications to Single-page AJAX Interfaces

    NARCIS (Netherlands)

    Mesbah, A.; Van Deursen, A.

    2006-01-01

    Recently, a new web development technique for creating interactive web applications, dubbed AJAX, has emerged. In this new model, the single-page web interface is composed of individual components which can be updated/replaced independently. With the rise of AJAX web applications classical

  18. A novel 2.5D approach for interfacing with web applications

    OpenAIRE

    Sarkar, Saurabh

    2012-01-01

    Web applications need better user interface to be interactive and attractive. A new approach/concept of dimensional enhancement - 2.5D "a 2D display of a virtual 3D environment", which can be implemented in social networking sites and further in other system applications.

  19. User Manual for the Data-Series Interface of the Gr Application Software

    Science.gov (United States)

    Donovan, John M.

    2009-01-01

    This manual describes the data-series interface for the Gr Application software. Basic tasks such as plotting, editing, manipulating, and printing data series are presented. The properties of the various types of data objects and graphical objects used within the application, and the relationships between them also are presented. Descriptions of compatible data-series file formats are provided.

  20. Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts

    International Nuclear Information System (INIS)

    Mamor, M

    2009-01-01

    The barrier heights (BH) of various metals including Pd, Pt and Ni on n-type GaN (M/n-GaN) have been measured in the temperature range 80-400 K with using a current-voltage (I-V) technique. The temperature dependence of the I-V characteristics of M/n-GaN have shown non-ideal behaviors and indicate the presence of a non-uniform distribution of surface gap states, resulting from the residual defects in the as grown GaN. The surface gap states density N ss , as well as its temperature dependence were obtained from the bias and temperature dependence of the ideality factor n(V,T) and the barrier height Φ Bn (V,T). Further, a dependence of zero-bias BH Φ 0Bn on the metal work function (Φ m ) with an interface parameter coefficient of proportionality of 0.47 is found. This result indicates that the Fermi level at the M/n-GaN interface is unpinned. Additionally, the presence of lateral inhomogeneities of the BH, with two Gaussian distributions of the BH values is seen. However, the non-homogeneous SBH is found to be correlated to the surface gap states density, in that Φ 0Bn becomes smaller with increasing N ss . These findings suggest that the lateral inhomogeneity of the SBH is connected to the non-uniform distribution of the density of surface gap states at metal/GaN which is attributed to the presence of native defects in the as grown GaN. Deep level transient spectroscopy confirms the presence of native defects with discrete energy levels at GaN and provides support to this interpretation.

  1. On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Tomilin, Felix N.; Mikhaleva, Natalya S.; Kuklin, Artem V. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation)

    2015-12-15

    The interaction between armchair carbon and boron nitride nanotubes (NT) with ferromagnetic transition metal (TM) surfaces, namely, Ni(111) and Co(0001), was studied by means of density functional theory. Different configurations of composite compartments mutual arrangement were considered. Partial densities of states and spin density spatial distribution of optimized structures were investigated. Influence of ferromagnetic substrate on nanotubes’ electronic properties was discussed. The values of spin polarization magnitude at the Fermi level are also presented and confirm the patterns of spin density spatial distribution. - Highlights: • Interaction of armchair nanotubes with ferromagnetic metal surfaces was investigated. • Different configurations of nanotube's location were considered. • For all nanotubes the energy difference between configurations is negligible. • Nanotubes were found to be more or less spin-polarized regarding to the configuration. • BN nanotubes demonstrate vanishing of the band gap and contact-induced conductivity.

  2. Development and application of YSJ-1 type oil-water interface level gauge

    International Nuclear Information System (INIS)

    Sun Punan

    2003-01-01

    A new type nuclear device for measuring the oil-water interface level as well as the total liquid level was presented. A series of new methods, such as non-linear fitting of the level, automatic compensations for the deviation caused by the decay of radioactive source, the medium's temperature, etc., were employed. Comparing with other non-nuclear techniques, this device has the following advantages: non-contact surveying, anti-interference of paraffin wax coagulating and a little of repairing. The measuring range is 0-200cm for total liquid level and 0-100cm for oil-water interface level respectively. The measurement precision is 1% for total liquid level and 2% for the interface level respectively. The respond time is ≤10s, the long time stability ≤0.5% FS/48h and the temperature influence ≤0.01% FS /degree C. The gauge can be used in surveying oil-water interface level and total liquid level in oil-water separation tanks on oil fields. It is also suitable to measure the interface level of two kinds of liquids as well as the total liquid level in various storage tanks

  3. Designing and application of SAN extension interface based on CWDM

    Science.gov (United States)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  4. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  5. A modified elastic foundation contact model for application in 3D models of the prosthetic knee.

    Science.gov (United States)

    Pérez-González, Antonio; Fenollosa-Esteve, Carlos; Sancho-Bru, Joaquín L; Sánchez-Marín, Francisco T; Vergara, Margarita; Rodríguez-Cervantes, Pablo J

    2008-04-01

    Different models have been used in the literature for the simulation of surface contact in biomechanical knee models. However, there is a lack of systematic comparisons of these models applied to the simulation of a common case, which will provide relevant information about their accuracy and suitability for application in models of the implanted knee. In this work a comparison of the Hertz model (HM), the elastic foundation model (EFM) and the finite element model (FEM) for the simulation of the elastic contact in a 3D model of the prosthetic knee is presented. From the results of this comparison it is found that although the nature of the EFM offers advantages when compared with that of the HM for its application to realistic prosthetic surfaces, and when compared with the FEM in CPU time, its predictions can differ from FEM in some circumstances. These differences are considerable if the comparison is performed for prescribed displacements, although they are less important for prescribed loads. To solve these problems a new modified elastic foundation model (mEFM) is proposed that maintains basically the simplicity of the original model while producing much more accurate results. In this paper it is shown that this new mEFM calculates pressure distribution and contact area with accuracy and short computation times for toroidal contacting surfaces. Although further work is needed to confirm its validity for more complex geometries the mEFM is envisaged as a good option for application in 3D knee models to predict prosthetic knee performance.

  6. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W

    2016-04-19

    semiconductor back ohmic contact. Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH form "adaptive" junctions where the effective barrier height for electron exchange depends on the potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. These results elucidate a design principle for catalyzed photoelectrodes. The buried heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low photovoltages. Catalysts deposited by "soft" methods, such as electrodeposition, form adaptive junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to improve theory/simulations to account for the presence of surface states and discuss the prospect of carrier-selective catalyst contacts.

  7. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  8. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  9. Integrating Field Buses at the Application Level C Interface and LabView Integration

    CERN Document Server

    Charrue, P

    1996-01-01

    The controls group of the SPS and LEP accelerators at CERN, Geneva, uses many different fieldbuses into the controls infrastucture, such as 1553, BITBUS, GPIB, RS232, JBUS, etc. A software package (SL-EQUIP) has been developped to give end users a standardized application program interface (API) to access any equipment connected to any fieldbus. This interface has now been integrated to LabView. We can offer a powerful graphical package, running on HP-UX workstations which treats data from heterogeneous equipment using the great flexibility of LabView. This paper will present SL-EQUIP and LabView, and will then describe some applications using these tools.

  10. The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts

    International Nuclear Information System (INIS)

    Aydin, M.E.; Akkilic, K.; Kilicoglu, T.

    2004-01-01

    We have fabricated H-terminated Pb/p-type Si Schottky contacts with and without the native oxide layer to explain the importance of the fact that the neutral region resistance value is considered in calculating the interface state density distribution from the nonideal forward bias current-voltage (I-V) characteristics. The diodes with the native oxide layer (metal-insulating layer-semiconductor (MIS)) showed nonideal I-V behavior with an ideality factor value of 1.310 and the barrier height value of 0.746eV. An ideality factor value of 1.065 and a barrier height value of 0.743eV were obtained for the diodes without the native oxide layer (MS). At the same energy position near the top of the valance band, the calculated interface states density (Nss) values, obtained without taking into account the series resistance of the devices (i.e. without subtracting the voltage drop across the series resistance from the applied voltage values V) is almost one order of magnitude larger than Nss values obtained by taking into account the series resistance

  11. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Yun, Sangwon; Neto, André C.; Park, Mikyung; Lee, Sangil; Park, Kaprai

    2014-01-01

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  12. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  13. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    International Nuclear Information System (INIS)

    Persson, B N J; Albohr, O; Tartaglino, U; Volokitin, A I; Tosatti, E

    2005-01-01

    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the atomic force microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input. (topical review)

  14. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  15. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Science.gov (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  16. Integration of data validation and user interface concerns in a DSL for web applications

    NARCIS (Netherlands)

    Groenewegen, D.M.; Visser, E.

    2009-01-01

    This paper is a pre-print of: Danny M. Groenewegen, Eelco Visser. Integration of Data Validation and User Interface Concerns in a DSL for Web Applications. In Mark G. J. van den Brand, Jeff Gray, editors, Software Language Engineering, Second International Conference, SLE 2009, Denver, USA, October,

  17. Enhanced Computer Aided Simulation of Meshing and Contact With Application for Spiral Bevel Gear Drives

    National Research Council Canada - National Science Library

    Litvin, F

    1999-01-01

    An integrated tooth contact analysis (TCA) computer program for the simulation of meshing and contact of gear drives that calculates transmission errors and shift of hearing contact for misaligned gear drives has been developed...

  18. Tools for man-machine interface development in accelerator control applications

    International Nuclear Information System (INIS)

    Kopylov, L.; Mikhev, M.; Trofimov, N.; Yurpalov, V.

    1994-01-01

    For the UNK Project a development of the Accelerator Control Applications is in the progress. These applications will use a specific Graphical User Interface for data presentation and accelerator parameter management. A number of tools have been developed based on the Motif Tool Kit. They contain a set of problem oriented screen templates and libraries. Using these tools, full scale prototype applications of the UNK Tune and Orbit measurement and correction were developed and are described, as examples. A subset of these allows the creation of the synoptic control screens from the Autocad pictures files and Oracle DB equipment descriptions. The basic concepts and a few application examples are presented. ((orig.))

  19. Workshop AccessibleTV "Accessible User Interfaces for Future TV Applications"

    Science.gov (United States)

    Hahn, Volker; Hamisu, Pascal; Jung, Christopher; Heinrich, Gregor; Duarte, Carlos; Langdon, Pat

    Approximately half of the elderly people over 55 suffer from some type of typically mild visual, auditory, motor or cognitive impairment. For them interaction, especially with PCs and other complex devices is sometimes challenging, although accessible ICT applications could make much of a difference for their living quality. Basically they have the potential to enable or simplify participation and inclusion in their surrounding private and professional communities. However, the availability of accessible user interfaces being capable to adapt to the specific needs and requirements of users with individual impairments is very limited. Although there are a number of APIs [1, 2, 3, 4] available for various platforms that allow developers to provide accessibility features within their applications, today none of them provides features for the automatic adaptation of multimodal interfaces being capable to automatically fit the individual requirements of users with different kinds of impairments. Moreover, the provision of accessible user interfaces is still expensive and risky for application developers, as they need special experience and effort for user tests. Today many implementations simply neglect the needs of elderly people, thus locking out a large portion of their potential users. The workshop is organized as part of the dissemination activity for the European-funded project GUIDE "Gentle user interfaces for elderly people", which aims to address this situation with a comprehensive approach for the realization of multimodal user interfaces being capable to adapt to the needs of users with different kinds of mild impairments. As application platform, GUIDE will mainly target TVs and Set-Top Boxes, such as the emerging Connected-TV or WebTV platforms, as they have the potential to address the needs of the elderly users with applications such as for home automation, communication or continuing education.

  20. Orthopedic Surgery Applicants: What They Want in an Interview and How They Are Influenced by Post-Interview Contact.

    Science.gov (United States)

    Camp, Christopher L; Sousa, Paul L; Hanssen, Arlen D; Karam, Matthew D; Haidukewych, George J; Oakes, Daniel A; Turner, Norman S

    2016-01-01

    Common strategies for orthopedic residency programs to attract competitive applicants include optimizing the interview day and contacting favorably ranked applicants postinterview. The purpose of this work was to determine (1) applicants' perspectives on the ideal interview day, (2) how frequently applicants are contacted postinterview, and (3) the influence of this contact on rank order lists (ROL). Prospective Comparative Survey Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, USA PARTICIPANTS: A survey was completed by 312 successfully matched orthopedic surgery residency applicants following the 2015 match regarding their views of the ideal interview day, components they valued most, post-interview contact, and how that contact influenced their ROL. Applicants stated they preferred interviews that lasted 15 (55%) minutes, a mean of 1.7 (range: 1-5) interviewers present per interview, 5 total interviews (range: 1-10) in a day, an interview with residents (96%), and interviews days lasting only a half day (88%). The majority (94%) desire a social event attended by only residents (54%) or staff and residents (46%). Few wanted an assessment of surgical skills (36%) or orthopedic knowledge (23%). The interview day was rated very valuable in determining their ROL (4.4 out of 5.0). Applicants told a mean of 1.7 (range: 0-11) programs they were "ranking the program highly" and 0.8 (range: 0-5) programs they were "going to rank them #1." Of the 116 (40%) applicants contacted by programs following interviews, 24 (21%) moved programs higher and 3 (3%) moved programs lower on their ROL. Orthopedic Surgery applicants have clear preferences for what they consider to be the ideal interview day and many alter their ROL following post-interview contact. These data may be beneficial to programs looking to optimize the interview experience for applicants. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Low power interface IC's for electrostatic energy harvesting applications

    Science.gov (United States)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of

  2. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    Directory of Open Access Journals (Sweden)

    Akira Ichikawa

    2013-02-01

    Full Text Available In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs. One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a the masseter, (b trapezius, (c anterior tibialis and (d flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.

  3. Application of laser spot cutting on spring contact probe for semiconductor package inspection

    Science.gov (United States)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan

    2017-12-01

    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  4. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO₂ micro and nano structures, and present the principles and growth mechanisms of TiO₂ nanostructures via different strategies...

  5. High Performance Computing - Power Application Programming Interface Specification Version 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Laros III, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeBonis, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  6. The Self-Paced Graz Brain-Computer Interface: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Reinhold Scherer

    2007-01-01

    Full Text Available We present the self-paced 3-class Graz brain-computer interface (BCI which is based on the detection of sensorimotor electroencephalogram (EEG rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control or not (non-control state. The presented system is able to automatically reduce electrooculogram (EOG artifacts, to detect electromyographic (EMG activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth.

  7. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pulsed Neutron log application in accurate fluid contact determination and remedial action planning

    International Nuclear Information System (INIS)

    Kalu, I.; Mukerji, P.

    2002-01-01

    A common application of pulsed neutron logging in the Niger Delta is saturation monitoring when run in carbon-oxygen (CO) mode. Recently, one such log was run across a reservoir to confirm the position of the oil-water contact on a well that was producing at very high water cut on the short string of a dual string producer. Material balance calculations had predicted an oil-water contact about 5ft from the deepest perforations and so a water shut-off operation had been planned. The interpreted log however showed that the OWC was about 30ft from the perforation and it also showed fluid movement in the borehole in front of the perforations. A production log was subsequently run which identified a tubing leak and confirmed the crossflow of water from the long string into the short string detected on the pulsed neutron log. The proposed water shut-off treatment was aborted based on the interpretation and resulted in substantial savings

  9. Interface studies on the tunneling contact of a MOCVD-prepared tandem solar cell; Grenzflaechenuntersuchungen am Tunnelkontakt einer MOCVD-praeparierten Tandemsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, U.

    2007-07-10

    In this thesis a tandem solar cell with a novel tunneling contact was developed. For the development of the monolithic preparation especailly critical hetero-interfaces were studied in the region of the tunneling contact with surface-sensitive measuring method. The tandem solar cell consisted of single solar cells with absorber layers of In{sub 0.53}Ga{sub 0.47}As (E{sub g}=0.73 eV) and In{sub 0.78}Ga{sub 0.22}As{sub 0.491}P{sub 0.51} (E{sub g}=1.03 eV), the serial switching of which was pursued with a tunneling contact (ESAKI diode, which consisted of a very thin n-doped InGaAs and a p-doped GaAsSb layer. The III-V semiconductor layers were prepared by metalorganic gas phase epitaxy (MOCVD) monocrystallinely on an InP(100) substrate lattice-matchedly. Especially the influence of the preparation of InGaAs surfaces on the sharpness of the InGaAs/GaAsSb interface was in-situ studied by reflection-anisotropy spectroscopy and after a contamination-free transfer into the ultrahigh vacuum with photoelectron spectroscopy and with low-energetic electron diffraction (LEED). Thereby for the first time three different reconstructions of the MOCVD-prepared InGaAs surfaces could be observed, which were dependent on the heating temperature under pure hydrogen. The arsenic-rich InGaAs surface was observed for temperatures less than 300 C and showed in the LEED picture a (4 x 3) reconstruction. In the temperature range from 300 C until about 500 C a (2 x 4) reconstruction was observed, above 500 C the InGaAs surface 94 x 2)/c(8 x 2) was reconstructed. Subsequently the study of the growth of thin GaAsSb layers on these three InGaAs surface reconstructions followed. XPS measurements showed that the Sb/As ratio in GaAsSb at the growth on the As-rich (4 x 3) reconstructed surface in the first monolayers was too low. The preparation of the GaAsSb on the two other InGaAs surfaces yielded however in both cases a distinctly higher Sb/As ratio. Finally tandem solar cells with differently

  10. Effects of a paraspinal-lumbar tape application during 7 days on the perceived area of tape contact.

    Science.gov (United States)

    Funk, Stefan; Finke, Roy; Zeh, Stefan; Siebert, Tobias; Puta, Christian

    2017-05-01

    The study aimed to investigate the changes of the perceived area of tape contact during a lumbar tape application that lasted 7 days. Single group, repeated measures study. University research laboratory. Twenty-three healthy collegiate students in sports science. Perceived area of tape contact was collected by preparing a drawing of their individual perceived tape outline into a printed body image. Measurements were obtained immediately after fixation of the tape (day 0), at day 3 and day 7 during application and 5 min after the release of the application (day 7). There was no significant change of the perceived area of tape contact after 3 days of tape application. A significant decrease in the perceived area of tape contact was detected 7 days after application (p area of tape contact of healthy sport students is decreased at 7 days. This effect could not be observed at 3 days. These results provide relevant information for the use of elastic tapes concerning the duration of application in medical therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fragrance contact allergens in 5588 cosmetic products identified through a novel smartphone application.

    Science.gov (United States)

    Bennike, N H; Oturai, N B; Müller, S; Kirkeby, C S; Jørgensen, C; Christensen, A B; Zachariae, C; Johansen, J D

    2018-01-01

    More than 25% of the adult European population suffers from contact allergy, with fragrance substances recognized as one of the main causes. Since 2005, 26 fragrance contact allergens have been mandatory to label in cosmetic products within the EU if present at 10 ppm or above in leave-on and 100 ppm or above in wash-off cosmetics. To examine exposure, based on ingredient labelling, to the 26 fragrances in a sample of 5588 fragranced cosmetic products. The investigated products were identified through a novel, non-profit smartphone application (app), designed to provide information to consumers about chemical substances in cosmetic products. Products registered through the app between December 2015 and October 2016 were label checked according to International Nomenclature of Cosmetic Ingredients (INCI) for the presence of the 26 fragrance substances or the wording 'fragrance/parfum/aroma'. The largest product categories investigated were 'cream, lotion and oil' (n = 1192), 'shampoo and conditioner' (n = 968) and 'deodorants' (n = 632). Among cosmetic products labelled to contain at least one of the 26 fragrances, 85.5% and 73.9% contained at least two and at least three of the 26 fragrances, respectively. Linalool (49.5%) and limonene (48.5%) were labelled most often among all investigated products. Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC/Lyral ® ) was found in 13.5% of deodorants. Six of the 26 fragrance substances were labelled on less than one per cent of all products, including the natural extracts Evernia furfuracea (tree moss) and Evernia prunastri (oak moss). A total of 329 (5.9%) products had one or more of the 26 fragrance substances labelled but did not have 'parfum/fragrance/aroma' listed on the label. Consumers are widely exposed to, often multiple, well-established fragrance contact allergens through various cosmetic products intended for daily use. Several fragrance substances that are common causes of contact allergy were rarely

  12. Comparative exposure to DEHP from food contact materials: application of the product intake fraction

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Fantke, Peter

    Quantitative Sustainability Assessment Food contact materials (FCM), e.g. bottles and food handling gloves, can contain potentially endocrine disrupting chemicals, such as di-2-ethylhexyl phthalate(DEHP, CAS: 117-81-7). To investigate the contribution of FCM to dietary DEHP exposure we apply...... thresholds. A hypothetical average PiF for the FCM sector was calculated via production volume and oral exposure doses estimated from NHANES data. In both cases the indication was gloves may contribute more to DEHP exposure when used with certain food items than bottled water. DEHP content in gloves greater...... than 5% would cause exceedance of US EPA threshold when used with certain food items,e.g. radishes based on PiF calculated here. The PiF used in thís context has applications for regulations related to FCM and exposure assessments on a per unit kilo basis....

  13. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  14. Challenges of a mobile application for asthma and allergic rhinitis patient enablement-interface and synchronization.

    Science.gov (United States)

    Burnay, Eduardo; Cruz-Correia, Ricardo; Jacinto, Tiago; Sousa, Ana Sá; Fonseca, João

    2013-01-01

    Asthma and allergic rhinitis (ARA) are common inflammatory diseases of the airways. Enhancement of a patient's participation on clinical decisions is related to better results in control of diseases. To control ARA, patients should monitor their symptoms, avoid triggers, and follow their treatment plan. This study described the challenges of developing a mobile application, called m.Carat, that records the main events related to ARA. The mobile application m.Carat was developed for Android™ (Google, Mountain View, CA) and iPhone(®) (Apple, San Jose, CA) smartphones. It was developed using PhoneGap, which allows the development of applications for several mobile operating systems. To generate the user interface, jQuery Mobile, HTML, Javascript, and CSS were used. Despite the use of mobile development frameworks, some input and output elements had to be improved. To evaluate the interface, a pilot study was performed with eight users who performed 10 different tasks in the application. To synchronize m.Carat with an online database, an algorithm was developed from scratch. This feature represents a major challenge because all the changes must be reflected in all devices. Currently m.Carat is a mobile application where ARA patients fill out a questionnaire to assess the degree of control of ARA and record their exacerbations, triggers, symptoms, medications, lung function tests, and visits to the doctor or the hospital. They also can receive information and news about ARA, define medication and tasks notifications, and synchronize all records at caratnetwork.org with an online database. The evaluation showed some of the adopted solutions to improve interface usability did not work as expected. Of the 80 total tasks tested the users had no difficulty in 37(46%). Most of the problems observed were easily solved. m.Carat is a mobile application for ARA that may contribute to patient enablement. The development of m.Carat suggests that mobile applications may introduce

  15. Experimental and theoretical exploration of mechanical stability of Pt/NbO2 interfaces for thermoelectric applications

    International Nuclear Information System (INIS)

    Music, Denis; Schmidt, Paul; Saksena, Aparna

    2017-01-01

    Mechanical stability criteria for metallic contacts, namely a minimised thermal stress and an enhanced interfacial strength, have been appraised for sputtered, x-ray amorphous NbO 2 thermoelectric thin films in contact with a polycrystalline Pt electrode utilising experimental and theoretical methods. Thermal stress built at these Pt/NbO 2 interfaces with approximately 50 MPa is minute even at 800 °C, the maximum operation temperature. There are no coordination changes of Pt and its metallic character is only marginally altered upon the interface formation. In addition, Nb–O bonds at the interface sustain their covalent-ionic dioxide bonding nature. Hence, even though there are no considerable modifications in the electronic structure of the individual components at these interfaces, Pt/NbO 2 interfacial bonds of metallic and partly covalent character are strong with a work of separation reaching 2 J m −2 . Based on the synergic experimental and theoretical results, it is therefore expected that these interfaces are mechanically stable during operation of these thermoelectric devices. This strategy is of general importance for designing mechanically stable electrical contacts. (paper)

  16. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  17. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury

    OpenAIRE

    Rupp, Rüdiger

    2014-01-01

    Brain computer interfaces (BCIs) are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons, or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological im...

  18. Increased cell proliferation in spleen and lymph nodes peripheral to contact allergen application site

    International Nuclear Information System (INIS)

    Chipinda, Itai; Anderson, Stacey E.; Butterworth, Leon F.; Beezhold, Donald; Siegel, Paul D.

    2009-01-01

    The local lymph node assay (LLNA) is widely used to identify chemicals that are contact sensitizers. The assay involves dosing mice with the chemical on both ears and pooling the superficial parotid lymph nodes for assessment of lymphocyte proliferation as a marker of sensitization. The present study explored potential reduction in animal usage by dosing one ear with the allergen and the other with vehicle-only. The respective draining lymph nodes were processed separately for tritiated thymidine ( 3 H-TdR) incorporation. Cell proliferation in proper axillary and renal nodes, as well as in the spleen was also assessed. Cross-contamination of the chemicals from the dosed ears to other parts of the body via preening was prevented by dosing restrained animals and washing off the residual chemical with saline after 4 h. Dosing the left ear with 0.02% oxazolone (OX) on unrestrained animals resulted in marked cell proliferation in its draining lymph node (stimulation index, SI = 12.8) and in the lymph node draining the contra-lateral vehicle-dosed ear (SI = 6), as well as the proper axillary lymph nodes (SI = 3.3). Increased 3 H-TdR incorporation was not observed in the renal lymph nodes (SI = 1.1). Similar stimulation of cells was observed in the lymph node draining the ear contra-lateral to the 30% hexylcinnamaldehyde (HCA)-dosed ear. Increased proliferative activity was observed in contra-lateral draining lymph nodes of restrained mice demonstrating that these results cannot be attributed to cross-contamination of adjacent skin. A significant increase in proliferation of splenocytes was also observed. It is concluded that dermal application of a contact allergen, as exemplified by OX and HCA, may induce cell proliferation in the neighboring lymph nodes and spleen indicative of hapten and/or haptenated proteins diffusing through the skin to peripheral nodes and the blood to produce systemic sensitization. It is also possible that lymphatic capillaries may communicate

  19. A CMOS pressure sensor with integrated interface for passive RFID applications

    International Nuclear Information System (INIS)

    Deng, Fangming; He, Yigang; Wu, Xiang; Fu, Zhihui

    2014-01-01

    This paper presents a CMOS pressure sensor with integrated interface for passive RFID sensing applications. The pressure sensor consists of three parts: top electrode, dielectric layer and bottom electrode. The dielectric layer consists of silicon oxide and an air gap. The bottom electrode is made of polysilicon. The gap is formed by sacrificial layer release and the Al vapor process is used to seal the gap and form the top electrode. The sensor interface is based on phase-locked architecture, which allows the use of fully digital blocks. The proposed pressure sensor and interface is fabricated in a 0.18 μm CMOS process. The measurement results show the pressure sensor achieves excellent linearity with a sensitivity of 1.2 fF kPa −1 . The sensor interface consumes only 1.1 µW of power at 0.5 V voltage supply, which is at least an order of magnitude better than state-of-the-art designs. (paper)

  20. 8051 microcontroller to FPGA and ADC interface design for high speed parallel processing systems – Application in ultrasound scanners

    Directory of Open Access Journals (Sweden)

    J. Jean Rossario Raj

    2016-09-01

    Full Text Available Microcontrollers perform the hardware control in many instruments. Instruments requiring huge data throughput and parallel computing use FPGA’s for data processing. The microcontroller in turn configures the application hardware devices such as FPGA’s, ADC’s and Ethernet chips etc. The interfacing of these devices uses address/data bus interface, serial interface or serial peripheral interface. The choice of the interface depends upon the input/output pins available with different devices, programming ease and proprietary interfaces supported by devices such as ADC’s. The novelty of this paper is to describe the programming logic used for various types of interface scenarios from microcontroller to different programmable devices. The study presented describes the methods and logic flowcharts for different interfaces. The implementation of the interface logics were in prototype hardware for ultrasound scanner. The internal devices were controlled from the graphical user interface in a laptop and the scan results are taken. It is seen that the optimum solution of the hardware design can be achieved by using a common serial interface towards all the devices.

  1. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  2. RoboCon: Operator interface for robotic applications. Final report: RoboCon electrical interfacing -- system architecture, and Interfacing NDDS and LabView

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.

    1998-04-30

    The first appendix contains detailed specifications of the electrical interfacing employed in Robocon. This includes all electrical signals and power requirement descriptions up to and including the interface entry points for external robots and systems. The reader is first presented with an overview of the overall Robocon electrical system, followed by sub-sections describing each module in detail. The appendices contain listings of power requirements and the electrical connectors and cables used, followed by an overall electrical system diagram. Custom electronics employed are also described. The Network Data Delivery Service (NDDS) is a real-time dissemination communications architecture which allows nodes on a network to publish data and subscribe to data published by other nodes while remaining anonymous. The second appendix explains how to facilitate a seamless interface between NDDS and LabView and provides sample source code used to implement an NDDS consumer which writes a string to a socket.

  3. Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.

    Science.gov (United States)

    Roy, P; Nguyen, Thao P

    2016-07-21

    We perform density functional theory (DFT) quantum chemical calculations for the pentacene-PbSe hybrid interface at both molecular and crystal levels. At the interface, the parallel orientation of pentacene on the PbSe surface is found to be the most favorable, analogous to a pentacene-gold interface. The molecule-surface distance and the value of charge transfer from one pentacene molecule to the PbSe surface are estimated at around 4.15 Å and 0.12 e(-) respectively. We found that, standard-LDA/GGA-PBE/hybrid/meta-GGA xc-functionals incorrectly determine the band gaps of both pentacene and PbSe and leads to a failed prediction of the energy alignment in this system. So, we use a relativistic G0W0 functional and accurately model the electronic properties of pentacene and PbSe in both bulk material and near the interface. An energy shift of 0.23 eV, due to the difference in work function at the interface was supplemented after a detailed analysis of the electrostatic potential. The highest occupied molecular orbital level of pentacene is 0.01 eV above PbSe while the lowest unoccupied molecular orbital of pentacene lies 1.70 eV above PbSe, allowing both electrons and holes to transfer along the donor-acceptor junction. Our results provide additional insights into the electronic structure properties of the pentacene-PbSe heterojunction and establish it as a promising and efficient candidate for photovoltaic applications.

  4. Investigation of the GaN-on-GaAs interface for vertical power device applications

    International Nuclear Information System (INIS)

    Möreke, Janina; Uren, Michael J.; Kuball, Martin; Novikov, Sergei V.; Foxon, C. Thomas; Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J.; Haigh, Sarah J.; Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain

    2014-01-01

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  5. Investigation of the GaN-on-GaAs interface for vertical power device applications

    Energy Technology Data Exchange (ETDEWEB)

    Möreke, Janina, E-mail: janina.moereke@bristol.ac.uk; Uren, Michael J.; Kuball, Martin [H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Novikov, Sergei V.; Foxon, C. Thomas [Department of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Haigh, Sarah J. [Super STEM Laboratory, STFC Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain [School of Engineering, University of Glasgow, Rankine Bldg, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2014-07-07

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  6. The scalable coherent interface, IEEE P1596, status and possible applications to data acquisition and physics

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1990-01-01

    IEEE P1596, the Scalable Coherent Interface (formerly known as SuperBus) is based on experience gained while developing Fastbus (ANSI/IEEE 960-1986, IEC 935), Futurebus (IEEE P896.x) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor in multiprocessor systems with thousands of processors; efficient support of a coherent distributed-cache image of distributed shared memory; support for repeaters which interface to existing or future buses; and support for inexpensive small rings as well as for general switched interconnections like Banyan, Omega, or crossbar networks. This paper presents a summary of current directions, reports the status of the work in progress, and suggests some applications in data acquisition and physics. 7 refs

  7. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

    Science.gov (United States)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Wcisło, P.; Hill, C.; Wilzewski, J. S.

    2016-07-01

    The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface (www.hitran.org) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4-50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage www.hitran.org/hapi.

  8. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  9. Rolling contact fatigue of low hardness steel for slewing ring application

    Science.gov (United States)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  10. AMBIT RESTful web services: an implementation of the OpenTox application programming interface

    Directory of Open Access Journals (Sweden)

    Jeliazkova Nina

    2011-05-01

    Full Text Available Abstract The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i an information model, based on a common OWL-DL ontology ii links to related ontologies; iii data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF representation, or initiate the associated calculations. The AMBIT web services package has been developed as an extension of AMBIT modules, adding the ability to create (Quantitative Structure-Activity Relationship (QSAR models and providing an OpenTox API compliant interface. The representation of data and processing resources in W3C Resource Description Framework facilitates integrating the resources as Linked Data. By uploading datasets with chemical structures and arbitrary set of properties, they become automatically available online in several formats. The services provide unified interfaces to several descriptor calculation, machine learning and similarity searching algorithms, as well as to applicability domain and toxicity prediction models. All Toxtree modules for predicting the toxicological hazard of chemical compounds are also integrated within this package. The complexity and diversity of the processing is reduced to the simple paradigm "read data from a web address, perform processing, write to a web address". The online service allows to easily run predictions, without installing any software, as well to share online datasets and models. The

  11. AMBIT RESTful web services: an implementation of the OpenTox application programming interface.

    Science.gov (United States)

    Jeliazkova, Nina; Jeliazkov, Vedrin

    2011-05-16

    The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations.The AMBIT web services package has been developed as an extension of AMBIT modules, adding the ability to create (Quantitative) Structure-Activity Relationship (QSAR) models and providing an OpenTox API compliant interface. The representation of data and processing resources in W3C Resource Description Framework facilitates integrating the resources as Linked Data. By uploading datasets with chemical structures and arbitrary set of properties, they become automatically available online in several formats. The services provide unified interfaces to several descriptor calculation, machine learning and similarity searching algorithms, as well as to applicability domain and toxicity prediction models. All Toxtree modules for predicting the toxicological hazard of chemical compounds are also integrated within this package. The complexity and diversity of the processing is reduced to the simple paradigm "read data from a web address, perform processing, write to a web address". The online service allows to easily run predictions, without installing any software, as well to share online datasets and models. The downloadable web application

  12. Implementation of Hierarchical Task Analysis for User Interface Design in Drawing Application for Early Childhood Education

    Directory of Open Access Journals (Sweden)

    Mira Kania Sabariah

    2016-05-01

    Full Text Available Draw learning in early childhood is an important lesson and full of stimulation of the process of growth and development of children which could help to train the fine motor skills. We have had a lot of applications that can be used to perform learning, including interactive learning applications. Referring to the observations that have been conducted showed that the experiences given by the applications that exist today are very diverse and have not been able to represent the model of learning and characteristics of early childhood (4-6 years. Based on the results, Hierarchical Task Analysis method generated a list of tasks that must be done in designing an user interface that represents the user experience in draw learning. Then by using the Heuristic Evaluation method the usability of the model has fulfilled a very good level of understanding and also it can be enhanced and produce a better model.

  13. The application of front tracking to the simulation of shock refractions and shock accelerated interface mixing

    International Nuclear Information System (INIS)

    Sharp, D.H.; Grove, J.W.; Yang, Y.; Boston, B.; Holmes, R.; Zhang, Q.; Glimm, J.

    1993-01-01

    The mixing behavior of two or more fluids plays an important role in a number of physical processes and technological applications. The authors consider two basic types of mechanical (i.e., non-diffusive) fluid mixing. If a heavy fluid is suspended above a lighter fluid in the presence of a gravitational field, small perturbations at the fluid interface will grow. This process is known as the Rayleigh-Taylor instability. One can visualize this instability in terms of bubbles of the light fluid rising into the heavy fluid, and fingers (spikes) of the heavy fluid falling into the light fluid. A similar process, called the Richtmyer-Meshkov instability occurs when an interface is accelerated by a shock wave. These instabilities have several common features. Indeed, Richtmyer's approach to understanding the shock induced instability was to view that process as resulting from an acceleration of the two fluids by a strong gravitational field acting for a short time. Here, the authors report new results on the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Highlights include calculations of Richtmyer-Meshkov instabilities in curved geometries without grid orientation effects, improved agreement between computations and experiments in the case of Richtmyer-Meshkov instabilities at a plane interface, and a demonstration of an increase in the Rayleigh-Taylor mixing layer growth rate with increasing compressibility, along with a loss of universality of this growth rate. The principal computational tool used in obtaining these results was a code based on the front tracking method

  14. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  15. On the applicability of numerical image mapping for PIV image analysis near curved interfaces

    International Nuclear Information System (INIS)

    Masullo, Alessandro; Theunissen, Raf

    2017-01-01

    This paper scrutinises the general suitability of image mapping for particle image velocimetry (PIV) applications. Image mapping can improve PIV measurement accuracy by eliminating overlap between the PIV interrogation windows and an interface, as illustrated by some examples in the literature. Image mapping transforms the PIV images using a curvilinear interface-fitted mesh prior to performing the PIV cross correlation. However, degrading effects due to particle image deformation and the Jacobian transformation inherent in the mapping along curvilinear grid lines have never been deeply investigated. Here, the implementation of image mapping from mesh generation to image resampling is presented in detail, and related error sources are analysed. Systematic comparison with standard PIV approaches shows that image mapping is effective only in a very limited set of flow conditions and geometries, and depends strongly on a priori knowledge of the boundary shape and streamlines. In particular, with strongly curved geometries or streamlines that are not parallel to the interface, the image-mapping approach is easily outperformed by more traditional image analysis methodologies invoking suitable spatial relocation of the obtained displacement vector. (paper)

  16. A Simple Application Program Interface for Saving Java Program Data on a Wiki

    OpenAIRE

    Yamanoue, Takashi; Oda, Kentaro; Shimozono, Koichi

    2012-01-01

    A simple application program interface (API) for Java programs running on a wiki is implemented experimentally. A Java program with the API can be running on a wiki, and the Java program can save its data on the wiki. The Java program consists of PukiWiki, which is a popular wiki in Japan, and a plug-in, which starts up Java programs and classes of Java. A Java applet with default access privilege cannot save its data at a local host. We have constructed an API of applets for easy and unified...

  17. Multi-scale contact modeling of coated steels for sheet metal forming applications

    NARCIS (Netherlands)

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  18. Investigation of the properties of indium tin oxide-organic contacts for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania)], E-mail: sanca@infim.ro; Stanculescu, F. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, P.O. Box MG-11, Bucharest-Magurele 077125 (Romania)

    2007-10-15

    This paper presents some investigations on the electrical transport properties of ITO/single (double) layer organic semiconductor (m-DNB, benzil, PTCDA, Alq3) contacts in SIS-like (ITO/organic/Si) and MIS-like (ITO/organic/metal) heterostructures. The I-V characteristics have emphasised the injection properties of different contacts and the effect of space charge limited currents in correlation with the type and preparation conditions of the contacts. We have studied the influence of the type of contact (In/ITO; In/Al) on the electrical conduction in Alq3/PTCDA/Si/In heterostructure. In a planar grid contact configuration for In/Al/PTCDA/Al/In structure we have observed the effect of the low electric field on the shape of the I-V characteristic.

  19. Fabrication of a roller type PDMS stamp using SU-8 concave molds and its application for roll contact printing

    International Nuclear Information System (INIS)

    Park, Jongho; Kim, Beomjoon

    2016-01-01

    Continuous fabrication of micropatterns at low-cost is attracting attention in various applications within industrial fields. To meet such demands, we have demonstrated a roll contact printing technique, using roller type polydimethylsiloxane (PDMS) stamps with roll-to-flat and roll-to-roll stages. Roller type PDMS stamps for roll contact printing were fabricated using a custom-made metal support and SU-8 microstructures fabricated on concave substrates as a mold. The molding/casting method which we developed here provided faster and easier fabrication than conventional methods for roller type stamps. Next, roll contact printing was performed using fabricated roller type PDMS stamps with roll-to-flat and roll-to-roll stages. Patterns with minimum widths of 3 μm and 2.1 μm were continuously fabricated for each stage, respectively. In addition, the relationship between applied pressures and dimensional changes of roll contact printed patterns was investigated. Finally, we confirmed that roll contact printing and the new fabrication method for roller stamps presented in this study demonstrated the feasibility for industrial applications. (paper)

  20. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  1. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  2. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further. (paper)

  3. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers

    Science.gov (United States)

    Kim, Gi-Woo; Kim, Ji-Sik

    2014-01-01

    This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.

  4. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  5. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-01-01

    Passivated contacts (poly-Si/SiO x /c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF 2 ), the ion implantation dose (5 × 10 14  cm −2 to 1 × 10 16  cm −2 ), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV oc ) of 725 and 720 mV, respectively. For p-type passivated contacts, BF 2 implantations into intrinsic a-Si yield well passivated contacts and allow for iV oc of 690 mV, whereas implanted B gives poor passivation with iV oc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V oc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF 2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V oc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  6. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications

    Directory of Open Access Journals (Sweden)

    Pasquale Imperatore

    2017-12-01

    Full Text Available A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  7. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications.

    Science.gov (United States)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2017-12-27

    A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  8. JISCARD GUI, a graphical interface application for simple and quick calculation of aviation route doses

    International Nuclear Information System (INIS)

    Andersson, Martin; Ryufuku, Susumu; Yasuda, Hiroshi

    2011-01-01

    Pilots, flight attendants, and passengers aboard jet aircrafts are subjected to higher cosmic radiation levels at high altitude than on the ground. Additional dose, received during flight is called 'aviation route dose'. Addressing the needs for precise and easy determination of aviation route doses (Sv), the authors have developed a new application 'JISCARD GUI' with a graphical user interface which provides dose rate (Sv/h) distribution along a flight route and aviation route dose. The graphical interface made with Adobe Flash provide functions to select airports on dynamic map or to search by airport/city names, and to report resulting aviation route doses and graphs of dose rate change through a flight. Dose rate data at several cut off rigidity, Rc and force field potential, FFP were calculated in advance using a PHITS-based analytical model and stored in the server as matrix data. Upon user's request of departure/arrival airports and flight date, interpolation using matrix data substantiates derivation of dose rate distribution in a simple and quick manner with sufficient accuracy. Precision of the dose calculation was verified by comparison with JISCARD EX (MS-Excel version) released in September 2008. This advanced application will be open to public through the website of the National Institute of Radiological Sciences in the near future. (author)

  9. Experiences in the application of human factors engineering to human-system interface modernization

    International Nuclear Information System (INIS)

    Trueba Alonso, Pedro; Illobre, Luis Fernandez; Ortega Pascual, Fernando

    2014-01-01

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user. (authors)

  10. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    Science.gov (United States)

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  11. The Plasma Window: A Windowless High Pressure-Vacuum Interface for Various Accelerator Applications

    International Nuclear Information System (INIS)

    Hershcovitch, A. I.; Johnson, E. D.; Lanza, R. C.

    1999-01-01

    The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of ∼ 10 -6 Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, is discussed

  12. Experiences in the application of human factors engineering to human-system interface modernization

    International Nuclear Information System (INIS)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando

    2015-01-01

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  13. Transformable Menu Component for Mobile Device Applications: Working with both Adaptive and Adaptable User Interfaces

    Directory of Open Access Journals (Sweden)

    V. Glavinic

    2008-08-01

    Full Text Available Using a learning system in a mobile environmentis not effective if barriers are not overcome in theinteraction with targeted users. For that purpose all mobileservices, including m-learning ones, demand specialattention being paid to interaction with the user. Whilemobile device applications are becoming more powerful,their development process must utilize the concepts ofuniversal access and universal usability. This paperdescribes the model of both adaptable and adaptive mobileuser interface, through the introduction of a transformablemenu component capable to be personalized to eachindividual user with respect to her/his preferences andinteraction style. We discuss the use of customization andadaptation techniques, with the aim to both enhance mobileHCI and to increase user satisfaction, particularly whenworking with graphically rich m-learning applications.

  14. Experiences in the application of human factors engineering to human-system interface modernization

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando [Tecnatom S.A., San Sebastian de los Reyes (Spain). Simulation and Control Rooms Div.

    2015-07-15

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  15. Kinetics and thermodynamics of ceramic/metal interface reactions related to high T(sub c) superconducting applications

    Science.gov (United States)

    Notis, Michael R.; Oh, Min-Seok

    1990-01-01

    Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.

  16. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  17. Neuroengineering tools/applications for bidirectional interfaces, brain computer interfaces, and neuroprosthetic implants - a review of recent progress

    Directory of Open Access Journals (Sweden)

    Ryan M Rothschild

    2010-10-01

    Full Text Available The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs, bidirectional interfaces and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography (EEG and near-infrared spectroscopy (NIRS. Then the problem of gliosis and solutions for (semi- permanent implant biocompatibility such as innovative implant coatings, materials and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators (IPGs and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation (TMS are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  18. Application of an enriched FEM technique in thermo-mechanical contact problems

    Science.gov (United States)

    Khoei, A. R.; Bahmani, B.

    2018-02-01

    In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

  19. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.

    Science.gov (United States)

    Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R

    2013-10-01

    Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Direct-Current Forced Interruption and Breaking Performance of Spiral-Type Contacts in Aero Applications

    Directory of Open Access Journals (Sweden)

    Wenlei Huo

    2017-05-01

    Full Text Available This paper analyses the transient characteristics and breaking performance of direct-current (DC forced-interruption vacuum interrupters in 270 V power-supply systems. Three stages are identified in forced interruption: the DC-arcing stage, current-commutation stage, and voltage-recovery stage. During the current-commutation stage, the reverse peak-current coefficient k, which is a key design factor, is used to calculate the rate of current at zero-crossing (di/dt. MATLAB/Simulink simulation models are established to obtain the transient characteristics influenced by the forced-commutation branch parameters and the coefficient k. To study the breaking performance of spiral-type contacts, experiments are conducted for different contact materials and arcing times for currents less than 3.5 kA. During the DC-arcing stage, a locally intensive burning arc is observed in the CuW80 contact; however, it is not observed in the CuCr50 contact. On examining the re-ignition interruption results of the CuW80 contact, the intensive burning arc is found to be positioned within a possible re-ignition region. When the arcing time is longer than 1 ms, the intensive burning arc occurs and affects the breaking performance of the spiral-type contacts. If the DC-arcing stage is prolonged, the total arcing energy increases, which leads to a lower breaking capacity.

  1. Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

    International Nuclear Information System (INIS)

    Gelebart, L.

    2010-01-01

    In polycrystalline elastic simulations, grain boundaries can be considered as volume inter-phases or as elastic interfaces assuming a displacement jump across the interface. Such an interface description does not account for the in-plane deformation of the interface and Poisson effects cannot be reproduced. The purpose of this Note is to provide an enriched description of the elastic interface which takes into account such effects. When considering a multilayer material, the interphase description and the enriched interface description yield identical homogenized behaviour while quite important discrepancies can be observed with the classical interface description. (author)

  2. Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations, its robustness, and applications.

    Science.gov (United States)

    Fačkovec, Boris; Vondrášek, Jiří

    2012-10-25

    Although a contact is an essential measurement for the topology as well as strength of non-covalent interactions in biomolecules and their complexes, there is no general agreement in the definition of this feature. Most of the definitions work with simple geometric criteria which do not fully reflect the energy content or ability of the biomolecular building blocks to arrange their environment. We offer a reasonable solution to this problem by distinguishing between "productive" and "non-productive" contacts based on their interaction energy strength and properties. We have proposed a method which converts the protein topology into a contact map that represents interactions with statistically significant high interaction energies. We do not prove that these contacts are exclusively stabilizing, but they represent a gateway to thermodynamically important rather than geometry-based contacts. The process is based on protein fragmentation and calculation of interaction energies using the OPLS force field and relies on pairwise additivity of amino acid interactions. Our approach integrates the treatment of different types of interactions, avoiding the problems resulting from different contributions to the overall stability and the different effect of the environment. The first applications on a set of homologous proteins have shown the usefulness of this classification for a sound estimate of protein stability.

  3. Development and applicability estimation of the tire contact pressure measurement system; Tire secchiatsukei no kaihatsu to oyosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Y.; Amago, T.; Takahashi, T.; Sakuma, S.; Mori, N. [Toyota Central R and D Laboratories, Inc., Aichi (Japan); Nagae, A. [Toyota Motor Corp., Aichi (Japan); Yasuoka, M. [Toyo Tire and Rubber Co. Ltd., Osaka (Japan)

    1995-04-20

    A pressure sensor more reliable than the conventional types and a tire pressure measurement system using a plurality of sensors of the said reliable type have been developed. The sensor is an inverted T in shape, the upper surface of the vertical beam thereof receives the pressure, and the two ends of the horizontal beam are fixed. The load per unit area imposed on the pressure receiving surface is separated into three components, the X and Y components in the tangential direction are sensed by the vertical beam while the Z component in the vertical direction is sensed by a distortion gauge attached to the horizontal beam. For the measurement of the contact pressure distribution for the entire contact surface, a measuring device was developed, comprising a multiple point contact pressure gauge with 30 sensors of the reliable type discussed here embedded therein, a tire rolling tester, and a data processing unit. A tire wear estimation test was conducted using this pressure sensor and a contact probe type slip sensor, and it was found that a tire of a greater friction energy ratio is easier to experience abnormal abrasion and that the new pressure sensor is useful in estimating abnormal abrasion. Further, it was indicated that the present measuring device is applicable to the analysis of the mechanism wherein shaft force results from contact pressure on the soil. 3 refs., 11 figs., 3 tabs.

  4. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  5. LIANA Model Integration System - architecture, user interface design and application in MOIRA DSS

    Directory of Open Access Journals (Sweden)

    D. Hofman

    2005-01-01

    Full Text Available The LIANA Model Integration System is the shell application supporting model integration and user interface functionality required for the rapid construction and run-time support of the environmental decision support systems (EDSS. Internally it is constructed as the framework of C++ classes and functions covering most common tasks performed by the EDSS (such as managing of and alternative strategies, running of the chain of the models, supporting visualisation of the data with tables and graphs, keeping ranges and default values for input parameters etc.. EDSS is constructed by integration of LIANA system with the models or other applications such as GIS or MAA software. The basic requirements to the model or other application to be integrated is minimal - it should be a Windows or DOS .exe file and receive input and provide output as text files. For the user the EDSS is represented as the number of data sets describing scenario or giving results of evaluation of scenario via modelling. Internally data sets correspond to the I/O files of the models. During the integration the parameters included in each the data sets as well as specifications necessary to present the data set in GUI and export or import it to/from text file are provided with MIL_LIANA language. Visual C++ version of LIANA has been developed in the frame of MOIRA project and is used as the basis for the MOIRA Software Framework - the shell and user interface component of the MOIRA Decision Support System. At present, the usage of LIANA for the creation of a new EDSS requires changes to be made in its C++ code. The possibility to use LIANA for the new EDSS construction without extending the source code is achieved by substituting MIL_LIANA with the object-oriented LIANA language.

  6. Envisioning Advanced User Interfaces for E-Government Applications: A Case Study

    Science.gov (United States)

    Calvary, Gaëlle; Serna, Audrey; Coutaz, Joëlle; Scapin, Dominique; Pontico, Florence; Winckler, Marco

    The increasing use of the Web as a software platform together with the advance of technology has promoted Web applications as a starting point for improving communication between citizens and administration. Currently, several e-government Web portals propose applications for accessing information regarding healthcare, taxation, registration, housing, agriculture, education, and social services, which otherwise may be difficult to obtain. However, the adoption of services provided to citizens depends upon how such applications comply with the users' needs. Unfortunately, building an e-government website doesn't guarantee that all citizens who come to use it can access its contents. These services need to be accessible to all citizens/customers equally to ensure wider reach and subsequent adoption of the e-government services. User disabilities, computer or language illiteracy (e.g., foreign language), flexibility on information access (e.g., user remotely located in rural areas, homeless, mobile users), and ensuring user privacy on sensitive data are some of the barriers that must be taken into account when designing the User Interface (UI) of e-government applications.

  7. Microscopic mapping of specific contact resistances and long-term reliability tests on 4H-silicon carbide using sputtered titanium tungsten contacts for high temperature device applications

    Science.gov (United States)

    Lee, S.-K.; Zetterling, C.-M.; Ostling, M.

    2002-07-01

    We report on the microscopic mapping of specific contact resistances (rhoc) and long-term reliability tests using sputtered titanium tungsten (TiW) ohmic contacts to highly doped n-type epilayers of 4H-silicon carbide. The TiW ohmic contacts showed good uniformity with low contact resistivity of 3.3 x10-5 Omega cm2. Microscopic mapping of the rhoc showed that the rhoc had a distribution that decreased from the center to the edge of the wafer. This distribution of the rhoc is caused by variation of the doping concentration of the wafer. Sacrificial oxidation at high temperature partially recovered inductively coupled plasma etch damage. TiW contacts with platinum and gold capping layers have stable specific contact resistance at 500 and 600 degC in a vacuum chamber for 308 h.

  8. Application of CPL with Interference Mapping Lithography to generate random contact reticle designs for the 65-nm node

    Science.gov (United States)

    Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.

    2004-08-01

    Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with

  9. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    Science.gov (United States)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  10. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  11. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

    International Nuclear Information System (INIS)

    Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S.

    2016-01-01

    The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface ( (www.hitran.org)) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4–50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage (www.hitran.org/hapi). - Highlights: • HAPI extends the HITRANonline portal and provides an access to the HITRAN data. • Free, flexible, and portable Python library for working with the spectroscopic data. • Incorporates functions for querying, filtering and processing the spectroscopic data. • Provides functionality for single-layer spectra simulation. • Can be used in the radiative transfer codes, spectroscopic data validation, etc.

  12. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    International Nuclear Information System (INIS)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna; Sofonea, Mircea

    2016-01-01

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations

  13. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)

    2016-02-15

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.

  14. Contact Modelling in Isogeometric Analysis: Application to Sheet Metal Forming Processes

    Science.gov (United States)

    Cardoso, Rui P. R.; Adetoro, O. B.; Adan, D.

    2016-08-01

    Isogeometric Analysis (IGA) has been growing in popularity in the past few years essentially due to the extra flexibility it introduces with the use of higher degrees in the basis functions leading to higher convergence rates. IGA also offers the capability of easily reproducing discontinuous displacement and/or strain fields by just manipulating the multiplicity of the knot parametric coordinates. Another advantage of IGA is that it uses the Non-Uniform Rational B-Splines (NURBS) basis functions, that are very common in CAD solid modelling, and consequently it makes easier the transition from CAD models to numerical analysis. In this work it is explored the contact analysis in IGA for both implicit and explicit time integration schemes. Special focus will be given on contact search and contact detection techniques under NURBS patches for both the rigid tools and the deformed sheet blank.

  15. The use of contact lenses in low vision rehabilitation: optical and therapeutic applications.

    Science.gov (United States)

    Vincent, Stephen J

    2017-09-01

    Ocular pathology that manifests at an early age has the potential to alter the vision-dependent emmetropisation mechanism, which co-ordinates ocular growth throughout childhood. The disruption of this feedback mechanism in children with congenital or early-onset visual impairment often results in the development of significant ametropia, including high levels of spherical refractive error, astigmatism and anisometropia. This review examines the use of contact lenses as a refractive correction, low vision aid and therapeutic intervention in the rehabilitation of patients with bilateral, irreversible visual loss due to congenital ocular disease. The advantages and disadvantages of the use of contact lenses for increased magnification (telescopes and microscopes) or field expansion (reverse telescopes) are discussed, along with the benefits and practical considerations for the correction of pathological high myopia. The historical and present use of therapeutic tinted contact lenses to reduce photosensitivity and nystagmus in achromatopsia, albinism and aniridia are also presented, including clinical considerations for the contact lens practitioner. In addition to the known optical benefits in comparison to spectacles for high levels of ametropia (an improved field of view for myopes and fewer inherent oblique aberrations), contact lenses may be of significant psycho-social benefit for patients with low vision, due to enhanced cosmesis and reduced conspicuity and potential related effects of improved self-esteem and peer acceptance. The contact lens correction of patients with congenital vision impairment can be challenging for both practitioner and patient but should be considered as a potential optical or therapeutic solution in modern low vision rehabilitation. © 2017 Optometry Australia.

  16. Feasibility study on applicability of direct contact heat transfer SGs or FBRs

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1997-01-01

    As a candidate of an innovative steam generator for fast breeder reactors, heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The objectives of this study are to obtain the technical feasibility of this concept, to evaluate the heat transfer characteristics of direct contact heat transfer and to estimate the size and volume of this SG. Followings are main results. (1) In the case of sodium tube failure, it is considered that steam and water will not enter into the primary sodium under appropriate countermeasures. (2) Under the condition of temperature and pressure of SG for FBRs, the phenomenon such as vapor explosion is not take place in this SG concept. (3) as a result of material compatibility test and analysis, it is considered that 9Cr-1Mo steel and 21/4cr-1Mo steel will be a candidate structural material. (4) It is considered that the production of oxides by the chemical reaction between melting alloy and water is mitigated by dissolving hydrogen gas in feed water. (5) The fundamental direct contact heat transfer characteristics between a melting alloy and water is obtained in following two regions. One is the evaporating region and the other is the superheating region. The effect of the system pressure on the heat transfer characteristics and the required degree of superheat of a melting alloy above the water saturation temperature are evaluated during direct contact heat transfer experiments by injecting water into a high temperature melting alloy. (6) Due to the high heat transfer performance of direct contact heat transfer, it is found that compact steam generation section will be expected. However, because of the characteristics of direct contact heat exchanger, achievement of high efficiency was difficult. In order to make a good use of this SG concept, improvement of efficiency is necessary. (author)

  17. A Application of WD Model to EB Type Contact Binary System

    Directory of Open Access Journals (Sweden)

    Su-Yeon Oh

    2000-12-01

    Full Text Available The EB type contact binaries show large temperature difference ( T 1,000K between two components. Thus we have modified the mode 3 of the WD program to adjust albedos, limb darkening coefficients and gravity darkening exponents for both components of such binaries, while the values for those parameters should be same for both components in the original WD program. Both of the modified and the original versions have been applied to the EB type contact binaries such as DO Cas, GO Cyg, and FS Lup. The computed light curves with modified version fit better to the observations.

  18. A Class of time-fractional hemivariational inequalities with application to frictional contact problem

    Science.gov (United States)

    Zeng, Shengda; Migórski, Stanisław

    2018-03-01

    In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.

  19. Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation

    Science.gov (United States)

    Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2014-01-01

    Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. PMID:25110624

  20. Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

    Directory of Open Access Journals (Sweden)

    Molina Gary N Garcia

    2003-01-01

    Full Text Available Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.

  1. Brain Computer Interface: Assessment of Spinal Cord Injury Patient towards Motor Movement through EEG application

    Directory of Open Access Journals (Sweden)

    Syam Syahrull Hi-Fi

    2017-01-01

    Full Text Available Electroencephalography (EEG associated with motor task have been comprehensively investigated and it can also describe the brain activities while spinal cord injury (SCI patient with para/tetraplegia performing movement with their limbs. This paper reviews on conducted research regarding application of brain computer interface (BCI that offer alternative for neural impairments community such as spinal cord injury patient (SCI which include the experimental design, signal analysis of EEG band signal and data processing methods. The findings claim that the EEG signals of SCI patients associated with movement tasks can be stimulated through mental and motor task. Other than that EEG signal component such as alpha and beta frequency bands indicate significance for analysing the brain activity of subjects with SCI during movements.

  2. Numerical Platon: A unified linear equation solver interface by CEA for solving open foe scientific applications

    International Nuclear Information System (INIS)

    Secher, Bernard; Belliard, Michel; Calvin, Christophe

    2009-01-01

    This paper describes a tool called 'Numerical Platon' developed by the French Atomic Energy Commission (CEA). It provides a freely available (GNU LGPL license) interface for coupling scientific computing applications to various freeware linear solver libraries (essentially PETSc, SuperLU and HyPre), together with some proprietary CEA solvers, for high-performance computers that may be used in industrial software written in various programming languages. This tool was developed as part of considerable efforts by the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-shelf parallel tools to help develop new generation simulation codes. After the presentation of the package architecture and the available algorithms, we show examples of how Numerical Platon is used in sequential and parallel CEA codes. Comparing with in-house solvers, the gain in terms of increases in computation capacities or in terms of parallel performances is notable, without considerable extra development cost

  3. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  4. Numerical Platon: A unified linear equation solver interface by CEA for solving open foe scientific applications

    Energy Technology Data Exchange (ETDEWEB)

    Secher, Bernard [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Saclay DM2S/SFME/LGLS, Bat. 454, F-91191 Gif-sur-Yvette Cedex (France)], E-mail: bsecher@cea.fr; Belliard, Michel [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Cadarache DER/SSTH/LMDL, Bat. 238, F-13108 Saint-Paul-lez-Durance Cedex (France); Calvin, Christophe [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Saclay DM2S/SERMA/LLPR, Bat. 470, F-91191 Gif-sur-Yvette Cedex (France)

    2009-01-15

    This paper describes a tool called 'Numerical Platon' developed by the French Atomic Energy Commission (CEA). It provides a freely available (GNU LGPL license) interface for coupling scientific computing applications to various freeware linear solver libraries (essentially PETSc, SuperLU and HyPre), together with some proprietary CEA solvers, for high-performance computers that may be used in industrial software written in various programming languages. This tool was developed as part of considerable efforts by the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-shelf parallel tools to help develop new generation simulation codes. After the presentation of the package architecture and the available algorithms, we show examples of how Numerical Platon is used in sequential and parallel CEA codes. Comparing with in-house solvers, the gain in terms of increases in computation capacities or in terms of parallel performances is notable, without considerable extra development cost.

  5. Interface of Augmented Reality Game Using Face Tracking and Its Application to Advertising

    Science.gov (United States)

    Lee, Young Jae; Lee, Yong Jae

    This paper proposes the face interface method which can be used in recognizing gamer's movements in the real world for application in the cyber space so that we could make three-dimensional space recognition motion-based game. The proposed algorithm is the new face recognition technology which incorporates the strengths of two existing algorithms, CBCH and CAMSHIFT and its validity has been proved through a series of experiments. Moreover, for the purpose of the interdisciplinary studies, concepts of advertising have been introduced into the three-dimensional motion-based game to look into the possible new beneficiary models for the game industry. This kind of attempt may be significant in that it tried to see if the advertising brand when placed in the game could play the role of the game item or quest. The proposed method can provide the basic references for developing motion-based game development.

  6. LTCP 2D Graphical User Interface. Application Description and User's Guide

    Science.gov (United States)

    Ball, Robert; Navaz, Homayun K.

    1996-01-01

    A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.

  7. An automated meta-monitoring mobile application and front-end interface for the ATLAS computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Quadt, Arnulf [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    Efficient administration of computing centres requires advanced tools for the monitoring and front-end interface of the infrastructure. Providing the large-scale distributed systems as a global grid infrastructure, like the Worldwide LHC Computing Grid (WLCG) and ATLAS computing, is offering many existing web pages and information sources indicating the status of the services, systems and user jobs at grid sites. A meta-monitoring mobile application which automatically collects the information could give every administrator a sophisticated and flexible interface of the infrastructure. We describe such a solution; the MadFace mobile application developed at Goettingen. It is a HappyFace compatible mobile application which has a user-friendly interface. It also becomes very feasible to automatically investigate the status and problem from different sources and provides access of the administration roles for non-experts.

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  9. Dynamic Wheel/Rail Rolling Contact at Singular Defects with Application to Squats

    NARCIS (Netherlands)

    Zhao, X.

    2012-01-01

    Squats, as a kind of short wavelength rail surface defects, have become one of the main rolling contact fatigue problems in railways worldwide. The purpose of this work is to better understand the squatting phenomenon, contribute to reduction and even prevention of squat occurrence, and thereby

  10. Coherent application of a contact structure to formulate Classical Non-Equilibrium Thermodynamics

    NARCIS (Netherlands)

    Knobbe, E; Roekaerts, D.J.E.M.

    2017-01-01

    This contribution presents an outline of a new mathematical formulation for
    Classical Non-Equilibrium Thermodynamics (CNET) based on a contact
    structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of

  11. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Science.gov (United States)

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  12. Creating Mobile and Web Application Programming Interfaces (APIs) for NASA Science Data

    Science.gov (United States)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Moore, S. W.

    2011-12-01

    The Atmospheric Science Data Center (ASDC) at the NASA Langley Research Center in Virginia houses almost three petabytes of data, a collection that increases every day. To put it into perspective, it is estimated that three petabytes of data storage could store a digitized copy of all printed material in U.S. research libraries. There are more than ten other NASA data centers like the ASDC. Scientists and the public use this data for research, science education, and to understand our environment. Most importantly these data provide the potential for all of us make new discoveries. NASA is about making discoveries. Galileo was quoted as saying, "All discoveries are easy to understand once they are discovered. The point is to discover them." To that end, NASA stores vast amounts of publicly available data. This paper examines an approach to create web applications that serve NASA data in ways that specifically address the mobile web application technologies that are quickly emerging. Mobile data is not a new concept. What is new, is that user driven tools have recently become available that allow users to create their own mobile applications. Through the use of these cloud-based tools users can produce complete native mobile applications. Thus, mobile apps can now be created by everyone, regardless of their programming experience or expertise. This work will explore standards and methods for creating dynamic and malleable application programming interfaces (APIs) that allow users to access and use NASA science data for their own needs. The focus will be on experiences that broaden and increase the scope and usage of NASA science data sets.

  13. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Directory of Open Access Journals (Sweden)

    Elsa Andrea Kirchner

    Full Text Available The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR, a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  14. Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications

    Science.gov (United States)

    Schendel, Amelia Ann

    Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided

  15. The graphene/Au/Ni interface and its application in the construction of a graphene spin filter

    International Nuclear Information System (INIS)

    Rybkina, A A; Rybkin, A G; Adamchuk, V K; Marchenko, D; Shikin, A M; Varykhalov, A; Sánchez -Barriga, J

    2013-01-01

    A modification of the contact of graphene with ferromagnetic electrodes in a model of the graphene spin filter allowing restoration of the graphene electronic structure is proposed. It is suggested for this aim to intercalate into the interface between the graphene and the ferromagnetic (Ni or Co) electrode a Au monolayer to block the strong interaction between the graphene and Ni (Co) and, thus, prevent destruction of the graphene electronic structure which evolves in direct contact of graphene with Ni (Co). It is also suggested to insert an additional buffer graphene monolayer with the size limited by that of the electrode between the main graphene sheet providing spin current transport and the Au/Ni electrode injecting the spin current. This will prevent the spin transport properties of graphene from influencing contact phenomena and eliminate pinning of the graphene electronic structure relative to the Fermi level of the metal, thus ensuring efficient outflow of injected electrons into the graphene. The role of the spin structure of the graphene/Au/Ni interface with enhanced spin–orbit splitting of graphene π states is also discussed, and its use is proposed for additional spin selection in the process of the electron excitation. (paper)

  16. A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples

    DEFF Research Database (Denmark)

    Nguyen, Tam T. T. N.; Petersen, Nickolaj J.; Rand, Kasper Dyrberg

    2016-01-01

    Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept o...

  17. Design, materials and R and D issues of innovative thermal contact joints for high heat flux applications

    International Nuclear Information System (INIS)

    Federici, G.; Haines, J.; Tillack, M.S.; Ulrickson, M.

    1995-01-01

    Plasma facing components in fusion machines are designed with a layer of sacrificial armour material facing the plasma and a high-conductivity material in contact with the coolant. One of the most critical issues associated with making the proposed design concept work, from a power handling point of view, is achieving the necessary contact conductance between the armour and the heat sink.This paper presents a novel idea for the interface joint between the sacrificial armour and the actively cooled permanent heat sink. It consists of a thermal bond layer of a binary or more complex alloy, treated in the semi-solid region in such a way as to lead to a fine dispersion of a globular solid phase into a liquid matrix (rheocast process). The alloy in this ''mushy state'' exhibits a time-dependent, shear rate-dependent viscosity, which is maintained reversibly when the material is solidified and heated again in the semi-solid state. The function of the thermal bond layer is to facilitate heat transfer between the replaceable armour and the permanent heat sink without building up excessive thermal stresses, as in conventional brazed joints, and allow an easy replacement whenever needed without disturbing the coolant system. No contact pressure is required in this case to provide the desired heat transfer conductance, and the reversible thixotropic properties of the rheocast material should guarantee the stability of the layer in the semi-solid conditions.Key design, material and testing issues are identified and discussed in this paper with emphasis on specific needs for future research and development work. Examples of suitable material options which are being considered are reported together with some initial heat transfer analysis results. (orig.)

  18. Effect of Am-80, A Novel Retinoid Derivative, On Contact Hypersensitivity Caused by Repeated Applications of Hapten in Mice

    Directory of Open Access Journals (Sweden)

    Satoru Niwa

    2000-01-01

    Full Text Available Some retinoids show an anti-inflammatory action through regulation of transcription of various genes. In the present study, the inhibitory effect of 4-((5,6,7,8- tetrahydro-5,5,8,8-tetramethyl-2-naphthyl carbamoyl benzoic acid (Am-80, a synthetic retinoid, on mouse contact hypersensitivity provoked by repeated applications of 2,4-dinitrofluorobenzene (DNFB to the ear was investigated. Five-fold applications of DNFB on ears once per week elicited severe contact dermatitis with marked infiltration of inflammatory cells and elevation of anti-dinitrophenyl (DNP-IgE antibody in the serum. The Am-80 significantly inhibited ear swelling in a dose-dependent manner. In the histopathologic study, infiltration of inflammatory cells was clearly decreased by Am-80. However, Am-80 did not affect the production of DNP-specific IgE antibody both at the transcriptional and post-transcriptional levels. The effects of Am-80 on the transcriptional level of cytokines, interferon (IFN-γ, interleukin (IL-1 and IL-4 in cervical lymph nodes were investigated. Marked elevation of mRNA for all cytokines was observed and Am-80 potently inhibited the expression of IFN-γ mRNA, but not IL-1 and IL-4 mRNA. These findings indicated that Am-80 may inhibit the contact dermatitis at the post-sensitization phase by inhibiting IFN-γ production at the transcriptional level in mice.

  19. Application of fibrin glue with bandage contact lens in pterygium surgery

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-05-01

    Full Text Available AIM: To explore the efficacy of fibrin glue with bandage contact lens for pain relief after pterygium surgery performed with limbal autograft transplantation.METHODS: A prospective clinical trial was carried out in 52 patients(72 eyesoperated for primary nasal pterygium. All patients were randomly divided into the fibrin glue with bandage contact lens group(experimental group, 28 cases, 38 eyesand suture group(control group, 24 cases, 34 eyes. Autologous limbal graft taken from the superotemporal limbus was used to cover the sclera after pterygium excision under local anesthesia with 20g/L lidocaine. In experimental group, the transplant was attached to the sclera with fibrin tissue adhesive and in control group with 10-0 Virgin silk sutures. Experimental group weared bandage contact lens after surgery while the control group did not. The degree of pain after surgery was evaluated at 1, 2, 3, 5 and 7d after surgery. Follow-up was 6mo, matching degree of graft and complication such as infection, relapse, implant healing badness and subconjunctival cyst were mainly observed and recorded.RESULTS: The pain index scores of the experimental group were significantly less than those of control group(all P=0.000. In observation period, all conjunctival autografts in both groups were successfully attached and were intact without falling off, dissolution or recurrence and there were no complications such as infection, relapse, implant healing badness and subconjunctival cyst.CONCLUSION: Fibrin glue with bandage contact lens could significantly release pain response afterpterygium excision surgery.

  20. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    Science.gov (United States)

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  1. A Standard for Sharing and Accessing Time Series Data: The Heliophysics Application Programmers Interface (HAPI) Specification

    Science.gov (United States)

    Vandegriff, J. D.; King, T. A.; Weigel, R. S.; Faden, J.; Roberts, D. A.; Harris, B. T.; Lal, N.; Boardsen, S. A.; Candey, R. M.; Lindholm, D. M.

    2017-12-01

    We present the Heliophysics Application Programmers Interface (HAPI), a new interface specification that both large and small data centers can use to expose time series data holdings in a standard way. HAPI was inspired by the similarity of existing services at many Heliophysics data centers, and these data centers have collaborated to define a single interface that captures best practices and represents what everyone considers the essential, lowest common denominator for basic data access. This low level access can serve as infrastructure to support greatly enhanced interoperability among analysis tools, with the goal being simplified analysis and comparison of data from any instrument, model, mission or data center. The three main services a HAPI server must perform are 1. list a catalog of datasets (one unique ID per dataset), 2. describe the content of one dataset (JSON metadata), and 3. retrieve numerical content for one dataset (stream the actual data). HAPI defines both the format of the query to the server, and the response from the server. The metadata is lightweight, focusing on use rather than discovery, and the data format is a streaming one, with Comma Separated Values (CSV) being required and binary or JSON streaming being optional. The HAPI specification is available at GitHub, where projects are also underway to develop reference implementation servers that data providers can adapt and use at their own sites. Also in the works are data analysis clients in multiple languages (IDL, Python, Matlab, and Java). Institutions which have agreed to adopt HAPI include Goddard (CDAWeb for data and CCMC for models), LASP at the University of Colorado Boulder, the Particles and Plasma Interactions node of the Planetary Data System (PPI/PDS) at UCLA, the Plasma Wave Group at the University of Iowa, the Space Sector at the Johns Hopkins Applied Physics Lab (APL), and the tsds.org site maintained at George Mason University. Over the next year, the adoption of a

  2. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rüdiger eRupp

    2014-09-01

    Full Text Available Brain computer interfaces (BCIs are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological impairments supervised by clinical personnel or caregivers. However, clinicians and patients face many challenges in the application of BCIs. This particularly applies to high spinal cord injured patients, in whom artificial ventilation, autonomic dysfunctions, neuropathic pain or the inability to achieve a sufficient level of control during a short-term training may limit the successful use of a BCI. Additionally, spasmolytic medication and the acute stress reaction with associated episodes of depression may have a negative influence on the modulation of brain waves and therefore the ability to concentrate over an extended period of time. Although BCIs seem to be a promising assistive technology for individuals with high spinal cord injury systematic investigations are highly needed to obtain realistic estimates of the percentage of users that for any reason may not be able to operate a BCI in a clinical setting.

  3. Charge and field coupling phenomena at metal-oxide interfaces and their applications

    Science.gov (United States)

    Voora, Venkata M.

    Heterostructures composed of polar materials, such as ferroelectric and/or piezoelectric, are interesting due to their interface lattice charge coupling (LCC) effects. In this thesis, coupling effects between switchable ferroelectric and non-switchable piezoelectric semiconductor spontaneous polarizations are addressed. Also discussed is a dielectric continuum model approach for studying LCC effects in double layer piezoelectric semiconductor-ferroelectric and triple layer piezoelectric semiconductor-ferroelectric-piezoelectric semiconductor heterostructures. The dielectric continuum model augments the effects of electric field driven switchable polarization due to LCC with depletion layer formation in semiconductor heterostructures. Electrical investigations were used to study a reference single layer (BaTiO3), a double layer (BaTiO3-ZnO), and a triple layer (ZnO-BaTiO 3-ZnO) heterostructure grown by pulsed laser deposition. The coupling between the non-switchable spontaneous polarization of ZnO and the electrically switchable spontaneous polarization of BaTiO3 causes strong asymmetric polarization hysteresis behavior. The n-type ZnO layer within double and triple layered heterostructures reveals hysteresis-dependent capacitance variations upon formation of depletion layers at the ZnO/BaTiO 3 interfaces. Model analysis show very good agreement between the generated data and the experimental results. The dielectric continuum model approach allows for the derivation of the amount and orientation of the spontaneous polarization of the piezoelectric constituents, and can be generalized towards multiple layer piezoelectric semiconductor-ferroelectric heterostructures. Based on experimental results the polarization coupled ZnO-BaTiO 3-ZnO heterostructures is identified as a two-terminal unipolar ferroelectric bi-junction transistor which can be utilized in memory storage devices. Furthermore it is discussed, that the triple layer heterostructure with magnetically

  4. A memory efficient user interface for CLIPS micro-computer applications

    Science.gov (United States)

    Sterle, Mark E.; Mayer, Richard J.; Jordan, Janice A.; Brodale, Howard N.; Lin, Min-Jin

    1990-01-01

    The goal of the Integrated Southern Pine Beetle Expert System (ISPBEX) is to provide expert level knowledge concerning treatment advice that is convenient and easy to use for Forest Service personnel. ISPBEX was developed in CLIPS and delivered on an IBM PC AT class micro-computer, operating with an MS/DOS operating system. This restricted the size of the run time system to 640K. In order to provide a robust expert system, with on-line explanation, help, and alternative actions menus, as well as features that allow the user to back up or execute 'what if' scenarios, a memory efficient menuing system was developed to interface with the CLIPS programs. By robust, we mean an expert system that (1) is user friendly, (2) provides reasonable solutions for a wide variety of domain specific problems, (3) explains why some solutions were suggested but others were not, and (4) provides technical information relating to the problem solution. Several advantages were gained by using this type of user interface (UI). First, by storing the menus on the hard disk (instead of main memory) during program execution, a more robust system could be implemented. Second, since the menus were built rapidly, development time was reduced. Third, the user may try a new scenario by backing up to any of the input screens and revising segments of the original input without having to retype all the information. And fourth, asserting facts from the menus provided for a dynamic and flexible fact base. This UI technology has been applied successfully in expert systems applications in forest management, agriculture, and manufacturing. This paper discusses the architecture of the UI system, human factors considerations, and the menu syntax design.

  5. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    Science.gov (United States)

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  6. Design of a 32-channel EEG system for brain control interface applications.

    Science.gov (United States)

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  7. LIGHT-WEIGHT, NON-CONTACT MAGNETIC TRANSMISSION FOR UAV AND ROTORCRAFT APPLICATIONS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Speed reducing units consisting of mechanical gears are widely used in applications to match high speed prime movers to low speed loads. All aerospace applications...

  8. Monitoring the restoration of interfacial contact for self healing thermal interface materials for LED and microelectronic applications

    NARCIS (Netherlands)

    Lafont, U.L.; Van Zeijl, H.W.; Van der Zwaag, S.

    2013-01-01

    While conventional self healing materials focus on the restoration of mechanical properties, newer generations of self healing materials focus on the restoration of other functional (i.e. non-mechanical) properties. Thermal conductivity is an example of an important functional property of a Thermal

  9. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  10. Selective visual attention to drive cognitive brain machine interfaces: from concepts to neurofeedback and rehabilitation applications

    Directory of Open Access Journals (Sweden)

    Elaine eAstrand

    2014-08-01

    Full Text Available Brain Machine Interfaces (BMI using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from noninvasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive BCIs, including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other

  11. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Titanium dioxide (TiO2 materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B, and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions.

  12. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  13. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application

    Science.gov (United States)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R.; Lee, Dong Won; Lee, Seung Hee; Malhotra, B. D.

    2013-12-01

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL-1, detection limit of 19.78 mg (dL cm-2)-1, and high sensitivity of 0.9245 μA (mg per dL cm-2)-1 with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared

  14. Continuous-Flow Synthesis and Materials Interface Engineering of Lead Sulfide Quantum Dots for Photovoltaic Applications

    KAUST Repository

    El-Ballouli, Ala’a O.

    2016-05-25

    Harnessing the Sun’s energy via the conversion of solar photons to electricity has emerged as a sustainable energy source to fulfill our future demands. In this regard, solution-processable, size-tunable PbS quantum dots (QDs) have been identified as a promising active materials for photovoltaics (PVs). Yet, there are still serious challenges that hinder the full exploitation of QD materials in PVs. This dissertation addresses two main challenges to aid these QDs in fulfilling their tremendous potential in PV applications. First, it is essential to establish a large-scale synthetic technique which maintains control over the reaction parameters to yield QDs with well-defined shape, size, and composition. Rigorous protocols for cost-effective production on a scale are still missing from literature. Particularly, previous reports of record-performance QD-PVs have been based on small-scale, manual, batch syntheses. One way to achieve a controlled large-scale synthesis is by reducing the reaction volume to ensure uniformity. Accordingly, we design a droplet-based continuous-flow synthesis of PbS QDs. Only upon separating the nucleation and growth phases, via a dual-temperature-stage reactor, it was possible to achieve high-quality QDs with high photoluminescence quantum yield (50%) in large-scale. The performance of these QDs in a PV device was comparable to batch-synthesized QDs, thus providing a promise in utilizing automated synthesis of QDs for PV applications. Second, it is crucial to study and control the charge transfer (CT) dynamics at QD interfaces in order to optimize their PV performance. Yet, the CT investigations based on PbS QDs are limited in literature. Here, we investigate the CT and charge separation (CS) at size-tunable PbS QDs and organic acceptor interfaces using a combination of femtosecond broadband transient spectroscopic techniques and steady-state measurements. The results reveal that the energy band alignment, tuned by the quantum

  15. Ex-reactor determination of thermal gap and contact conductance between uranium dioxide: zircaloy-4 interfaces. Stage I: low gas pressure. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.E.; Begej, S.

    1979-04-01

    A study of thermal gap and contact conductance between depleted uranium dioxide (UO/sub 2/) and Zircaloy-4 (Zr4) has been made utilizing two measurement apparatuses developed as part of this program. The Modified Pulse Design (MPD) apparatus is a transient technique employing a heat pulse (laser) and a signal detector to monitor the thermal energy transmitted through a UO/sub 2//Zr4 sample pair which are either physically separated or in contact. The Modified Longitudinal Design (MLD) apparatus is a steady-state technique based on a modified cylindrical column design with a self-guarding sample geometry. Description of the MPD and MLD apparatus, data acquisition, reduction and error analysis is presented along with information on specimen preparation, thermal property and surface characterization. A technique using an optical height gauge to determine the average mean-plane of separation between the simple pairs is also presented.

  16. Ex-reactor determination of thermal gap and contact conductance between uranium dioxide: zircaloy-4 interfaces. Stage I: low gas pressure

    International Nuclear Information System (INIS)

    Garnier, J.E.; Begej, S.

    1979-04-01

    A study of thermal gap and contact conductance between depleted uranium dioxide (UO 2 ) and Zircaloy-4 (Zr4) has been made utilizing two measurement apparatuses developed as part of this program. The Modified Pulse Design (MPD) apparatus is a transient technique employing a heat pulse (laser) and a signal detector to monitor the thermal energy transmitted through a UO 2 /Zr4 sample pair which are either physically separated or in contact. The Modified Longitudinal Design (MLD) apparatus is a steady-state technique based on a modified cylindrical column design with a self-guarding sample geometry. Description of the MPD and MLD apparatus, data acquisition, reduction and error analysis is presented along with information on specimen preparation, thermal property and surface characterization. A technique using an optical height gauge to determine the average mean-plane of separation between the simple pairs is also presented

  17. The Use of Numerical Applications in the Study of Dental Contacts

    Directory of Open Access Journals (Sweden)

    Rodica LUCA

    2010-06-01

    Full Text Available This paper seeks to explore the numerical analysis methods used in dentistry in general and those regarding teeth contacts, in particular. Typically, such an analysis consists of the following steps: modelling the actual object, mesh generation, numerical modelling and computer programming. The best known and mostly used of all is the finite element method. The paper also presents other more refined methods, for instance: CATIA and fast Fourier transform. The study of the living tissue based on numerical analysis exceeds the limitations of in vivo experiments but computers can never replicate the body adaptation capacity.

  18. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  19. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    International Nuclear Information System (INIS)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van; Isabella, Olindo; Zeman, Miro

    2016-01-01

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R sh n-type  = 95 Ω/□ and R sh p-type  = 120 Ω/□). An efficiency of 19.2% (V oc  = 673 mV, J sc  = 38.0 mA/cm 2 , FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V OC of 696 mV was also measured

  20. Adaptive local surface refinement based on LR NURBS and its application to contact

    Science.gov (United States)

    Zimmermann, Christopher; Sauer, Roger A.

    2017-12-01

    A novel adaptive local surface refinement technique based on Locally Refined Non-Uniform Rational B-Splines (LR NURBS) is presented. LR NURBS can model complex geometries exactly and are the rational extension of LR B-splines. The local representation of the parameter space overcomes the drawback of non-existent local refinement in standard NURBS-based isogeometric analysis. For a convenient embedding into general finite element codes, the Bézier extraction operator for LR NURBS is formulated. An automatic remeshing technique is presented that allows adaptive local refinement and coarsening of LR NURBS. In this work, LR NURBS are applied to contact computations of 3D solids and membranes. For solids, LR NURBS-enriched finite elements are used to discretize the contact surfaces with LR NURBS finite elements, while the rest of the body is discretized by linear Lagrange finite elements. For membranes, the entire surface is discretized by LR NURBS. Various numerical examples are shown, and they demonstrate the benefit of using LR NURBS: Compared to uniform refinement, LR NURBS can achieve high accuracy at lower computational cost.

  1. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  2. Manufacturing involving forging of multiple objects in contact

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P.A.F.

    and dissimilar materials. While being plastically deformed against each other under increasing forging load, the parts dynamically develop their mutual contact interfaces. Comparisons of the final geometry as well as force-displacement curves are evaluated. The potential of simulated applications are discussed...

  3. Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.

    2005-01-01

    A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations

  4. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  5. Solid contact potassium selective electrodes for biomedical applications – a review

    NARCIS (Netherlands)

    van de Velde, Lennart; d'Angremont, E.; Olthuis, Wouter

    2016-01-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium

  6. A study on the application of voice interaction in automotive human machine interface experience design

    Science.gov (United States)

    Huang, Zhaohui; Huang, Xiemin

    2018-04-01

    This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.

  7. A Tool and Application Programming Interface for Browsing Historical Geostationary Satellite Data

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Ayers, J.

    2013-12-01

    Providing access to information is a key concern for NASA Langley Research Center. We describe a tool and method that allows end users to easily browse and access information that is otherwise difficult to acquire and manipulate. The tool described has as its core the application-programming interface that is made available to the public. One goal of the tool is to provide a demonstration to end users so that they can use the enhanced imagery as an input into their own work flows. This project builds upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite imagery accessible and easily searchable. As we see the increasing use of virtual supply chains that provide additional value at each link there is value in making satellite imagery available through a simple access method as well as allowing users to browse and view that imagery as they need rather than in a manner most convenient for the data provider.

  8. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    Science.gov (United States)

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neurobionics and the brain-computer interface: current applications and future horizons.

    Science.gov (United States)

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  10. Construction of an Interface Terminology on SNOMED CT Generic Approach and Its Application in Intensive Care

    NARCIS (Netherlands)

    Bakhshi-Raiez, F.; Ahmadian, L.; Cornet, R.; de Jonge, E.; de Keizer, N. F.

    2010-01-01

    Objective: To provide a generic approach for developing a domain-specific interface terminology on SNOMED CT and to apply this approach to the domain of intensive care. Methods: The process of developing an interface terminology on SNOMED CT can be regarded as six sequential phases: domain analysis,

  11. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    International Nuclear Information System (INIS)

    Xiang, H.; Komvopoulos, K.

    2013-01-01

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  12. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  13. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  14. Pygrass: An Object Oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2013-03-01

    Full Text Available PyGRASS is an object-oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS, a powerful open source GIS widely used in academia, commercial settings and governmental agencies. We present the architecture of the PyGRASS library, covering interfaces to GRASS modules, vector and raster data, with a focus on the new capabilities that it provides to GRASS users and developers. Our design concept of the module interface allows the direct linking of inputs and outputs of GRASS modules to create process chains, including compatibility checks, process control and error handling. The module interface was designed to be easily extended to work with remote processing services (Web Processing Service (WPS, Web Service Definition Language (WSDL/Simple Object Access Protocol (SOAP. The new object-oriented Python programming API introduces an abstract layer that opens the possibility to use and access transparently the efficient raster and vector functions of GRASS that are implemented in C. The design goal was to provide an easy to use, but powerful, Python interface for users and developers who are not familiar with the programming language C and with the GRASS C-API. We demonstrate the capabilities, scalability and performance of PyGRASS with several dedicated tests and benchmarks. We compare and discuss the results of the benchmarks with dedicated C implementations.

  15. Internal interface: I/O communication with FPGA circuits and hardware description standard for applications in HEP and FEL electronics ver. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Pozniak, K.T. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems ELHEP Laboratory

    2005-07-01

    The work describes hardware layer of the universal, parameterized communication interface for application in the FPGA chips. The interface is called in this work as the ''Internal Interface'' or in short the ''II''. The paper shows how to automatically create the address and data space, according to the user declarations. The methods to standardize the I/O communication with FPGA chips are described. The communication uses library functions and standardized, parametric components in VHDL. Theoretical background and technical description of the Internal Interface are illustrated with a few easy examples of simple interfaces. (orig.)

  16. Internal interface: I/O communication with FPGA circuits and hardware description standard for applications in HEP and FEL electronics ver. 1.0

    International Nuclear Information System (INIS)

    Pozniak, K.T.

    2005-01-01

    The work describes hardware layer of the universal, parameterized communication interface for application in the FPGA chips. The interface is called in this work as the ''Internal Interface'' or in short the ''II''. The paper shows how to automatically create the address and data space, according to the user declarations. The methods to standardize the I/O communication with FPGA chips are described. The communication uses library functions and standardized, parametric components in VHDL. Theoretical background and technical description of the Internal Interface are illustrated with a few easy examples of simple interfaces. (orig.)

  17. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    International Nuclear Information System (INIS)

    Feller, M.B.

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described

  18. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Marla Beth [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  19. User interface for a tele-operated robotic hand system

    Science.gov (United States)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  20. User interface for a tele-operated robotic hand system

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  1. A Vision-Based Approach for Estimating Contact Forces: Applications to Robot-Assisted Surgery

    Directory of Open Access Journals (Sweden)

    C. W. Kennedy

    2005-01-01

    Full Text Available The primary goal of this paper is to provide force feedback to the user using vision-based techniques. The approach presented in this paper can be used to provide force feedback to the surgeon for robot-assisted procedures. As proof of concept, we have developed a linear elastic finite element model (FEM of a rubber membrane whereby the nodal displacements of the membrane points are measured using vision. These nodal displacements are the input into our finite element model. In the first experiment, we track the deformation of the membrane in real-time through stereovision and compare it with the actual deformation computed through forward kinematics of the robot arm. On the basis of accurate deformation estimation through vision, we test the physical model of a membrane developed through finite element techniques. The FEM model accurately reflects the interaction forces on the user console when the interaction forces of the robot arm with the membrane are compared with those experienced by the surgeon on the console through the force feedback device. In the second experiment, the PHANToM haptic interface device is used to control the Mitsubishi PA-10 robot arm and interact with the membrane in real-time. Image data obtained through vision of the deformation of the membrane is used as the displacement input for the FEM model to compute the local interaction forces which are then displayed on the user console for providing force feedback and hence closing the loop.

  2. Air microjet system for non-contact force application and the actuation of micro-structures

    International Nuclear Information System (INIS)

    Khare, S M; Venkataraman, V

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s −1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable. (technical note)

  3. Air microjet system for non-contact force application and the actuation of micro-structures

    Science.gov (United States)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  4. Implementation of active electrodes on a brain-computer interface and its application as P300 speller

    International Nuclear Information System (INIS)

    Aguero Rojas, Eliecer

    2013-01-01

    A brain computer interface has implemented using open hardware called Modular EEG, created by The OpenEEG Project and distributed by the company Olimex Ltd. That hardware is modified to use active electrodes, instead of passive electrodes, for acquiring electroencephalographic signals. The application has been given to the interface has been a speller P300; for which has used the BC12000 open software that has the necessary configuration for the application. P300 speller has used a protocol in each session so that could be standardize the method to different users. Valuing the results with three neuropsychological tests, was within the objectives; however, has not been achieved by the limitation in time of project implementation. A brain computer interface has been used with passive electrodes; implemented in the same way that the BCI with active electrodes; and has worked better than the interface with active electrodes. One of the major advantages that has been observed of passive electrodes on the actives has been the size of the same, because the liabilities are smaller and therefore, easier to place preventing the hair of the user, which increases the noise in the signal. (author) [es

  5. SketchyDynamics: A Library for the Development of Physics Simulation Applications with Sketch-Based Interfaces

    Directory of Open Access Journals (Sweden)

    Abílio Costa

    2013-09-01

    Full Text Available Sketch-based interfaces provide a powerful, natural and intuitive way for users to interact with an application. By combining a sketch-based interface with a physically simulated environment, an application offers the means for users to rapidly sketch a set of objects, like if they are doing it on piece of paper, and see how these objects behave in a simulation. In this paper we present SketchyDynamics, a library that intends to facilitate the creation of applications by rapidly providing them a sketch-based interface and physics simulation capabilities. SketchyDynamics was designed to be versatile and customizable but also simple. In fact, a simple application where the user draws objects and they are immediately simulated, colliding with each other and reacting to the specified physical forces, can be created with only 3 lines of code. In order to validate SketchyDynamics design choices, we also present some details of the usability evaluation that was conducted with a proof-of-concept prototype

  6. Fragrance contact allergens in 5588 cosmetic products identified through a novel smartphone application

    DEFF Research Database (Denmark)

    Bennike, N H; Oturai, N B; Müller, S

    2018-01-01

    -on and 100 ppm or above in wash-off cosmetics. OBJECTIVE: To examine exposure, based on ingredient labelling, to the 26 fragrances in a sample of 5588 fragranced cosmetic products. METHODS: The investigated products were identified through a novel, non-profit smartphone application (app), designed to provide...

  7. Applicability of the "Emotiv EEG Neuroheadset" as a user-friendly input interface.

    Science.gov (United States)

    Boutani, Hidenori; Ohsuga, Mieko

    2013-01-01

    We aimed to develop an input interface by using the P3 component of visual event-related potentials (ERPs). When using electroencephalography (EEG) in daily applications, coping with ocular-motor artifacts and ensuring that the equipment is user-friendly are both important. To address the first issue, we applied a previously proposed method that applies an unmixing matrix to acquire independent components (ICs) obtained from another dataset. For the second issue, we introduced a 14-channel EEG commercial headset called the "Emotiv EEG Neuroheadset". An advantage of the Emotiv headset is that users can put it on by themselves within 1 min without any specific skills. However, only a few studies have investigated whether EEG and ERP signals are accurately measured by Emotiv. Additionally, no electrodes of the Emotiv headset are located over the centroparietal area of the head where P3 components are reported to show large amplitudes. Therefore, we first demonstrated that the P3 components obtained by the headset and by commercial plate electrodes and a multipurpose bioelectric amplifier during an oddball task were comparable. Next, we confirmed that eye-blink and ocular movement components could be decomposed by independent component analysis (ICA) using the 14-channel signals measured by the headset. We also demonstrated that artifacts could be removed with an unmixing matrix, as long as the matrix was obtained from the same person, even if they were measured on different days. Finally, we confirmed that the fluctuation of the sampling frequency of the Emotiv headset was not a major problem.

  8. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    Science.gov (United States)

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  9. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  10. Generating Virtual Eye Contacts Through Online Synchronous Communications in Virtual Classroom Applications

    Directory of Open Access Journals (Sweden)

    T. Volkan YUZER

    2007-01-01

    Full Text Available The Internet usage has been increasing among persons in the worldwide. This situation highlights that the number of potential distance learners has been increasing in the Internet society. Besides, the terms and concepts of the Internet environments become to be spread out in this society like virtual reality. It is also possible to explain the characters of the Internet clearly via generating relatively new terms or concepts. “Virtual eye contact” concept is one of these. In this article, this concept is considered with a specific application of synchronous internet-based e-learning environments which is virtual classroom platform application. Explanation, technological infrastructure and benefits of this concept and training of the trainers to use this nonverbal communication type more powerfully are explained and discussed.

  11. A Low-wear Planar-contact Silicon Raceway for Microball Bearing Applications

    Science.gov (United States)

    2009-04-01

    of friction between stainless steel microballs and silicon grooves (18–20). Both linear and rotary micromotors for sensor platforms were developed...mechanism, like a micromotor , will enable devices to reach higher speeds. Previously, the radial surface wear track depth was >15 m for a device...can lead to significant whirl and axial misalignment, which is critical for micromotor and micropump applications. Small changes in the alignment

  12. 一种接口兼容的非接触式呼吸信号检测系统的设计与研究%Design and Research of an Interface Compatible Non-contacting Respiratory Signal Detection System

    Institute of Scientific and Technical Information of China (English)

    宋奎; 齐家俊; 林涛; 张逸

    2011-01-01

    Respiration-induced displacements of organs greatly affect the safety and efficiency of high intensity focused ultrasound (HIFU) tumor therapy system. The key to solve this problem is accurate, real-time detection of respiratory signals. The present study gives a new design of an interface compatible non-contacting respiratory signal detection system using the method of irradiating the laser beam onto certain region of the surface of human body that is intensely influenced by the breathing movements (mostly the breast or the dorsum) at a certain angle, and meanwhile using a camera to aquire information from the location of the laser projection. Then we can draw a curve of the location of laser projection versus time base, that is the respiration curve. This respiratory signal detection method is non-contacting, interface compatible and easy to be integrated into the treatment system.%呼吸运动引发的体内脏器移位极大影响高强度聚焦超声(HIFU)肿瘤治疗系统的安全性和治疗效率.解决这一问题的关键是实时、准确的呼吸信号检测.以一定角度,用激光束在人体表受呼吸运动影响较大的部位(一般是胸部或背部)投射激光点,用摄像机采集激光点位置信息.描绘激光点位置与采集时刻的关系曲线,即呼吸曲线.该呼吸信号检测方法为非接触式,同时具有接口兼容性好的优点,便于集成到治疗系统中.

  13. IAEA consultants` meeting on atomic data base and fusion applications interface, Vienna, 9-13 May 1988. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R K

    1988-09-01

    The Summary Report of the IAEA Consultants` Meeting on the ``Atomic Data Base and Fusion Applications Interface`` held at the IAEA Headquarters in Vienna on May 9-13, 1988, is provided. The Report contains a brief review of the meeting proceedings, and the reports of the Working Groups on the A and M dictionary (labelling/indexing system) and on the data storage and exchange system. The conclusions and recommendations of the meeting are also summarized. (author). Figs and tabs.

  14. IAEA consultants' meeting on atomic data base and fusion applications interface, Vienna, 9-13 May 1988

    International Nuclear Information System (INIS)

    Janev, R.K.

    1988-09-01

    The Summary Report of the IAEA Consultants' Meeting on the ''Atomic Data Base and Fusion Applications Interface'' held at the IAEA Headquarters in Vienna on May 9-13, 1988, is provided. The Report contains a brief review of the meeting proceedings, and the reports of the Working Groups on the A and M dictionary (labelling/indexing system) and on the data storage and exchange system. The conclusions and recommendations of the meeting are also summarized. (author). Figs and tabs

  15. —Research Perspectives at the Interface of Marketing and Operations: Applications to the Motion Picture Industry

    OpenAIRE

    Sanjeev Swami

    2006-01-01

    In this comment, I discuss some research issues at the interface of marketing and operations particularly relevant to the motion picture industry. The major focus of my comments will be on the exhibition component of the motion picture value chain. Based on research findings and available data, I discuss the following issues: dynamic and interesting characteristics of the motion picture industry, the applicability of management science tools to artistic products, the practitioners' viewpoint,...

  16. Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Shen, Huajun, E-mail: shenhuajun@ime.ac.cn; Tang, Yidan; Bai, Yun; Liu, Xinyu [Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Xufang [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wu, Yudong; Liu, Kean [Zhuzhou CSR Times Electric Co., Ltd, ZhuZhou 412001 (China)

    2015-01-14

    Low resistivity Ni/Ti/Al ohmic contacts on p-type 4H-SiC epilayer were developed, and their thermal stabilities were also experimentally investigated through high temperature storage at 600 °C for 100 h. The contact resistance of the Al/Ti/Ni/SiC contacts degraded in different degrees, and the contact morphology deteriorated with the increases of the average surface roughness and interface voids. X-ray spectra showed that Ni{sub 2}Si and Ti{sub 3}SiC{sub 2}, which were formed during ohmic contact annealing and contributed to low contact resistivity, were stable under high temperature storage. The existence of the TiAl{sub 3} and NiAl{sub 3} intermetallic phases was helpful to prevent Al agglomeration on the interface and make the contacts thermally stable. Auger electron spectroscopy indicated that the incorporation of oxygen at the surface and interface led to the oxidation of Al or Ti resulting in increased contact resistance. Also, the formation of these oxides roughened the surface and interface. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism dominates the current transport for contacts before and after the thermal treatment. It suggests that the Ni/Ti/Al composite ohmic contacts are promising for SiC devices to be used in high temperature applications.

  17. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. x-y-recording in transmission electron microscopy. A versatile and inexpensive interface to personal computers with application to stereology.

    Science.gov (United States)

    Rickmann, M; Siklós, L; Joó, F; Wolff, J R

    1990-09-01

    An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.

  19. Pulsed Current Static Electrical Contact Experiment

    National Research Council Canada - National Science Library

    Jones, Harry N; Neri, Jesse M; Boyer, Craig N; Cooper, Khershed P; Meger, Robert A

    2006-01-01

    .... The voltage developed across the interface is directly related to the contact temperature and pressure, the number of a-spots, the thermophysical and mechanical properties of the contacting materials...

  20. Diffusion through Bifurcations in Oscillating Nano- and Microscale Contacts: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2015-08-01

    Full Text Available It has long been recognized that the diffusion of adsorbed molecules and clusters is the key controlling factor in most dynamical processes occurring on surfaces and in nanoscale-confined spaces. The ability to manipulate diffusion is essential for achieving efficient transport in nano- and microstructures and for many other applications. Through simulations and experiments, we found that under the influence of mechanical oscillations, the diffusion coefficient in nanoscale-confined regions can be greatly enhanced. This effect occurs due to bifurcations of particle trajectories caused by the reconstruction of the energy landscape during oscillations. We derive a parameter-free analytical model for the enhanced diffusion that is in excellent agreement with results of our numerical simulations. The oscillation-induced enhancement of diffusion may have interesting and promising applications in such areas as directed molecular transport, sorting of particles, and tribology. Here, our findings have been applied to studies of mechanical cleaning of surfaces from contamination. Through both experiments and simulations, we have shown that using an oscillating slider, one can significantly reduce the concentration of contaminants in a confined region, which is crucial for achieving superlow friction.

  1. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  2. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  3. Fusion interfaces for tactical environments: An application of virtual reality technology

    Science.gov (United States)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  4. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    Science.gov (United States)

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  5. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  6. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    Science.gov (United States)

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  7. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    Directory of Open Access Journals (Sweden)

    Ignacio Galiana

    2011-12-01

    Full Text Available This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  8. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  9. Application of the functional surface/interface of Nano/Micro systems

    Science.gov (United States)

    Zeng, Xiping

    Investigation of the surface/ interface of Nano/Micro systems plays an essential role in lots of areas, include the synthesis and assembly of nanostructures, evaporation of liquid, etc. Through studying the interaction between the polyvinyl pyrrolidone (PVP) and the surface of the silver nanowires (AgNWs), it was found that the PVP, serving as a capping agent, has a great impact on the morphology and structure of AgNWs. By means of a series of experiments, the critical minimum PVP chain length for successful formation of uniform nanowires was discovered, below which, only nanoparticles or short Nano rods can be obtained. Surprisingly, a core-shell structure of nanowire with a polycrystal was observed when the PVP with very long chain length was employed in the processing. By controlling the interaction between the Ag NWs and the surface of the substrates, a one-step method was developed for the fabrication of electrodes with patterns. Such film comprising Ag NWs were only self-growing or grafted on a hydrophilic surface area instead of the hydrophobic one. Thus, the selective patterning of the conducting film on the hybrid substrate surface can be realized, which is etching-free method for metal removal usually for the fabrication of electrodes by lithographic process or laser cutting. Therefore, such technique for producing conducting film is green and environmental friendly. A biochip based silver nano dendritic structures was fabricated to detect Carcinoembryonic antigen (CEA), which is a common tumor marker in clinical tests. Results show that the Raman signal of the CEA enhanced by about 10 4 times compared with silver nanowires, which is capable of detecting CEA at 1 fg/mL. The surface of liquid water, especial the hydration of ions on the surface, which are of fundamental interest and have potential applications, remain unclear. A fantastic and extraordinary phenomenon was observed during the evaporation of a water droplet doped with manganese chloride. As

  10. Application of ecological interface design in nuclear power plant (NPP operator support system

    Directory of Open Access Journals (Sweden)

    Alexey Anokhin

    2018-05-01

    Full Text Available Most publications confirm that an ecological interface is a very efficient tool to supporting operators in recognition of complex and unusual situations and in decision-making. The present article describes the experience of implementation of an ecological interface concept for visualization of material balance in a drum separator of RBMK-type NPPs. Functional analysis of the domain area was carried out and revealed main factors and contributors to the balance. The proposed ecological display was designed to facilitate execution of the most complicated cognitive operations, such as comparison, summarizing, prediction, etc. The experimental series carried out at NPPs demonstrated considerable reduction of operators' mental load, time of reaction, and error rate. Keywords: Ecological Interface Design, Experimental Evaluation, Model, Work Domain Analysis

  11. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing

    Directory of Open Access Journals (Sweden)

    Sebastian van der Linden

    2015-09-01

    Full Text Available The EnMAP-Box is a toolbox that is developed for the processing and analysis of data acquired by the German spaceborne imaging spectrometer EnMAP (Environmental Mapping and Analysis Program. It is developed with two aims in mind in order to guarantee full usage of future EnMAP data, i.e., (1 extending the EnMAP user community and (2 providing access to recent approaches for imaging spectroscopy data processing. The software is freely available and offers a range of tools and applications for the processing of spectral imagery, including classical processing tools for imaging spectroscopy data as well as powerful machine learning approaches or interfaces for the integration of methods available in scripting languages. A special developer version includes the full open source code, an application programming interface and an application wizard for easy integration and documentation of new developments. This paper gives an overview of the EnMAP-Box for users and developers, explains typical workflows along an application example and exemplifies the concept for making it a frequently used and constantly extended platform for imaging spectroscopy applications.

  12. A variational treatment of material configurations with application to interface motion and microstructural evolution

    Science.gov (United States)

    Teichert, Gregory H.; Rudraraju, Shiva; Garikipati, Krishna

    2017-02-01

    We present a unified variational treatment of evolving configurations in crystalline solids with microstructure. The crux of our treatment lies in the introduction of a vector configurational field. This field lies in the material, or configurational, manifold, in contrast with the traditional displacement field, which we regard as lying in the spatial manifold. We identify two distinct cases which describe (a) problems in which the configurational field's evolution is localized to a mathematically sharp interface, and (b) those in which the configurational field's evolution can extend throughout the volume. The first case is suitable for describing incoherent phase interfaces in polycrystalline solids, and the latter is useful for describing smooth changes in crystal structure and naturally incorporates coherent (diffuse) phase interfaces. These descriptions also lead to parameterizations of the free energies for the two cases, from which variational treatments can be developed and equilibrium conditions obtained. For sharp interfaces that are out-of-equilibrium, the second law of thermodynamics furnishes restrictions on the kinetic law for the interface velocity. The class of problems in which the material undergoes configurational changes between distinct, stable crystal structures are characterized by free energy density functions that are non-convex with respect to configurational strain. For physically meaningful solutions and mathematical well-posedness, it becomes necessary to incorporate interfacial energy. This we have done by introducing a configurational strain gradient dependence in the free energy density function following ideas laid out by Toupin (1962, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11, 385-414). The variational treatment leads to a system of partial differential equations governing the configuration that is coupled with the traditional equations of nonlinear elasticity. The coupled system of equations governs

  13. Interface model coupling in fluid dynamics: application to two-phase flows

    International Nuclear Information System (INIS)

    Galie, Th.

    2009-03-01

    This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)

  14. Eye gaze in intelligent user interfaces gaze-based analyses, models and applications

    CERN Document Server

    Nakano, Yukiko I; Bader, Thomas

    2013-01-01

    Remarkable progress in eye-tracking technologies opened the way to design novel attention-based intelligent user interfaces, and highlighted the importance of better understanding of eye-gaze in human-computer interaction and human-human communication. For instance, a user's focus of attention is useful in interpreting the user's intentions, their understanding of the conversation, and their attitude towards the conversation. In human face-to-face communication, eye gaze plays an important role in floor management, grounding, and engagement in conversation.Eye Gaze in Intelligent User Interfac

  15. Development and application of a direct method to observe the implant/bone interface using simulated bone.

    Science.gov (United States)

    Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko

    2016-01-01

    Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.

  16. Applications of optical coherence tomography in the non-contact assessment of automotive paints

    Science.gov (United States)

    Lawman, Samuel; Zhang, Jinke; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2017-06-01

    The multiple layer paint systems on modern cars serve two end purposes, they firstly protect against corrosion and secondly give the desired visual appearance. To ensure consistent corrosion protection and appearance, suitable Quality Assurance (QA) measures on the final product are required. Various (layer thickness and consistency, layer composition, flake statistics, surface profile and layer dryness) parameters are of importance, each with specific techniques that can measure one or some of them but no technique that can measure all or most of them. Optical Coherence Tomography (OCT) is a 3D imaging technique with micrometre resolution. Since 2016, OCT measurements of layer thickness and consistency, layer composition fingerprint and flake statistics have been reported. In this paper we demonstrate two more novel applications of OCT to automotive paints. Firstly, we use OCT to quantify unwanted surface texture, which leads to an "orange peel" visual defect. This was done by measuring the surface profiles of automotive paints, with an unoptimised precision of 37 nm over lateral range of 7 mm, to quantify texture of less than 500 nm. Secondly, we demonstrate that OCT can measure how dry a coating layer is by measuring how fast it is still shrinking quasiinstantaneously, using Fourier phase sensitivity.

  17. ACME - Algorithms for Contact in a Multiphysics Environment API Version 1.0

    International Nuclear Information System (INIS)

    BROWN, KEVIN H.; SUMMERS, RANDALL M.; GLASS, MICHEAL W.; GULLERUD, ARNE S.; HEINSTEIN, MARTIN W.; JONES, REESE E.

    2001-01-01

    An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library

  18. Improving the accessibility at home: implementation of a domotic application using a p300-based brain computer interface system

    Directory of Open Access Journals (Sweden)

    Rebeca Corralejo Palacios

    2012-05-01

    Full Text Available The aim of this study was to develop a Brain Computer Interface (BCI application to control domotic devices usually present at home. Previous studies have shown that people with severe disabilities, both physical and cognitive ones, do not achieve high accuracy results using motor imagery-based BCIs. To overcome this limitation, we propose the implementation of a BCI application using P300 evoked potentials, because neither extensive training nor extremely high concentration level are required for this kind of BCIs. The implemented BCI application allows to control several devices as TV, DVD player, mini Hi-Fi system, multimedia hard drive, telephone, heater, fan and lights. Our aim is that potential users, i.e. people with severe disabilities, are able to achieve high accuracy. Therefore, this domotic BCI application is useful to increase

  19. Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)

    International Nuclear Information System (INIS)

    Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki

    2010-01-01

    In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)

  20. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    Science.gov (United States)

    Jagodzinski, Piotr; Wolski, Robert

    2015-01-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar…

  1. Smart and green interfaces: From single bubbles/drops to industrial environmental and biomedical applications

    NARCIS (Netherlands)

    Dutschk, Victoria; Karapantsios, T.; Liggieri, L.; McMillan, N.; Miller, R.; Starov, V.M.

    2014-01-01

    Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and

  2. Determination of the electronic density of states near buried interfaces: Application to Co/Cu multilayers

    DEFF Research Database (Denmark)

    Nilsson, A.; Sthör, J.; Wiell, T.

    1996-01-01

    High-resolution L(3) x-ray absorption and emission spectra of Co and Cu in Co/Cu multilayers are shown to provide unique information on the occupied and unoccupied density of d states near buried interfaces. The d bands of both Co and Cu interfacial layers are shown to be considerably narrowed...

  3. Light Stimulation Properties to Influence Brain Activity: A Brain-CoMputer Interface application

    NARCIS (Netherlands)

    Bieger, J.; Garcia Molina, G.

    2010-01-01

    Brain-Computer Interfaces (BCIs) enable people to control appliances without involving the normal output pathways of peripheral nervesand muscles. A particularly promising type of BCI is based on the Steady-State Visual Evoked Potential (SSVEP). Users can selectcommands by focusing their attention

  4. Brain Machine Interfaces : technology status, applications and the way to the future

    NARCIS (Netherlands)

    Erp, J.B.F. van; Duistermaat, M.; Philippens, I.H.C.H.M.; Veen, H.A.H.C. van; Werkhoven, P.J.

    2006-01-01

    Brain Machine Interfaces (BMIs) enable direct communication between the brain or nervous system and a machine without involving the sensory-motor system. BMIs are an embryonic technology and remarkable accomplishments have recently been reported. BMIs have a high potential and possibly an enormous

  5. 1D and 2D graphdiynes. Recent advances on the synthesis at interfaces and potential nanotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi; Molina-Jiron, Concepcion; Klyatskaya, Svetlana [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany); Klappenberger, Florian [Physik Department E20, Technische Universitaet Muenchen, Garching (Germany); Ruben, Mario [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany); IPCMS-CNRS, Universite de Strasbourg (France)

    2017-11-15

    In solution-based chemistry butadiyne linkage through the homocoupling reaction of alkynes is a versatile tool for the synthesis of π-conjugated polymers, scaffolds and networks. To date this strategy was actively implemented towards chemical synthesis at interfaces. In this review paper we summarize recent advances in the syntheses of 1D wires, 2D single-layers and thin films of graphdiyne-related carbon materials at interfaces and their potential applications in nanotechnology. With a high degree of π-conjunction, uniformly distributed pores and tunable electronic properties such 2D all-carbon networks with butadiyne linkages also known as 'graphdiynes' have been successfully employed in the field-effected emission devices, solar cells, for Li ion storage and oil water separation, and as catalysis or chemical sensors. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    Science.gov (United States)

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  7. AthenaTV: an authoring tool of educational applications for TV using android-based interface design patterns

    Science.gov (United States)

    Vásquez-Ramírez, Raquel; Alor-Hernández, Giner; Sánchez-Ramírez, Cuauhtémoc; Guzmán-Luna, Jaime; Zatarain-Cabada, Ramón; Barrón-Estrada, María-Lucía

    2014-07-01

    Education has become a key component of any society since it is the means by which humanity functions and governs itself. It allows individuals to appropriately integrate into a given community. For this reason, new ways of interaction between students and educational contents are emerging in order to improve the quality of education. In this context, devices such as computers, smartphones, or electronic tablets represent new ways of accessing educational resources which do not limit students to their usage merely inside the classroom since these devices are available anywhere. Nowadays, television has become one of these technological tools able to support the teaching-learning process through documentary films or movies, among others. However, two main issues appear. First, some of these educational contents are not those needed by a professor since information is restricted, and second, the development of TV-based applications requires an integrative approach involving the support of several specialists in education who provide the guidelines needed to build high-quality contents, as well as application designers and developers who are able to deliver the educational applications demanded by students. This work presents a system called AthenaTV to generate android-based educational applications for TV. AthenaTV takes into account the 10-foot design scheme used by Google to develop interfaces based on interface design patterns established in Google TV, and it is based on the android development guidelines and HTML5 standard.

  8. Multi-scale structuration of the electrode-electrolyte interface for applications in bio-electro-catalysis; Structuration multi-echelle de l'interface electrode-electrolyte pour des applications en bioelectrocatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, A. [Bordeaux-1 Univ., LACReM, ENSCPB, 33 - Pessac (France)

    2006-07-01

    In this work, two approaches have been combined to elaborate bio-functionalized interfaces having an original structure and well defined at several characteristic scales. These two approaches are 1)the growth of conducting or non conducting materials through organized structures and 2)the chemistry of non-covalent intermolecular bonds leading to the assembling of molecules towards interfacial structures having greatest size. With a deep physico-chemical characterization, it has been possible to understand the properties of these multi-scale structures and to propose different applications fields as for instance bio-electro-catalysis or photovoltaic cells. (O.M.)

  9. Contact Line Dynamics

    Science.gov (United States)

    Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca

    2017-11-01

    The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.

  10. TOOKUIL: A case study in user interface development for safety code application

    International Nuclear Information System (INIS)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-01-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today's safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL

  11. TOOKUIL: A case study in user interface development for safety code application

    International Nuclear Information System (INIS)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.; Peebles, R.C.; Smith, R.J.

    1996-11-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today's safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL

  12. TOOKUIL: A case study in user interface development for safety code application

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G. [and others

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  13. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  14. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2013-01-01

    . The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide and by using newly......Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed[1]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides...... developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates...

  15. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  16. Development and ITER relevant application of a user friendly interface (TEM) for use with the TMAP4 code

    International Nuclear Information System (INIS)

    Tanaka, M.R.; Fong, C.; Kalyanam, K.M.; Sood, S.K.; Delisle, M.; Natalizio, A.

    1995-01-01

    The Tritium Enclosure Model (TEM) has been developed as a user friendly interface to facilitate the application of the previously validated, verified and ITER approved TMAP4 Code. TEM (and TMAP4) dynamically analyzes the movement of tritium through structures, between structures and adjoining enclosures. Credible ITER relevant accident scenarios were developed and analyzed. The analyses considered the scenario with the cleanup system active or inactive, with and without the surface interactions. For surface interaction cases, the epoxy characteristics reported in the TMAP4 User Manual were used. Typical applications for TEM are the estimation of time-dependent tritium inventories in enclosures, as well as emissions to the environment following an accidental spill into any set of enclosures connected to cleanup systems. This paper outlines the various features of TEM and reports on the application of TEM to determine environmental source terms for the ITER Fuel Cycle and Cooling Systems, under chronic and accidental tritium releases. 3 refs., 2 figs., 1 tab

  17. Generalized linear elastic fracture mechanics: an application to a crack touching the bimaterial interface

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  18. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    Science.gov (United States)

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical

  19. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    Science.gov (United States)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  20. Application of EMD-Based SVD and SVM to Coal-Gangue Interface Detection

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-01-01

    Full Text Available Coal-gangue interface detection during top-coal caving mining is a challenging problem. This paper proposes a new vibration signal analysis approach to detecting the coal-gangue interface based on singular value decomposition (SVD techniques and support vector machines (SVMs. Due to the nonstationary characteristics in vibration signals of the tail boom support of the longwall mining machine in this complicated environment, the empirical mode decomposition (EMD is used to decompose the raw vibration signals into a number of intrinsic mode functions (IMFs by which the initial feature vector matrices can be formed automatically. By applying the SVD algorithm to the initial feature vector matrices, the singular values of matrices can be obtained and used as the input feature vectors of SVMs classifier. The analysis results of vibration signals from the tail boom support of a longwall mining machine show that the method based on EMD, SVD, and SVM is effective for coal-gangue interface detection even when the number of samples is small.

  1. The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste

    International Nuclear Information System (INIS)

    Cash, R.J.

    1995-01-01

    To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition

  2. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    Science.gov (United States)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  3. MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis

    Science.gov (United States)

    Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee

    2008-01-01

    We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698

  4. Research on e-commerce transaction networks using multi-agent modelling and open application programming interface

    Science.gov (United States)

    Piao, Chunhui; Han, Xufang; Wu, Harris

    2010-08-01

    We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.

  5. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  6. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  7. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution

    Science.gov (United States)

    Shi, Jian-Wen; Ma, Dandan; Zou, Yajun; Fan, Zhaoyang; Shi, Jinwen; Cheng, Linhao; Ji, Xin; Niu, Chunming

    2018-03-01

    The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z-scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron-hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h-1 g-1, which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h-1 g-1) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.

  9. The application of micro-vacuo-certo-contacting ophthalmophanto in X-ray radiosurgery for tumors in an eyeball.

    Science.gov (United States)

    Li, Shuying; Wang, Yunyan; Hu, Likuan; Liang, Yingchun; Cai, Jing

    2014-11-01

    The large errors of routine localization for eyeball tumors restricted X-ray radiosurgery application, just for the eyeball to turn around. To localize the accuracy site, the micro-vacuo-certo-contacting ophthalmophanto (MVCCOP) method was used. Also, the outcome of patients with tumors in the eyeball was evaluated. In this study, computed tomography (CT) localization accuracy was measured by repeating CT scan using MVCCOP to fix the eyeball in radiosurgery. This study evaluated the outcome of the tumors and the survival of the patients by follow-up. The results indicated that the accuracy of CT localization of Brown-Roberts-Wells (BRW) head ring was 0.65 mm and maximum error was 1.09 mm. The accuracy of target localization of tumors in the eyeball using MVCCOP was 0.87 mm averagely, and the maximum error was 1.19 mm. The errors of fixation of the eyeball were 0.84 mm averagely and 1.17 mm maximally. The total accuracy was 1.34 mm, and 95% confidence accuracy was 2.09 mm. The clinical application of this method in 14 tumor patients showed satisfactory results, and all of the tumors showed the clear rims. The site of ten retinoblastomas was decreased significantly. The local control interval of tumors were 6 ∼ 24 months, median of 10.5 months. The survival of ten patients was 7 ∼ 30 months, median of 16.5 months. Also, the tumors were kept stable or shrank in the other four patients with angioma and melanoma. In conclusion, the MVCCOP is suitable and dependable for X-ray radiosurgery for eyeball tumors. The tumor control and survival of patients are satisfactory, and this method can effectively postpone or avoid extirpation of eyeball.

  10. Study and application of human reliability analysis for digital human-system interface

    International Nuclear Information System (INIS)

    Jia Ming; Liu Yanzi; Zhang Jianbo

    2014-01-01

    The knowledge of human-orientated abilities and limitations could be used to digital human-system interface (HSI) design by human reliability analysis (HRA) technology. Further, control room system design could achieve the perfect match of man-machine-environment. This research was conducted to establish an integrated HRA method. This method identified HSI potential design flaws which may affect human performance and cause human error. Then a systematic approach was adopted to optimize HSI. It turns out that this method is practical and objective, and effectively improves the safety, reliability and economy of nuclear power plant. This method was applied to CRP1000 projects under construction successfully with great potential. (authors)

  11. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  12. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    Science.gov (United States)

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  13. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2014-01-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides......, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose...

  14. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. [Seoul National University Hospital (Korea, Republic of)

    2015-06-15

    . These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the

  15. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    International Nuclear Information System (INIS)

    Park, J.

    2015-01-01

    . These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the

  16. Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

    KAUST Repository

    Nauruzbayeva, Jamilya

    2017-04-01

    , energy-dispersive spectroscopy, optical microscopy, a contact angle cell, and high-speed imaging. We concluded that contact electrification at the PTFE-aluminum interface was driven by electrons transferred from aluminum to PTFE. In contrast, contact electrification at the polypropylene-water interface was driven by the specific adsorption of OH- ions onto polypropylene. These insights should be helpful in designing applications of polymers where electrical charging could have influence, or applications that could be based on electrical charging at such interfaces, such as triboelectric generator.

  17. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    Science.gov (United States)

    Jagodziński, Piotr; Wolski, Robert

    2015-02-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar to those that they perform in a real laboratory. Kinect sensor was used for the detection and analysis of the student's hand movements, which is an example of NUI. The studies conducted found the effectiveness of educational virtual laboratory. The extent to which the use of a teaching aid increased the students' progress in learning chemistry was examined. The results indicate that the use of NUI creates opportunities to both enhance and improve the quality of the chemistry education. Working in a virtual laboratory using the Kinect interface results in greater emotional involvement and an increased sense of self-efficacy in the laboratory work among students. As a consequence, students are getting higher marks and are more interested in the subject of chemistry.

  18. Development of a user interface for the TSR and its application for beam diagnostics

    International Nuclear Information System (INIS)

    Tetzlaff, K.

    1997-01-01

    One of the topics of the following work is the development of a user interface for the control system of the heavy ion storage ring TSR at the Max-Planck-Institut for nuclear physics in Heidelberg. The new software has been developed with the programming language Visual Basic TM under the operating system Windows 95 TM . Its purpose is on one hand to enable the operator(s) to calculate some of the parameters for the adjustment of the storage ring on the other hand it improves the means of data acquisition from current, Schottky and BTF (beam transfer function) measurements. To achieve a simple operation of the program has been one of the primary goals during the development of the program. The new user interface was practically tested within three beam times. The collected data was examined to obtain information about momentum spread, longitudinal coupling impedance and minimal detection limit for the number of ions. A measurement with a 32 S 16+ beam rsulted in a limit of about 300. (orig.) [de

  19. IEEE P1596, a scalable coherent interface for GigaByte/sec multiprocessor applications

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1988-11-01

    IEEE P1596, the Scalable Coherent Interface (formerly known as SuperBus) is based on experience gained during the development of Fastbus (IEEE 960), Futurebus (IEEE 896.1) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor; efficient support of a coherent distributed-cache image of shared memory; and support for segmentation, bus repeaters and general switched interconnections like Banyan, Omega, or full crossbar networks. To achieve these ambitious goals, SCI must sacrifice the immediate handshake characteristic of the present generation of buses in favor of a packet-like split-cycle protocol. Wire-ORs, broadcasts, and even ordinary passive bus structures are to be avoided. However, a lower performance (1 GByte/sec per backplane instead of per processor) implementation using a register insertion ring architecture on a passive ''backplane'' appears to be possible using the same interface as for the more costly switch networks. This paper presents a summary of current directions, and reports the status of the work in progress

  20. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    International Nuclear Information System (INIS)

    Mahaffy, J.; Boyack, B.E.; Steinke, R.G.

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization

  1. Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Wen Liang; Li Fushan; Xie Jiangxing; Wu Chaoxing; Zheng Yong; Chen Dongling; Xu Sheng; Guo Tailiang; Qu Bo; Chen Zhijian; Gong Qihuang

    2011-01-01

    White organic light-emitting diode (WOLED) with a structure of ITO/poly(N-vinylcarbazole) (PVK)/4,7-diphenyl-1, 10-phenanthroline (Bphen)/tris(8-hydroxyquinoline)aluminum (Alq 3 )/LiF/Al has been fabricated via the thermal evaporation technique. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380 to 700 nm of the visible light region with a wide blue emission from PVK and an interesting new red emission. The red emission at 613 nm in EL spectra of the WOLED was attributed to electroplex emission at PVK/Bphen interface since it was not observed in photoluminescence spectra. The WOLED showed a Commission International De l'Eclairage coordinate of (0.31, 0.32), which is very close to the standard white coordinate (0.33, 0.33). - Highlights: → A white organic light-emitting diode was fabricated by vacuum deposition. → A new red emission at 613 nm was observed in the electroluminescence spectra. → Red emission comes from electroplex instead of exciplex at PVK/Bphen interface. → The device has a CIE coordinate of (0.31, 0.32).

  2. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    Science.gov (United States)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  3. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  4. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  5. Effects of Silicone Hydrogel Contact Lens Application on Corneal High-order Aberration and Visual Guality in Patients with Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Sevda Aydın Kurna

    2012-03-01

    Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102

  6. Using Qualitative Methods to Create a Home Health Web Application User Interface for Patients with Low Computer Proficiency.

    Science.gov (United States)

    Baier, Rosa R; Cooper, Emily; Wysocki, Andrea; Gravenstein, Stefan; Clark, Melissa

    2015-01-01

    Despite the investment in public reporting for a number of healthcare settings, evidence indicates that consumers do not routinely use available data to select providers. This suggests that existing reports do not adequately incorporate recommendations for consumer-facing reports or web applications. Healthcentric Advisors and Brown University undertook a multi-phased approach to create a consumer-facing home health web application in Rhode Island. This included reviewing the evidence base review to identify design recommendations and then creating a paper prototype and wireframe. We performed qualitative research to iteratively test our proposed user interface with two user groups, home health consumers and hospital case managers, refining our design to create the final web application. To test our prototype, we conducted two focus groups, with a total of 13 consumers, and 28 case manager interviews. Both user groups responded favorably to the prototype, with the majority commenting that they felt this type of tool would be useful. Case managers suggested revisions to ensure the application conformed to laws requiring Medicare patients to have the freedom to choose among providers and could be incorporated into hospital workflow. After incorporating changes and creating the wireframe, we conducted usability testing interviews with 14 home health consumers and six hospital case managers. We found that consumers needed prompting to navigate through the wireframe; they demonstrated confusion through both their words and body language. As a result, we modified the web application's sequence, navigation, and function to provide additional instructions and prompts. Although we designed our web application for low literacy and low health literacy, using recommendations from the evidence base, we overestimated the extent to which older adults were familiar with using computers. Some of our key learnings and recommendations run counter to general web design principles

  7. Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Directory of Open Access Journals (Sweden)

    Mayukh Bhattacharyya

    2018-01-01

    Full Text Available Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD.

  8. Electrical behaviour of strontium-doped lanthanum manganite interfaces

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Jacobsen, Torben

    2005-01-01

    The contact resistance of strontium-doped lanthanum manganite (LSM) contact pairs is investigated by polarisation analysis at different temperatures and atmospheres. The ceramic contacts have a high contact resistance, and strongly nonlinear current–voltage behaviour is observed at low temperatur....... The nonlinear behaviour is ascribed to the presence of energy barriers at the contact interface. Generally, point contacts showed a more linear behaviour than plane contact interfaces....

  9. Crawling Ajax-based Web Applications through Dynamic Analysis of User Interface State Changes

    NARCIS (Netherlands)

    Mesbah, A.; Van Deursen, A.; Lenselink, S.

    2011-01-01

    Using JavaScript and dynamic DOM manipulation on the client-side of web applications is becoming a widespread approach for achieving rich interactivity and responsiveness in modern web applications. At the same time, such techniques, collectively known as Ajax, shatter the metaphor of web ‘pages’

  10. Interface topography and residual stress distributions in W coatings for fusion armour applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)], E-mail: g.thomas@cranfield.ac.uk; Vincent, R. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Matthews, G. [UKAEA Fusion, K2 Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dance, B. [TWI Ltd, Granta Park, Great Abingdon, Cambridge CB1 6AL (United Kingdom); Grant, P.S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2008-03-25

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates.

  11. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    Science.gov (United States)

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  12. Towards Practical Brain-Computer Interfaces Bridging the Gap from Research to Real-World Applications

    CERN Document Server

    Dunne, Stephen; Leeb, Robert; Millán, José; Nijholt, Anton

    2013-01-01

    Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.

  13. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    Science.gov (United States)

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  14. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  15. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  16. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  17. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2010-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526

  18. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    Science.gov (United States)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  19. Development of a graphical user interface for sgRNAcas9 and its application.

    Science.gov (United States)

    Zhao, Chang-zhi; Zhang, Yi; Li, Guang-lei; Chen, Ji-liang; Li, Jing-Jin; Ren, Rui-min; Ni, Pan; Zhao, Shu-hong; Xie, Sheng-song

    2015-10-01

    The CRISPR/Cas9 genome editing technique is a powerful tool for researchers. However, off-target effects of the Cas9 nuclease activity is a recurrent concern of the CRISPR system. Thus, designing sgRNA (single guide RNA) with minimal off-target effects is very important. sgRNAcas9 is a software package, which can be used to design sgRNA and to evaluate potential off-target cleavage sites. In this study, a graphical user interface for sgRNAcas9 was developed using the Java programming language. In addition, off-target effect for sgRNAs was evaluated according to mismatched number and "seed sequence" specification. Moreover, sgRNAcas9 software was used to design 34 124 sgRNAs, which can target 4691 microRNA (miRNA) precursors from human, mouse, rat, pig, and chicken. In particular, the off-target effect of a sgRNA targeting to human miR-206 precursor was analyzed, and the on/off-target activity of this sgRNA was validated by T7E1 assay in vitro. Taken together, these data showed that the interface can simplify the usage of the sgRNAcas9 program, which can be used to design sgRNAs for the majority of miRNA precursors. We also found that the GC% of those sgRNAs ranged from 40% to 60%. In summary, the sgRNAcas9 software can be easily used to design sgRNA with minimal off-target effects for any species. The software can be downloaded from BiooTools website (http://www.biootools.com/).

  20. Non-invasive brain-computer interface system: towards its application as assistive technology.

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2008-04-15

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.

  1. JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability - An Application Programming Interface (API) for Model Analysis

    Science.gov (United States)

    Banta, Edward R.; Poeter, Eileen P.; Doherty, John E.; Hill, Mary C.

    2006-01-01

    he Joint Universal Parameter IdenTification and Evaluation of Reliability Application Programming Interface (JUPITER API) improves the computer programming resources available to those developing applications (computer programs) for model analysis.The JUPITER API consists of eleven Fortran-90 modules that provide for encapsulation of data and operations on that data. Each module contains one or more entities: data, data types, subroutines, functions, and generic interfaces. The modules do not constitute computer programs themselves; instead, they are used to construct computer programs. Such computer programs are called applications of the API. The API provides common modeling operations for use by a variety of computer applications.The models being analyzed are referred to here as process models, and may, for example, represent the physics, chemistry, and(or) biology of a field or laboratory system. Process models commonly are constructed using published models such as MODFLOW (Harbaugh et al., 2000; Harbaugh, 2005), MT3DMS (Zheng and Wang, 1996), HSPF (Bicknell et al., 1997), PRMS (Leavesley and Stannard, 1995), and many others. The process model may be accessed by a JUPITER API application as an external program, or it may be implemented as a subroutine within a JUPITER API application . In either case, execution of the model takes place in a framework designed by the application programmer. This framework can be designed to take advantage of any parallel processing capabilities possessed by the process model, as well as the parallel-processing capabilities of the JUPITER API.Model analyses for which the JUPITER API could be useful include, for example: Compare model results to observed values to determine how well the model reproduces system processes and characteristics.Use sensitivity analysis to determine the information provided by observations to parameters and predictions of interest.Determine the additional data needed to improve selected model

  2. A New Method Solving Contact/Detach Problem in Fluid and Structure Interaction Simulation with Application in Modeling of a Safety Valve

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2010-01-01

    Full Text Available A new virtual baffle methodology is implemented to solve contact/detach problem which is often encountered in fluid and structure interaction simulations while using dynamic grids technique. The algorithm is based on tetrahedral unstructured grid, and a zero thickness baffle face is generated between actually contacted two objects. In computation process, this baffle face is divided into two parts representing convective and blocked area, respectively; the area of each part is calculated according to the actual displacement between the two objects. Convective part in a baffle face is treated as inner interface between cells, and on blocked part wall boundary condition is applied; so convective and blocking effect can be achieved on a single baffle face. This methodology can simulate real detaching process starting from contact, that is, zero displacement, while it has no restriction to minimum grid cell size. The methodology is then applied in modeling of a complicated safety valve opening process, involving multidisciplinary fluid and structure interaction and dynamic grids. The results agree well with experimental data, which proves that the virtual baffle method is successful.

  3. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  4. Application of contact mechanics for fretting damage of fuel rod: part 1 influence functions and numerical method

    International Nuclear Information System (INIS)

    Kim, H. K.; Yoon, K. H.; Kang, H. S.; Song, G. N.

    1998-01-01

    For the analysis of the fretting problem of the fuel rods, present paper(Part I) shows the numerical method developed for evaluating the stresses on the contact surfaces between the fuel rods and the spacer grids. Theory of Contact Mechanics was incorporated. Contact area was regarded as a plane strain condition, so plane problem was taken into consideration. Normal stress profile on the contact surface was assumed to be Hertzian. As for the direction of the shear load, a closed load path, e.g. load increase in transverse increase in axial decrease in transverse decrease in axial increase in transverse increase in axial direction was considered for simulating the rod vibration in a reactor core. Partial slip problem was consulted. As for the numerical method, a triangular traction element was utilized and the corresponding influence functions were evaluated. Numerical program has been implemented for the present analysis, of which the validity was verified by comparing the Mindlin-Cattaneo solution

  5. Using DLL as Interface between API an VC#.NET Applications

    Directory of Open Access Journals (Sweden)

    Marian DARDALA

    2006-01-01

    Full Text Available This paper presents a solution for using complex Win32API data structures and functions in Visual C# .NET applications. We built DLL (Dynamic Link Library to manage the API functions and data structures and we used DLL modules in a C# application. This is an easier working way compared with the traditional way of importing and managing API’s functions in C# programs.

  6. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    Science.gov (United States)

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  7. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving.

    Science.gov (United States)

    Zander, Thorsten O; Andreessen, Lena M; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R; Gramann, Klaus

    2017-01-01

    We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort.

  8. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum

    Science.gov (United States)

    Mahdaoui, Fatima; Michels, Raymond; Reisberg, Laurie; Pujol, Magali; Poirier, Yannick

    2015-06-01

    Several recent studies have raised the exciting possibility that oils can be dated using the Re-Os radioisotope system. However the exact nature of the events dated by this technique often remains unclear. Geochronologic interpretation of Re-Os data for oils is hampered by our limited knowledge of how these metals behave in petroleum systems. In particular, it is difficult to understand how isotopic homogenization, an essential prerequisite for the development of an isochronal relationship, can be achieved at the scale of a petroleum basin. The mechanisms capable of fractionating the Re/Os ratio in a suite of oils are also poorly understood. For this reason, we have performed an experimental study aimed at investigating the behavior of Re and Os during a particularly widespread phenomenon in petroleum systems, the interaction of formation waters with oils during migration. Contact experiments between natural oils and aqueous solutions enriched in Re and/or Os were carried out for varying lengths of time (6 h to 5 months), at different temperatures (25-150 °C), over a wide range of metal concentrations in the enriched solution (0.001-100 μg/g for Re; 1 and 10 ng/g for Os). In addition, the effect of oil composition on Re-Os exchange at the water-oil interface was examined by testing two oils with very different properties. All of our results demonstrate that Re and Os are transferred massively and very rapidly from the aqueous solution to the organic phase. This is true regardless of temperature or oil composition. It is also true for a very wide range of metal concentrations in the aqueous solution, up to an apparent saturation level that exceeds natural concentrations in oils by several orders of magnitude. Given the efficiency of Re and Os transfer from water to oil demonstrated here, and assuming that our findings are applicable to natural conditions, water/oil ratios of only about 250 would be needed to explain the Re and Os contents of most oils, based on

  9. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2016-07-01

    Full Text Available For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based structure prediction. Such models can be used in structure solution by molecular replacement (MR where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (`decoys', is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  10. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  11. Application of a driving simulator to the development of in-vehicle human–machine-interfaces

    Directory of Open Access Journals (Sweden)

    David H. Weir

    2010-07-01

    Full Text Available The use of a driving simulator in the development of human–machine-interfaces (HMI such as a navigation, information or entertainment system is discussed. Such use addresses the need to study and evaluate the characteristics of a candidate HMI early in the R&D and design stage to ensure that it is likely to meet various objectives and requirements, and to revise the HMI as may be necessary. Those HMI requirements include such things as usability, driver comfort, and an acceptable level of attentional demand in dual task conditions (driving while using an HMI. Typically, such an HMI involves an information display to the driver, and a means for driver input to the HMI. Corresponding simulator requirements are discussed, along with typical simulator features and components. The latter include a cab, control feel systems, visual image generator, real time scenario control (task definitions, a motion system (if provided, and data acquisition. Both fixed and moving base systems are described, together with associated benefits and tradeoffs. Considerations in the design of the evaluation experiment are discussed, including definition of primary and secondary tasks, and number of driver subjects (experimental participants. Possible response and performance measures for the primary and secondary tasks are noted, together with subjective measures such as task difficulty and ease of using the HMI. The advantages of using a driving simulator to support R&D are summarized. Some typical and example simulator uses are noted.

  12. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection

    Science.gov (United States)

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-01-01

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281

  13. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  14. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  15. Applications of the scalable coherent interface to data acquisition at LHC

    CERN Document Server

    Bogaerts, A; Divià, R; Müller, H; Parkman, C; Ponting, P J; Skaali, B; Midttun, G; Wormald, D; Wikne, J; Falciano, S; Cesaroni, F; Vinogradov, V I; Kristiansen, E H; Solberg, B; Guglielmi, A M; Worm, F H; Bovier, J; Davis, C; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    We propose to use the Scalable Coherent Interface (SCI) as a very high speed interconnect between LHC detector data buffers and farms of commercial trigger processors. Both the global second and third level trigger can be based on SCI as a reconfigurable and scalable system. SCI is a proposed IEEE standard which uses fast point-to-point links to provide computer-bus like services. It can connect a maximum of 65 536 nodes (memories or processors), providing data transfer rates of up to 1 Gbyte/s. Scalable data acquisition systems can be built using either simple SCI rings or complex switches. The interconnections may be flat cables, coaxial cables, or optical fibres. SCI protocols have been entirely implemented in VLSI, resulting in a significant simplification of data acquisition software. Novel SCI features allow efficient implementation of both data and processor driven readout architectures. In particular, a very efficient implementation of the third level trigger can be achieved by combining SCI's shared ...

  16. Understanding and Design of Polymer Device Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Antoine [Princeton Univ., NJ (United States)

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  17. Developing an iPhone application with focus on the user interface

    OpenAIRE

    Kannan, Naryanan

    2012-01-01

    Smartphones are becoming increasingly popular day by day. The reason why they are called ‘Smart phones’ is that they can perform advanced computing and have a better connectivity to the Internet. Smartphones usually run a complete operating system. For example, iOS runs on Apple Inc.’s mobile devices like iPhone, iPod Touch and iPad [1]. A Smartphone allows the user to run applications. These applications are aimed at making life simpler for the users. This Master Thesis aims at developing on...

  18. A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications.

    Science.gov (United States)

    Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon

    2018-03-02

    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.

  19. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    Science.gov (United States)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  20. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System

    Science.gov (United States)

    Deegan, Robin

    2013-01-01

    Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…